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Abstract 

A lightweight chassis for a battery electric vehicle being developed at the 

University of Waikato was required. The chassis was designed around a 

predetermined body shape and suspension setup. A chassis, built from 20mm 

thick aluminium honeycomb sandwich panel, was designed and built to LVVTA 

standards allowing the car to be driven on public roads. The chassis weighs a little 

over a third the mass of a mass production car chassis. The car has been driven 

over 1800km with only one minor problem, indicating the chassis is reliable and 

well suited to its purpose. 

Titanium aluminide properties were researched to identify where titanium 

aluminides could be used in an automobile. Titanium aluminides have a specific 

strength and stiffness near to steel yet only half the density making it an ideal 

replacement for steel components. Automotive applications identified that could 

benefit from the use of TiAl include valves, brake rotors and inside „in-wheel‟ 

electric motors. 
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Chapter 1   Introduction 

1.1  Lightweight components in modern day cars 

Over the last 25-30 years there has been an increasing requirement to lower 

vehicle mass. This has been driven by two factors; increasing petrol prices due to 

shortages in supply of crude oil and an increasing awareness of the environment 

and the need to reduce exhaust emissions. 

Lowering the mass leads to less energy being required from the motor to 

accelerate and drive an automobile. These lower energy requirements mean 

emissions and petrol usage from a lighter vehicle will be less than for a heavier 

comparable car. A recent newspaper article has claimed every 100kg of weight 

saved in a car can save 0.2-0.4 litres of fuel per 100km, depending on the type of 

engine (Gupta, 2006). 

The automobile industry‟s drive for lower vehicle emissions and energy 

consumption has led to the development of alternative means of propulsion, in 

particular Battery Electric Vehicles (BEV) and Fuel cells. For the above reasons a 

BEV has been developed at the University of Waikato. BEV‟s have become 

feasible due to improvements in battery technologies. The improvements have 

increased battery energy density which allows substantial improvements to 

driving range. Increasing range allows electric vehicles to be driven like 

conventional internal combustion engine vehicles. 
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Figure 1.1 Comparison of lightweight metals cost  (Leyens & Peters, 2006). 

Reducing weight is a key factor to reducing energy consumption. Various 

lightweight materials being considered for use in vehicles include aluminium, 

magnesium, titanium, fibre reinforced plastics and metal matrix composites 

(MMC). Two drawbacks of these materials for their integration into vehicle 

production are differing mechanical and physical properties compared to the 

conventional vehicle material steel, and high material costs (Figure  1.1). 

1.2  Reducing vehicle mass 

The majority of automobiles are constructed from steel. Although in the past 

decade there have been improvements to the strength of steel, it still has a high 

density when compared to other lightweight metals (Figure  1.2). 

Figure 1.2 Density of some metals (Leyens & Peters, 2006) 
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Alternative lightweight metals such as aluminium, titanium and magnesium are 

being used in automobiles, but the material and development costs are currently 

too high for many car manufacturers. Much research currently focuses on new 

manufacturing processes as a way to reduce this influence of high material costs. 

Lightweight materials can replace steel components if the component‟s design is 

optimised to better suit the lightweight material. Component shapes can be 

optimised by using 3D Computer Aided Drawing (CAD) and Finite Element 

Analysis. An example of this can be seen in Figure  1.3 where a complex 

aluminium casting is used for mounting front suspension. This complex design 

allows the casting to be light weight yet very strong. 

 

Figure 1.3 The front casting for the Ford GT (Ramsden, 2006) 

Lightweight composite materials include reinforced plastics, MMC‟s and 

sandwich panels. These materials are beginning to appear in structural areas in 

premium vehicles. The addition of composite materials can bring about a 

significant cost increase due to their increased materials, processing and 

manufacturing costs.  
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1.3  Titanium aluminide 

Titanium aluminides have been the subject of much research, particularly in 

Germany (Leyens & Peters, 2006) with the majority of research focused on 

developing materials for use inside jet engines as replacements for  more dense 

nickel materials. More recent research has investigated automotive applications. 

The main drive for this research is due to their low density and strength at high 

temperatures. Titanium aluminides have begun to be used for automotive 

components, including race car engine valves and turbocharger rotors. 

1.4  Research objective  

This research was undertaken as a project to design and construct a lightweight 

chassis for a BEV to demonstrate the feasibility of a two seat high performance 

BEV in the 2007 Panasonic World Solar Challenge. Research would also be 

conducted into the properties of titanium aluminides for potential uses within the 

automotive industry.  



17 

 

 

Chapter 2   Literature review 

2.1  Introduction 

This review covers the function of a chassis, the different types of chassis and the 

different materials used for chassis‟s. From the review, a chassis suitable for a 

BEV will be designed and manufactured.    

The properties of titanium aluminide (TiAl) for use in automotive applications are 

also investigated with the intention to design and manufacture a TiAl automotive 

component. 

2.2  Automotive Chassis 

The chassis is the main structural frame of an automobile. It connects all key 

vehicle components including suspension and drive train. There are five main 

functions of an automotive chassis; to provide an area for occupants and luggage, 

offer safety to the occupants and outside parties, provide points for mounting of 

suspension and drive train, provide a stiff framework linking all mounting points 

and to dampen Noise, Harshness and Vibration (NHV).  

The vehicle chassis provides an area within or above where occupants can be 

seated. This area can allow up to three occupants to sit adjacent to each other in up 

to four rows. Space for luggage is generally provided near the occupant area. 

Figure  2.1 provides an example of a vehicle chassis. 

A vehicle chassis provides safety to occupants of the vehicle and outside parties. 

It provides a means of absorbing energy from frontal, side and rollover impacts. 

The greater the energy absorbed by the chassis on impact the lower the energy 

levels transmitted to a vehicles occupants and surroundings, lowering the chances 

of injury. 
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Vehicles that are newly registered in New Zealand after 2002 and manufactured in 

high volume (greater than 200 vehicles per year) must pass frontal impact laws to 

prove occupant safety and meet the Land Transport Safety Authority‟s approved 

vehicle standards. Low volume vehicle manufacturers (less than 200 vehicles per 

year) are required to meet the Low Volume Vehicle Technical Association‟s 

(LVVTA) low volume vehicle code. The Low volume vehicle code does not 

require manufacturers to meet the frontal impact laws due to the high costs 

incurred with such testing but must prove to the LVVTA the vehicle is safe for 

occupants and other road users (Land Transport Safety Authority of NZ, 2001). 

 

Figure 2.1 A Ford Mustang monocoque chassis (Ford Motor, 2005) 

Major vehicle components are attached to the chassis as the chassis is the 

structural frame of the vehicle. Suspension, drivetrain, body (if not integral with 

the chassis) and steering are some of these components. The mounting of 

components must be such that they are rigid as large movements may cause 

components to interfere and thus not function as intended. Durability of all 

mountings to the chassis is required as the design life of the chassis is typically 

eight years. For example Toyota hybrid vehicles have a design life of eight years 

or 160,000km (Toyota, 2007). 
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A stiff chassis tends to produce superior handling and bends or twists less under 

extreme loading. Bending or twisting a chassis changes the relative distances 

between suspension mounting points, creating imprecise suspension geometry. 

Imprecise suspension geometry creates unsatisfactory camber and castor, leading 

to poor load distribution and surface area contact with the road, resulting in 

decreased levels of grip (Figure  2.2). Correct suspension setup is easier to achieve 

with a stiff chassis as a weak chassis can act like an unknown spring/damper 

system consequently affecting suspension properties. A common method for 

measuring chassis stiffness is torsional rigidity. Torsional rigidity is the degree 

one end of the chassis twists under an applied load if the opposing end of the 

chassis is restrained. A high performance topless sports car, e.g. Lotus Elise, has a 

torsional rigidity of 11,000Nm/deg, about the same as a modern salon car (Wan, 

1998-2000). 

 

Figure 2.2 Demonstration of how changing the tyre camber can alter the 

forces and contact area of a tyre against the road (Alexander, October 2007). 

There are five different scenarios where forces are acting on the chassis; cornering, 

braking, accelerating, occupant/luggage and aerodynamics. Increasing chassis 

stiffness means the forces are transferred across the chassis more directly and less 

force is absorbed by chassis deformation. Direct load transfer also creates 

improved handling due to the loads travelling along the intended load paths. 

Chassis stiffness is of importance in vehicles because the chassis locates the doors, 
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boot and bonnet. If the chassis twisted, they would no longer align and therefore 

would not function correctly. 

A chassis is designed to reduce Noise, Vibration and Harshness (NVH). Sources 

of NVH are engine, driveline, tyres, road surface, and wind. NVH is designed to 

be minimised in the occupant cabin to improve the occupants driving experience. 

Over the last 10 years interior noise levels at constant speed on Germany‟s 

autobahn have been lowered nearly 50% (Braess & Seiffert, 2005). 

2.3  Types of chassis 

What follows is a brief overview of the different types of chassis and their 

advantages and disadvantages. 

Much research was conducted into the design and construction methods of a 

variety of vehicles chassis and the latest advancements (Asnafi, Langstedt, 

Anderson, Ostergren, & Hakansson, 2000; Bak, Bartlett, & Hars, 1995; Brylawski 

& Lovins, 1999; Cole & Sherman, 1995; Corum, Battiste, Ruggles, & Ren, 2001; 

Cramer, Taggart, & Inc, 2002; Feraboli & Masini, 2004; GSV, 2005; Inagaki & 

Tanaka, 2002; Miller, 1996; Saito, Iwatsuki, Yasunaga, & Andoh, 2000; Tamaki, 

1999; Yokota et al., 2002). 

2.3.1  Ladder frame 

Early car chassis design began as ladder frame due to its simplicity, versatility, 

durability and low development costs. The ladder frame was very common for 

passenger vehicles until the 1960‟s and are still used for many Sport Utility 

Vehicles (SUV‟s) and trucks (Wan, 1998-2000).  

The ladder frame consists of two longitudinal beams with multiple cross members 

joining the two beams. An example of a Dodge RAM ladder frame chassis can be 

seen in (Figure  2.3). The ladder frame chassis is versatile as it allows virtually any 

body shape to be placed atop the chassis. This is beneficial because it allows a 

vehicle manufacturer to produce many different types of vehicle with the same 

chassis and driveline, lowering development costs. The ladder frame chassis is 
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very durable due to its simplicity. If damage were to occur to a ladder frame 

chassis it is much easier to repair than other types of chassis. The Longitudinal 

beams are very stiff under bending through the use of closed section beams with a 

high second moment of area. The high bending stiffness makes the ladder frame 

chassis well suited for carrying large weights. Due to its simplicity, durability and 

strength, ladder frame chassis‟ are still used today for heavy duty vehicles 

(Happian-Smith, 2001). 

Many midsized SUV‟s are manufactured with the ladder frame chassis as it offers 

improved ride quality. The separate body atop a chassis can be very effectively 

isolated from the chassis, lowering NVH levels significantly. 

The ladder frame chassis weaknesses are: it is weak in torsion, it generally has a 

higher centre of mass (COM), it can be heavy, a crumple zone is not able to be 

integrated and they usually have higher production costs.  

 

Figure 2.3 A Dodge Ram 2500 ladder frame chassis (Chrysler, 2007). 

The ladder frame chassis is stiff in bending but its two dimensional design has low 

torsional rigidity (Wan, 1998-2000). The use of a cruciform (diagonal bracing) 

increases the torsional rigidity of a ladder frame chassis (Figure  2.4). The 

cruciform is unique in design in that no member is subject to torsion. Generally a 
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higher COM is attained due to the body being mounted above the chassis, and not 

being integral as in a unibody chassis. The Ladder frame chassis utilises more 

material than a unibody due to the body being entirely separate to the chassis. The 

result is increased mass and increased fuel consumption. A crumple zone is 

unable to be incorporated into the ladder frame chassis and must therefore be 

incorporated as a separate unit (Wan, 2000). 

 

Figure 2.4 A cruciform attached to a ladder frame chassis to increase 

torsional stiffness (Happian-Smith, 2001) 

2.3.2  Backbone (Torque Tube) chassis 

An alternative to the ladder frame chassis is the backbone chassis. The backbone 

chassis design consists of a single, large, longitudinal structural beam running 

down the centre of the vehicle with lateral beams connecting the suspension. The 

suspension and motor lateral beams are mounted off the backbone (Figure  2.5). 

The strength and stiffness of the backbone chassis comes from the large closed 

section of the central beam. This chassis is stiffer than the ladder chassis but not 

stiff enough for high performance cars due to their higher torsion and strength 

demands (Wan, 1998-2000). Also, the body is mounted above the chassis as for 

the ladder frame (Happian-Smith, 2001). 
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Figure 2.5 The Lotus Elan Backbone chassis (Wan, 1998-2000) 

The backbone chassis offers no side impact protection for occupants and thus 

occupant protection must be incorporated into the body. 

2.3.3  Space frame 

Space frames consist of many tubes joined together to create a complex, light and 

very stiff structure (Figure  2.6). 

 

Figure 2.6 Mercedes Benz 300SL space frame chassis (restorations, 2007). 

The complex design creates a very rigid frame. To the detriment of the space 

frame design there is difficulty in automating the assembly process due to the 

complex nature. The design usually incorporates raised door sills to increase the 

bending strength and stiffness. The high door sills can be seen in the Mercedes 

Benz 300sl (Figure  2.6). The raised door sills hinder occupant entry and exit. To 

overcome this, gull wing or butterfly doors are used as they allow easier occupant 
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access through larger door openings. The space frame chassis is light due to the 

minimal amount of structural material that is necessary. The required amount of 

material is minimal because of the triangulated design which keeps all beams 

under tension or compression, not torsion. With the beams not under torsion, the 

cross sectional area of the beams can be reduced. An increase in stiffness 

compared to the ladder frame and backbone chassis originates from the three 

dimensional shape adding height (depth) to the design. 

 

Figure 2.7 Audi A8 ASF® (s.r.o., 2007) 

Aluminium space frames have been designed to decrease chassis weight further. 

The first production aluminium space frame was the Audi A8 (Figure  2.7) which 

utilised an Aluminium Space Frame (ASF) ®. The Lotus Elise chassis 

(Figure  2.8), while technically not a space frame, is a low volume chassis design 

that utilises extrusions, castings and sheet aluminium. 
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Figure 2.8 A CAD model of the Lotus Elise chassis (Jost, October 2004) 

2.3.4  Monocoque/ Uni-body 

A monocoque or uni-body chassis is a chassis that is integral with the body. The 

monocoque chassis is the chassis of choice for all major car manufacturers,  

equating to 99% of modern vehicles (Wan, 1998-2000). The monocoque chassis 

is very complex yet cheap to produce, has large spaces and is very safe but has 

rigidity to weight ratio similar to a ladder frame chassis.  

The monocoque chassis is very complex. The complexity of the chassis is due to 

the integration with the body shell. The integration makes set up costs large as 

development of the chassis requires considerable time and money. The large set 

up costs restricts the monocoque to high volume manufacture of vehicles. The 

ease of manufacture is owing to the use of spot welds which is a very fast and 

efficient joining method. The monocoque, while being cost effective is also 

efficient at saving space due to the chassis being part of the body shell as there 

can then be large component free areas within the chassis. With elements of the 

body shell part of the structural chassis, reducing weight is difficult.  The 

monocoque chassis has a low rigidity to weight ratio (Wan, 1998-2000) due to the 
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large amount of material used but the monocoque has high bending and torsional 

stiffness (Happian-Smith, 2001). This is attributed to the chassis design placing 

more emphasis on space efficiency than strength. Monocoque chassis can be seen 

in Figure  2.1 and Figure  2.9. The large amount of material in a steel monocoque 

chassis is beneficial for crash protection as the use of large amounts of material is 

offset by the material absorbing more energy through crumple zones in the event 

of an impact. (Happian-Smith, 2001; Wan, 1998-2000) 

 

                 

 

 

(a)                                                           (b) 

Figure 2.9 Toyotas Funcargo, (a) monocoque chassis with right hand side 

doors and (b) The complete car (J. Yamaguchi & online, 2007). 

Carbon fibre monocoque chassis designs are similar to metallic monocoque but 

they utilise carbon fibre to create the stiffest and is the most expensive chassis 

available. Due to the price of carbon fibre the carbon fibre monocoque chassis is 

used primarily for high performance sports cars. The carbon fibre monocoque is 

known for its superior torsional rigidity and is exceptionally lightweight. An 

example of the carbon fibre monocoque is the McLaren F1 in Figure  2.10 and the 

Koenigsegg CCX in Figure  2.11.  
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Figure 2.10 McLaren F1 composite chassis (Wan, 1998-2000) 

 

Figure 2.11 Koenigsegg CCX carbon fibre chassis (Koenigsegg, 2007) 

 

2.4  Chassis materials 

As legislation demands lower fuel emissions and consumers call for lower fuel 

consumption as fuel prices rise, automotive manufacturers look towards lighter 

materials to lower vehicle mass. Many car manufacturers are now utilising 

lightweight materials (mainly aluminium and magnesium) for structural 

components. The replacement of steel parts with lightweight materials is not 

straightforward as the materials have differing physical and mechanical properties. 

The different material properties require different machining, heat treating and 
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joining techniques while creating new fabrication techniques that can better 

optimise component layout and shape. 

Early in the development of automobiles slow moving steam powered vehicles 

were able to use wooden chassis but increasing speeds and motor vibrations 

caused durability problems. Steel has since been used for the majority of vehicle 

chassis. Aluminium chassis‟ have begun to be used by some high volume 

automotive manufacturers over the last 20 years as a way to reduce vehicle weight. 

Composites are also gaining more widespread use. Future chassis construction 

could lead to complete composite structures designed to optimise weight loss and 

mechanical properties, similar to the McLaren and Koenigsegg.  

While many of these new materials are reducing the weight of the vehicle, the 

large range of materials used is becoming a challenge for the automotive repair 

industry. Correctly identifying the correct repair technique and material grade 

becomes a challenge. 

Steel 

With the need to dramatically reduce vehicle weight, many vehicle manufacturers 

are undertaking research into alternative materials. The 7,850kg/m
3
 density of 

steel is high when compared to other materials used in automobiles. By 

comparison aluminium has a density of 2,700kg/m
3
.  

The steel industry, through the Ultra Light Steel Auto Body (ULSAB) consortium, 

launched research into the use of high strength steels and alternative fabrication 

techniques for manufacture of an automotive body. The aim of the consortium 

was to determine if a substantially lighter steel automotive body could be 

constructed. The results from the ULSAB consortium were a 25% mass reduction  

from the benchmark figure, 80% and 52% increase in bending and torsional 

rigidity respectively while exceeding all impact requirements. The techniques 

used for the ULSAB have since been used by car manufacturers in the 3-series 

BMW and Opel Astra. (Birch, 2000) 
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An advantage of steel over other structural materials is the majority of tooling and 

machinery used by the automotive industry is designed for steel construction. 

Steel has been used extensively within the automotive industry so its properties 

are very well known and therefore has been thoroughly researched. 

Tailor welded blanks have been used since 1985 for reducing body structure mass. 

Tailor welded blanks involve designing parts with differing material thicknesses. 

Sheets are cut to shape and the different thickness sheets are welded together 

(Figure  2.12), usually with laser welding. The sheet is then placed into a die and 

formed to shape (Figure  2.13).Tailor welded blanks have many advantages such 

as mass reduction, ability to place optimal grades and thickness where needed, 

elimination of reinforcements, reduction of parts, improved energy transfer across 

joints making frame stiffer and better corrosion resistance because there are no 

overlapped joints. (Engineering, 2007; Porsche Engineering Services, 1998; Team, 

1995) 

 

Figure 2.12  A tailor welded door inner ready for forming (Reynolds Metals 

Company and Ogihara America Corporation, 2007) 
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Figure 2.13 The tailor welded blank after forming (Reynolds Metals 

Company and Ogihara America Corporation, 2007) 

Aluminium 

Significant weight savings can be achieved through the replacement of a steel 

chassis with an aluminium chassis as aluminium has one third the density of steel. 

Cast aluminium components used in the Ford GT are required to meet the 

minimum Ultimate Tensile Strength of 180MPa and 5% elongation (Ramsden, 

2006). Manufacturers are investigating the use of aluminium for structural 

components and a small number have started production. Current vehicle 

manufacturers and cars with aluminium chassis include the Audi range (A2, A4, 

A8, TT and R8), the Jaguar XJ (Figure  2.14), the Ford GT, the Chevrolet Corvette 

(Figure  2.17) and Lotus Elise. Due to aluminium‟s different mechanical properties, 

to replace a steel chassis with aluminium requires a complete redesign of the 

chassis. Different forming processes are able to be used with aluminium when 

compared to steel. Extrusions, sheet and castings are generally used, as well as 

some forged components. The Audi R8‟s ASF uses 70% extrusions, 22% panels 

and 8% vacuum die cast (Audi, 22 January 2007).  

Due to aluminium‟s reactive oxide layer, components are laser welded or bonded 

and riveted using self piercing rivets. The aluminium oxide layer prevents the use 

of spot welding, the main joining technique of a steel chassis. 



31 

 

 

 

Figure 2.14 The Aluminium Jaguar XJ monocoque chassis (Jaguar, 2007) 

The use of aluminium allows the reduction in the number of chassis parts. Casting 

and extruding allow many different shapes to be produced in a single component, 

whereas accomplishing the same from steel sheet would require the assembly of 

many pressed steel components. Audi‟s third generation ASF has only 267 parts 

whereas the previous ASF chassis had 334. Lower part counts lead to fewer joints 

which create increased stiffness and improved crashworthiness. (Audi, 2003) 

The major obstacle to the widespread use of aluminium is the cost. An example of 

this is the cost of producing a bonnet (Hood). Porsche Engineering found that to 

produce an aluminium bonnet it would cost 104% more than a high strength steel 

equivalent, although the steel hood would weigh nearly twice as much (13.5kg vs. 

26.3kg) (Porsche Engineering, 2005). Extensive use of lightweight materials 

within a vehicle to create a lightweight vehicle could lead to greater fuel savings. 

With fuel savings for the life of the vehicle, there is potential for the price 

difference to be reimbursed through lower fuel consumption and reduced 

greenhouse gas emissions.  
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The first Audi A8 that came out with an ASF chassis is claimed to have a 430kg 

weight reduction compared to the average luxury car. This weight savings 

translate into fuel consumption reduced by 1.9L/100km. Over the 160,000km 

lifetime of the vehicle, this equates to a 3,140 Litre savings (or $5,495 with 95 

octane at $1.75/L). The reduced fuel consumption eliminates 6,800kg of carbon 

dioxide. (Schlendorf, 2002) 

The Audi TT (similar to Figure  2.15) is a mass produced aluminium space frame 

vehicle. The chassis design is similar to the original steel monocoque but the 

Aluminium Space Frame (ASF) weighs only 52% of the steel monocoque and has 

an increase of 50% and 128% for torsional stiffness for the coupe and Roadster 

respectively (Audi, 8 December 2006). A photo of an aluminium space frame can 

be seen in Figure  2.16. 

 

Figure 2.15 The Audi A8 Aluminium Space Frame (ASF) showing the 

makeup of the different chassis components (Audi AG, 2002) 
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Figure 2.16 Audi R8 Cutaway (Bryant, 2006) 

 

Figure 2.17 The 2008 Corvette ZR1 aluminium space frame chassis (Bryant, 

2008) 
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Aluminium is a difficult material to use for tailor welded blanks because of 

porosity, cracking and lowering of strength at the weld zone. The high reflectivity 

of aluminium also creates difficulties in coupling of the two materials. Examples 

of tailor welded blanks in use can be seen in Figure  2.18 (Engineering, 2007; 

Kinsey, Viswanathan, & Cao, 2001; Stasik & Wagoner, 1997) 

 

 

Figure 2.18 Body panels made using tailor welded blanks (Kinsey, 

Viswanathan, & Cao, 2001). 

Composites 

Composites are not widely used for chassis due to their high costs, their isotropic 

mechanical properties and their sometimes unpredictable failure modes. Examples 

of composite materials include: sandwich materials, reinforced plastics and Metal 

Matrix Composites (MMC).  This review will predominantly cover reinforced 

plastics and sandwich materials. 
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Sandwich panels have been used in vehicles in many different forms. One of the 

first Ford GT40 race cars (1966) used aluminium honeycomb for its chassis. This 

created an exceptionally light stiff structure weighting 136kg lighter than the 

Mark II. The ford GT40 used one inch thick aluminium honeycomb sandwich 

panel for the front and rear bulkheads, and half inch thick aluminium honeycomb 

sandwich panel elsewhere. The aluminium honeycomb sandwich panel had 

0.016inch (0.41mm) thick facings (Koganti, 2005; Spain, 2003). Aluminium 

honeycomb is used in many Formula cars, including Formula 1. A more recent 

vehicle to use sandwich material is the Strathcarron. The Strathcarron chassis can 

be seen in Figure  2.19. The Strathcarron car consisted of an aluminium 

honeycomb sandwich panel cockpit with space frames front and rear to attach the 

suspension and motor. Originally the front of the car was also made from the 

same sandwich panel as the cockpit, but it was found to be too strong in crash test 

modelling, so a deformable space frame was designed instead. The Strathcarron is 

no longer produced due to escalating development costs and emissions legislation 

(Pistonheads, 2001). 
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Figure 2.19 A Strathcarron chassis after construction. The front and rear 

subframes attach to this (Pistonheads, 2001). 

Reinforced plastics are highly desirable to construct a chassis, particularly carbon 

fibre reinforced. The disadvantage of reinforced plastics is their increased cost and 

their difficulty to manufacture. For these reasons they are particularly suited for 

low volume production vehicles. In many situations they also form the outer skin 

of a sandwich panel structure. Carbon fibre reinforced plastic structures are highly 

desirable because they create very stiff structures at very low weight. 

A carbon fibre car body involving many partners, including Lotus Engineering 

and the Cranfield University centre for Lightweight composites, is being designed 

and built that will have a bodyweight of 125kg. This is dramatically less than the 

320kg in an average conventional steel car. The chassis itself weighs 92kg. This is 

exceptionally lightweight. The construction techniques used are designed for 

production of up to 20,000 vehicles a year, with the main time constraint the resin 

impregnation and curing times. The new process results in reduced material 

wastage and has the potential to be automated. Typical carbon fibre composite 
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chassis such as the McLaren F1 can take well over 1,000 man hours to mould the 

composite components. (Mills, 2002; Wilton, 2002) 

Metal Matrix Composites (MMC‟s) are similar to reinforced plastics, but the 

matrix phase is metal as opposed to plastic. MMC‟s are still expensive so their use 

has been restricted to drive shafts, engine components (for their wear resistance) 

and forged suspension and transmission components. (Callister, 2003) 

Examples of current cars utilising composite components include the McLaren F1 

(Figure  2.10) and the Koenigsegg (Figure  2.20, Figure  2.21). These are high 

performance super cars and therefore the weight gains from using expensive 

composites can be justified.  

 
Figure 2.20 Koenigsegg composite chassis (Koenigsegg, 2006). 
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Figure 2.21 Close up of aluminium honeycomb under carbon fibre facings in 

the Koenigsegg chassis (Koenigsegg, 2006). 

2.5  Titanium aluminides 

Titanium aluminides are a material that has been widely investigated for 

aerospace use due to it reduced density, high temperature strength and oxidation 

resistance. Titanium use in the automotive industry has been limited due to its 

significantly increased material and processing costs compared to steel. 

2.5.1  Introduction 

Titanium aluminides (TiAl) are a class of titanium alloys containing 48-54% 

(Donachie, 2000) or 45-48% (Leyens & Peters, 2006) aluminium and having 

slightly lower densities to that of titanium. They can be characterised by the fact 

they generally form a TiO2 oxide layer instead of Al2O3. The titanium aluminides 

are valued for their lower density than steel and nickel based superalloys, high 

strength retention at elevated temperatures and high modulus although they have 

limited ductility and poor fracture toughness. Titanium aluminides poor ductility 

and fracture toughness can lead to processing difficulties. 

There are three classes of titanium aluminides alpha-2 (Ti3Al), Gamma (TiAl) and 

Ti2AlNb orthorhombic. Most Literature has been focused on the alpha-2 and 

gamma titanium aluminides. This research has been focused primarily within the 



39 

 

 

aerospace industry as aeroplanes have great benefit from reducing weight even at 

higher cost. Figure  2.22 shows how the weight savings for automobiles compared 

to aircraft. This figure indicates a saving of 1kg must only add an extra €0.01 to 

the automobile cost, whereas with a large aircraft, a weight saving of 1kg can add 

€1.00 to the aircraft cost. This is because there can be long term savings in less 

fuel used, larger payloads within the aeroplane and less maintenance. 

 
Figure 2.22 Tolerable extra costs for weight reduction of 1kg or 1% of the 

structural weight. (Peters, Kumpfert, Ward, & Leyens, 2003) 

Automotive use of titanium began in 1992 with the Honda Acura NSX using it for 

connecting rods. The titanium alloy used was Ti-3Al-2V-rare earth. The titanium 

connecting rods weighed 30% less and permitted a 700RPM higher rev limit 

primarily due to the reduced rotating mass (Honda). Several other components 

have been manufactured since but the limiting factor is the cost of titanium metal 

and its processing. 

While titanium has weaknesses these hurdles can be overcome to produce 

components, in a similar fashion to the rust proofing of steel for chassis use 

enables it to last significantly longer than if it were uncoated. 

2.5.2  Titanium 

Titanium is the ninth most abundant element and fourth most abundant structural 

element on the earth. It was first discovered in 1791 by Rev. William Gregor in 

England and later isolated in impure form in 1880. Pure titanium was not isolated 

until 1910 titanium, when Matthew Albert Hunter put titanium tetrachloride and 
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sodium together at heat. In 1934 Wilhelm Justin Kroll separated titanium using 

calcium. This reactant was later changed to magnesium and produced 

commercially by DuPont in 1948. (Donachie, 2000; Leyens & Peters, 2006; 

Lutgering, 2007)  

Titanium is a highly sought after metal because it has a specific gravity of 

4.85g/cm
3
 (Figure  2.23) and a melting point of 1668 

o
C. Titanium‟s specific 

gravity is lower than steel‟s 7.8 g/cm
3
. The specific gravity of titanium classes it 

as a light metal (less than 5 g/cm
3
) yet it is the heaviest light metal. Titanium has 

high strength, comparable to high strength steels and nickel based super alloys. 

(Donachie, 2000; Leyens & Peters, 2006; Wayman & Bringas, 1993) 

 

Figure 2.23 Density of various metals (Leyens & Peters, 2006) 

Titanium is considered an exotic material due to its limited use. This is primarily 

due to the extremely high extraction costs. There have been recent developments 

in reducing titanium from a compound to an element. These are the Cambridge 

and the Armstrong process. The Cambridge process requires further investigation 

to determine if cheaper titanium will be produced. The Armstrong process is a 

process that can produce lower cost titanium. A cost comparison of titanium to 

aluminium, magnesium and steel can be seen in Figure  2.24 (Crowley, 2003). 
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Figure 2.24 Cost comparison of titanium to steel, aluminium and Magnesium 

(Leyens & Peters, 2006) 

Only 5% of all titanium produced is used for metal. 95% of titanium is sold as 

titanium dioxide to be used as a pigment in paints (Lutgering, 2007). The cost of 

titanium metal is dictated largely by the aerospace industry as they are the largest 

titanium metal user. Aerospace titanium usage is not constant and generally has 

high/low demand cycles. The Kroll process has high capital costs, and these 

cannot be supported at low demand times. This creates great uncertainty for 

titanium producers and many American titanium producers have closed due to 

production becoming uneconomical (Crowley, 2003). 

Titanium has a HCP crystal structure at room temperature changing to a BCC 

crystal structure at temperatures above 882 
o
C (Leyens & Peters, 2006). Examples 

of these crystal structures can be seen in Figure  2.25.(Donachie, 2000; Leyens & 

Peters, 2006) 
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Figure 2.25 HCP and BCC crystal structures 

While a TiO2 layer is advantageous for corrosion resistance, too high oxygen 

content can make titanium stronger but more brittle. Oxygen diffuses into the 

metal at temperatures above 600 
o
C as an interstitial atom. This creates 

embrittlement within the metal. The four grades of CP (commercially pure) 

titanium are differentiated by their different oxygen contents (0.18% (grade1) to 

0.40% (grade 4)). Nitrogen has a similar affect to Oxygen although it is not as 

reactive to titanium. The effects of oxygen, nitrogen and carbon on tensile 

strength can be seen in Figure  2.26. 

 

Figure 2.26 The effects of interstitial atoms on the strength of pure titanium 

(Donachie, 2000) 
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2.5.3  Titanium Production 

Rutile (containing titanium oxide (TiO2)) is combined with coke and chlorinated 

in a reactor at 1000 
o
C, then purified. For pigment manufacturers, the purified 

titanium tetrachloride is oxidised back to TiO2. For the metal industry, the Kroll 

process is undertaken. The Kroll process involves reducing titanium tetrachloride 

in a retort at 800 
o
C to 900 

o
C to produce titanium sponge. The titanium 

tetrachloride is reduced by magnesium. The unreacted magnesium and 

magnesium chloride are distilled off, leaving a porous titanium sponge. The 

titanium sponge is removed from the retort and melted down several times to 

ensure uniformity and remove inclusions. The Kroll process is a labour intensive, 

expensive and inefficient. Its batch processing is not suitable for large 

volumes.(Gerdemann, 2001; Leyens & Peters, 2006) 

The Hunter process is similar to the Kroll process but uses sodium instead of 

magnesium, making it a slightly more inefficient process 

The FFC Cambridge process involves pressing TiO2 into pellets so it becomes a 

cathode in a 950 
o
C calcium chloride bath. The anode is Graphite. A current is 

applied and the oxygen in the TiO2 is ionised, dissolving into the bath. This 

process can produce titanium with oxygen content down to 60 parts per million 

(PPM). The advantage of this process is it can begin with a cheaper material, 

Rutile containing TiO2. The current difficulty with the FFC Cambridge process is 

that an inexpensive source of pure TiO2 is needed to produce titanium with lower 

impurities.  In the Kroll process, chlorination purifies the TiO2, removing 

impurities. (Gerdemann, 2001) 

The Armstrong process reduces titanium by injecting titanium tetrachloride into a 

stream of liquid sodium (Figure  2.27). This is a continuous process as opposed to 

all other processes which are batch processes. A continuous process is much more 

desirable for the production of metals as it improves product quality, consistency 

and is more economically efficient. The products of this reaction are titanium 

powder which meets specifications for commercially pure titanium, and sodium 

chloride. The sodium chloride is broken down electrolytically for reuse of the 
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sodium and chloride. The titanium powder is highly suitable for producing 

powder metallurgy and near-net products. Homogeneous alloys are able to be 

produced directly by injecting the other alloying elements into the flow along with 

titanium. Small scale trials have shown consistent blending of all alloying 

elements. The Armstrong process is believed to reduce final parts production 

prices by up to 50%.(Crowley, 2003; Leyens & Peters, 2006)   

 

Figure 2.27 An overview of the Armstrong process (Crowley, 2003) 

In recent years (2004-2005) there has become a shortage of titanium as recent 

developments and demand grows for its use in new aeroplanes such as the Boeing 

787. The shortage can also be attributed to the reduction in titanium recycling due 

to globalisation of titanium component production, making it uneconomical to 

return shavings from manufacturing processes to the material supplier. Titanium 

alloy engine valves appear to be gaining acceptance within the automotive 

industry with approximately four million valves produced in 2005. (Lutgering, 

2007) 
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2.5.4  Titanium aluminides 

Although there are three different phases of titanium aluminide, this research will 

focus primarily on the Gamma (γ-TiAl) titanium aluminides. Properties of γ-TiAl 

that make them particularly attractive are: high melting point of 1460 
o
C, low 

density (3.9-4.2kg/cm
3
), high elastic modulus, high diffusion co-efficient, good 

resistance to oxidation and corrosion and lower tendencies to combust in 

comparison to titanium. (Leyens & Peters, 2006) 

The binary phase diagram for TiAl has long been debated due to differing 

amounts of impurities. There are two different phases of TiAl, one with one phase 

and the other with two phases. γ-TiAl has only the one phase and has an 

aluminium composition of 50-56 at.%. Whereas (α2 + γ) TiAl generally has a 

maximum of 48 at.% aluminium. The phase diagram seen in Figure  2.28 shows 

these TiAl regions. Selection of different solidification paths allows different 

microstructures to be created. The γ-TiAl phase has a tetragonal structure 

(Figure  2.29). Titanium aluminides retain this tetragonal structure up to melting 

point. (Gerling, Clemens, & Schimansky, 2004; Leyens & Peters, 2006; Polmear, 

2006) 
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Figure 2.28 The binary phase diagramwiththeengineeringγ-TiAl alloy area 

highlighted. The diagram also shows how phase boundaries shift by addition 

of alloying elements. (Gerling, Clemens, & Schimansky, 2004)  

 
Figure 2.29 γ-TiAl tetrahedral phase structure (Leyens & Peters, 2006) 

 

Table 1 is a comparison of some mechanical properties between conventional 

titanium alloys, α2- and γ- TiAl alloys and superalloys. 
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Table 1. Comparison of γ- andα2- TiAl alloys to Ti based alloys and 

superalloys (Kassner & Perez-Prado, 2004)  

2.5.5  Alloying 

These are guidelines for the mechanical properties of γ-TiAl regarding alloy 

composition from „Titanium – a technical guide‟ (Donachie, 2000) 

- Decreasing aluminium content increases strength but lowers ductility and 

oxidation resistance 

- Chrome (Cr), Manganese (Mn) and Vanadium (V) in up to 2 at.% per 

element have been found to increase ductility. 

- Niobium (Nb) of 1-2 at.% is required for oxidation resistance 

- Boron (B) in 0.2-2 at.% acts as a grain refining coagulant and for 

stabilising the microstructure at high temperatures. 

While according to the „Encyclopaedia of materials, parts and finishes‟ (Schwartz, 

2002), the following classification can be used to predict TiAl alloy properties. 

Alloy Class     Compositions (at.%) 

Single Phase (γ)
a
:    Ti-(50-52)Al-(1-2)X2 

Two Phase (α2 + γ)
b
:   Ti-(44-49)Al-(1-3)X1-(1-4)X2-(0.1-1)X3 

a
 X2 = W, Nb, Ta 

b
 X1 = V, Mn, Cr; X2 = Nb, Ta, W, Mo; X3 = Si, C, B, N, P, Se, Te, Ni, Mo, Fe 

From the above classification, the following generalisations apply. 
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- X1 elements increase ductility in the two phase alloys (allowing up to 

twice the ductility) 

- X1 and X2 elements strengthen the alloy through solid solution 

strengthening – Cr most, Mn least 

- X1 elements reduce oxidation resistance 

- X2 elements do not increase ductility but they do improve oxidation 

resistance 

- X3 – C and N2 improve creep; Si, B, Ni and Fe decrease the melt viscosity 

and Si may improve oxidation resistance and room temp ductility. 

 

(Polmear, 2006) has a slightly different approach to classifying how alloying 

elements affect TiAl properties. They are as follows: 

- Cr, V, Mn, and Si: improve ductility but decrease oxidation resistance 

- Nb, Ta, Mo and W: enhance oxidation resistance 

- Si, C and N: in small amounts increase creep resistance 

TiAl Metal Matrix Composites (MMC) may be able to improve upon some of 

TiAl‟s shortcomings in the future. A TiAl Matrix with 7 vol.% TiB was 

investment cast to create a missile fin. The TiAl MMC fin had half the density of 

stainless steel and was stronger at operating temperatures. (Donachie, 2000; 

Schwartz, 2002) 

2.5.6  Mechanical properties 

The Hall-Petch equation (1) is used to describe the relation between yield stress 

and grain size. 

2/1 DK yo       (1) 

Where: 

σ  is the yield stress 
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σo is a material constant for the starting stress for dislocation 

movement (or the resistance of the lattice to dislocation motion) 

Ky is the strengthening coefficient (a constant unique to each material) 

D is grain diameter 

Using the Hall-Petch equation and results from previous studies, a value for σo of 

133MPa was found. This low σo value means the KyD
-1/2

 term has the greatest 

influence (about 70%) on the strength of TiAl alloys. This therefore means the 

strength of TiAl alloys is mainly determined by microstructure, making grain 

refinement important to achieving high strength alloys. (Leyens & Peters, 2006) 

Deformation at low temperatures is mostly due to slip, although slip movement is 

severely restricted. At higher temperatures twinning also occurs, permitting higher 

ductility. (Polmear, 2006) 

Titanium aluminides have good strength, particularly when specific strengths are 

compared to steels and nickel-based alloys. Figure  2.30 compares the different 

titanium aluminides and the high strength nickel based alloys. 
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Figure 2.30 Comparisons of TiAl alloys to steel and Ni-based superalloy from 

0 
o
C to 800 

o
C. (Wu, 2006) 

Figure  2.31 shows the strength of TiAl alloys stays constant until a temperature 

between 700 
o
C and 800 

o
C is reached, whereby ductility increases and the yield 

stress decreases. 
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Figure 2.31 A stress-strain graph for Ti45Al8Nb0.5(B,C) TiAl alloy (Wu, 

2006) 

 
Figure 2.32 The stiffness of TiAl alloys (a) and TiAl alloys compared to other 

high strength metals (b) (Zhang, Reddy, & Deevi, 2001). 

(Zhang, Reddy, & Deevi, 2001) have found the stiffness of TiAl alloys is not too 

dissimilar from other high strength Metals (Figure  2.32). The stiffness is larger 
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than the titanium alloy Ti-6Al-4V, showing the increase in aluminium content 

improves the young‟s modulus value. 

Ductility of TiAl is very low at room temperatures making it a very brittle metal 

(Table 1, Figure  2.33). The low ductility makes processing and fabrication very 

difficult as the TiAl acts in a very brittle manner. At elevated temperatures, the 

ductility of TiAl increases, particularly once the temperature exceeds 600 
o
C. 

(Donachie, 2000; Polmear, 2006) 

Controlling the microstructure of a TiAl component is vital to increasing ductility. 

Lamellar structures in TiAl of alternating γ and α2 plates provides the best 

ductility (Wu, 2006). Approximately 30% α2 appears to be the best ratio of  α2: γ 

to obtain the maximum ductility (Smallman & Bishop, 1999). 

 
Figure 2.33 Ductility of alloy steel, Ni-based super alloy and a TiAl based 

alloy (Wu, 2006) 

Titanium aluminides have low fracture toughness and thus low tolerance to 

damage (Donachie, 2000; Leyens & Peters, 2006). TiAl alloys generally have 

fracture toughness values ranging from 5 to 25MPam
1/2

 which are values which 

are slightly higher than ceramics but well below titanium alloys. For a material to 

be considered structural, a lower limit of 25MPam
1/2

 is required. (Wu, 2006) 
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Toughness is defined as the energy a material can absorb before rupture and is 

calculated by the area under the stress-strain graph. TiAl has a very low toughness 

due to its very low ductility as seen in Figure  2.31. The low ductility means the 

strain axis is very short, lowering the amount of energy TiAl can absorb 

dramatically. 

Fatigue properties of TiAl alloys show that in the event there are no sharp defects, 

an excellent fatigue resistance is achieved. The excellent fatigue resistance can be 

seen by the endurance ratio higher than 80% of the ultimate tensile strength of the 

alloy. Changing the surface and internal properties can change the fatigue strength 

(Henaf & Gloanec, 2005). 

Fatigue crack growth thresholds have been found to be in the range from 6 to 

10MPam
1/2

 by (Djanarthany, Viala, & Bouix, 2001). 

2.5.7  Thermal Properties 

The Thermal Conductivity of four different TiAl alloys can be seen in Figure  2.34 

(a). The TiAl alloy tested was the CTI-8, with a composition of Ti-47Al-4(N, W, 

B). The thermal conductivities of the TiAl alloy were compared to other steel 

alloys and titanium alloys in Figure  2.34 (b). The thermal conductivity of the TiAl 

alloy was similar to the conductivity of many of the other alloys, except for the 

titanium alloy Ti-6Al-4V, which was about half the thermal conductivity. (Zhang, 

Reddy, & Deevi, 2001) 
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Figure 2.34 Comparisons of CTI-8 (TiAl alloy) with other TiAl alloys (a) and 

other high strength metals  and titanium alloys(b) (Zhang, Reddy, & Deevi, 

2001). 

The melting point of TiAl alloys is approximately 1460 
o
C depending on 

microstructure and alloying constituents (Leyens & Peters, 2006). 

 
Figure 2.35 Coefficient of thermal expansion of various TiAl alloys (a). CTI-8 

is a TiAl alloy. The coefficient of thermal expansion of the TiAl alloy is also 

compared to other metals (b). (Zhang, Reddy, & Deevi, 2001) 

(Zhang, Reddy, & Deevi, 2001) have found the coefficient of thermal expansion 

of TiAl alloys is less than other high strength alloys (Figure  2.35). A low thermal 

expansion coefficient is beneficial because it allows better sealing between 
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components over increasing temperatures. These values were very similar to those 

found by (Djanarthany, Viala, & Bouix, 2001). 

The creep behaviour of TiAl alloys depends strongly on the alloys microstructure 

and the alloy composition. Fully Laminar microstructures demonstrate the highest 

creep resistance, the lowest minimum creep rate and the best primary creep 

behaviour meaning this microstructure has the longest times to attain a certain 

strain. This property can be clearly seen in Figure  2.36. (Kassner & Perez-Prado, 

2004) 

 

 
Figure 2.36 Creep curves at 760 

o
C and 240MPa for three different 

microstructures, Fully Laminar (FL), Nearly Laminar (NL) and Duplex (DP). 

The alloy is Ti-48Al. (Kassner & Perez-Prado, 2004) 

2.5.8  Physical properties 

γ-TiAl alloys have Densities of 3.9-4.2kg/cm
3
. This is approximately 49% the 

density of steel, making titanium an excellent lightweight substitution for steel 

and other high strength, high density metals (Leyens & Peters, 2006). 



56 

 

 

The cost of titanium compared to other metals can be seen in Figure  2.24. It is 

clearly shown that the cost of titanium is substantially greater than that of other 

common metals. This is due to the processing costs as discussed under the 

heading Titanium Production. While the cost of Aluminium is not as much as 

titanium, it is still greater than that of steel. (Donachie, 2000) 

 

Due to the high costs associated with TiAl alloy elements, cheaper processing and 

manufacturing methods are being developed which are near net shape (NNS). 

NNS components are very close to final shape and therefore there is only very 

minimal material wastage. These processes include powder metallurgy (PM), 

metal injection moulding and Laser RP 

TiAl alloys are very corrosion resistant at low temperatures but at temperatures 

above 600 
o
C the oxide layer becomes brittle due to oxygen. This brittle layer can 

cause premature fracture damage in fatigue. The Oxide layer that forms below 600 

o
C is alumina (Al2O3), which is different to titanium alloys. Titanium alloys have 

greater oxidation resistance but not to as high temperatures. Improving the 

oxidation temperature at high temperatures through the use of surface coatings is 

currently under investigation. (Djanarthany, Viala, & Bouix, 2001) 

The Human body is in a very susceptible to unfamiliar metals and therefore 

introducing implants within the body can produce unwanted effects within the 

body including death. Titanium is a bioactive material that can have body tissue 

actively bond to it, creating a strong bond. Ti-6Al-4V is generally used. The γ-

TiAl alloy Ti–45Al–2W–0.6Si–0.7B shows promising attributes such as 

producing lower concentrations of Al and Ti ions while in a solution resembling 

body fluids. The TiAl alloys also had low passive current densities. The passive 

current densities are lower than for Ti-6Al-4V, a very common implant material, 

but the TiAl alloy has yet to undergo full testing (Escudero, Munoz-Morris, 

Garcia-Alonso, & Fernandez-Escalante, 2004). 

TiAl wear properties are generally not acceptable as seen in Figure 2.37 and 

Figure  2.38. Thin hard coatings of nitrides or carbides can be prepared by physical 
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(PVD) and chemical (CVD) vapour deposition. Titanium Nitrate (TiN) is the most 

widely used coating for PVD while titanium aluminide nitrate (TiAlN) is used for 

demanding surfaces. (Boonruanga, Thongtema, McNallanb, & Thongtem, 2004; 

Schwartz, 2002) 

Tribological tests were performed on many coatings. They were: CrN, TiAlN, 

TiAlCN, TiCN, TiCN+C, TiN+C, TiB2 and WC and molybdenum coatings. The 

coatings were tested for load capacity, adhesion power, abrasion force, hardness 

and fatigue strength. Of all of the coatings TiAlN gave the best results (Schwartz, 

2002). 

Coatings can also be applied to obtain greater oxidation resistance. These include: 

aluminizing, metal-chromium-aluminium-yttrium overlay coatings and 

silicides/ceramics. 

 
Figure 2.37 Results from testing a TiAl alloy for use as a turbocharger 

turbine at 850 
o
C for 500hrs in normal atmosphere. (a) is the weight gained 

by the turbines, and (b) is backscattered images of cross sections through the 

surfaces. Dev. TiAl is the TiAl alloy developed by Mitsubishi heavy industries, 

Conv. TiAl is a conventional TiAl alloy and Inconel 713C is a nickel based 

super alloy that has conventionally been used. (T. Tetsui, 2002) 
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Figure 2.38 Nitriding and carburising affects of a TiAl alloy with changing 

nitriding and carburising rates. The value is for coefficient of friction 

(Boonruanga, Thongtema, McNallanb, & Thongtem, 2004) 

Titanium burns when it is ignited at high temperatures and can burn in air, carbon 

dioxide and nitrogen atmospheres. Once ignited, titanium will burn very fiercely 

and is difficult to extinguish. It can only be extinguished by smothering with sand 

or salt. Materials such as foils, powder and dust are greater risk of combusting due 

to their greater surface areas. This combustibility is due to titanium‟s low thermal 

conductivity and the high heat of formation for TiO2. 

TiAl alloys have less of a risk of combusting as there is less titanium and the 

thermal conductivity is increased over titanium alloys (Djanarthany, Viala, & 

Bouix, 2001). 

2.5.9  Processing/manufacturing 

TiAl alloys can be processed in many of the conventional methods with slight 

modifications. 

Casting of TiAl alloys is currently used in the aerospace industry as it allows large 

complex parts to be produced with minimal processing and material wastage. 
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Some castings may require HIP‟ing (Hot Isostatic Pressing) to increase the part 

density if pores are present. Melting and casting of TiAl alloys can be difficult 

due to thermal stresses creating cracking, although this depends on the casting 

method used. A fully lamellar microstructure is commonly found for cast TiAl 

alloys (T. Tetsui, 2002). 

Forging of titanium landing gear and diffusion bonding of turbine blades has also 

recently been introduced. Forging of TiAl components requires high temperatures 

to enable suitable ductility to be reached. The increased temperatures add to the 

difficulty and cost of producing forgings. (Polmear, 2006) 

Powder metallurgy (PM) has not yet been used for large scale production of TiAl 

components. PM has an advantage over casting because it can be used to create 

fine grained, texture free materials with equiaxed grains and a homogeneous 

microstructure with substantial reductions in the amount of wasted material. PM 

requires HIP‟ing to increase the component density. This can be done during 

sintering or after. (Djanarthany, Viala, & Bouix, 2001; Leyens & Peters, 2006) 

TiAl alloys can be welded in an inert atmosphere but machining is difficult due to 

its very low ductility. Much research has been conducted into manufacturing 

processes of TiAl and new processes are constantly being developed.  

For applications requiring high wear resistance, coatings can be applied although 

the coatings are costly to apply. Coatings can also be applied to increase the 

oxidation resistance. 

2.5.10  Current Automotive applications 

Current TiAl mainstream automotive applications are limited to Mitsubishi‟s use 

of γ-TiAl for turbocharger rotors. The rotor can be seen in Figure  2.39. The rotor 

is manufactured using the LEVICAST method developed by Daido Steel Co. Ltd. 

LEVICAST has advantages over other casting methods in that it minimizes 

casting defects and impurities. The casting has a fully lamellar microstructure 

which is carefully maintained during HIP‟ing. (Baur, Wortberg, & Clemens, 
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2003; Froes, Friedrich, Kiese, & Bergoint, 2004; Schauerte, 2003; T. Tetsui, 

2002) 

 
 

Figure 2.39 The Mitsubishi turbocharger rotor made from γ-TiAl (Tetsui, 

1999) 

The advantages of a TiAl turbocharger rotor can be seen in Figure  2.40. To 

increase the supercharging pressure from 0 to 50kPa takes 0.2s shorter time, 

meaning a vehicle with a TiAl turbocharger rotor will get more power due to 

boost pressures increasing faster than conventional metal rotors. This advantage is 

due to the decreased rotating mass of the rotor, allowing it to spin up faster. 

(Djanarthany, Viala, & Bouix, 2001; T. Tetsui, 2002) 
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Figure 2.40 Comparison of the advantages of a TiAl turbocharger rotor (T. 

Tetsui, 2002) 

An important consideration for safety is burst tip speed (Figure  2.41). The burst 

tip speed is the velocity of the tip of the rotor when failure occurs. Testing 

undertaken by Mitsubishi Heavy Industries Ltd, shows the burst tip speed of a 

TiAl rotor is greater than 600m/s and that during testing none of the TiAl tips ever 

burst. The TiAl rotor was compared to the Inconel713C (most commonly used for 

turbochargers) and MAR-M247 (used for race engines). This greater burst tip 

speed allows increasing of turbocharger size and greater aerodynamic efficiency 

as the rotor design can be further optimised by minimising the weight further, 

decreasing burst tip speed. (T. Tetsui, 2002) 
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Figure 2.41 Comparisons of the burst tip speed for commonly used 

turbocharger rotors (T. Tetsui, 2002) 

The other TiAl use in the automotive industry is for valves in race cars and 

motorbikes. Formula 1 racing cars were using TiAl valves at the turn of the 

century but TiAl valves were banned due to their high costs being a disadvantage 

to teams with lower funds. TiAl valves and fasteners are still used on MotoGP 

motorbikes and NASCAR teams are looking to use this technology. TiAl valves 

that have been produced have been manufactured by casting or thermomechanical 

forming but casting produces too much waste to be cost effective and 

thermomechanical forming must be performed at temperatures of ~1100 
o
C 

making it inefficient. The TiAl valves that have been produced are successful in 

terms of performance but are too costly to implement. An example of the benefits 

TiAl alloys bring for use in the valve train is seen in Figure  2.42 where there is a 

1000RPM increase in engine speed before valve bounce, a major restriction on 

maximum engine speed. (Baur, Wortberg, & Clemens, 2003; Dowling, Donlon, & 

Allison, 1994; Froes, Friedrich, Kiese, & Bergoint, 2004; Gebauer, 2006; 

Knippscheer & Frommeyer, 1999; Knippscheer et al., 2000; Schauerte, 2003; 

Tetsui, 1999; Winkler, 2000; Wu, 2006) 
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Figure 2.42 Graph showing the 1000RPM increase before valve jump occurs 

when using a TiAl valve (Tetsui, 1999) 

(Eylona, Kellera, & Jones, 1998) with help from GM and FORD successfully 

manufactured and tested over 800 permanent mould cast TiAl valves. The valves 

were tested over 50,000km with no valve damage and an average of 2% fuel 

savings. The only inhibiting factor is the high cost. 

Other TiAl valves have been produced using thermomechanical forming by 

extruding a rod and then hot bulging of one end followed by quasi-static die 

forging. All processes were performed at temperatures between 1100 
o
C and 1300 

o
C. The valves were tested for over 100,000km without failure. At 140,000km 

testing, wear at the top of the valve stem was observed but was not of great 

concern. The valves were coated before trialling to enhance wear resistance. 

From 1998, for 5 years, half of all Toyota Altezza‟s had Powder Metallurgy (PM) 

TiAl intake valves. The PM TiAl valves weighed 27g as opposed to the previous 

steel valves weighing 44.6g. The PM valves proved to be successful in their 

application. The reduction in valve mass allowed the valve spring mass to be 

reduced by 17%. While (Faller & Froes, 2001) believed casting is the way to 

manufacture valves, the large material wastage makes PM valves an attractive 

solution to the high prices. 
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Chapter 3   Ultracommuter Chassis design 

3.1  Introduction 

A vehicle chassis design is very complex, requiring the integration of multiple 

components, cost considerations and meeting of performance goals using 

available materials to obtain an optimal design.  

Aspects of this chassis design requiring particular consideration were occupant 

safety, chassis stiffness, how the suspension would be mounted due to material 

selection, where and how the batteries would be mounted, occupant ergonomics 

and suspension, chassis and body shell interaction. 

A chassis design similar to conventional cars would be beneficial as consumers 

can react unfavourably to changes to convention, particularly if the design lacks 

refinement and reliability (Happian-Smith, 2001). The chassis design for this BEV 

would be different to a conventional car due to the chosen materials physical and 

mechanical characteristics and the desire to exploit the numerous advantages „in-

wheel‟ motor driven BEV‟s have over conventional internal combustion vehicles. 

Advantages of an „in-wheel‟ motor driven BEV include motors inside the wheel, 

therefore more space within the body shell and flexibility in the mounting position 

of the batteries.  By using „in-wheel‟ motors and batteries, the space occupied by 

propulsion reduces from 304 litres (engine minus ancillaries and fuel tank only) to 

110L (batteries and motor controllers). That is a decrease from 7% to 2.6% of the 

total volume available beneath the Ultracommuter body shell (Appendix 1). 

3.2  Previous concept 

A Honeycomb panel BEV chassis was designed and constructed in 2006. The 

chassis proved to be exceptionally light, weighing only 59.6kg. The chassis 

consisted of interlocking honeycomb panels that were water jet cut to the correct 

shape from CAD files. The panels were bonded together. The 2006 chassis can be 

seen in Figure  3.1. 
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Figure 3.1 The 2006 NZeco chassis 

The chassis was based around using two „in-wheel‟ motors, a battery pack, Mazda 

MX-5 suspension and steering and a bodyshell shape from HybridAuto. The 

chassis consists of front, middle and rear compartments with suspension 

wishbones attached through mounts to the sides of the front and rear 

compartments. The chassis never had any propulsion system attached so its 

performance was unknown. 

For 2007 there were changes to the components used within the vehicle. These 

included custom suspension based on the Lotus Elise, Lotus steering components 

and Thunder-Sky Li-ion batteries. The 2006 chassis was analysed for its 

suitability for use in 2007 and Table 2 was collated to display its advantages and 

disadvantages. 

Strengths Weaknesses 

Very stiff design Not enough space within the chassis 

Load bearing beams front and rear Not integrated to the bodyshell 
Impact absorbing beams front and 
rear Poor suspension and steering design 

Central tunnel for strength Poor workmanship 

Lightweight (under 60kg) 
Poor occupant ergonomics (dash too far away and too 
low) 

  No provision for roll hoop attachment 

 The suspension did not fit completely within the bodyshell 

 

Table 2 Assessment of the 2006 chassis 
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To implement the required changes to the 2006 chassis would be difficult and 

time consuming. 

3.3  Chassis selection 

The research undertaken into chassis designs allowed a decision to be made on 

how the 2007 Ultracommuter chassis would be constructed. The main priority in 

the chassis design was its requirement to be lightweight. There were also limits on 

available skilled labour and expenditure. These main factors contributed to the 

decision to design a new aluminium honeycomb sandwich panel chassis. The 

design would be similar to a space frame in that it was a complete assembly 

mounted below a bodyshell, but it would not be constructed from metal tubing.  

The aluminium honeycomb chassis has advantages in that it does not require 

skilled labour to assemble, the material and processing costs are minimal and the 

design allows a lightweight design without the need for in-depth finite element 

analysis and mathematical modelling. 

Therefore to successfully prove the concept of BEV‟s in 2007 a new, more refined 

version of the 2006 chassis was designed and built. 

3.4  Material selection 

Aluminium honeycomb sandwich panel was chosen as the chassis material 

because it has high stiffness, is lightweight with a density of only 7% of 

aluminium, high corrosion resistance and low cost (Ayres Composites Panels Pty 

Ltd, 2006). 

The honeycomb panel consists of an aluminium honeycomb core sandwiched by 

two aluminium facings. The honeycomb is a repeating hexagonal structure 

resembling the appearance of bees wax inside a beehive. The aluminium facing 

sheets are bonded to the honeycomb core as shown in Figure  3.2. 
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Figure 3.2 An exploded view of aluminium honeycomb (Ayres Composite, 

2007) 

12

3bh
I x        (2) 

 Ix is the second moment of inertia about the x-axis 

 b is the beam width 

 h is the height of the beam 

xI

My


      (3)  

 σ is the normal stress in a beam due to bending 

 M is the bending moment 

 y is the perpendicular distance to the centre axis  

Sandwich structures are well known to be strong and stiff with low weight due to 

their high second moment of area „I‟ (2). The main advantage with sandwich 

structures is an increased thickness, with very minimal weight addition. The high 
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second moment of area values are due to the larger „h‟ value which is the 

thickness of the beam. As the „h‟ is cubed, it has a much larger influence on the 

second moment of area than the width „b‟. The larger second moment of area 

makes the stresses at the upper and lower surfaces smaller due to the Euler-

Bernoulli beam equation (3) therefore a larger moment can be applied to the beam 

before it fails. 

 

Figure 3.3 A beam under bending indicating where compression and tension 

occurs in face materials 
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Figure 3.4 Stress distributions in aluminium honeycomb sandwich panel 

under bending (Kee Paik, Thayamballi, & Sung Kim, 1999) 

Sandwich panels work under the same principal as „I‟ Beams. An object that is 

under bending forces has the largest stress concentrations on the upper and lower 

surfaces of the object as demonstrated in Figure  3.3. The stress distribution within 

a sandwich panel is shown in Figure  3.4 when subjected to bending. The figure 

clearly indicates the bending forces are carried within the facing material. Using 

(2), doubling the thickness of the material results in an 800% load carrying 

capacity increases because the stresses now carried by the upper and lower 

surfaces are lower. Experimentation of this theory was undertaken by (McBeath, 

2000) and his results (Figure  3.5) are slightly below the calculated values but are 

none the less representative. Therefore if a very low density core material is used 

the stiffness will greatly increase but the mass will increase relatively less. This is 

the principal how „I beams‟ function and are thus utilised in the building industry 

for decreasing mass and material use.  

Figure 3.5 Results from experimentation of beam stiffness with changing core 

thicknesses. A honeycomb core was used. (McBeath, 2000) 

The core material acts to keep the two facings apart and is able to transfer forces 

between them. This requires core materials to be strong in shear and compression. 
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The bond between the facings and core material must be strong or the sandwich 

panel will fail. 

Honeycombs have excellent energy absorbing properties (McBeath, 2000). This is 

demonstrated by the use of 50mm thick Ayrlite® panels in the Australian V8 

Supercars ™ (Ayres Composite, 2007). Ayrlite® is used inside the door panels to 

protect drivers from side impacts (Figure  3.6).  

Figure 3.6 Ayres 2022 Aluminium honeycomb used for side impact 

protection in the Australian V8Supercars™ (Ayres, 2008). 

The aluminium honeycomb sandwich panel for the Ultracommuter chassis is the 

Ayrlite® 2022, available in sheets 2400mm x 1200mm with a thickness of 20mm. 

The sandwich panel was supplied by Ayres Composite Panels Pty Ltd in Perth, 

Australia. The Facings are 0.5mm thick 5052/5251 aluminium sheet and the 

honeycomb core consists of 19mm deep, strain hardened 6.35mm cell size 

aluminium honeycomb. Ayrlite® is non-combustible and corrosion resistant and 

therefore is used a great deal in the marine industry for lightweight walls and 

panelling (Ayres Composite, 2007). 
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3.5  Specifications and constraints 

Constraints on the chassis design are factors that are out of the control of the 

chassis design. Specifications are targets for the chassis design. 

The chassis design must meet these criteria. 

- Fit completely within the bodyshell 

- Use Lotus suspension placement 

- Steering rack placement 

- Occupant position 

- Fit one battery pack 

- Meet the LVVTA regulations 

The chassis is designed to these specifications. 

- Ability to withstand minimum and maximum temperatures of -20 
o
C and 

50 
o
C respectively 

- Ability to withstand humidity‟s of 0-100% 

- Suitable for driving on all sealed road conditions 

- To be designed to be as stiff as possible 

- Lightweight ~60kg 

- Low COM 

- Close to 50-50 weight distribution 

- Have a useful life of at least 5 years 

- Must be Ergonomic 

- Designed to maximise available space 

- Cost 

 

Detailed specifications 

All aspects of the chassis, suspension and steering must meet the relative LVVTA 

regulations to enable the car to be driven on the road. 
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The rear suspension design is from a Louts Elise, adapted to take „in-wheel‟ 

electric motors. Using „in-wheel‟ electric motors creates increased loadings on the 

rear suspension components compared to a conventional power train. The „in-

wheel‟ motors must create a reaction torque for the torque they are producing to 

enable the vehicle to move. Conventionally this meant the torque is provided by 

the motor, through drive shafts with reaction forces acting through the motor 

mounts to counter the torque to move the vehicle. With in wheel motors, the 

suspension has to transfer these reaction forces through the wishbones; thereby 

the suspension mounts must be able to withstand this increased loading through 

the suspension mounts. This increased loading requires lower link tubes to be 

used to link both sides lower wishbone mounts together. The link tubes work in 

the same manner as a strut brace. The link tubes are used to directly transfer 

forces from one mount to the opposing side mount.  

The suspension mounting points are from a Lotus Elise chassis. To maintain 

correct geometry during suspension movement and prevent fouling, the location 

of the suspension mounting points needed to be maintained on the Ultracommuter 

chassis. 

Forces are transmitted from the suspension to the chassis at all times, even when 

at rest. Therefore the suspension attachment points must be strong as failure could 

be catastrophic, particularly if failure were to occur at high speeds.  

All suspension components must clear the chassis at all times. If any component, 

including tyres, were to foul on the chassis, the chassis or suspension components 

may become damaged and fail. 

The Steering geometry must be designed to minimise bump steer and other 

unwanted geometry changes. To minimise weight the steering system will be 

manually operated. 

The aerodynamically efficient body shell design was obtained from HybridAuto 

in Australia (Figure  3.7). The body shell was designed to fit over a Lotus Elise 
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chassis. To maintain the aerodynamics of the body shell, no components were to 

protrude past the body shell extremities, excluding tyres. 

 
Figure 3.7 The HybridAuto bodyshell 

Batteries are the single largest mass within the vehicle, so their placement is 

important as it greatly affects the COM and the weight distribution.  The COM is 

the central point where if the car were to be supported there, the car would 

balance. For vehicle dynamic handling the COM needs to be located as low as 

possible. A low COM decreases the amount vehicle body roll. Ideally weight 

distribution in a vehicle is 50:50, and such a weight distribution enhances a 

vehicles dynamic performance as all tyres get the similar amounts of grip. Thus, 

at entry to a corner, the front will not tend to understeer as much as a vehicle with 

weight distributed towards the front. 

A 16kWh battery pack was mounted in the vehicle. Easy access to the batteries 

was required to enable them to be quickly and easily replaced. 

The chassis performance must not be affected by moisture, be able to withstand 

temperatures ranging from -20 
o
C to 50 

o
C and humidity‟s of 0% to 100%. The 
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vehicle will be driven primarily on sealed roads. The chassis must withstand being 

driven on short unsealed patches of road.  

The Ultracommuter raced the World Solar Challenge in October 2007 so it had to 

be designed to withstand driving the 3000km from Darwin to Adelaide. The 

temperatures in Darwin can reach 40+ 
o
C in October with humidity‟s of up to 

100%. The highway is a two lane road with many road trains. The surface is 

relatively smooth and flat. 

The Ultracommuter will be driven on a variety of roads, from smooth motorways 

to gravel. The Ultracommuter is not intended to be driven on unsealed roads but 

this must be considered for events such as road works where fresh tar seal results 

in loose stones. Due to the landscape in New Zealand, roads have numerous hills, 

as well as irregularities such as pot holes. The chassis would need to withstand the 

forces from the suspension that these roads create. 

Occupant location within the vehicle is determined by the body shell and the 

available space. The occupant must be able to get in and out of the car unaided 

and ergonomics within the cockpit must be similar to a conventional car. The 

chassis design must maximise available space.  

The chassis design and construction must fall within the allotted $5000 budget.  

3.6  Design 

3.6.1  Safety 

The Ultracommuter is to be driven on public roads therefore it is required to meet 

local regulations to ensure it is safe for the vehicle occupants and other road users. 

In New Zealand the Low Volume Vehicle Technical Association (LVVTA), 

established by car clubs and associations around New Zealand, is the regulatory 

body allowing custom built and modified vehicles to operate on public roads 

provided they meet the required safety regulations. These regulations allow 

custom built and modified vehicles to be driven on the road without expensive 

crash testing, enabling cars to be constructed without significant financial cost. 



75 

 

 

Vehicle safety can be either passive or active in nature. Passive safety is 

operational at all times and therefore requires no inputs to operate. Passive safety 

devices include crumple zones, seatbelts and dash padding. Examples of the 

energy absorbing properties of steel and aluminium as a function of mass can be 

seen in Figure  3.8. Active safety devices are not always working and require a 

signal generated from sensors to activate. Active safety devices include Anti-lock 

braking systems (ABS), air bags and electronic stability control. It is well known 

that there is increasing demand for increased occupant safety; thereby more safety 

systems are being incorporated into vehicles to meet his demand.  

 

Figure 3.8 Energy absorption of different cross sectional structures as a 

function of weight (Braess & Seiffert, 2005). 

Safety devices incorporated into the Ultracommuter chassis design consist 

primarily of passive safety devices due to the vehicles experimental nature. 

Passive safety devices are cheaper and simpler to install than active safety systems. 

Active safety systems would not be present on this car due to their high costs, 

installation difficulties and their added weight. 

It is well known that new car buyers are demanding safer vehicles with lower 

emissions. Safety features include the addition of air bags (driver, passenger and 

side), stability control, ABS, electronic brake force distribution and many other 

new safety features. The addition of these features creates more weight within the 

vehicle, and in many circumstances has resulted in the addition of these features 
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negating any weight decrease in the chassis or body. An example of this is the 

Lotus Elise. To be able to sell the Elise in the United States of America the 

Federal Elise had to meet the crash testing and emissions standards. To meet these 

standards, the Federal Elise gained 65kg (Figure  3.9). 13kg of the 65kg is for A/C, 

which while not mandatory, is expected of vehicles sold in the USA. This is an 

increase in weight of 7.8% from the base model Lotus Elise S2. (Jost, October 

2004) 

 

Figure 3.9  Sources of weight increase for the Lotus Elise Federal (Jost, 

October 2004) 

3.6.2  Computer Aided Drawing 

SolidWorks, a 3D Solid modelling program, was used to design the 

Ultracommuter chassis. Using 3D CAD software to develop a vehicle allows 

faster development times than 2D drawing and constructing prototypes. The use 

of CAD allows fewer prototypes to be built, as the fit and function of components 
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can be determined in the CAD model. If prototypes are built they are generally 

constructed using Rapid Prototyping (RP) techniques or CNC machining directly 

from the CAD models. 3D CAD packages allow the chassis to be completely 

designed and tested virtually. This virtual testing meant the chassis could be 

designed faster, more accurately and simultaneously with the rest of the car 

(concurrent engineering). 

CAD allows the chassis to be integrated with other components very early in the 

design process. The fit and design of components can be optimised prior to any 

manufacturing of components begins. This process creates significant reductions 

in the cost and time for development of a vehicle. Ford motor company used 90% 

less prototypes during the development of the FORD GT through greater use of 

CAD and FEA (Ford Motor Company, 2003). 

Holden (GM) reduced development time for the latest Monaro (Figure  3.10) 

substantially through greater use of CAD and their new Virtual Reality Design 

Studio. Development of niche cars from design freeze generally takes about 3 

years. Holden took just 22 months to develop the Monaro. It took only 1 year to 

produce the first running concept car. The development process also allows 

substantial savings in cost. (Alias Systems Corp, 2004; Newton, 2001, , 2005) 

 

Figure 3.10 The 2005 CV8 Holden VZ Monaro (Kodack, 2005) 
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Use of CAD is allowing small reductions in chassis mass to be achieved. A 

chassis design for the mass consumer market with substantial weight loss will 

require a radical new chassis design and use of lighter materials. CAE is a tool 

which can be utilised to create this mass reduction. Through the use of Computer 

Aided Drawing (CAD) allowing the transferring of ideas around the world 

instantly via the internet and allowing complex stress analysis in components and 

assemblies through the use of finite element analysis (FEA) it can be achieved.  

The 3D CAD drawing techniques used during the chassis development were 

different to the 2006 design. A new CAD concept of „drawing in context‟ meant 

file sizes were smaller, there were fewer update errors which were easier to 

correct and SolidWorks was more stable. The chassis context sketch can be seen 

in Figure  3.11.From these sketches, extrusions were easily created. While it took 

time to become accustomed to this new technique it resulted in faster drawing and 

better understandings of the finer details of CAD design. 

 

Figure 3.11 The final chassis context sketches 

3.6.3  FEA Analysis 

FEA entails the use of computers to calculate answers to complex mathematical 

equations. The complex mathematical equations are derived from a 3D model 

whereby a „mesh‟ (Figure  3.12) of the model is created. From the mesh, variables 

are obtained which are input into mathematical equations to solve for the 
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unknown values. The mathematical equations results can be for impact loading, 

static loading, fatigue, vibration, heat transfer, fluid dynamics and 

electromagnetism.  

 

Figure 3.12 A mesh crated on a 3D CAD model for Finite Element Analysis 

(Braess & Seiffert, 2005) 

The outputs or results from FEA analysis are typically graphs or images. Graphs 

simply show the data along axes, whereas the images utilise different colours or 

shades to represent different loading conditions within the component. Typically 

for static load analysis, areas of high stress are represented by red and low stress 

areas are blue with the differing shades and colours in between. This output of 

differing shades or colours makes FEA results very easy to understand, but it must 

be used with caution to ensure the applied design scenario is correct. An image of 

FEA analysis of a frontal impact can be seen in Figure  3.13. 
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Figure 3.13 Computer simulation of a head on collision (Braess & Seiffert, 

2005) 

Chassis design has been extended to its limit through the use of FEA by 

optimising material properties and minimising material dimensions. By 

optimising the chassis design the amount of material used has been reduced. 

Finite Element analysis (FEA) was performed on the chassis designs as they were 

developed. For static FEA, as was performed on the Ultracommuter chassis 

designs, the material, applied restraints and loads and a 3D model are required. 

The material defines the models properties and this is used to calculate the 

stresses and strains within the model. The Complex calculations require 

significant computer power, so depending on the specifications of the computer 

used, FEA analysis could take up to 8 minutes to complete, and therefore at times 

multiple computers were used. The time to calculate largely depends on the 

complexity of the model, the required numerical accuracy and the performance of 

the computer used. The mesh can take over 5 times as long to create than the 

stress analysis. The chassis mesh can be seen in Figure  3.14. It is very fine as this 

was the only way the mesh was able to be created due to its complex nature. 
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Figure 3.14 An FEA mesh of the Ultracommuter chassis 

The FEA analysis was performed by modelling the aluminium honeycomb as 

solid aluminium with solid instead of bonded joints. This meant the loads applied 

in the analysis were different to the loads the chassis would actually be subjected 

to. The analysis for the chassis involved identifying areas of high stress for the 

model and identifying if this area would be weak or not due to the loading and 

direction of load on the joint as different joints can handle different sized loads. 

The CAD model of the chassis required many hours of static FEA analysis. After 

the analysis had run, small changes were made to the design to minimise stress 

concentrations. 

The two main static loading scenarios analysed were torsion and bending, with a 

small amount of static analysis undertaken on frontal forces. Torsion analysis was 

performed by applying loads upwards to the panels where the suspension was 

attached. The opposing end of the car would then have all panels having 

suspension attached restrained. This simulates a vehicle with occupants going 

around a corner at high speed and one front corner of the chassis having to carry a 
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larger amount of force as the momentum of the vehicle is changed. Bending 

analysis was performed by restraining either end of the chassis and applying an 

upwards force at the other end, or restraining both ends of the car and applying 

forces within the middle of the chassis to simulate the forces the masses of 

occupants and batteries would create.  

3.6.4  Design 

To create the best ride handling and comfort, a chassis needs to be very stiff and 

strong and this can be difficult when there is no top to the chassis as it reduces the 

chassis‟s second moment of area and therefore significantly affects the chassis 

stiffness. There was no top for the Ultracommuter chassis due to the honeycomb 

not being suitable for curved areas, thus the chassis was designed from the outset 

to be topless. A roll hoop was to be used to support the bodyshell and increase the 

chassis stiffness. The body shell‟s low roof meant there was little space for the 

honeycomb to fit, and the bodyshell had continuous 3D curves which the 

honeycomb could not fit to. An example of how the rigidity of a vehicle can 

change with the removal of the roof is research undertaken by (Masini, 

Taraborrelli, Pivetti, & Feraboli, 2004) where it was found removal of the roof of 

the Lamborghini Murciélago coupe reduced torsional stiffness by 50%.  

The constraints and specifications had to be adhered to create a successfully 

integrated, high performance chassis. Creating a well integrated chassis within 

these limits was the main research and development area of this project. 

As there are currently no vehicle chassis constructed primarily from honeycomb, 

inspiration and design ideas were gained from composite chassis cars such as the 

McLaren F1, Lamborghini Murciélago and Koenigsegg CCR Supercars and 

aluminium chassis cars such as the Lotus Elise and Strathcarron. Much  research 

was also conducted into the design and construction methods of many vehicles 

chassis and their latest advancements (Asnafi, Langstedt, Anderson, Ostergren, & 

Hakansson, 2000; Bak, Bartlett, & Hars, 1995; Brylawski & Lovins, 1999; Cole 

& Sherman, 1995; Corum, Battiste, Ruggles, & Ren, 2001; Cramer, Taggart, & 

Inc, 2002; Feraboli & Masini, 2004; GSV, 2005; Inagaki & Tanaka, 2002; Miller, 
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1996; Saito, Iwatsuki, Yasunaga, & Andoh, 2000; Tamaki, 1999; Yokota et al., 

2002) 

Suspension 

Forces are transmitted from the suspension to the chassis from static and dynamic 

impacts. Therefore the suspension attachment points must be capable of 

preventing catastrophic failure, particularly at high speeds. Increased loading is 

placed on the suspension mounting points when hard braking and cornering occur 

simultaneously. 

At rest, due to the static weight of the car, the front and rear shock absorber 

mounts will have 1230N and 1770N of force acting on them respectively. This 

force is from the static weight of the car. Vehicle manufacturers include a factor 

of safety of 2.5 - 3.0 to account for the increased forces under dynamic loading 

(Happian-Smith, 2001). 

For the Ultracommuter, load paths were created to transfer forces from the 

suspension as directly as possible to minimise chassis flex. A front strut brace was 

attached between the two front shock mounts, which stiffens the front of the 

chassis by creating direct load paths between the two shock absorber mounts 

(Figure  3.15). This minimises chassis flex as the forces are being transferred 

through the strut brace, not through the chassis. Strut braces were also placed 

across the rear upper wishbone mounts. The rear shock mount utilised the roll 

hoop as a strut brace. 
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Figure 3.15 The front strut brace connecting the two front shock absorbers 

Sufficient clearance between the suspension mount and other parts of the chassis 

was essential to enable bolts to be inserted and nuts tightened. The suspension 

needed to clear the chassis at all times. At the rear of the chassis, the floor had to 

be raised 20mm to prevent the lower wishbones impacting on the chassis in the 

event the suspension was fully compressed. The front corner of the cockpit was 

required to be angled to allow for clearance of the wheel during cornering. The 

angle creates a stronger design as it makes a smoother load path, front to rear. 

Occupant safety increases in the event of a frontal impact because the tyre will get 

deflected outwards, away from the occupant. 

The final rear shock absorber placement was not finalised until all of the rear 

suspension had been attached to the chassis. This was due to tight clearances 

between the wheel and suspension components. Leaving this mount until after 

initial assembly meant there would be no problems of components fouling. 

Steering 

To keep the correct steering geometry the steering rack must be correctly placed. 

This is due to the front wheels travelling along different radius curves. This can be 

seen in Figure  3.16 by the different angles the front wheels are turning during the 
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turn. These differences in angle are called Ackermann geometry. If the front 

wheels do not have the correct geometry, such as both wheels turn at the same 

angle one tyre will scuff, wasting energy and wearing tyres prematurely. The 

geometry of the steering was modified by moving the steering rack fore and aft 

until the correct geometry was obtained. 

 

Figure 3.16 Ackermann steering geometry 

To avoid bump steer the inboard pivot points were placed in line with the top 

wishbone pivot (Figure  3.17). This prevented the steering geometry changing as 

the wishbones move up or down. This is only true when driving in a straight line, 

not during cornering. 
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Figure 3.17 Steering pivot points 

The steering column placement needed to be correct so the steering wheel would 

be central to the driver and within easy reach while the angle between either of the 

two universal joints did not exceed 30
o
. The steering column required a “dog leg” 

in between it and the steering rack for safety. If the occupant were to contact on 

the steering wheel from an impact, the steering column would move sideways and 

not be rigid due to the dog leg thus preventing injury. 
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Bodyshell 

The aerodynamic body shell envelopes the entire car including under body. This 

meant the chassis had to be designed to very tight tolerances to ensure that all 

available space was used yet no part of the chassis or suspension protruded 

beyond the body shell. The body shell curves upwards towards the rear of the 

vehicle and in order to accommodate the lower rear suspension components and 

mounting points the rear of the chassis had to be sloped like the bodyshell or 

stepped. 

Another issue was the minimal occupant head room, whereby the occupant fore 

and aft position was predetermined. Limited available headroom meant the 

vehicle occupants had to be placed towards the centre of the vehicle (Figure  3.18). 

The roof height increased towards the highest point at the middle of the bodyshell. 

The ergonomics of the occupants within the vehicle was affected by their position. 

The egress of the occupant was also a contributing factor as many lightweight 

vehicles tend to have high sides to achieve a stiff chassis. The occupant has to step 

over the side of the car making entry and egress difficult. With the 

Ultracommuter bodyshell design incorporating a roof that dictated entry and 

egress ergonomics, the sides of the chassis had to be lower than comparative 

lightweight chassis‟.  
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Figure 3.18 An Illustration of the limited occupant headroom in the 

Ultracommuter. 
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Batteries 

The batteries used for the car were not confirmed until quite late in the chassis 

design therefore the chassis could not be accurately analysed early on in the 

design process. Batteries size, weight and placement had to be estimated until the 

batteries were finalised. For the benefit of weight distribution, placing the 

batteries near the front of the vehicle would result in improved handling and 

performance but this had to be weighed up against the need to place the batteries 

near the rear of the car so they were close to the motor controllers and motors. 

Therefore there would be no need for long high voltage cables which could 

become hazardous in the event of an accident and also reduced electrical power 

losses. The batteries had to be exchanged so easy access was required. As the 

batteries were the single largest mass onboard the car, it is beneficial to get them 

mounted as low as possible as this makes the car more stable during cornering by 

lowering the centre of mass. 

Ergonomics 

With the occupant position fore and aft constrained along with the suspension 

mounting points, the firewall and frontal chassis design needed to incorporate as 

much length for the occupant as possible (Figure  3.19). Using the human model in 

the CAD design, the cockpit was able to be extended to maximise available space 

for the occupant while retaining room for the lower suspension wishbones. 



90 

 

 

 

Figure 3.19 The Human model in the cockpit with their feet very close to 

firewall. 
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General 

While flat floors can be advantageous for increasing free space within the cockpit, 

(Masini, Taraborrelli, Pivetti, & Feraboli, 2004) found that to increase the 

stiffness of a topless vehicle the central tunnel and side beams needed to be 

increased in size compared to a roofed vehicle to get comparable torsional 

stiffness. The central tunnel also serves as a place to mount switches and 

monitoring equipment. The side beams of the Murciélago coupe were reinforced 

to increase stiffness and act to create better front-to-rear flow of energy 

(Figure  3.20) (Masini, Taraborrelli, Pivetti, & Feraboli, 2004). Early in the design, 

beams were included along the side of the chassis. An increase of 7% torsional 

rigidity was gained for an insignificant increase in weight.  

 

Figure 3.20 The Lamborghini Murciélago coupe. Darkened areas indicate the 

areas where reinforcement was required to stiffen the coupe. (Masini, 

Taraborrelli, Pivetti, & Feraboli, 2004) 

The Ultracommuter chassis was designed using an interlocking technique. This 

technique uses finger and butt joints commonly used in carpentry to strengthen 

corner joints. This technique resulted in a 3D jigsaw type construction that was 

strong and stiff. The loading of the box combing and butt joints are varied due to 

their different configurations. Box combing was the most common joint used in 

the chassis as it is the strongest. This is due to the interlocking nature and its 

ability to transfer forces effectively. 
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Due to there being no roof structure, a roll hoop was incorporated into the design. 

It is designed to protect occupants in the event of a roll over. The roll hoop also 

transfers forces between the rear of the cockpit and the rear suspension. This is 

ideal due to the inherent weakness of the chassis as it steps upwards behind the 

batteries. The roll hoop takes forces from the rear shock absorber and transfers 

them to the cockpit, or if the front half of the body shell is on, through the 

windscreen support to the dashboard. The dashboard is a structural component of 

the car and is designed to transfer torsional and bending forces back through the 

car. 

Designing for a low COM was not difficult as the low body height dictated that 

the majority of components must be mounted low. The lower the mass of 

components, the lower the COM, creating a stable car that is less prone to body 

roll. A low COM creates less body roll because the distance from the road to the 

COM results in a lower roll moment. 

Lateral loading can be determined by using (4) (Happian-Smith, 2001). This 

equation gives the condition that the resultant of the centripetal force and the 

weight of the vehicle passes outside the inner wheel contact patch (Happian-Smith, 

2001). 

2

2 t
Mgh

R

MV
       (4) 

V = velocity 

R = Radius of the bend 

t = track width = 1.4m 

h = height of COM = 0.512m 

Simplifying (4) gives (5). 
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Therefore, with a track of 1.4m and a COM height of 0.512m (conventional cars 

are approximately 0.52m (Happian-Smith, 2001)), a theoretical maximum lateral 

acceleration before roll over occurs is 1.37g, which is slightly lower than a 

conventional cars average of 1.42g. This is primarily due to the reduced track of 

the Ultracommuter as the COM is very similar to a conventional car. The limiting 

factor is that tyres can only withstand maximum side forces of  maximum of 

approximately 0.75g (Happian-Smith, 2001). 

Beams were placed at the front of the chassis near the front suspension to increase 

stiffness and give more support to the honeycomb (Figure  3.21). The beam also 

acts as a crumple zone in the event of a frontal impact. While it is not ideal to 

have integral beams because if there were an impact, the chassis would be very 

hard to repair, it would be easier and more accurate on this prototype vehicle to 

make a new chassis than try to repair the damage. The beams also transfer closer 

to the central tunnel than if the beams were not used, which aids in transferring of 

forces. 

 

Figure 3.21 A sectioned view of the front of the Ultracommuter chassis 

showing the inbuilt frontal beams. 
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The bending forces on the Ultracommuter chassis were found to be comparable to 

a conventional car (Figure  3.22, Figure  3.23). The main differences are the 

increased forces from rear seat passengers, although this could be compared to the 

batteries; and there being no engine or transmission forces at the front of the 

chassis. The maximum shear forces the chassis would be subjected to were 

calculated (Figure  3.24) and compared conventional cars (Figure  3.25). As can be 

seen in the figures, the maximum shear force in the Ultracommuter is less than 

half that of a conventional car. 

 

Figure 3.22 The Ultracommuter bending force diagram 
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Figure 3.23 Bending force diagram for a passenger vehicle (Happian-Smith, 

2001) 

 
Figure 3.24 Ultracommuter Shear force diagram 
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Figure 3.25 Passenger car shear force diagrams (Happian-Smith, 2001) 

The chassis was designed as if it were to go into low volume production; therefore 

it had to be designed to be low cost, simple, strong and good quality. Finding this 

balance has proved to be difficult. 

Developments 

Developments began by deciding to use different components from the 2006 

Chassis seen in Figure  3.1. With the 2006 Chassis as a basis, the new chassis is 

designed with more room and ease of manufacture.  

Developments continued with most changes aimed at extending the chassis to the 

bodyshell. The chassis seen in Figure  3.26 and Figure  3.27 were the earliest 

developments. It includes reversed rear top wishbone mounts to bring the pivot 

points closer to the chassis, a large flat boot, a central console and an angled dash. 

The reversed rear suspension mounts were rejected due to the honeycomb being 

weakened by the required holes. The Large flat boot was an improvement over the 

2006 chassis which had very little luggage space. The central console was added 

for further stiffening. The Angled dash was later reversed as it was considered 

safer for the occupants in the case of impact. 
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Figure 3.26 The Ultracommuter chassis - 8 Feb 07 

 
Figure 3.27 The Ultracommuter chassis - 8 Feb 07 

The next developments involved creating enough space in the car to house the 

batteries. The batteries were placed behind the driver, but their layout and 

placement has varied as different positions were investigated. In Figure  3.28 the 

batteries are installed behind the driver, but access to them is restricted by the 

beam placed behind the dividing wall. There was also a design concept where the 

batteries could be exchanged through a hole in the bottom of the car, but this was 

not adopted because of the added complexities it brought into the chassis design. 

The steering rack was chosen, and thus a beam was created in front of the dash to 

house it. The dash slope has been reversed from previous designs. There are 
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hollow vertical beams behind and to the side of the driver. These were designed to 

aid front-to-rear flow, but they used space ineffectively and in later designs were 

removed and the batteries moved further forward.  

An investigation into using a double skin on the bottom of the chassis to house the 

batteries was undertaken but due to the low headroom available, it was found 

there would not be sufficient room for an average human to be seated comfortably. 

Creating a double skin on the bottom of the chassis would significantly improve 

stiffness increasing the I-value of the base of the chassis. The COM would also be 

lowered. 

 

Figure 3.28 Chassis version 15 Feb 07– drawn as a solid model 

3.6.5  The Final Design 

The final chassis design consists of four main areas, the front, cockpit, battery 

compartment and the rear. The chassis design is simple and uses space effectively 

(Figure  3.29). 
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There are 118mm x 80mm beams running forward from the front firewall and 

140mm x 80mm beams running down the sides of the cockpit. The sides are 

140mm high, permitting relatively easy egress. The side beams provide the 

strength through the centre of the chassis as the doors are non-structural, therefore 

the side beams are designed to provide strength and safety protection. The floor is 

constructed from aluminium honeycomb panels and can also absorb impact 

energy, unlike steel bodied cars where the floor is not used for this. The centre 

console houses monitoring equipment and switches and also stiffens the chassis. 

The suspension and steering mount holes were cut accurately during waterjet 

cutting of the aluminium honeycomb to ensure correct geometry. 

 

Figure 3.29 The final Ultracommuter chassis 

The batteries were placed behind the driver at floor level. The batteries can be 

seen just behind and below the driver in Figure  3.30. The battery placement kept 

weight low and as far forward as possible. 
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Figure 3.30 Final battery and driver placement 

The COM of the Ultracommuter was positioned near the centre of the occupant 

Figure  3.31, creating a 45:55 (front:rear) weight distribution. The COM height is 

similar to a conventional car. The final driver position is a compromise between 

headroom, leg room and battery positioning and is shown in Figure  3.30. 

 

Figure 3.31 COM of the Ultracommuter 

The front crumple zone consists of a 390mm high x 380mm long x 535mm wide 

box that can be filled with an absorbent material such as high density foam to 

absorb energy in a frontal impact. The box is itself an impact energy absorber as it 

is constructed from aluminium honeycomb. 

A tubular box constructed from aluminium honeycomb was designed into the 

chassis to house the steering rack. The box was created as there were no mounting 

COM 
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points to mount the steering rack. It also creates a direct load path joining the 

sides.  

The rear suspension lower wishbone mounts are situated 20mm below the bottom 

of the chassis to avoid the chassis fouling the suspension or bodyshell 

(Figure  3.32). Aluminium honeycomb is used for the spacers with a longer „top 

hat‟ going through both layers of aluminium honeycomb. 

 

Figure 3.32 Rear suspension lower wishbone suspension mounting 

The rear shock absorber is mounted into a corner of the chassis and is directly 

connected to the roll hoop to transfer the shock absorber loads. 
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Chapter 4   Manufacture 

4.1  Introduction 

The manufacture of the chassis needed to be simple to minimise the required 

labour skills and as low cost as possible due to the limited funds available. The 

aluminium honeycomb panels were cut to shape using a CNC waterjet cutter. The 

panels were then assembled, bonded and riveted in place. 

The many parts of the chassis were drawn as 2D shapes nested within a flat sheet 

the size of the aluminium honeycomb. This process was relatively straightforward 

due to the chassis being drawn in context. The individual parts were placed onto 6 

sheets of honeycomb and the resulting 2D figure could be converted to a drawing 

and the required file formats for the waterjet cutting. 

4.2  Water jet cutting 

An automated process was used to cut the aluminium honeycomb as it is more 

efficient than cutting the aluminium honeycomb manually. An automated process 

can also produce the required accuracy allowing the numerous parts to fit together 

after the removal of burrs. The process has a faster production line than manually 

cutting the parts due to the large part count and the accuracy required. It also 

eliminates the tendency for errors occurring when manual processes are used, 

reducing material wastage. The cut aluminium honeycomb sheets returned 

virtually scratch free. It would have been very difficult to achieve this manually. 

Waterjet cutting was chosen to cut the honeycomb as opposed to laser cutting or 

CNC milling due to the varying cross material thickness as the honeycomb panel 

was cut. 

The water jet cutter had an accuracy of ±0.1mm and was located at Aquacut2000 

Ltd in Auckland.  2D CAD files (Figure  4.1, Figure  4.2) were provided with the 

chassis part patterns and subsequently programmed into the machine using CAM 
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software to control the movements of the cutter. The water jet cutting proved to be 

accurate and with the finished parts requiring minimal finishing (Figure  4.3). 

 

Figure 4.1 Chassis parts placed onto a sheet 

 

Figure 4.2 Chassis parts converted to 2D drawing 
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Figure 4.3 Aluminium honeycomb sandwich panel cut by waterjet 

As there were some joints requiring non-perpendicular angled edges, they were 

created manually using a file or hacksaw. 

The aluminium surfaces were prepared for bonding by scouring with 200grit 

sandpaper to create a surface the adhesive could readily key to. The surfaces were 

then wiped with acetone to remove contaminants. The aluminium needed to be 

clean to maximise the achievable bond strength. 

4.3  Construction 

Riveting 

3.2mm Aluminium Steel rivets were used to attach parts to the aluminium 

honeycomb. The rivets served as fasteners to pull the aluminium honeycomb and 

the part to be bonded together and to keep them positioned.  
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Holes for the rivets were predrilled before cleaning to keep swarf and 

contamination away from the joint. The rivets were attached using a hand riveter 

or an air driven riveter. 

Bonding 

HPR25 toughened epoxy adhesive supplied by Adhesive Technologies was used 

to bond the aluminium together. HPR25 adhesive was designed for bonding 

aluminium sheets to low density cores, so this adhesive was deemed appropriate 

for this application. The failure stress under shear loading for the adhesive is 

given as 15.9MPa when tested to ASTM D1002 (Adhesive Technologies NZ, 

2007). The HPR25 adhesive has a working time of 45 minutes with a full cure 

taking 7 days.  

Toughened epoxy has small rubbery inclusions which act to reduce crack 

propagation and movement. This is a requirement of the adhesive due to the 

loading environments where small impacts are common and by using toughened 

epoxy, the adhesive will flex small amounts but not crack. 

The thickness of the adhesive layer can affect the bond strength. From Figure  4.4, 

the general adhesive thickness for best shear strength is less than 0.6mm. This was 

accomplished by securing components using rivets. 

 

Figure 4.4 The effect of glue thickness on shear strength of adhesive (N=non-

toughened, T= Toughened) (Dwight, 1998) 
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Figure 4.5 Bond strength of adhesive joints after changing the surface pre-

treatments (Dwight, 1998). 

Bonding of aluminium requires a strong bond between the adhesive and the 

aluminium oxide. Aluminium oxide forms nearly instantaneously on exposed 

aluminium. Adhesives do not bond with metal atoms (Minford, 1993). The 

aluminium oxide layer can be removed or changed to improve bond strength to 

another compound through the use of etching. Etching was unsuitable for use in 

the chassis due to the time required, variety of chemicals and the unsuitability 

with the honeycomb. Abrading with sandpaper produced satisfactory results and 

can be confirmed by other research performed (figure 4.5) (Aloxite 60 Abrade is a 

synthetic aluminium abrasive sandpaper). (Minford, 1993) 

The use of adhesives has meant joints are stronger because there is a larger 

surface area for bonding. This creates larger surfaces to transfer forces and leads 

to uniform stress distribution (Braess & Seiffert, 2005). Material can be of a 

lighter gauge as there is no welding which can weaken joints because of the heat 

affected zone (Braess & Seiffert, 2005) and thus must be compensated for by 

larger wall thickness material (Wan, 1998-2000). Less than 4kg of adhesive was 

used in the construction of the chassis. Glue usage was minimised to decrease 

chassis mass. 
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The outside and inside of right angle joints were reinforced using extruded equal 

angle aluminium (20mm x 1.6mm and 30mm x 1.6mm). Non-perpendicular joints 

were reinforced with aluminium sheet folded to the correct angle. Flat butt joints 

were reinforced with 40mm x 3mm flat bar. All of the reinforcement was riveted 

and bonded to the aluminium honeycomb panel. 

4.4  Finishing 

Extruded aluminium bar was placed along exposed edges of the honeycomb to 

protect the exposed core from debris and to cover sharp edges. They also support 

the two facings and ensured they did not delaminate from the core or the edges. 

The edging prevented damage from localised loading on the edges as the 

aluminium honeycomb panels had reduced load carrying capacity near its edges. 

The edging used was 19.05mm x 2.64mm aluminium bar with the edges sanded 

off to reduce the width to below 19mm. The core was cut away from near the 

edge so the bar could fit between the faces with no distortion to the faces. 

Bracing was placed across areas where weaknesses were identified. These key 

areas were between the top rear wishbone mounts to stiffen and strengthen the 

rear suspension, particularly since there would be more forces generated through 

the suspension due to the „in-wheel‟ motor. A brace was also placed across the 

front of the chassis between the two shock mounts to stiffen the chassis and 

transfer loadings. 

4.5  Top-hats 

Tophats were used in the honeycomb for attaching load bearing components. The 

use of tophats meant the load being applied to the chassis would be distributed 

over a large area. They also incorporate their own crush tube, required for 

attaching components to areas with hollow or minimal transverse load carrying 

capacity to prevent the loaded surface from buckling (Figure  4.6). 
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Figure 4.6 Tophats installed onto the chassis 

Tophats have been used as an attachment method for the chassis as standard bolts 

will crush the honeycomb core as the bolt is tightened. The tophats are glued into 

position and they distribute the point load from the bolt across a larger area, 

resulting in a lower stress concentrations and a lower chance of honeycomb 

failure. 

The „top-hat‟s were machined from aluminium that, according to (Camanho & 

Matthews, 2000) is more suitable for inserts than steel especially when the „top-

hat‟ has a small wall thickness. This is due to adhesive failure occurring before 

carbon fibre reinforced plastic laminate failure when a thick stiff insert is used 

because the loading mechanism for the adhesive changes from compression, for 

which adhesive is strong, to tension for which it is weak. The added benefit of 

aluminium is they are lighter than steel ones. 

„Top-hat‟s were bonded to the honeycomb sandwich and a torque of 25Nm was 

applied by placing a bolt through the centre. The „top-hat‟s were compression 

tested to ensure they would be able to withstand the forces they would experience 
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when in use. The „top-hat‟ was subjected to 1700N before the honeycomb began 

to deform and the „top-hat‟ delaminated. As there are four „top-hat‟s per 

suspension mount, that means combined, they can withstand 6800N, or 693kg 

before failure. This is has proved to be sufficient strength for the suspension 

mountings. 

4.6  Chassis testing 

Testing of the chassis began with slow driving around the university car park 

(Figure  4.7). Initial speeds were kept low so the chassis and suspension could be 

checked while the car was in motion. Applied loads can be significantly different 

to static loads therefore this was a very important check. The low speeds also 

meant if there were to be any failures there would be less damage to the car and 

lower chances of driver injury. During the initial testing noises were heard coming 

from the front of the car. At first it was believed the noise was coming from the 

suspension mounts, but it later became clear the problem was in fact the chassis 

failing due to insufficient reinforcement along the aluminium honeycomb joints 

near the lower mounts. The damaged aluminium honeycomb was replaced and the 

front of the chassis was reinforced. The honeycomb had pulled away due to the 

large forces exerted on the suspension during braking and insufficient reinforcing 

near the suspension mount. 
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Figure 4.7 The first test drive of the car 

The front wheels rubbed on the chassis during tight turning, but this was not 

significant and the area where the rubbing occurred was already reinforced with 

more aluminium. This did not present any problems during the WSC. 

After the chassis was repaired, further testing was conducted at higher speeds (up 

to 75km/hr). Tests were also conducted through chicanes to test the chassis and 

suspension. After each short run, the chassis was inspected for any sign of failure 

but none was detected. The chassis performed well and proved to be stiff and 

strong enough. 
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Chapter 5   Economics 

As part of this project, a budget was required to be adhered too as limited funds 

were available. For most items, sponsorship was first sought to lower the cost to 

the team. Many companies were willing to support the cause and gave us free-of-

charge or discounted items. It was difficult to stick to the budget at times and 

restrict spending to what was required. A budget for the chassis design and 

construction can be seen below in Table 3. 

Item Supplier Quantity Cost Total cost Discount?

Aluminium 

honeycomb

Ayres composite 

panels
6 $375.00 $2,250.00 Yes

Rivets (box) MSL 2 $30.00 $60.00 No

Waterjet cutting Aquacut2000 1 $1,933.26 $1,933.26 No

Freight DHL 1 $400.00 $400.00 No

Adhesive (4Kg)
Adhesive 

technologies
1 $120.00 $120.00 Yes

Aluminium flat bar Ullrich aluinium 6 $12.00 $72.00 Yes

Aluminium angle Ullrich aluminium 12 $14.00 $168.00 Yes

Top hats
Page Macrae 

Engineering
350 $0.00 $0.00 Yes

Total $5,003.26  

Table 3 Budget for Ultracommuter chassis 

A brief timeline of the chassis design, construction and testing is presented below. 

Chassis design began    -December 2006 

Received Hybrid auto Suspension CAD  -1 February 2007 

Drawings sent to waterjet cutters   -29 March 2007 

Cut honeycomb collected    -19 April 2007 

Chassis fully assembled    -12 June 2007 

First test drive     -30 September 2007 

Unveiling      -12 September 2007 

Shipped to Australia    -21 September 2007 

WSC       -21-28 October 2007 
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Chapter 6   Titanium aluminide properties for 

automotive applications 

In relation to the automotive industry the most important properties of titanium 

alloys are their high strength to density ratio and corrosion resistance (Froes, 

Friedrich, Kiese, & Bergoint, 2004). The major challenge facing increased 

titanium use is the high raw material and processing costs. Applications for TiAl 

have been found with some large automobile manufacturers proving their 

reliability and technical viability however the factor preventing their use in 

mainstream automobiles is cost. 

Producing near net shape (NNS) parts for TiAl components are preferred to 

material removal or shaping processes due to the high costs of titanium and 

processing difficulties. NNS produces less waste material because the component 

shape is close to the finished shape, only requiring minimal machining to get the 

component to fit within the required tolerances.  TiAl components are difficult to 

process because of their very low ductility (~1%) and low fracture strength 

causing components to become damaged. TiAl is also difficult to machine, 

causing tools to wear fast due to increased cutting forces and higher interface 

temperatures. This can be minimised by high speed machining (up to 

100,000rev/min) or slow machining. Grinding appears to be the best suited 

machining process with low tool wear rates (Mantle & Aspinwall, 2001). 

Hot isostatic pressing (HIP) is a commonly used process to increase powder 

compact density and reduce porosity. HIP involves taking the compact (or 

component with a plasma coating) and applying pressure at high temperatures. 

The pressure is applied uniformly and equally to all surfaces. The compacts are 

usually placed inside a capsule with powder packed around it. Heat and pressure 

are then applied to the outside of the capsule which plastically deforms, 

transferring the heat and pressure to the surface of the component through the 

powder. HIP temperatures are generally ~1000 
o
C although this temperature 

varies depending on the desired microstructure. Successful forging of a HIP 
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compacted powder at 850 
o
C (lower than usual for TiAl) was performed by 

(Gerling, Schimansky, & Clemens, 2003) while retaining a very fine 

microstructure.  

6.1  Manufacturing processes 

The following processes are all NNS processes. 

Powder Metallurgy (PM) involves taking powdered titanium and aluminium and 

placing it into a mould of the desired shape. The powder is then uniaxially pressed 

into shape inside the mould. This compacted powder is called a „green‟ compact. 

It is called „green‟ because it can only just hold itself together but has no 

mechanical strength. The green compact of TiAl is then reactive sintered. 

Reactive sintering involves heating the compact to a temperature above the 

melting point for titanium but below the melting point of aluminium. This creates 

molten aluminium, which flows between the titanium creating a nearly 100% 

dense product. Isostatic pressure can also be applied during this process, allowing 

the density to increase further. Disadvantages of PM are the component density 

will not be linear throughout the component and complex parts are unable to be 

produced. The outside faces of the component will be more dense due to the 

pressure acting on them but the middle of the component will not be as dense. PM 

parts cannot be complex shapes as there is a need to apply force to compact the 

powder and create the green compact while still allowing the compact to be taken 

out of the mould. Advantages of PM include very small amounts of machining, 

minimal scrap material, low cost and are suitable for mid-high production runs. 

PM was used to produce titanium valves for the Toyota Altezza (Froes, Friedrich, 

Kiese, & Bergoint, 2004).  

Powder/metal injection moulding is similar to plastic injection moulding. The 

metal powder is mixed with a binder which is then injected into the die. This 

„green‟ compact is then removed from the die and heated to remove the binder. 

The compact is then sintered to consolidate the powder.  Metal injection moulding 

is able to produce components having properties similar to wrought materials with 

excellent dimensional accuracy. Metal injection moulding allows complex shaped 
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high volume components to be produced although components are generally 

below 250grams. (Gerling & Schimansky, 2002), produced a component using 

metal injection moulding that had a porosity of 3.8% after sintering with porosity 

reducing to 0.4% after a HIP treatment. A yield strength of 410MPa was achieved 

with 0.6% elongation. 

Laser forming/sintering of TiAl components allows components to be produced 

directly from powder, resulting in time and cost savings. Laser forming involves 

utilising a laser to melt and consolidate powder to produce a prototype component. 

The component can be formed directly from a computer model. Microstructures 

of laser formed components are generally of fine, fully lamellar nature with tensile 

properties similar to extrusions and PM components. Laser forming is a useful 

Rapid Prototyping (RP) technique as it allows fast prototype manufacturing while 

having the same properties as the final product (Moll & McTiernan, 2000). 

Coatings may be required to protect TiAl components from wear due to its low 

wear resistance. Nitriding and carburizing have been successfully used. Plasma 

nitriding of TiAl improved the wear resistance by up to a factor of ten and 

lowered the coefficient of friction by a third while reducing coefficient of friction 

fluctuation (Rastkar & Bell, 2002). (Tetsui, 1999) found carburizing or nitriding 

was sufficient to prevent wear of TiAl valves. Coatings of TiAlN are applied to 

machining tools in demanding situations due to its excellent wear resistance and 

hardness (Boonruanga, Thongtema, McNallanb, & Thongtem, 2004; Schwartz, 

2002). The thickness of the coating has a large affect on wear life. TiN (titanium 

nitrate) coating on high speed steel was found to have an optimum coating 

thickness of 2-3μm for planning and 6μm for turning tools (Posti & Nieminen, 

1989).  

Plasma spraying involves introducing powder metal into a plasma jet, whereby the 

powder is propelled towards a substrate at extremely high temperatures and 

velocities. The powder (melted) splats onto the substrate and solidifies very 

quickly. The rapid solidification creates a very fine lamellar microstructure 

(~90nm). Slow traversing of the substrate by the plasma spray creates larger 
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grains due to the impacted material temperature not decreasing as fast due to hot 

splats landing near.  (Khor, Murakoshi, Takahashi, & Sano, 1995) found 

increasing secondary gas pressure can result in lower porosity and reduction in 

unmelted particles. The increased pressure means molten droplets travel faster 

onto the substrate, spreading further than at the lower velocities. The samples they 

created were subjected to a HIP process after plasma spraying. The HIP process 

increased the hardness while decreasing the porosity. TiAlN can be produced by 

plasma spraying, simply by using nitrogen as the plasma gas. The nitrogen plasma 

gas reacts with the TiAl as it goes through the plasma jet. 

LPPS (low pressure plasma spraying) is an alternative to conventional plasma 

spraying. Plasma spraying in atmospheric pressures cannot produce dense layers 

and is not suitable for formation of TiAl which consists of oxidizable elements. 

LPPS prevents oxidation of sprayed particles while having the flexibility to allow 

composite layers to be produced with a reactive gas (RLPPS) such as nitrogen. 

Fine γ grains are produced from this process. (K. Honda, Hirose, & Kobayashi, 

1997) found TiAl plate had a hardness range of 241-175Hv across the temperature 

range of room temperature to 900 
o
C. Sprayed TiAl had Hv of 589 with 400Hv at 

800 
o
C, dropping to 275Hv at 900 

o
C. This increased hardness over the plate is 

attributed to the fine grain size the LPPS sample has. The samples tensile strength 

of 400MPa is slightly higher than TiAl plate. Elongation of the plate and the 

LPPS sample was 1%. LPPS samples annealed for over 24hours had unchanged 

hardness values up to 700 
o
C, with the hardness decreasing to 350Hv at 900 

o
C. 

The annealed samples had a comparable tensile stress of 405MPa. (K. Honda, 

Hirose, & Kobayashi, 1997) 

Electron beam and GTAW (Gas Tungsten Arc Welding) welding has been proven 

successful for joining and fixing Ti-48Al-2Cr-2Nb castings. Welding was 

performed in an inert atmosphere at elevated temperatures. The weld tensile 

properties are improved on the base material at room temperature. The fracture 

strengths and creep are similar to the base material. (Bartolotta, Barret, Kelly, & 

Smashey, 1997) 
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6.2  Areas for TiAl application 

Due to TiAl properties, the areas within an automobile which would benefit from 

its use are areas which would benefit from weight reduction and increased 

strength at high temperatures. Such areas include the suspension system and „in-

wheel‟ electric motors to reduce unsprung and rotating mass and inside internal 

combustion engines and driveline to reduce rotating and reciprocating masses. 

Reducing unsprung mass in a vehicle improves the handling because the 

suspension is able to change direction faster due to lower masses and therefore 

lower suspension momentum. The lower unsprung mass allows the wheel to stay 

in contact with the ground therefore providing more grip. Components attached to 

the suspension such as brakes and wheels are considered part of the suspension 

system and therefore they would also benefit the unsprung mass by reduced mass.  

Reducing the mass of rotating and reciprocating components can result in reduced 

fuel/energy consumption and improved performance. Rotating or reciprocating 

masses are considered as anything which reciprocates or rotates from the engine 

to the wheels including brake rotors and drive shaft. Reduced fuel/energy 

consumption can be realized if rotating masses are lightened, as less energy is 

required to increase or decrease the components speed. 

6.3  Specific Applications 

Brakes 

Braking components that may be suited to be constructed from TiAl are brake 

rotors. 

Brake rotors made from TiAl would produce multiple benefits. A TiAl rotor 

would have approximately half the weight of current cast iron rotors which would 

decrease unsprung and rotating masses.  TiAl is suited to this application because 

it has the excellent high temperature strength that is required. However a TiAl 

brake rotor would require a protective coating due to TiAl‟s weak Tribological 

properties. Nitriding of the surface would create a suitable hard wearing surface. 
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The brake rotor could be manufactured using PM with HIP processing to increase 

density and lower porosity. The „green‟ compact die would be complicated but 

would be manageable. If large metal injection moulding products (up to 4kg) were 

able to be produced, this process would be recommended.  

Titanium rotors are currently produced by Red Devil Brakes. They use Ti-6Al-4V 

titanium alloy that is investment cast. A ceramic composite coating is applied over 

the titanium alloy to produce a wear resistant surface and to absorb the heat 

energy as titanium alloys have low thermal conductivity, allowing the rotor inner 

material to run cooler. The Ceramic composite coating does not gas. A gaseous 

layer that forms on cast-iron brake discs at high temperatures can reduce the co-

efficient of friction between the brake pads and rotor causing brake fade. They 

also claim the titanium coated brake discs provide increased stopping power, 

reducing braking distances of a C5 Corvette from 125ft to 85-90ft from 60mph 

(Ultra Lite Brakes and Components, 2008). 

Tests conducted on several titanium alloys and composites found friction 

coefficients were within the typical range for brake materials (0.35–0.55) and 

some showed excellent resistance to fade, a phenomenon in which braking 

effectiveness decreases as temperature rises. The thermally spray-coated Ti disc 

exhibited the least wear and merits further attention as a lightweight, corrosion-

resistant brake rotor material. The thermally coated brake disc referred to is one 

produced by Red Devil Brakes (Blau, Jolly, Qu, Peter, & Blue, 2007). 

Brake calliper pistons and brake pad backing plates would benefit greatly with the 

use of a titanium alloy due to their reduced thermal conductivity. This would keep 

heat away from the brake fluid, preventing it from boiling under harsh braking 

conditions. 

Brake callipers are more suited to being made from aluminium due to its lower 

mass and excellent thermal conductivity. 
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Electric motors 

TiAl may have applications within „in-wheel‟ electric motors due to their 

increased specific strength and stiffness over aluminum. The magnet mountings 

(backing plates) in AC „in-wheel‟ motors could be manufactured from PM TiAl, 

increasing stiffness while decreasing the weight by nearly half. Decreasing mass 

within an „in-wheel‟ motor reduces unsprung mass and improves the motors 

performance by reducing rotating mass, making the motor more responsive to 

accelerations and decelerations.  The increased stiffness would also allow tighter 

tolerances between rotating motor components allowing a more compact and 

efficient motor to be produced. 

Internal Combustion engines 

Applications within an internal combustion engine are suited to TiAl components 

because of TiAl‟s reduced density, high temperature strengths and oxidation 

resistance. Examples of components that could be produced are valves, high 

temperature pistons and turbocharger rotors. 

Many TiAl valves have been produced (see Current Automotive applications) 

although only Toyota has mass produced valves for the Altezza. The Toyota 

Altezza valves were produced using PM (T. Yamaguchi et al., 2000). The PM 

process is more suited to valve production due to the microstructure produced and 

the very small waste material produced. Upset forging is not as well suited 

because of the changing microstructures that develop where the material cross-

sectional area decreases. TiAl is suited for use as valves because of its low density 

and high temperature strength. Lighter valves are beneficial because they create 

reduced inertia and friction loss resulting in fuel economy improvements and 

noise reduction. (T. Yamaguchi et al., 2000) also found there were no significant 

differences between the different TiAl alloys tested. Coatings would need to be 

applied to the valve to prevent wear. 

Turbocharger rotors made from TiAl are currently being manufactured by 

Mitsubishi Motors for its Lancer Evolution vehicles. The turbocharger rotors are 

manufactured using the LEVICAST process. Metal injection moulding would be 
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suitable for this process as it can accommodate smaller wall thicknesses than 

casting. The surface finish would be better than from a casting while the parts 

conform to very tight tolerances requiring less finishing. An example of the 

intricate metal injection mouldings which can be achieved can be seen in 

Figure  6.1. The part is a hinge mechanism for a Motorola cellphone. The hinge is 

constructed from 17-4 PH Stainless Steel. 

 

Figure 6.1 A complex metal injection moulding part for the hinge of a 

cellphone (PickPM, 2008). 

Coatings 

Coatings of TiAlN could be applied to products requiring a durable hard wearing 

surface. The coating could be applied using conventional plasma spraying or low 

pressure plasma spraying.  
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Chapter 7   Conclusions and Recommendations 

7.1  Conclusions 

After the initial failure of the chassis during testing, the Ultracommuter chassis 

proved to be fit for its purpose by successfully driving 1800km during the WSC. 

The chassis weighed 62 kg while the car had a final weight distribution of 45:55, 

acceptable for a rear wheel drive vehicle. The chassis came in on budget. 

Preplanning of events and the resources required was challenging but it reduced 

lost time due to material shortages and allowed accurate allocation of time for 

labour. 

TiAl would be an excellent structural material due to its high specific strength and 

stiffness but the very limited ductility hinders conventional manufacturing 

processes. TiAl would be highly suitable for valves, brake rotors and turbocharger 

rotors if suitable powder processes are not too costly.  

Widespread use of titanium is not anticipated unless a new extraction process such 

as the Anderson process can create large amounts of titanium at significantly 

lower costs. 

7.2  Recommendations 

The long term performance of the chassis, particularly with regards to the 

adhesive fatigue and the effect of vibrations will need to be assessed. Lifting 

points to lift the chassis are required as it is very difficult to lift it currently. 

If the Ultracommuter chassis were to be redesigned, it would be beneficial to tie 

the dash into the centre console by extending the dash down. Aluminium 

extrusion channel could be used on the edges of the honeycomb (obtained from 

Nalco, part No. U8029). This edging would be tidier and would be more 

structurally sound as there would not be any chance of the facings delaminating. 
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A thinner equal angle extrusion for honeycomb joints could also be used to 

decrease weight. 

Production of automotive TiAl components would be highly beneficial to the 

automotive and titanium industries. The use of TiAl allows greater efficiencies 

and reduced fuel consumption. 

Further research into TiAl applications within „in-wheel‟ electric motors would be 

beneficial as they would bring many benefits due to their high specific stiffness 

and strength. 
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Appendix 1 

The „in-wheel‟ motors used in the BEV provide many advantages in terms of 

space savings. A typical internal combustion engine (Toyota 2AZ-FE, 2.4L) with 

performance figures of 117kW and 218Nm (N. Z. Toyota, 2007) takes up 259 

Litres of space (J. Yamaguchi, 2000) excluding all ancillaries and transmission 

but including a 45L petrol tank which if installed in the BEV, would take up 7% 

of all available volume under the body shell. For the BEV, 95 L was required for 

batteries, which can be mounted in many places within the bodyshell and 15L for 

the motor controllers takes up only 2.6% of total volume. 


