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Abstract 
Modern graphics cards, commonly used in desktop computers, have evolved beyond a 

simple interface between processor and display to incorporate sophisticated calculation 

engines that can be applied to general purpose computing. The Monte Carlo algorithm for 

modelling photon transport in turbid media has been implemented on an NVIDIA® 

8800GT graphics card using the CUDA toolkit. The Monte Carlo method relies on 

following the trajectory of millions of photons through the sample, often taking hours or 

days to complete. The graphics-processor implementation, processing roughly 110 million 

scattering events per second, was found to run more than 70 times faster than a similar, 

single-threaded implementation on a 2.67 GHz desktop computer.   
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Nature of problem 
The Monte Carlo technique is an effective algorithm for exploring the propagation of light 

in turbid media. However, accurate results require tracing the path of many photons 

within the media. The independence of photons naturally lends the Monte Carlo technique 

to implementation on parallel architectures. Generally, parallel computing can be 

expensive, but recent advances in consumer grade graphics cards have opened the 

possibility of high-performance desktop parallel-computing.  

Solution method 
In this pair of programmes we have implemented the Monte Carlo algorithm described by 

Prahl et al. [2] for photon transport in infinite scattering media to compare the 

performance of two readily accessible architectures: a standard desktop PC and a 

consumer grade graphics card from NVIDIA.  



 Accelerating Monte Carlo Simulations with an NVIDIA® Graphics Processor 

  3 

Restrictions 
The graphics card implementation uses single precision floating point numbers for all 

calculations. Only photon transport from an isotropic point-source is supported. The 

graphics-card version has no user interface. The simulation parameters must be set in the 

source code. The desktop version has a simple user interface; however some properties 

can only be accessed through an ActiveX client (such as Matlab).  

Running time 
Runtime can range from minutes to months depending on the number of photons 

simulated and the optical properties of the medium.  

References 
1. http://www.nvidia.com/object/cuda_home.html 

2.  S. Prahl, M. Keijzer, Sl Jacques, A. Welch, SPIE Institute Series 5 (1989) 102 

Introduction 
Monte Carlo simulation is commonly used for modelling photon transport in turbid 

media [1–, 2, 3, 4]. The gold standard for photon modelling, the Monte Carlo technique is 

often used for assessing the performance of models and analytic solutions to the radiation 

transport equation [5–, 6, 7], the accuracy of experimental results [8], estimating power 

density in laser treatment and in solving the inverse problem to estimate optical properties 

from experimental measurements [9–, 10, 11]. Its strength lies in simplicity. Individual 

photons are tracked as they propagate: scattered, absorbed, reflected and refracted by the 

medium using simple physical laws that permit ready modelling of sophisticated 

geometries. Its Achilles heel lies here too. Typically, millions of photons must be traced at 

each wavelength to obtain precise results requiring hours or days of computation time. 

The Monte Carlo algorithm is well suited for parallel calculation, tracing photons 

simultaneously, and many implementations have been studied [12–, 13, 14, 15, 16, 17, 18]. 

Two approaches are commonly employed: parallel computing and distributed computing. 
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In a parallel computing environment, the processing hardware contains tens to thousands 

of processing units that often share resources such as memory. In a distributed computing 

environment, the program runs simultaneously on multiple computers communicating 

over a shared network. The latter often employs unused desktop machines that sit idle 

overnight. Until recently, parallel computing hardware has been characteristic of 

supercomputers and has been less readily accessible than networks of desktop machines, 

primarily due to capital cost. However, increasing demand for high-quality graphics from 

the entertainment industry has imbued desktop graphics co-processors with raw 

computation performance rivalling low-end supercomputers. For example, NVIDIA’s® 

(California, USA) latest graphics processor (June, 2008) the GTX280 claims a performance 

of nearly 109 floating-point operations per second. While graphics processors are still 

several orders of magnitude below the top-500 supercomputers [19], their price (typically 

less than $US1000) offers very attractive performance per dollar. Graphics processors have 

been applied to speed up many algorithms from N-body simulations and microscope 

image registration to visualisation of white matter connectivity and solution of the time-

independent Schrödinger equation with performance increases of up to 100 fold [20–, 21, 

22 23, 24].  

To benchmark the performance that might be realised for Monte Carlo simulation on 

graphics processor engines, we have implemented the Monte Carlo algorithm for photon 

transport from an isotropic point-source in an infinite, homogenous, turbid medium using 

i) a desktop processor and ii) an NVIDIA 8800GT graphics processor. Relative performance 

of the two implementations is compared. Though the application presented involves 

tracing rays in a scattering environment, we expect this approach could also be applied to 

ray tracing for geometric optics. 

Method 
Our implementation of the Monte Carlo algorithm is based on the work by Prahl et al. 

[25, 26]. Briefly, the algorithm keeps track of a photons position, heading and probability 

of surviving sequential scattering and absorption events, updating these as the photon 

propagates through the medium (Figure 1). The photon is launched, from the origin, with 

a survival probability of 1 that decreases at each scatter/absorption event until reaching a 
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predetermined threshold (0.001 here), whereupon tracking typically finishes and a new 

photon is launched†. Just before the photon is killed off, a ‘roulette’ step gives it a chance at 

a boost of “life”. During roulette, which ensures energy conservation, there is a small 

chance (0.1 here) that that survival-probability is increased by a factor of 10 and tracing 

continues until the probability drops below the threshold again. Whenever the photon’s 

position coincides with a linear array detector aligned with the z-axis, the power deposited 

(through absorption) into the medium is recorded in a running tally, ET (Watts), at the 

appropriate position in the detector array. The power deposited during the ith interaction is 

given by: 

 
as

a

isi pEE
µµ

µ

+
⋅⋅= . 

Here, pi is the probability of the photon surviving i interactions, µs is the scattering 

coefficient (1/m), µa is the absorption coefficient (1/m) and Es is the source intensity 

(Watts). After tracing all photons, the fluence rate, φ (W/m2), for an element of the detector 

array can be calculated: 

 
vN

E

a

T

⋅⋅
=

µ
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where N is the number of photons simulated (258,048 here) and v is the volume of the 

detector element (8 mm3, here). Next we outline the implementation of this algorithm 

before covering the details that distinguish the graphics processor implementation in more 

detail.  

                                                      

†
  This is a variance reduction technique that can also be described in terms of packets of photons 

(see Prahl et al. [25], for example), a fraction (the “weight”) of which are absorbed as the light 
propagates. Numerically equal to weight, casting light propagation in terms of survival 
probability avoids the difficult concept of fractional photons. 
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Figure 1. This schematic diagram illustrates the simulation geometry. The energy absorbed is 

tallied for absorption events occurring within the detector array (�’s). 

Implementation Outline 

We implemented and tested the Monte Carlo algorithm first in Matlab™ (The Mathworks, 

Massachusetts, USA) then translated it into two versions: one for the computer’s core-

processor and one for an NVIDIA 8800GT graphics processor installed on a PCI-Express 

× 16 bus. We have made the source code for both applications available in the Computer 

Physics Communications Programme Library [27]. 

The core-processor version was implemented in C++ using Visual Studio 2005 

(Microsoft Corporation). The photon-tracing engine was implemented in a single thread 

separate to the user interface thread, and C++ language features with a significant 

overhead (such as virtual function calls) were avoided. The complier optimization options 

were set to favour speed and streaming SIMD extensions 2 were enabled. The simulation 

is initialised with the medium’s optical properties and traces a single photon at a time 

until the requisite number of photons has been simulated. The detector array contains 100 

detectors aligned along the z-axis, each a cube with 2 mm long sides with the centre of the 

first detector 3 mm from the origin.  

The graphics processor version was implemented in C using the CUDA toolkit, version 

1.1 (NVIDIA, California, USA). CUDA includes tools for building applications or libraries 

that execute on NVIDIA’s graphics cards. CUDA provides support for common 

mathematical operations including hyperbolic, trigonometric and logarithmic functions; 

more complex operations such as matrix manipulation and Fourier transforms have also 

been implemented. After being initialised, batches of 21,504 photons are traced until the 

requisite number of photons has been simulated. Each batch is arranged in a grid of 84 × 
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256-thread blocks. Sets of thread-blocks are assigned to multiprocessors for execution by 

the graphics card; the division of batches into blocks of threads facilitates this. 

Conceptually, the graphics processor traces 21,504 photons simultaneously. In practice, the 

graphics processor assigns blocks for execution as each multiprocessor becomes available. 

Scheduling more blocks than the graphics card can process simultaneously helps keep the 

graphics card busy and dilutes the overhead of interactions with the core-processor and 

operating system.  

The detector array is in the same position in the graphics- and core-implementations 

(Figure 1). However, the graphics version uses only the first 60 elements—this is not a 

limitation of the graphics-card hardware, rather we found few photons were detected 

beyond this range. In our implementation, a separate detector-array tally (that is 21,504 

tallies) is maintained for each photon traced simultaneously. This uses about 5 MB (about 

80 KB per detector element) of the 512 MB available on the graphics card. So a 100 or even 

200 element linear-detector would be quite practical with the current approach, though a 

2-D or 3-D array detector would require a more sophisticated method to tally the 

deposited energy.  

Both versions of the photon engine ran on a 2.67 GHz Intel Core-2 Duo E6750 machine 

with 2 GB of RAM running the Windows XP operating system. The core-processor version 

was executed on the main system processor. The graphics-processor version was executed 

on the system graphics card, which also served as the system display card, through the 

standard NVIDIA display adapter driver, version 6.14.11.6921. The 8800GT graphics card is 

clocked at 1.5 GHz, has 512 MB of onboard high-speed memory and 14 single-instruction, 

multiple-data (SIMD) multiprocessors. Each multiprocessor contains eight streaming 

processors each of which contains four processing units for a total of 32 SIMD data streams 

per multiprocessor [28]. Double precision (64-bit) floating-point arithmetic was used for 

most of the simulations on the core-processor implementation while single-precision (32-

bit) arithmetic was used for the graphics processor implementation. Newer graphics 

processors (such as the NVIDIA GTX 200 series) support double precision arithmetic in 

hardware but were not available when this work was done. Double precision arithmetic 

can be implemented in software on the graphics processor at a significant cost in 

performance (anecdotally, an order of magnitude though this has not been tested). We also 

tested the performance of the core-processor implementation using single-precision 
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arithmetic. The two implementations of the photon-tracing engine are very similar, 

however, there are differences in four areas: energy recording, precision, random number 

generation and roulette. These are addressed in detail in the next section.  

Graphics Processor Implementation Detail 

In the core-processor implementation, a single detector array is sufficient to tally the 

absorbed energy as photons are traced. In the parallel implementation, this approach 

could lead to race-conditions: errors in the tally could occur if several absorption events 

for different photons occurred simultaneously within the same detector. To avoid this, a 

separate detector array buffer is maintained in global memory on the graphics card for 

each photon traced within a batch. With 21,504 photons traced in each batch and 60 

detectors this requires about 5 MB of memory, about 80 KB per detector element. A more 

sophisticated approach could reduce memory requirements below 1 MB, however with 

plenty of memory available (512 MB on the 8800GT card) the simpler approach was 

preferred. The tally accumulates with each batch. After all photons have been traced the 

separate tallies are totalled to produce the final result in two steps. First, blocks of 256 

tallies are totalled with the sum from each row stored in a leading diagonal fashion in the 

buffer. Finally, the total for each block is computed from the leading diagonals and stored 

in the detector output array. This approach was selected for two reasons. Firstly, storing 

the partial tallies in leading diagonals allows the graphics processor to coalesce memory 

access improving performance [28]. Secondly, using partial sums helps offset the single-

point precision of the graphics-processor.  

Random number generators for both our graphics- and core-processor implementations 

are based on the well-known Mersenne Twister 19937 algorithm, first published by 

Matsumoto and Nishimura in 1998 [29]. The core-processor implementation uses the 

Karney Mersenne Twister library [30], an interface to the SIMD fast Mersenne Twister 

library [31]. This algorithm takes advantage of parallel features of modern CPUs such as 

multistage pipelining and SIMD instructions. The graphics processor implementation uses 

an adaptation of the Mills multithreaded implementation of the Mersenne Twister 

algorithm [32]. Mills implementation generates a 64-bit random number simultaneously 

for up to 623 threads. We use the lower half of this to generate 32-bit random numbers.  
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The core-processor pseudo random number generator is seeded by a single integer and 

maintains a 624 × 32-bit state from which pseudo random numbers are computed 

sequentially. In the graphics-processor implementation a separate stream of random 

numbers is required for each photon traced in a batch. Ideally, a 21,504 dimension custom 

random number generator would be created to provide these streams following, for 

example, Matsumoto and Nishimura [33]. However, this is time consuming. So, for this 

performance comparison, Matsumoto and Nishimura’s 623-dimension generator is used 

and a separate state maintained for each thread-block. For 100 blocks per grid, this 

requires about 250 KB of global memory. The generator is keyed to a thread identifier, 

which provides highly independent random number streams within each thread block. A 

separate random number generator, seeded by a single integer, is used to generate seeds 

to initialise these states.  

The standard Monte Carlo roulette scheme to conserve energy undermines parallel 

execution of the algorithm by providing a 10%, for example, chance of each photon 

surviving the first roulette test [25]. Parallel processing on a single-instruction, multiple-

data would leave 90% of the processors idle in this arrangement. To avoid this in the 

graphics-processor implementation, we apply roulette at the thread-block level. That is, 

instead of each photon having a 0.1 chance of passing roulette, each block of 256 photons 

has a 0.1 chance of passing roulette. If the block passes, tracing of all photons in the block 

continues until the next roulette test. As the same proportion of photons pass roulette in 

both the core- and graphics-processor implementations, this does not affect the simulation 

result provided a large number of blocks are executed; energy remains conserved.  

As mentioned above, execution of the photon-tracing code is broken into a grid 

consisting of blocks of threads. The configuration is typically selected to suit the algorithm 

and maximise performance within the hardware constraints. The Monte Carlo algorithm 

provides one constraint: the random number generation algorithm relies on between 227 

and 312 threads per block (though this could be eliminated by selecting a different 

generator). Hardware provides the second constraint. The photon-tracing engine requires 

28 registers. This limits the maximum number of threads to 256 per block [28]. Finally, 

each grid execution must complete within five seconds, otherwise the operating system 

will terminate the call. This limitation is to help prevent errant drivers from locking up the 

system (with an infinite loop, for example), but does not apply if a display is not attached 
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to the graphics card. With 256 threads per block, this limitation sets an upper limit of 

about 84 blocks per grid so that tracing can complete within five seconds for the range of 

optical properties of interest. A multiple of 14 was selected for the block-size to allow even 

distribution of blocks over the 14 multiprocessors in the 8800GT card. 

Monte Carlo simulations have been run on both implementations for a range of optical 

properties by varying the absorption (0.005 to 0.07 cm-1 in five equally spaced steps) and 

reduced scattering coefficients (3.8 to 9.8 cm-1 in five equally spaced steps). Anisotropy 

was held constant at 0.578. The values selected are typical of 1% Intralipid, an optical 

phantom, and biological tissue at near-infrared wavelengths [34]. Performance was 

measured by the number of photons traced per second and the number of scattering 

events per second in each case. Performance was also measured as a function of blocks per 

grid for the graphics processor at a single absorption of 0.064 cm-1 and reduced scattering 

of 9.25 cm-1 to judge the impact on runtime configuration.  

Results and Discussion 
We have not heavily optimised either implementation favouring instead a straightforward 

implementation of the Monte Carlo algorithm for comparison of the relative performance 

of core- and graphics-processor platforms. Consequently higher performance is likely to 

be possible from both algorithms with careful optimization, such as careful code tuning 

and employing the techniques of Zolek et al. [35].  

The tracing speed was estimated for different grid sizes to determine the optimal 

number of blocks to include within each execution batch (Figure 2). We found the total 

simulation time consistently exceeded five seconds, the limit imposed by the operating 

system, when absorption was low (0.006 cm-1) and more than 100 blocks were included 

making this a practical upper limit. A saw-tooth relationship was observed. The 

magnitude of the saw-tooth drops from about 10% to less than 3% as the number of 

thread-blocks in each grid increases. Saw-tooth peaks generally coincided with integral 

multiples of 14. As the graphics processor contains 14 multiprocessors and each block may 

only execute on one multiprocessor, performance degradation is probably caused by idle 

multiprocessors. Based on these results, 84 blocks were selected for each batch to maximise 

performance and reduce the risk of incomplete simulations.  
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Figure 2. Graphics-processor simulation performance is plotted as a function of the number of 

blocks within each grid. Note: the 8800GT card used for these simulations has 14 

multiprocessors. Data points are connected for clarity; fractional blocks are not 

possible. 

Figure 3 shows the fluence rate calculated from a simulation of 258,048 photons using 

the core- and graphics-processors implementations for low (0.0064 cm-1) and high 

(0.064 cm-1) absorption coefficient. The mean of fifty replicate simulations, along with a 

95% confidence interval, is plotted for the graphics-processor. A single-replicate is plotted 

for the core-processor, as the simulation speed is much slower. The reduced scattering 

coefficient (9.259 cm-1) and anisotropy (0.578) were the same in each case. The result from 

the core-processor falls largely within the 95% confidence interval estimated on the 

graphics-processor indicating both simulations are producing the same result within the 

experimental error. 

As expected, fluence initially drops very quickly as the light is scattered close to the 

source, then follows an exponential decay in the far-field as absorption dominates. At 

higher absorption, the light is more quickly attenuated; by 5 cm, there is a drop of nearly 

two orders of magnitude in the fluence rate. Scattering increases the path travelled by the 

photons, increasing the loss to absorption more quickly than the physical distance would 

suggest.  

Precise Monte Carlo simulations require observation of a large number of photons. At 

the higher absorption, most of the photons are absorbed nearer the source, so few reach 
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beyond 8 cm. This is apparent in Figure 3: particularly at the higher absorption (lower 

trace). As the fluence rate decreases, the size of the 95% confidence-interval for the fluence-

rate increases with increasing distance from the source indicating greater uncertainty or, 

equivalently, more noise. Replication on the graphics-processor has allowed us to estimate 

these uncertainties in the simulation data reasonably quickly. However the mean also 

represents the fluence-rate estimated by tracing nearly 13 million photons. The higher 

speed of the graphics processor enables such large simulations and, because noise is 

related to the number of photons detected, can provide more accurate results in a shorter 

time. 

The simulation time on the core-processor was 72 minutes (low absorption) and 

7.2 minutes (high absorption). On the graphics-processor the simulation took 60.8 ± 0.5 s 

(low absorption) and 6.09 ± 0.05 s (high absorption); each execution batch contained 84 

blocks with 256 threads in each block and was repeated 12 times for a total of 258,048 

photons. A 0.8% standard error in the simulation time on the graphic-processor was 

observed, which we attribute to the statistical nature of the simulation. The timing error 

was not estimated for the core-processor implementation because each simulation was 

very time consuming.  
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Figure 3. The fluence rate calculated by the core- and graphics-processor implementations is 

compared for high and low absorption. A mean and 95% confidence interval (grey fill) 

of 50 repeats is shown for the graphics-processor implementation; a single simulation 

result is shown for the core-processor implementation.  

The simulations were repeated at a range of optical properties on both the graphics and 

core-processors. The core-processor simulations were repeated with single (32-bit) and 

double-precision (64 bit) arithmetic. The performance, in photons traced per second, is 

plotted in Figure 4 for the graphics and double-precision core-processor simulations. The 

difference in performance between single and double-precision arithmetic was less than 

3%, though we have not investigated if this difference is statistically significant. We found 

a predominantly linear relationship between the ratio of absorption and scattering, and the 

tracing speed. The Monte Carlo algorithm implemented on the NVIDIA 8800GT graphics 

processor was consistently more than 70 times faster than the same algorithm 

implemented, as a single thread, on a 2.67 GHz Intel Duo processor. 
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Figure 4. The simulation speed on a graphics- (left scale) and core-processor (right scale) for a 

range of optical properties, typical of 1% Intralipid between 700 and 1000 nm, is 

plotted. 

The driving factor behind the simulation time is the albedo: the photon’s probability of 

surviving a chain of scattering-absorption events is multiplied by the albedo for each event 

until the probability drops below the roulette threshold. To a first approximation 

(neglecting roulette), the number of scattering events per photon is given by: 

 
( )
( )αlog

log 1T
N =  

Here, T1, the threshold for invoking roulette is 0.001 and α is the medium albedo, 

µs/(µa + µs). For a roulette probability of 0.1, this underestimates the number of scattering 

events by just over 10%. However, it allows a rough estimate of the rate at which 

scattering events are processed by the two implementations: about 1.5 million and 110 

million scattering events per second on the core- and graphics-processor implementations, 

respectively. In passing, we note that even the core-processor version was about 80 times 

faster than our original implementation in Matlab. It is likely the performance of the 

Matlab version could be increased using the Matlab compiler, however this toolbox was 

not available to us.  

Since these measurements were made, NVIDIA have released two models in the next 

generation of graphics processors: the GTX280 and the GTX260. The top end GTX280 has 



 Accelerating Monte Carlo Simulations with an NVIDIA® Graphics Processor 

  15 

30 multiprocessors: more than double that of the 8800GT. We expect the performance of 

the graphics processor implementation presented here would double if twice as many 

multiprocessors were available for the simulation. Additional optimization of the 

algorithm, such as trading precision for speed in trigonometric functions [35], or 

implementation to better suit the parallel execution environment may also boost 

performance. Early investigations into moving the pseudo random number generator state 

from global to faster shared memory suggest this would double tracing speed. We hope to 

investigate this further in the future. It appears an additional order of magnitude increase 

in speed is not unrealistic with current hardware nor is this an immovable limit: 

significant advances in graphics processor performance occur at least annually.  

This work has focused on the relatively trivial example of an isotropic source in an 

infinite, homogeneous medium to test the suitability of graphics cards to this problem. For 

practical problems, the algorithm must be extended to support anisotropic sources, such as 

optical fibres, the complex geometries of human, animal or plant tissues and 

heterogeneous media. The first is trivial: the program could be easily extended to 

arbitrarily complex light sources. Moving to complex geometries and materials will be 

more difficult, however, because the single-instruction, multiple-data architecture of the 

graphics processor makes a large contribution to performance. In the context of our Monte 

Carlo simulation, this means that the same step in the algorithm is applied to every photon 

simultaneously. In other words, the photons are distinguished only by their data, not by 

their stage in the algorithm. The challenge in implementing more complex geometries will 

be maintaining the parallel structure of the algorithm. Though not trivial, this is not 

unrealistic. Graphics cards were created to implement complex, interactive 3-D worlds for 

computer games so appear well suited to the task and is the subject of continuing research. 

Conclusion 
The Monte Carlo algorithm for simulating photon transport in turbid media has been 

implemented on a standard desktop computer and modern graphics processor to assess 

relative performance. The parallel graphics processor implementation was found to trace 

photons more than 70 times faster than the single-threaded desktop computer 

implementation, processing roughly 110 million scattering events per second. We believe 
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this result suggests graphics cards offer a significant performance and cost advantage over 

distributed computing clusters for modelling light transport in scattering media or 

complex optical systems.  
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