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Abstract

A relatively new technique for measuring the 3D struc-

ture of visual scenes is provided by time of flight (TOF) cam-

eras. Reflections of modulated light waves are recorded by

a parallel pixel array structure. The time series at each

pixel of the resulting image stream is used to estimate trav-

elling time and thus range information. This measuring

technique results in pixel dependent noise levels with vari-

ances changing over several orders of magnitude dependent

on the illumination and material parameters.

This makes application of traditional (global) denoising

techniques suboptimal. Using free aditional information

from the camera and a clustering procedure we can get in-

formation about which pixels belong to the same object, and

what their noise level is, which allows for locally adapted

smoothing. To illustrate the success of this method, we com-

pare it with raw camera output and a traditional method for

edge preserving smoothing, anisotropic diffusion [10, 12].

We show that this mathematical technique works without

individual adaptations on two camera systems with highly

different noise characteristics.

1. TOF Cameras

Principle of operation Time-of-Flight (TOF) cameras si-

multaneously measure distance (range) and intensity within

every pixel allowing 3D information to be collected within

a scene. An amplitude modulated light source, typically op-

erated between 10–100 MHz, illuminates the field of view

and the reflected light is imaged with a gain modulated cam-

era system. The flight time causes a delay in the modulation

envelope that is exhibited as a phase shift ϕ in the received

modulation signal proportional to object distance d as given

by Equation (1), where fmod is the modulation frequency

and c is the speed of light.

ϕ =
4πfmodd

c
(1)

To measure the phase shift ϕ the gain modulated camera

can either operate at the same frequency (homodyne op-

eration as used by the SwissRanger SR-3000 [9]), or at a

slightly different frequency (heterodyne operation as used

by the Waikato Range Imager [5]) to that of the illumina-

tion source. The camera records an intensity image I which

is a cross correlation between the modulated optical signal

and the receiver modulation waveforms. From a minimum

of three phase offset images indexed by i and of phase θi,

the signal amplitude A and phase ϕ can be determined by

A =

√(∑
i Ii cos θi

)2

+
(∑

i Ii sin θi

)2

2
(2)

ϕ = arctan

(∑
i

(
Ii cos θi

)
∑

i

(
Ii sin θi

)
)

(3)

Homodyne operation typically uses four images, each with

a phase shift of π/2 radians [9, 7], whereas in hetero-

dyne operation, the phase is continually changing and al-

lows range measurements of higher precision by acquiring

a larger number of phase offset images. This can be used

to remove the influence of harmonics that could otherwise

contaminate the phase measurement.

Technical details The Waikato Range Imager [5] uses an

array of four visible (658 nm) laser diodes placed around the
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imaging lens to illuminate the scene with a combined output

power of approximately 300 mW. A Dalsa Pantera TF 1M60

digital video camera has been fitted with a 25 mm image in-

tensifier from Photek Ltd (East Sussex, United Kingdom)

that is employed as a high speed shutter, providing gain

modulation at frequencies up to 90 MHz. The digital video

camera is capable of operating at 1024×1024 resolution

with frame rates up to 60 Hz, although pixel binning allows

faster frame rates at the expense of lower spatial resolution.

Imaging setup Scene capturing (cf. Section 3) with the

Waikato Range Imager was performed using a laser modu-

lation frequency of 80 MHz and an image intensifier mod-

ulation frequency of 80 MHz + 20 Hz. This produces a

20 Hz beat signal output from the image intensifier which

is captured by the digital video camera operating at a frame

rate of 100 Hz. This configuration utilises five raw intensity

images to produce each range image, which is optimal to

minimise systematic errors while allowing high speed ac-

quisition and high spatial resolution [4], generating range

data at 20 frames per second with 512×512 resolution.

In comparison, the SwissRanger SR-3000 uses 55 LEDs

at a wavelength of 850 nm producing an optical output

of approximately 1 W. The sensor resolution is 176×144,

and as the gain is internally modulated at frequencies up to

30 MHz, there is no need for an external shutter. The range

(and intensity) of the scene is computed by the sensor and

is typically output at 25 measurements per second. The ex-

pamles in Section 3 use range images preprocessed by the

camera software (median filtering, geometry correction).

Noise A typical characteristic of pixel noise as obtained

from TOF cameras is the dependence on surface and illu-

mination properties. It can be shown that it is proportional

to the inverse of the intensity, var(ϕ) ∝ 1/A2, [11].

Traditional denoising such as temporal and spatial aver-

aging do not take this into account adequately. Their pa-

rameters can usually only be tuned appropriately for a part

of the images. Furthermore, spatial averaging usually blurs

edges, thus sometimes introducing considerable errors in

the range images at the border between objects located at

different distances from the camera. On the other hand, the

clustering based denoising approach presented in the next

section can make use of the additional information about

surface region and object boundaries, which is present in

images representing the estimated noise level at each pixel.

It performs an initial segmentation of the image into regions

with similar characteristics, and performs standard Gaus-

sian smoothing limited to these regions, and tuned to their

noise level. In Section 3 we show examples of the achieved

denoising quality, and compare it to standard anisotropic

diffusion.

Another issue present in images of many TOF cameras

is a small bias on the estimated range, depending again on

pixel intensity. A checker board recorded with such cam-

eras appears to have the dark fields at a different distance

than the light fields. This phenomenon is present in the

images presented here, but is not topic of denoising proce-

dures. Instead, this should be treated using additional meth-

ods.

2. Clustering Based Denoising

Considering the fact, that image regions with different

reflection properties lead to different range noise levels, de-

noising of the data should be adaptive to the properties of

each region. We propose a clustering approach to iden-

tify the regions with homogeneous properties (range val-

ues, range noise, and intensity values). The identified clus-

ters are used to estimate the noise level inside each cluster,

and smoothing is then performed on each cluster tuned to

its characteristics. The details of this approach are given in

[8]; the following gives an overview of this approach.

Clustering The data D available for clustering consist of

a feature vector dx,y = (ϕx,y, varx,y, Ix,y, x, y)T for each

pixel (x, y), with the range information ϕ, the estimated

noise levels var (usually smoothed using a Gaussian kernel),

and the intensity I.

The regions or objects which should be identified by the

clustering algorithm do not have a predefined shape in this

feature space,1 which rules out several common clustering

techniques which depend on the existence of a meaningful

distance between points and cluster prototypes. We propose

a variant of the Mean Shift clustering algorithm (as pro-

posed by Comaniciu et. al [3], based on previous publica-

tions [6, 1, 2]), which can make use of a multi-dimensional

feature space and is not restricted to given cluster shapes

or cluster numbers. The Mean Shift clustering algorithm is

a density based method. For each point it determines the

corresponding cluster by following the gradient of a kernel

density estimate (without actually computing the density)

to the maximum of the density estimate. Points with the

same or similar maxima (for the case of ridges in the den-

sity function) are put into the same cluster.

Before applying the clustering algorithm to the data, we

rescale dx,y by the inverse of the standard deviation of each

dimension, and apply a factor for weighting the importance

of these dimensions. We use the factors 1 for the image

dimensions, and 0.2 for the pixel location dimensions; the

latter can be adapted to the size the images and the size of

the objects therein, but does not seem to be very sensitive in

1Consider objects leading to ridges in the range image, e.g. tape rolls;

the location of pixels has to be included in the feature space to obtain spa-

cially contiguous regions.
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Figure 1. Clusters found for the example

scenes (Section 3). Only six grey levels are

used, so some clusters share the same color.

our experience. After the clustering, we merge very small

clusters (containing less than 15 pixels) to the closest other

cluster. An example for a clustering found for one of the

example scenes is given in figure 1.

Smoothing The smoothing approch has to deal with two

issues. It should be adapted to the noise properties of re-

gions with homogeneous noise characteristics, and it should

not blur edges in the range image. The clusters found by

the Mean Shift algorithm allow to estimate the noise level

for the corresponding image region. This information can

be used to adapt the strength of smoothing, which is to be

performed on the region defined by all members of a given

cluster. Edge blurring is avoided as long as edges coincide

with boundaries between clusters.

A remaining problem is that homogeneous regions could

be split into different clusters, because they have a non-

constant distance to the camera (i.e. a gradient in the range

image). Even when such regions are covered by separate

clusters, the smoothing should not stop at the boundaries

between such clusters, otherwise artificial steps could be in-

troduced into the smoothed range image.

We avoid this, by computing a (in general non-

symmetric) similarity between each pair of clusters, and

taking points from the other cluster(s) into account when

smoothing one cluster, weighted according to the clus-

ter similarity. The computed similarity takes into account

mainly the range values and the average direction of the

range gradients occuring in one cluster, by comparing,

whether the neighboring clusters have range values, which

could also occur in the given cluster. Additionally, inten-

sity, location and noise characteristics are incorporated. De-

tails are given in [8]. The actual smoothing uses a Gaussian

kernel. It is extended such that each pixel has an assigned

weight given by the similarity between a given cluster and

this pixel; this weight is incorporated in the summation and

normalization taking place in computing the smoothed pixel

range value.

3. Application Results

The scenes selected for comparing the different denois-

ing approaches consist of a collection of differently col-

ored boxes, which are arranged in part parallel to the im-

age plane, and in part tilted. Several characteristics in these

scenes allow a good comparison: The different colors of

the boxes lead to different noise levels, surfaces parallel to

the image plane allow to judge the amount of noise and

the effect of the smoothing techniques. The tilted planes

test the ability of the smoothing approaches to keep smooth

surfaces, even if they stretch across a distance range. Fur-

thermore, there are sharp edges in the range images at the

boundaries of the boxes. The two cameras were available

at two different places (Austria and New Zealand), thus we

just imaged similar scenes (Figure 2).

For computation of the intensity, range and noise images,

two successive frames for the Waikato scene, and five suc-

cessive frames for the SwissRanger scene are used, aver-

aging them for intensity and range images, and taking the

(log-)variance of the range as estimate of the noise. The

resulting images, which are only temporally averaged over

two and five frames, are shown in Figure 3.

For the Waikato scene, Figure 4 shows a cut through
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Figure 2. Intensity image of the scenes

recorded with the Waikato Range Imager

(top) and Swiss Ranger (bottom).

the light and the dark boxes. The lines correspond to

the original (temporally averaged) range, the cluster-based

smoothed range, and (only in the two subplots) the range

obtained from anisotropic diffusion, as a widely used al-

gorithm for edge preserving smoothing. The left subplot

shows part of the lighter box with low noise level (on the

left) and part of the black box with high noise level (on

the right). The performance of anisotropic diffusion and

clustering based smoothing is relatively similar in the low

noise region, where both improve the signal slightly. For

the black box on the right, both methods show a clear im-

Figure 3. Temporally averaged example

scenes. Height corresponds to the range im-

age, grey scale to the intensity image. The

camera is located above these scenes.

provement, but only the clustering based smoothing yields

a very smooth range estimate. This estimate is also quite

realistic, as the edges of the black box are indeed slightly

rounded.

The second subplot enlarges a region around the edge

of the black box. It shows, that the clustering based range

estimate closely follows the steep distance change present in

the original temporally averaged curve. On the other hand,

the anisotropic diffusion curve shows some blurring of this

edge. Effects like these are typical for many of the edges

present in this range image, and are just very pronounced

in this place, because there are two sharp edges very close

together.

For the scene recorded by the SwissRanger, some easily

identifiable dimensions were measured, and are available

to quantify the smoothing results. The range image from

the SwissRanger is not in a defined scale known to us, and

still contains some geometrical distortions probably due to

illumination differences and imperfect correction for non-

parallel rays to the camera. To account for this, we first

performed a relatively rigid fit of the estimated range im-

age to the dimensions known to us. This transformation in-
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Figure 4. Waikato scene, a cut through the

light and dark boxes shown in the right part

of the upper image in Figure 3. The two

lower graphs are zoomed versions of the

rectangles indicated in the upper graph. The

top graph shows the averaged range (thick

light line) and the range obtained with the

clustering-based smoothing (thin solid black

line). The lower two plots additionally show

the range obtained from edge preserving

smoothing (anisotropic diffusion, thin solid

grey line).

cluded a global range offset, a global range scale factor, and

a pixel-location dependent scale (linear and quadratic terms

for horizontal and vertical dimensions). Some regions were

then selected for their well known true range values (back-

ground, two boxes parallel to image plane), including light

and dark surfaces. The boundaries of these regions are as

close as possible to the edges of the objects, to allow de-

tection of edge blurring introduced by smoothing. These

regions do not touch, because the camera-preprocessed im-

ages already contain slightly blurred edges, which should

not be included in the selected regions. Figures 5 shows the

selected regions, and the errors of the temporally averaged

range. Figure 6 shows the errors of the anisotropic diffusion

smoothed and the cluster-based smoothed range images.

Without introducing more serious artifacts, the cluster-

based smoothing achieves the smoothest results. When av-

−4
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−2

−1

0

1

2

Figure 5. Temporally averaged range image

of the SwissRanger scene (top), errors with

respect to the known true distance values

(bottom). Regions selected for comparison

with known true dimensions are indicated by

rectangles in the upper image. The errors are

the difference of estimated and known range

values for each pixel, and are measured in

cm; the colorbar indicates the range of errors

present. The background color corresponds

to an error of 0 cm.

eraging over the selected areas, the root mean squared er-

ror (RMSE) of the estimated ranges are 0.2825 cm for the

temporally averaged image, 0.2549 cm for the anisotropic

diffusion based image, and 0.2375 cm for the cluster-based

smoothing range image. Most of these errors are due to the

imperfect geometrical correction of the images; but as none

of the presented methods does any geometrical correction,

the reduction in RMSE is mainly due to less noise in the

smoothed images.

4. Conclusion

We have demonstrated the effect of temporal averaging,

a traditional adaptive smoothing method (anisotropic diffu-

sion), and our cluster-based smoothing approach on range

images acquired from two TOF cameras of different types.

The presented results show a clear advantage of the adap-

tation of smoothing strength to local noise characteristics

(visible especially in the lower left graph in Figure 4), and
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Figure 6. Errors in estimated range values

for the selected regions, for anisotropic dif-

fusion (top) and clustering based smoothing

(bottom).

they show the advantage of using a segmentation of the

scene to avoid edge blurring (lower right graph in Figure 4).

For this approach we made use of the fact, that in contrast

to most other imaging methods we simultaneously measure

not just the range, but also local noise levels and the almost

noise free intensity image.

The clustering-based smoothing might be sensitive to

the kind of scene analysed. Problematic could be objects

having strong gradients in the range image, but still being

smooth. We showed that this can be controlled by using a

smoothing, which takes into account, whether neighboring

clusters belong to the same object.

A limitation of the clustering-based smoothing is (at

least in the current non-optimized implementation in Mat-

lab) that its computations require considerably more time.

Depending on the resolution, clustering and smoothing pa-

rameters, they currently take tens of seconds to a few min-

utes on current PC hardware. However, a significant opti-

mization of computation time should be possible, and sev-

eral application scenarios could afford these computation

times, and could even benefit from the initial image seg-

mentation already returned by the clustering.

A topic worth of further investigation is the bias present

in the estimated range of darker or lighter objects. This is

not an issue of noise, and cannot be corrected using smooth-

ing algorithms, but it might be desirable to remove such ar-

tifacts before further analysis of range images.
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