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ABSTRACT

A model to account for observed solar flare statistics in terms of a superposition of independent random
flaring elements (assumed to be sites of magnetic reconnection in the coronal magnetic field and hence termed
“separators ”’) is described. A separator of length / is assumed to flare as a Poisson process in time, with a rate
v(l) inversely proportional to the Alfvén transit time for the structure. It is shown that a relationship & o /*
between the mean energy of events & at a separator and the separator length implies a relationship £ oc 7¢
between individual waiting times 7 and energies E of events at the separator. The most plausible x = 2 model
is found to be compatible with simple pictures for magnetohydrodynamic energy storage prior to magnetic
reconnection in a current sheet with anomalous (turbulent) resistivity. Formal inversion of the observed flare
frequency-energy distribution is shown to imply a distribution P(/) oc /-1 of the separator lengths in active
regions. A simulation confirms the basic results of the model. It is also demonstrated that a model comprising
time-dependent separator numbers N = N(¢) can reproduce an observed power-law tail in the flare waiting-

time distribution, for large waiting times.

Subject headings: MHD — Sun: activity — Sun: corona — Sun: flares — Sun: magnetic fields

1. INTRODUCTION

Solar flares are dynamic events involving the transfer of
energy from the magnetic field to plasma in the solar
corona. It is widely believed that magnetic reconnection is
the physical mechanism underlying flares, but many of the
details of the explosive energy release, for instance, the role
of Hall currents and plasma turbulence, remain contentious
(e.g., Priest & Forbes 2000). What is agreed, on the basis of
three-dimensional kinematic (Lau & Finn 1990; Priest &
Titov 1996) and dynamic studies (Craig et al. 1999), is that
reconnection is associated with specialized sites in active
regions defined by the distribution of magnetic null points
and separators (null-null lines) in the coronal plasma. The
classification of reconnection solutions, into “fan” and
“separator” current sheet models and quasi-cylindrical
“spine” current solutions, then follows directly from the
eigenstructure of magnetic null points.

Observationally, there is a large body of evidence in favor
of the idea that flares involve magnetic reconnection at
large-scale topological structures in the coronal magnetic
field (e.g., Bentley & Mariska 1996). For example, photo-
spheric emission in flares appears to coincide with the calcu-
lated locations of topological structures in the field (e.g.,
Gorbachev & Somov 1988; Brown et al. 1994). In addition,
the basic features of large, two-ribbon events are commonly
explained in terms of reconnection at an extended X-point
or separator above a magnetic arcade (for a recent example,
see Somov et al. 2002). Satellite observations of compact
flares showing X-ray emission high in the corona have also
been interpreted in terms of large-scale reconnection
(Masuda et al. 1994). It should also be noted that there is a
variety of evidence, as well as theoretical arguments, for
fine-scale fragmentation of flare energy release sites (e.g.,
Brown et al. 1994), suggesting that energy release in large-
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scale events may involve a structured collapse to small
length scales.

Generally speaking, reconnection theory has paid little
attention to understanding the statistical nature of solar
flare bursts. Of central interest is the frequency-energy dis-
tribution /"(E), which describes the number of flares per
unit energy per unit time. Observations suggest that this is a
featureless power law,

N(E) = AE™" , (1)

where v =~ 1.5 (e.g., Crosby, Aschwanden, & Dennis 1993).
Flares occurring in individual active regions appear to fol-
low the same distribution (Wheatland 2000a). The power-
law form implies that there is no average flare energy: since
there is no bump in the distribution, the average flare output
is defined by cutoffs imposed on the spectrum. However,
detailed flare models (Craig 2001), as well as simple dimen-
sional considerations (Litvinenko 1998), suggest that
flare energies should be related to the overall size of the
reconnecting structure.

Consider, for example, Somov et al. (2002), who inter-
preted observations of the large ““ Bastille Day 2000 flare
in terms of reconnection at a separator of length / ~ 108 m
in the solar corona. If such a structure persists in the corona
above an active region and flares repeatedly, then the aver-
age flare energy should be related to /. Somov et al. suggest
a linear dependence, but it seems clear that no single site
reconnection model whose mean output is limited by a fixed
parameter / can be expected to reproduce a frequency-
energy distribution consistent with the form of equation (1).
This suggests that the reconnection picture may require
additional ingredients, for example, flaring at multiple sites,
to explain observed solar flare statistics.

A further constraint is provided by flare waiting-time sta-
tistics and, in particular, by the distribution P(7) of waiting
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times 7 between flares. The waiting-time distribution
(WTD) in individual active regions is consistent with a Pois-
son process in time, i.e., is consistent with flares occurring as
independent events with a constant mean rate or with a
piecewise-constant rate (Wheatland 2002), although there is
some evidence for flare sympathy (Moon et al. 2002). For
the simplest case of a constant-rate Poisson process, the
WTD is a simple exponential, P(7) = Aexp(—A7), where A
is the mean rate of flaring. Remarkably, there is no evidence
that flare energies depend on flare waiting times (Wheatland
2000b). This is difficult to understand if flares occur repeat-
edly at a single magnetic structure in an active region, with
the structure losing free energy accumulated during each
waiting time. When the WTD for events from all active
regions on the Sun is considered for long periods, another
feature appears: the distribution exhibits a power-law tail,
for times longer than a few hours (Boffetta et al. 1999).
Wheatland & Litvinenko (2002) presented an explanation
for this effect, based on flares occurring as a Poisson process
with a time-varying rate, the rate being modulated, e.g., by
the solar cycle.

A popular model for flare statistics emphasizing the frag-
mentation of flare energy release sites is the avalanche
model (Lu & Hamilton 1991; Lu et al. 1993), which success-
fully accounts for a variety of flare statistics including the
frequency-energy distribution, the frequency—peak flux
distribution, and observed waiting-time statistics (e.g.,
Charbonneau et al. 2001). In this model the flare process is
assumed to consist of a cascade of elementary energy release
events that trigger one another, occurring in a system in a
state of self-organized criticality (SOC). The avalanche pic-
ture is fundamentally different from the large-scale current
sheet models of classical reconnection in its emphasis on
small-scale reconnection processes and in the role of SOC.
While the avalanche model provides an interesting ap-
proach to flare statistics, it is difficult to reconcile with devel-
oping ideas of three-dimensional reconnection at large-scale
topological structures in a coronal magnetic field. Other
approaches to flare statistics based on fragmentation of the
energy release region have also been developed. For exam-
ple, simplified MHD descriptions of externally driven mag-
netic loops exhibit intermittent episodes of energy release
with power-law frequency distributions for energy, peak
flux, and event duration (Dmitruk, Gémez, & DeLuca
1998; Georgoulis, Velli, & Einaudi 1998). Once again,
the connection between this approach and large-scale
three-dimensional reconnection is unclear.

The present paper presents a model for flare statistics
based on independent events at a multiplicity of flaring ele-
ments. Each element, or separator, flares according to a
minimal set of physically based assumptions consistent with
the properties of coronal magnetic reconnection. Our moti-
vation is to provide a physical description that accords with
the latest generation of large-scale three-dimensional mag-
netic reconnection models and that is capable of reproduc-
ing observed flare statistics. The present approach is distinct
from previous work along these lines (Craig 2001; Wheat-
land 2002; Craig & Wheatland 2002) in that it considers ran-
dom (Poisson) flaring at each flaring element, subject to a
physically sensible choice for the mean energy at each flare
site. This is found to lead to a new, physically plausible
result for energy buildup at each separator. We also address
a further question: how to account for the long-term
behavior of the flare WTD.

We begin in § 2 by summarizing the main ingredients of
the physically based reconnection description. In § 3 the
new model is developed analytically and investigated
numerically in terms of a simulation based on typical active
region parameters. In § 4 a modification of the model
to account for the long-term behavior of the WTD is
presented, and § 5 presents a discussion of the main results.

2. PREVIOUS WORK

In Wheatland (2002) and Craig & Wheatland (2002) an
initial model to describe flare statistics based on indepen-
dent flaring at a number of distinct sites (separators) was
introduced. The goal of the model was to account for the
observed power-law distribution of flare energies and the
apparent Poisson statistics of flare occurrence in individual
active regions, using basic assumptions appropriate for
reconnection models of flares.

The elements of the underlying reconnection model are
straightforward. There are a multiplicity of flaring sites,
determined by the distribution of magnetic null points and
separators within the active region field. Each site is charac-
terized by its length scale /, the separator length. Since flares
are assumed to be an MHD process, the separator scale is
assumed to set both the mean frequency v and the mean
energy & of an event, specifically as follows:

1. The flaring “ tick rates ™ are determined by the Alfvén
transit time of the separator, with a large number of transits
being required to accumulate energy: v(/) = va/(g/), where
va is the Alfvén speed and g ~ 104

2. The average energy of each event at a separator is
& =0l withl <k <3.

These assumptions are discussed in Craig (2001), who
suggests that x =2 should be regarded as the favored
energy scaling, since it corresponds to an exact separator
reconnection solution. More specifically, it represents a flux
pile-up current sheet of area /2, whose thickness is deter-
mined, independently of /, by the microphysics (turbulent
resistivity) of the reconnection mechanism (Litvinenko &
Craig 2000). Less favorable energetically, in terms of flare
release, are “spine”” models, whose tubular current distri-
butions provide the scaling & o /. By contrast, for purely
classical current sheet mechanisms, for instance, models in
which all dimensions of the current layer scale linearly with
[, the scaling is & oc I3. In what follows, we retain the general
form & o« " for analytic purposes but continue to regard
k = 2 as the most plausible physical model (see also the
dimensional argument of Litvinenko 1998).

Suppose the probability distribution of events of energy £
at the separator is denoted by P(E|/). The frequency-energy
distribution of events at the separator is then

N(E, 1) = v(l)P(E]I) . 2)

Assuming separators flare independently and that there is a
universal probability distribution P(/) of separator lengths,
the observed frequency-energy distribution of flares from
the model ““ active region ”’ consisting of N separators is

ymm:N[wawmw. (3)

This is an integral equation whose kernel A°(E, /) is
determined by the flaring properties of the separator.
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In the “clockwork” model of Wheatland (2002), each
separator flares periodically and produces events of a spe-
cific output E. In this case A(E, [) = v()6(E — QI?), and
Wheatland shows by direct construction that the flare fre-
quency-energy distribution can be reproduced by the choice
P(I) < I-'. This model also produces roughly Poisson sta-
tistics for flare occurrence, at least provided that the number
of flaring elements N is large enough.

The clockwork assumption is relaxed in Craig &
Wheatland (2002), who point out, using a general inversion
argument, that Wheatland’s result P(/) o< I-! can be
expected for any model that associates a well-defined mean
energy & = QI* with each separator. An analytic treatment
also confirms that the WTD can be explained by a superpo-
sition of periodic processes provided that N =10 (see Craig
& Wheatland 2002). Strictly speaking, however, there is
always a slight departure from Poisson statistics because
a Poisson process has no maximum waiting time, whereas
for periodic separator flaring the maximum waiting time
corresponds to the period of the shortest separator.

On the observational side, it is possible that the departure
from Poisson statistics could pose a problem for the model.
More theoretically, although it is encouraging that statisti-
cal flare data can be reasonably well approximated using the
parallel flaring approach, the periodic nature of flaring
at separators seems unnecessarily restrictive, as does the
idealization of a fixed number N of flaring elements. In what
follows we explore relaxing these assumptions.

3. POISSON FLARING AT EACH SEPARATOR

A natural modification is to assume Poisson flaring at
each separator. Recall that a Poisson process is appropriate
if flares are independent, i.e., there is a constant probability
per unit time of an event occurring. If an individual separa-
tor produces flares as a Poisson process with a mean rate
v = v(l), then the WTD for flares at the separator is

P(r|l) =ve ™, 4)

where 7 denotes a waiting time. As in the previous models,
we assume v(/) = va /(ql).

We obtain the energy probability distribution at the
separator by continuity:

P(E|l)dE = P(7|l)dT . (5)

The constraint that the mean energy satisfies
&= QI"= /EP(E|l) dE (6)
implies a monotonic functional relationship between the

waiting time 7 and the flare energy E. To see this, write
equation (6) in the form

o — /0 " P E(r) dr (7)

and substitute for P(7|/) from equation (4). The result is

Y E(r)e v dr = Z[E(); ] = o 2 U (g)
0 q

where ¥ denotes the Laplace transform. Inverting the
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Laplace transform gives

. )" 0
E(t)=B7", where B=|— ) ———— , 9
= (D rasa ©
which specifies the explicit flare energy dependence on the
waiting time at the separator.

3.1. Energy Waiting Time Relation for & = QI*

It is interesting that the basic x = 2 model provides the
scaling E o 72. The implication is that the energy accumu-
lates, between flares, according to a linear increase in the
flare B-field with time. This behavior seems appropriate for
a flux pile-up reconnection picture, in which flux accumu-
lates in the vicinity of a current sheet prior to the onset of
reconnection. It is also notable that other simple MHD
energy supply pictures yield this scaling: for example, the
braiding of multiple loops subject to random footpoint
motions leads to a quadratic increase in coronal magnetic
energy with time (Berger 1994). This contrasts with the lin-
ear E(7) relation obtained by random twisting of individual
flux tubes (Sturrock & Uchida 1981), which from the
present viewpoint is energetically less plausible.

A further interesting result is provided by recalling that
the mean flare waiting time at a given separator is v—!.
According to equation (9), E(t = v~!) is exactly one-half
the mean separator energy & for the case x = 2. The exact
distribution of energies of events at a separator follows from
equation (5) together with equation (4):

E\ 12
(=
(5)
where B = (1/2)0(va/q)*.

According to equation (2), the frequency-energy distribu-
tion of flares at a separator is given by A(E, /)=
v(I)P(E|l). From equation (10) the energy dependence in
this relationship is A" (E, 1) oc E-'/2exp|—v(E/B)"?]. This
shows that the distribution is a power law with index —1/2,
with an exponential rollover around E = B/v? = (1/2)Q/?
~ &. This demonstrates two points. First, the frequency-
energy distribution at a single separator does not have the
o E~13 form observed for flares on the Sun. [Since A (E, [)
oc EV/%=1is the general power-law form, neglecting the roll-
over, this conclusion holds good for all 1 < k < 3.] Second,
the distribution reveals the mean energy of events at the sep-
arator, and hence the separator length, via a rollover around
E ~ &(1). This is consistent with the arguments presented in
§ 1, that any macroscopic reconnection model will have a
frequency-energy distribution that reveals a mean energy,
related to the size of the reconnecting structure.

v

1

; (10)

3.2. The Superposition of Randomly Flaring Separators

As noted above, the observed power-law form for the
flare frequency-energy distribution is not reproduced by
considering a single separator site along the lines discussed
above. By superposing over an assemblage of flaring separa-
tors, however, a general inversion procedure can be devel-
oped, valid for any well-defined spectrum. We give here a
formal inversion argument, along the lines of Craig &
Wheatland (2002), before specializing to the favored x = 2
model.
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First note that according to equation (3), we must
superpose over all separator lengths in the active region
assemblage. Since P(/)dl = P(v)dv, this can also be ac-
complished by superposing over all mean frequencies v
according to

N(E)=N /0 " (E, )P dv | (11)

where, using equations (1) and (4),

dr

N(E, v)=N[E, I(v)] = I/P(T|Z)d—E . (12)
If we define
G(r) = M(E)E (13)
dr
then we deduce that

N/‘:>O e "VP()dv=NZ[VPv); 7| =G(r), (14)
0

which provides the formal inversion:

1
VP(v) = Ngfl[G(T); V). (15)
For the specific case of interest, we have that
N(E)=AE™, E(r)=B1",
G(1) = KAB' V7R (16)

where v= 1.5 and B is defined by equation (8). The
inversion formula then gives

B 17
I(l+ys—k) (17)

Taking v =3/2 and x =2, we deduce that P(v) oc v~ 1.
Since P(I) = P(v)|dv/dl|, we again recover P(l) < [-!, con-
sistent with Wheatland (2002) and Craig & Wheatland
(2002). Therefore, given a well-defined mean energy & =
QI? at each separator, the observations imply P(/) oc [=! for
the distribution of separator lengths.

Some care should be taken in interpreting the formal
inversion results. Note that the observed power-law form
A" o< E77 cannot hold for all values of E; there will always
be upper and lower energy roll-offs in the spectrum corre-
sponding to upper and lower limits for the flare energy. A
related point is that any probability distribution P(/) must
be normalizable, and this cannot be achieved without
invoking cutoffs in the separator-length distribution. These
subtleties, ignored in the formal treatment given above, are
now addressed in the context of the favored x = 2 model.

V*P(v) = N"'kAB'™"

3.3. The P(I) o< I=' Model
Motivated by the previous inversion, we now consider the
normalized form

171

L <l
In(L/L) > T (18)
0, otherwise |,

P(l) =

where /; and [, are the lower and upper cutoffs in / (the
smallest and largest separators, respectively). Using this
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expression in equation (3) together with equation (10) leads
to

NBL/2 3
g — — /2 711X/12
NE) = smmm E e
x |1 —|—§—1x — (14 x)e¥I=0/B) 1 (19)
2

where x = (2E/0)"? /1, and B = (1/2)(va/q)*0Q. It is easy
to see that for 1 < x < »//;, this expression evaluates to

NB]/2
2111(12/11) ’

It follows that there is power-law behavior for the range of
energies &1 < E< &, where & = QFF (i = 1, 2). Outside this
range the distribution ./"(E) rolls over.

The total rate of flaring A in the model is obtained by inte-
grating equation (19), which is rather complicated. An
approximate expression for the rate of flaring A above & is
obtained by integrating equation (20) between the approxi-
mate limits of power-law behavior & and &5, which leads to

/\ N NUA
'Y ahin(b/h)

Note that this approximate result is exact in the clockwork
model of Wheatland (2002) (his eq. [13]).

It is interesting to simulate the model, to confirm the ana-
lytic results. To do this we need to decide on values of the
basic parameters. A characteristic Alfvén speed is vy = 100
m s~!. The parameter Q determines the basic scaling
between separator length and average flare energy at the
separator. If we adopt a maximum separator length /, =
3 x 108 m, corresponding to an average flare energy at that
separator of &, = 102° J, then we obtain the estimate
0= @@2/15 ~ 10% J m~2, which we assume for the simula-
tion. The value /, corresponds to the approximate maxi-
mum physical extent of magnetic regions on the Sun, and &,
is consistent with the energy of a large flare. We consider a
large, complex active region, which we assume to contain
N =50 separators. Wheatland (2001) found that large
active regions produce up to 100 flares with soft X-ray peak
flux greater than 10~® W m~2 at the Earth during a transit of
the disk. For the purposes of illustration, it is convenient to
assume that the flare energy can be closely identified with
the energy radiated in X-rays. In this case the threshold
events correspond to an energy Ey, ~ 1020 J. For simplicity
(and to see the effect of a cutoff), we assume this energy is
the mean energy for the shortest separator in the simulation,
i.e., take & = Ey,, which then implies a lower cutoff in
separator length /; = (&/Q)l/2 = 10° m. If we assume 100
flares during a 14 day transit, we have a rate A} ~ 8.3 x 10—
s~1. Using equation (21) with the adopted values of \;, N,
va, 1, and / then implies ¢ ~ 105, which we take for this
simulation.

Figure 1 shows the result of a simulation of 200 days of
flaring from the model with these parameters. A set of 50
separators with lengths /; (i=1, 2, ..., 50) was chosen
according to the distribution in equation (18), and 400 days
of flaring was simulated according to a Poisson process at
each separator with the appropriate mean frequency. Event
energies were determined by each waiting time 7 at a separa-
tor, according to the E = B72 rule. The top panel shows the
frequency-energy distribution of events for the simulation,

N (E) =~ CE3/? with C = (20)

(1)



462 WHEATLAND & CRAIG

frequency per unit energy

10734 A
1018 1020 1022 1024 1026
energy (J)

. 1.0000 T T T T T
% 0.1000 -
<
-g 0.0100 -
é 0.0010 -
= 0.0001 . . .

0 5 10 15 20 25 30

waiting time (hrs)

FiG. 1.—Simulation of 400 days of flaring for the x = 2 model. Top:
Energy distribution. Bottom: Waiting-time distribution.

as a solid histogram. The vertical dashed lines indicate &
and &, the average energies of events at the shortest and
longest separators, respectively. The short solid vertical
lines at the bottom again indicate the mean energies of the
50 separators chosen for this trial of the simulation. The
solid curve is the analytic result in equation (19). This plot
shows that the distribution is an approximate power law
between the two limits &7 and &5, as expected, and more
generally confirms the result of the analytic calculation. The
bottom panel shows the WTD (solid histogram) as a loglin-
ear plot and also shows the Poisson WTD (solid line)
expected for the observed total rate.

A number of points about this simulation should be
noted. First, the lower cutoff /; has been chosen for compu-
tational convenience and to illustrate the appearance of a
low-energy rollover in the model. It is not intended to realis-
tically model observed energy release events on the Sun,
which appear to exhibit a power-law frequency-energy
distribution down to the smallest observable events, either
with the same index as that observed for large flares (e.g.,
Shimizu 1995) or with a steeper index (e.g., Benz & Krucker
1998). Based on equation (19), the model can reproduce a
power law (with v = 3/2) to arbitrarily low energies for a
suitable choice of /;. A related point to note is that the upper
cutoff is intended to reflect a physical limit to the size of sep-
arators, and there is some observational evidence for a high-
energy rollover in the frequency-energy distribution for
flares (Kucera et al. 1997). The precise value of the model
rollover can be adjusted by changing /,. A final point to note
is that the confirmation of equation (19) in the top panel of
Figure 1 is nontrivial because the analytic result involves the
approximation of a continuous distribution of separators,
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while the simulation involves the assumption of a finite
number of separators with fixed lengths. However, the
assumption of a static set of separators is unrealistic for
active regions on the Sun, which are known to involve
highly dynamic magnetic fields, and accordingly we do not
attribute great significance to a departure from equation
(19) for a static model with small numbers of separators. In
§ 4 we investigate a simple generalization to time-dependent
separator numbers.

4. TIME-DEPENDENT SEPARATOR NUMBERS

Analysis of flare occurrence in individual active regions
suggests that the flaring rate varies with time (Wheatland
2001). In addition, the WTD for flares from all active
regions on the Sun observed for long periods of time exhib-
its a power-law tail for waiting times greater than about
10 hr (Boffetta et al. 1999). It should be noted that this
behavior is distinctly different from the exponential WTD
expected for a constant-rate Poisson process. However, the
result can be explained in terms of flares occurring as a time-
dependent Poisson process with a certain time distribution
of rates (Wheatland & Litvinenko 2002).

These features of flare occurrence on the Sun can be
included in the model developed in § 3 in a simple way by
assuming that the number of separators varies with time:
N = N(¢). Using equation (21) to relate the rate of events
above energy &) to the separator number leads to A (7) o
N(t), assuming the other parameters are constant. Intro-
ducing time variation in the mean rate of flaring in this way
changes the functional form of the WTD.

The form of the model WTD for the case of time-
dependent separator numbers can be understood analyti-
cally as follows: Wheatland & Litvinenko (2002) pointed
out that for a time-dependent Poisson process with a slowly
varying rate A(¢) (the variation must be slow with respect to
a waiting time), the WTD at time 7 is

Pi(7) = A(1)e M7 (22)

The observed WTD P(7) for an observing interval (0, 7) is
obtained by the average of P,(7) over the observing interval,
weighted by the number of events A\(7) df in each interval
(t, t+dt):

T
P(T):% /0 A0 P.(7) dt , (23)

where N = fOT A(?) dt is the total number of events. Using
equation (22), equation (23) can be rewritten as an integral
over A, leading to
1

P(r) = 2[ X7 : 7] (24)
where A\ = N/T is the average rate, % denotes a Laplace
transform, and f(\) is the time distribution of the rate.
Using equation (21) to replace the rate in equation (24) by
the separator number N gives

qzll 11’1([2/11 )X

where F(N) is the time distribution of N. The subscript
1 indicates that this is the WTD between events above
energy &.

Py(7) Z[N*F(N); 7], (25)
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It is instructive to interpret equation (25) using the Tau-
berian theorems for the Laplace transform. Specifically, we
invoke the result that if the Laplace transform F(s) of a
function f(¢) has the form F(s) oc A/s"+! as s — 0, then the
function has form f(7) o A¢"/T'(r+1) as t — oo. From
equation (25) it then follows that the appearance of a power
law P(7) oc 7-G+2) in the WTD as 7 — oo implies that the
distribution of separator number F(N) has the power-law
form F(N) < N® for N — 0. Hence, the appearance of a
power-law distribution in the WTD is attributable to a
power law in the distribution of separator numbers, when
the numbers are low. Note that even if the distribution of
separator numbers is constant at low numbers (o = 0), then
a power law o3 is predicted in the WTD.

To demonstrate the applicability of this model to the Sun,
we have performed the following simulation: Wheatland &
Litvinenko (2002) took the observed soft X-ray flares from
the Sun for 1975-2001 above a peak flux 10-® W m~2 (a
“Cl1 class event ) and determined a decomposition of the
observed time history of flaring into a piecewise-constant
Poisson process. Taking this time history of piecewise-
constant rates and times and applying equation (21) leads to
a time history of separator numbers for the Sun for 1975—
2001 (these are the numbers of separators with mean flare
energies greater than the energy of C1 flares: approximately
1020 J). The top panel of Figure 2 shows the resulting time
history of separator numbers. In applying equation (21), the
same values for va, ¢, /1, and /; have been used as in the sim-
ulation in § 3.3. The figure reflects the variation of flare
numbers with the solar cycle, and the last three solar cycles
are clearly visible. Next, a time history of flaring was simu-
lated for a model with this sequence of separator numbers
N; and intervals ¢;. Specifically, for each time interval #; the

400 F T T T T ™

300~ b

200 b

number

OLL.L ‘ fi | ‘ “Lﬂ’ | ‘

76 81 86 91 96 01
Start Time (05—Nov—75 18:59:00)

fraction per unit time (/hour)

! L

0.01 0.10 1.00 10.00 100.00 1000.0010000.00
waiting time (hours)

FiG. 2.—Simulation with time-dependent separator numbers, mimicking
the variation of the total flare rate with the solar cycle. Top: Separator
numbers. Bottom: Waiting-time distribution.
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simulation procedure described in § 3.3 was performed, with
N; separators. The resulting WTD for the period 1975-2001
is shown by the solid histogram in the bottom panel of Fig-
ure 2. This log-log plot shows that the simulated WTD dis-
plays an extended power-law tail for waiting times greater
than a few hours. The observed WTD is shown by the
crosses in the figure (see Wheatland & Litvinenko 2002).
The observed and simulated distributions are very similar
and exhibit the same power-law tail (the power-law index of
the tail of the observed WTD is —2.2 + 0.1). There are dif-
ferences in detail between the simulated and observed distri-
bution. However, the piecewise-constant decomposition of
the flare rate from which the separator numbers are deter-
mined is an approximation. This simulation is not intended
to provide a completely realistic model of the flaring Sun
over several solar cycles but is intended to show how
a power-law tail to the WTD, such as that observed,
can appear in the model when there is a time variation in
separator numbers.

5. DISCUSSION AND CONCLUSIONS

In this paper a model for flare statistics is presented
involving independent, random flaring at N distinct sites,
each characterized by a single parameter, a length /. These
sites are to be identified with topological features in the
active region—null points and separators—at which mag-
netic reconnection can proceed. Accordingly, the sites are
given basic physical properties consistent with MHD mod-
els of preflare reconnecting structures: the mean rate of flar-
ing then reflects the large number of Alfvén transit times
required to build up and orchestrate flare energy into a
near-singular current sheet, while the average release energy
reflects the geometrical extent of the site & o /%, with k = 2
the preferred value for current sheet reconnection. The
assumption that each site produces flares as a Poisson proc-
ess in time implies that there is a simple relationship £ o« 77
between the waiting time 7 of an event and its release energy.
For the preferred value x = 2, this result is compatible with
MHD energy storage in the vicinity of a current sheet.

In § 3 we considered the problem of accounting for statis-
tical flare data, in particular the frequency-energy distribu-
tion. A formal inversion of the inferred distribution implies,
for the choice x = 2, a distribution P(I) < /-1 of separator
lengths. Consideration of the necessary cutoffs in the
separator-length distribution implies that there will also be
rollovers in the flare frequency-energy distribution. A simu-
lation of the model confirms the analytic results. It was also
shown in § 4 how an observed power-law tail in the flare
waiting-time distribution, for long waiting times, arises as a
result of time dependence in the mean rate of flaring. This
can be incorporated in the model in a natural way by mak-
ing the number of separators time-dependent, N = N(¢). A
simulation confirms that this approach can reproduce the
observed waiting-time distribution.

The model proposed here differs from the avalanche
model for flare statistics in several basic ways. Note that in
the avalanche model, flares comprise a multitude of micro-
scopic, elementary energy release events that trigger one
another. In the present model flares involve a single energy
release event, at a given separator, and a given separator
may produce flares with a wide range of possible energies,
subject to the requirement of a well-defined mean energy.
Flare statistics from an active region on the Sun are
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accounted for in terms of a sequence of flares at different,
independently flaring separators. In the avalanche model
the magnetic field (or more formally, the discrete field in the
cellular automata) is in a state of self-organized criticality
(SOC), which accounts for the appearance of a power law in
the frequency-energy distribution. In the present model
there is no SOC as such, and the power law in the
frequency-energy distribution arises from the assumed scal-
ings of event frequency and mean energy with separator
length, together with the assumed universal distribution of
separator lengths. It should be noted that the avalanche
model also provides an explanation for the appearance of
power laws in flare frequency—peak flux and frequency-
duration distributions. In the present model the time history
of energy release in individual flares is not resolved, and no
attempt is made to explain the detailed energy budget of any
one event. In principle this *“ coarse graining ” could be rem-
edied by modeling the detailed transition from primary
energy release into the secondary phases of the flare, for
example, adopting a hydrodynamic model incorporating
conduction, radiation, and mass transfer (e.g., McClymont
& Canfield 1983).

The basic requirement of the model is a 1// distribution
of separator lengths, which can be seen as a prediction of
the model, and in principle is amenable to observational test
(Wheatland 2002). The physical origin of this distribution
remains an open question. Coronal magnetic fields, and pre-
sumably topological structures in those fields, are subject to
complex processes of formation, evolution, and decay. The
existence of a basic distribution of separator lengths arising
from the common processes of field evolution seems plausi-
ble, but at the moment we have no detailed theory to explain
the physical origin of the required 1// dependence.

The present model is intended as a minimalist solution to
the problem of reconciling large-scale three-dimensional
reconnection theory with flare statistics, and there are many
limitations to the model. In reality, active region magnetic

fields are intrinsically dynamic and can be expected to
evolve continually over the lifetime of an active region. The
idealization of a fixed number of separators with fixed
lengths is best regarded as a snapshot at some instant of the
global field evolution. The generalization of the model to
include a time-dependent separator number (§ 4) gives some
idea of how time dependence can be introduced. It is also
reasonable to assume that there would be some interaction
between separators (leading to the possibility of flare sym-
pathy), when in the present model the separators are strictly
independent. This possibility will be explored in future
work.

The predictions of the present model for flare occurrence
at individual separators can be tested by high-resolution
observations at short wavelengths. Recently, Aschwanden
& Parnell (2002) found that the number N, of EUV and soft
X-ray brightenings in a quiet-Sun region was distributed
with length L according to N, o L=¢, with a =2.5+0.2.
Since observations in soft X-ray and EUYV reveal secondary
manifestations of flare energy release, it is difficult to com-
pare this result directly with the model developed in this
paper (see the comments above regarding coarse graining).
Nevertheless, we note that the distribution obtained by
Aschwanden & Parnell (2002) is comparable to v(/)P(/) for
our model. For our model we have v(/)P(I) < =2, so the
power-law dependence on / in the model is not very different
from Aschwanden & Parnell’s result.

The approach developed in this paper demonstrates how
global reconnection models might be reconciled with
observed solar flare statistics. In its current form, the physi-
cal elements provided by reconnection theory are rudimen-
tary, which in part is due to our incomplete understanding
of energy storage and release in three-dimensional magnetic
reconnection. As reconnection solutions are refined, it is
expected that new results can be incorporated into this
model to provide a more complete description of flare
phenomena.

REFERENCES

Aschwanden, M. J., & Parnell, C. E. 2002, ApJ, 572, 1048

Bentley, R. D., & Mariska, J. T., eds. 1996, ASP Conf. Ser. 111, Magnetic
Reconnection in the Solar Atmosphere (San Francisco: ASP)

Benz, A. O., & Krucker, S. 1998, Sol. Phys., 182, 349

Berger, M. A. 1994, Space Sci. Rev., 68, 3

Boffetta, G., Carbone, P., Giuliani, P., Veltri, P., & Vulpiani, A. 1999, Phys.
Rev. Lett., 83, 4662

Brown, J. C., et al. 1994, Sol. Phys., 153, 19

Charbonneau, P., McIntosh, S. W., Liu, H.-L., & Bogdan, T. J. 2001, Sol.
Phys., 203, 321

Craig, 1. J. D. 2001, Sol. Phys., 202, 109

Craig, 1. J. D., Fabling, R. B., Heerikhuisen, J., & Watson, P. G. 1999, ApJ,
523,838

Craig, 1. J. D., & Wheatland, M. 2002, Sol. Phys., 211, 275

Crosby, N. B., Aschwanden, N. J., & Dennis, B. R. 1993, Sol. Phys., 143,
275

Dmitruk, P., Gémez, D. O., & DeLuca, E. E. 1998, ApJ, 505, 974

Georgoulis, M. K., Velli, M., & Einaudi, G. 1998, ApJ, 497, 957

Gorbachev, V. S., & Somov, B. V. 1988, Sol. Phys., 117, 77

Kucera, T. A., Dennis, B. R., Schwartz, R. A., & Shaw, D. 1997, AplJ, 475,
338

Lau, Y.-T., & Finn, J. M. 1990, ApJ, 350, 672

Litvinenko, Y. E. 1998, Sol. Phys., 180, 393

Litvinenko, Y. E., & Craig, 1. J. D. 2000, ApJ, 544, 1101

Lu, E. T., & Hamilton, R. J. 1991, ApJ, 380, L89

Lu, E. T., Hamilton, R. J., McTiernan, J. M., & Bromund, K. 1993, ApJ,
412,841

Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., & Ogawara, Y. 1994,
Nature, 371, 495

McClymont, A. N., & Canfield, R. C. 1983, ApJ, 265, 483

Moon, Y.-J., Choe, G. S., Park, Y. D., Wang, H., Gallagher, P. T., Chae,
J., Yun, H. S., & Goode, P. R. 2002, ApJ, 574, 434

Priest, E. R., & Forbes, T. G. 2000, Magnetic Reconnection: MHD Theory
and Applications (Cambridge: Cambridge Univ. Press)

Priest, E. R., & Titov, V. S. 1996, Philos. Trans. R. Soc. London A., 354,
2951

Shimizu, T. 1995, PAS]J, 47, 251

Somov, B. V., Kosugi, T., Hudson, H. S., Sakao, T., & Masuda, S. 2002,
AplJ, 579, 863

Sturrock, P. A., & Uchida, Y. 1981, ApJ, 246, 331

Wheatland, M. 2000a, ApJ, 532, 1209

.2000b, Sol. Phys., 191, 381

.2001, Sol. Phys., 203, 87

.2002, Sol. Phys., 208, 33

Wheatland, M., & Litvinenko, Y. E. 2002, Sol. Phys., 211, 255




