The role of honey in the management of wounds

A review of the evidence on the advantages of using honey as a topical wound treatment together with practical recommendations for its clinical use

The widespread development of antibiotic-resistant bacteria has generated an increasing interest in the use of alternate therapies for the treatment of infected wounds. In 1989, an editorial in the Journal of the Royal Society of Medicine, referring to reports on the successful use of honey in wounds, stated: 'The therapeutic potential of uncontaminated, pure honey is grossly underutilized.' This paper examines how the chemical and physical properties of honey may facilitate wound healing and offers guidance on practical issues related to clinical use.

Antibacterial action

A number of laboratory studies have demonstrated the significant antibacterial activity of honey. Using concentrations of honey ranging from 1.8% to 11% (v/v), researchers have achieved complete inhibition of the major wound-infecting species of bacteria. Other reports include: complete inhibition of a collection of strains of MRSA (1%-4% v/v honey); complete inhibition of 58 strains of coagulase-positive Staphylococcus aureus isolated from infected wounds (2%-4% v/v honey); complete inhibition of 20 strains of Pseudomonas isolated from infected wounds (5.5%-8.7% v/v honey). The antibacterial activity of honey has also been shown in vivo, with reports of infected wounds dressed with honey becoming sterile in 3-6 days, and 7-10 days.

Solutions of high osmolarity, such as honey, sugar and sugar pastes, inhibit microbial growth because the sugar molecules 'tie up' water molecules so that bacteria have insufficient water to support their growth. When used as dressings, dilution of these solutions by wound exudate reduces osmolarity to a level that ceases to control infection, especially if wounds are infected with Staphylococcus aureus (a common osmotolerant wound pathogen). Even when diluted by exudate to a point where its osmolarity no longer inhibits bacterial growth, honey's additional antibacterial components still ensure sterility.

Honey's antibacterial activity is thought to be due primarily to the presence of hydrogen peroxide, generated by the action of an enzyme that the bees add to nectar. Some floral sources provide additional antibacterial components by way of plant-derived chemicals in the nectar, such as flavonoids and aromatic acids. This partly explains the very large variation that is seen in the antibacterial potency of honeys from different floral sources. However, the variation results mainly from differences in the amount of hydrogen peroxide formed in the honeys, because nectar from some floral sources contains components that break down hydrogen peroxide or destabilise the enzyme that produces it. Exposure of honey to heat and light also deactivates the enzyme that produces hydrogen peroxide.

Deodorising action

The deodorisation of offensive odour from wounds is an expected consequence of honey's antibacterial action. The malodour is due to ammonia, amines and sulphur compounds, which are produced when infecting bacteria metabolise amino acids from proteins in the serum and necrotic tissue in a wound. The rapidity of honey's deodorising action is probably due to the provision of a rich source of glucose, which would be used by the infecting bacteria in preference to amino acids, resulting in the production of lactic acid instead of malodorous compounds.

Debriding action

The debriding action of honey has not yet been explained. It may be simply a...
result of the moist healing environment that is created by the honey dressing. Another possibility is that it is an enzymatic debridement process. There have been no reports of honey having any proteolytic activity, but the debridement action may be due to activation of pro-teases in wound tissues by hydrogen peroxide generated by the honey dressing. It has been reported that metalloproteinases can be activated by oxidation,24 and the inhibitors of serine proteases can be deactivated by oxidation.25

Anti-inflammatory action

Histological studies using experimental wounds in animals have shown that honey has an anti-inflammatory influence even when there is no infection present, this being seen as a reduction in the number of inflammatory cells infiltrating the wound tissue.26-29 This confirms clinical observations of reduction in inflammation,26,30 oedema,9,10,31-33 and exudation,9,10,26 and a soothing effect9,34,35 when honey is applied to wounds. This anti-inflammatory influence may be associated with the antioxidant content of honey, which has been found to be of a significant level when assayed as the capacity of honey to scavenge free radicals? Oxygen radicals are involved in various aspects of inflammation,28 and the application of antioxidants to burns has been shown to reduce inflammation.26

Stimulation of tissue growth

Honey promotes the formation of clean healthy granulation tissue7,10,12,20,30,32,37-39 and epithelialisation,9,10,20,33,40 as demonstrated histologically in animal studies.26-29 This may be due to the generation of hydrogen peroxide, low levels of which stimulate angiogenesis42 and the growth of fibroblasts43. Increased angiogenesis would provide more oxygen, which is a limiting factor for tissue regeneration.

Acidification of the wound may also be responsible: honey typically has a pH from 3 to 4, and topical acidification has been shown to promote healing44 by causing more oxygen to be released from haemoglobin.45 Also it has been suggested that the decreased turgor resulting from the application of honey may increase tissue oxygenation;10 the reduction in hydrostatic pressure in the interstitial fluid resulting from anti-inflammatory action would allow improved circulation in the tissues.

Another theory is that the nutrient content of honey may stimulate growth — it has a wide range of amino acids, vitamins and trace elements, in addition to large quantities of readily assimilable sugars. Studies in animals46 and humans47 have shown an association between topical application of nutrients to wounds and increased growth of granulation tissue.

In addition, the high osmolality of honey will draw fluid out from a wound bed. This outflow of lymph with its dissolved nutrients would also provide nutrition for regenerating tissue.

Clinical experience

Honey has been used to treat a number of different wound types, including surgical wounds,8,11,12,41,48-51 most notably vulvectomy wounds,8,11,12,41,48-51 wounds related to trauma,10,52-54 wounds associated with necrotising fasciitis,9,33 pressure ulcers,30,37,38,39,55 and venous and diabetic leg ulcers.29,59,60 However, it is in the management of burn wounds that the role of honey has probably received most attention. Investigations have shown honey to be more effective than other products29,30,34,61 in the management of partial-thickness burns. A retrospective study also has shown that honey is as effective as silver sulphadiazine in the management of burns.62

In prospective randomised controlled trials comparing honey with silver sulphadiazine-impregnated gauze in the treatment of fresh partial-thickness burns, honey was shown to produce an early subidence of acute inflammatory changes and quicker wound healing, better control of infection, better relief of pain, less irritation of the wound, less exudation, and a lower incidence of hypertrophic scar and post-burn contracture.39,63 The advantages of using honey in the management of wounds are listed in Table 1.

Guidelines for practice

Honey varies in consistency, from liquid to solid, with the glucose content crystallised. Solid honeys may be liquefied by warming and semi-solid honeys can often be liquefied by stirring. Heating above 37°C should be avoided, as this may burn the patient and will destroy the enzyme that produces hydrogen peroxide.

The honey should be spread evenly on the dressing pad rather than directly to the wound. The amount of honey required on a wound depends on the amount of exudation; the beneficial effects of honey on wound tissues will be reduced or lost if small quantities of honey become diluted by large amounts of exudate. Wounds with deep infection require greater amounts of honey to obtain an effective level of antibacterial activity by diffusion into the wound tissues.

Dressing technique

Typically, 30 mL of honey is used on a 10 cm x 10 cm dressing. Dressing pads impregnated with honey (such as those produced by REG International, New Zealand) (Figs 1 & 2) are the most convenient way of applying honey to surface wounds. Occlusive or absorbent secondary dressings are needed to prevent honey oozing out from the wound dressing (Fig 3). The frequency of dressing changes will also depend on how rapidly the honey is diluted by exudate. Daily dressing changes are usual, but up to three times daily may
be necessary. Exudation should be reduced by the anti-inflammatory action of honey, so the frequency of dressing changes should decline as treatment progresses. Deep wounds (Figs 4-6) or abscesses are most easily filled by using honey packed in 'squeeze-out' tubes, now available commercially (Actimel) (Fig 7).

Honey quality

Honeys from Leptospermum species (for example, manuka honey) can have a uniquely high level of a herbal antibacterial component that is particularly effective against some of the important wound-infesting bacteria. However, all honeys vary very much in their potency. There is a high chance of the activity being little better than that of sugar if a honey is taken at random. There is a large variance in the level of antibacterial activity even within honeys from the same floral source. Although ancient physicians were aware that honeys from particular sources had the best therapeutic properties, little regard is given to this in current clinical practice. Any honey to be used for infected wounds should therefore have its antibacterial activity assayed. A 'UMF' rating (equivalent to the concentration of phenol which has the same activity against *Staphylococcus aureus*) is being used by producers of manuka honey to show the potency of its plant-derived component.

Potential risk

There is no report of any type of infection resulting from the application of honey to wounds although there is no reference in reports of the clinical application of honey on open wounds being sterilised before use. Honey sometimes contains spores of clostridia, which poses a small risk of infection, such as wound botulism. Any risk can be overcome by the use of honey that has been treated by gamma-irradiation, which kills clostridial spores without loss of any of the honey's antibacterial activity."

Conclusion

This paper has described the chemical and physical properties of honey and has shown how these may have a positive influence on wound healing. Honey is an ideal substance to use as a wound dressing material. Its fluidity, especially when warmed, allows it to be spread and makes honey dressings easy to apply and remove. The osmotic action resulting from honey's high sugar content draws out wound fluid and thus dilutes the honey that is in contact with the wound bed, minimising adhesion or damage to the granulating surface of the wound when the dressing is removed. The high solubility of honey in water allows residual...
honey to be washed away by bathing44 Although the clinical experiences detailed in this paper show positive results, more quality randomised controlled trials are needed to provide evidence to encourage the use of honey in wound care.

REFERENCES