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ABSTRACT 
 

The n-butanol extract of aerial parts of Cordyline australis demonstrated antifungal 

activity.  n-Butanol and chloroform extracts of dried or fresh leaves of C. australis 

afforded a steroidal glycoside, which was identified as 5α-spirost-25(27)-en-3β-ol 3-

O{O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside}, saponin 1.  This 

spirostanol glycoside showed strong antifungal activity towards Trichophyton 

mentagrophytes and some aspecific activity and cytotoxicity against MRC5 cell. 

 

The chloroform extract of fresh leaves of C. australis yielded a second new 

spirostanol glycoside which was identified as 5α-spirost-25(27)-ene-1β,3β-diol 1-

{O-α-L-rhamnopyranosyl-(1→2)-β-D-fucopyranoside}, saponin 2.  The n-butanol 

extracts of senescent leaves of C. australis afforded a third new spirostanol glycoside 

that was identified as 5α-spirost-25(27)-ene-1β,3β-diol 1-{O-β-D- fucopyranoside, 

saponin 3. 

 

A mixture of two isomeric flavonoid glycosides was isolated from dried leaves of 

C. australis and shown to be a ca 1:1 mixture of isorhamnetin-3-O-{O-α-L-

rhamnopyranosyl-(1→6)-β-D-glucopyranoside}, 4 and isorhamnetin-3-O-{O-α-L-

rhamnopyranosyl-(1→6)-β-D-galactopyranoside}, 5. 

 

Three other known steroidal glycosides, β-sitosterol glucoside, 6, prosapogenin A of 

dioscin, 7, and trillin, 8 were also isolated from the leaves of C. australis.  The n-

butanol extract of dried stems of C. australis afforded (25S)-5α-spirostane-1β,3α-

diol 1-{O-β-D-glucopyranoside}, 9.  This spirostanol glycoside showed moderate 

cytotoxicity against Herpes simplex type I virus (ATCC VR733) and Polio Virus 

Type I (Pfiser vaccine strain). 
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CHAPTER ONE 
 

 

General Introduction 
1.1 Saponins 

 

Saponins are one of the biggest classes of compounds in natural products chemistry.  

The classical definition of saponins is based on their surface activity.  Many 

saponins have detergent properties. 1-7.  ‘Saponin’ comes from the Latin word sapo 

meaning soap 1,2.  Saponaria officinalis (common name soapwort) is an example of 

a saponin containing plant that has been employed for hundreds of years, as a 

natural soap. 

Saponins occur in nature as glycosides: that is they contain a sugar moiety linked to 

an aglycone.  The aglycone or non-saccharide portion of the saponin molecule is 

called the genin or sapogenin or sometimes both terms are used in the same  

article 2,5,6,8.  Depending on the type of sapogenin or genins present, the saponins 

can be divided into three major classes, namely, 

1. Triterpene glycosides (Figure 1.1) 

2. Steroidal glycosides (Figure 1.2) 

3. Alkaloid glycosides (Figure 1.3) 
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Figure 1.1 Typical structure of a triterpene glycoside 
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Figure 1.2 Typical structure of a steroidal glycoside 
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Figure 1.3 Typical structure of an alkaloid glycoside 

 

Saponins are widely distributed in the plant and marine animal kingdoms 1-3,5,6,9-12.  

A large number of saponins are biologically active 3,9-11,13-32.  Despite their diverse 

chemistry, saponins have some common characteristic properties.  These include: 

1. Bitter taste 

2. Formation of stable foams in aqueous solution 

3. Hemolysis of red blood cells 

4. Toxicity to cold-blooded animals such as fish, snails, insects, etc. 

5. An ability to interact with bile acids, cholesterol, or other 3β-

hydroxysteroids in aqueous of alcoholic solution to form mixed micelles 

orcoprecipitates 1,2,4,6,11,12,18. 
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A number of plants consumed by humans (for nutrition) contain saponins.  

Examples of plant species which contain triterpene saponins include many of the 

edible beans, such as navy bean, kidney bean and green bean varieties of Phaseolus 

vulgaris, silver beet and sugar beet varieties of Beta vulgaris, spinach (Spinacea 

olearacea), peanuts (Arachis hypogaeae), quinua (Chenopodium quinoa), tea (Thea 

sinensis), licorice (Glycyrrhiza glabra) and ginseng (Panax spp).  Examples of 

plants which contain steroidal saponins include asparagus (Asparagus officinalis), 

oats (Avena sativa), potatoes and tomatoes (Solanum spp.) and garlic (Allium 

sativum) 5,12. 

 

Recent publications have described the importance of spirostanes and furostanes 

(steroidal sapogenins) and their glycosides (steroidal saponins) not only as 

economically important raw materials convertible into various steroid hormonal 

drugs 33-36, but also as biologically active materials having independent value 3,9,12.  

Anticancer and cytotoxicity 15,22,29,32,37-43, antitumour 21,27,30,38,44,45, antiinflamatory 

and antioxidant 26,46-48, antiviral 25, antifungal and antimicrobial 20,49, molluscicidal 
50,51, antihypercholesteremic 28,52-55 and as a plant growth stimulant 56 activities have 

been reported for steroidal glycosides. 

 

 

 

1.2 Steroidal Sapogenins and Saponins 

Steroidal saponins are found in relatively limited sections of the Plant Kingdom.  

The order Liliales, comprising the Families Liliaceae, Amaryllidaceae and 

Dioscoreaceae (Figure 1.4) are the main plant groups in which these compounds 

are found.  An exception is digitonin, a well known saponin found in Digitalis 

lanata, family Scrophulariaceae 7,57. 
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Order Liliales

Family Liliaceae Amaryllidaceae Dioscoreaceae

Genus Yucca Agave Dioscorea
 

 

Figure 1.4 Distribution of steroidal saponins 

 

 

Steroidal saponins or steroidal glycosides can be divided into three main classes, 

depending on what classes of steroidal sapogenins or aglycones they are derived 

from.  Over 100 steroidal sapogenins are known and most of them possess 

spirostane or furostane skeletons (Figure 1.5).  The cholestane skeleton is also 

found, but only rarely 1,2. 
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Figure 1.5 Common classes of steroidal sapogenins 
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In all cases the C-18 and C-19 angular methyl groups are β-orientated (on the upper 

face of the molecule) while the C-21 angular methyl group is α-orientated.  There is 

sometimes a 5(6)-double bond.  Sapogenins are mostly hydroxylated at C-3.  There 

may also be hydroxyl groups at C-1, C-2, C-5, C-6, and/or C-11 1,2,7,8. 

 

Spirostanes are characterized by the presence of a ketospiroketal moiety (rings E/F) 

and may be subdivided into 25R- or 25S- series (Figure 1.6). 
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Figure 1.6 Partial structures 25R- and 25S-spirostanes 

 

The 25S- (or 25β-) series and the 25R- (or 25α-) series were formerly referred to a 

neo-sapogenins and iso-sapogenins respectively.  The C-25 methyl group is axially 

orientated in 25R- (or iso-) sapogenins and equatorially orientated in 25S- (or neo-) 

sapogenins 1,2,7,8,17,58. 

 

Asymmetric centres occur at C-5, C-25, C-20, and C-22.  Rings B/C and C/D are 

trans linked, while rings D/E are cis linked.  Depending on whether rings A/B are 

trans or cis linked, H-5 is α- or β- oriented, as in tigogenin (5α-H) or smilagenin 

(5β-H) respectively 1,2,7,8,17,58  (Figure 1.7). 
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Figure 1.7 Structure (and partial structure) of 5α- and 5β-spirostanes 

 

 

Furostane glycosides have an opened F ring and a sugar moiety attached at C-26.  

Generally furostane glycosides are bidesmodic since other glycoside residues are 

generally also attached to ring A (most commonly at C-3).  Marker and Lopez 59 

first postulated the existence of open chain glycosides of this type in 1947.  

Enzymatic or acid hydrolysis of the sugar in position C-26 leads to spontaneous 

ring closure, producing a spirostanol derivative.  The reverse process, ring opening, 

has been observed in cell cultures 58,59. 
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Figure 1.8 Conversion of a furostanol glycoside into a spirostane by 

enzymatic hydrolysis of the 26-glycoside 

 

 

Isolation procedures to obtain pure saponins or glycosides are challenging.  

Structural elucidation of saponins is based on determinations of: 

1. The structure of the aglycone. 

2. The composition and sequence of the monosaccharides in the carbohydrate 

moiety. 

3. The location of linkages between monosaccharide units. 

4. The anomeric configuration of each glycosidically linked monosaccharide 

unit. 

5. The location of the carbohydrate moiety on the aglycone. 



 8

Different physico-chemical, and instrumental methods such as liquid-solid and 

liquid-liquid extraction, TLC, flash chromatography, open-column chromatography 

IR, 1H NMR and 13C NMR spectroscopy, GLC, HPLC, GC and LC-MS, have been 

widely used for structural elucidation of sapogenins and saponins 6,60-73.  13C NMR 

spectroscopy is an integral part of the procedure for establishing the structure of 

new steroidal sapogenins and saponins.  The first investigations of the 13CNMR 

spectra of steroidal sapogenins were reported by Eggert and Djerassi 74.  

Subsequently numerous authors, including Agrawal et al 71,75-82 have reported the 
13C NMR data for steroidal saponins. 

 

 

 

1.3 The Genus Cordyline 

 

The name Cordyline is derived from the Greek “kordule’ meaning “club” to refer 

the form of the flower buds and was first reported by Adanson in 1768 83.  The 

genus Cordyline comprises about 20 species and is distributed in South-east Asia, 

Australia, New Zealand and some parts of South America.  These are evergreen, 

long-leaved trees and shrubs 84,85.  The New Zealand flora includes five native and 

one adventive representatives of the genus Cordyline, which are often referred to as 

cabbage trees.  The Māori generic name for Cordyline species is Ti.  Species listed 

in the Flora of New Zealand 85 are C. terminalis (L.), C. australis (Forst.f.) Endl (Ti 

kāuka [kōuka]),C. banski (Hook.f.), (forest cabbage tree, Ti ngahere or Ti parae),  

C. indivisa (Forst.f.), (mountain cabbage tree or broad leaved cabbage tree, Ti toii 

or Toi), C. kaspar (W.R.B.), (Three Kings Islands forest cabbage tree) and C. 

pumilio (Hook f.), (dwarf cabbage tree, Ti kohara or Ti papa) 85. 

 

C. australis.Forester f., common names New Zealand cabbage tree, Giant Dracaena, 

Grass Palm, Sago Palm, Palm Lily, Ti kōuka, is found in New Zealand.  This 

species is a tree plant which may reach 17-20 m.  It may have a single trunk or 

several trunks which are usually branched.  The bark is rough and corky.  The 

leaves are narrow, typically 0.5-1 m long and 4-9 cm wide and the inner ones are 

strongly sweet scented.  The fragrant white flowers occur in panicles and the berries 

are bluish-white 84,86-88 (Figure 1.9). 
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Figure 1.9 Cabbage tree, C. australis 

 

The occurrence of steroidal sapogenins and saponins in the Genus Cordyline is 

reviewed in Section 1.3.1 below. 

 

 

 

1.3.1 Steroidal Sapogenins from Genus Cordyline 

 

The first reports of the presence of steroidal sapogenins in Cordyline species 

originated from the pioneering work of Marker et al 33 and Wall et al 34 who 

investigated natural plant sources of steroidal sapogenins, such as smilagenin and 

sarsasapogenin, as substrates for the commercial synthesis of steroidal hormones.  

Further studies concerning the distribution of steroidal sapogenins in the genus 
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Cordyline have been carried out by Jewers et al 89,90, Blunden et al 68,91-94and Griffin 

et al 83,95.  Extracts of the leaves of C. australis obtained from plants grown in 

New Zealand and the United Kingdom gave a low yield of steroidal sapogenins 92.  

The major compound was characterized as tigogenin based on TLC and IR data, 

while neotigogenin, diosgenin, yamogenin and brisbagenin were identified by TLC 

alone 92 (see Table 1.1, Table 1.2, Figure 1.10 and Figure 1.11). 

 

A New Zealand phytochemical survey 96 demonstrated the presence of steroidal 

saponins in extracts of C. terminalis, C. australis and C. pumilio.  

 

Table 1.1 Steroidal sapogenins in Cordyline spp. 92

Sapogenins australis banski indiviza manners/ 

girronie 

pumilio rubra stricta terminalis 

3-Epitigogenin - - ± - - + ++ - 

3-Epineotigogenin - - - - - ± + - 

Tigogenin + - ± - ± + ± - 

Neotigogenin ± - - - - - ± - 

Diosgenin ± ± - - - ± ± - 

Yamogenin ± + - - - ± ± - 

Smilagenin - - - - - - - ++ 

Sarsasapogenin - - - - - - - ++ 

Cannigenin - - - ± - ++ ++ - 

Cordylagenin - - - ± - - ++ - 

Brisbagenin ± ± ++ ++ ++ ± ± - 

Ruscogenin - + - - - ± ± - 

25S-Ruscogenin -  + - - - - - - 
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Table 1.2 Structural identification data of sapogenins from  

C. australis 33,92,94,97

Name of genin 

Formula/ 

Trivial name 

Rational name 

N 

C27H44O3  

Dry plant sample 

1 Tigogenin 25(R)-5α-spirostan-3β-ol leaf, stem, root, fruit 92,94,97

2 Neotigogenin 25(S)-5α-spirostan-3β-ol leaf, fruit 92,94

3 Epitigogenin 25(R)-5α-spirostan-3α-ol fruit 94

4 Epineotigogenin 25(S)-5α-spirostan-3α-ol fruit 94  

5 Smilagenin 25(R)-5β-spirostan-3β-ol leaf 33

 C27H44O4  

6 Brisbagenin 25(R)-5α-spirostane-1β,3β-diol leaf, fruit 92,94

7 Polygenin 25(S)-5α-spirostane-1β,3β-diol fruit 94

8 Gitogenin 25(R)-5α-spirostane-2α,3β-diol stem, root 97

 C27H42O3  

9 Diosgenin 25(R)-spirost-5-en-3β-ol leaf, stem, root, fruit 92,94,97

10 Yamogenin 25(S)-spirost-5-en-3β-ol leaf, fruit 92,94

 C27H42O4   
11 Australigenin 5α-spirost-25(27)-ene-1β,3β-diol fruit 94

12 Ruscogenin Spirost-5-ene-1β,3β-diol fruit 94

 C27H40O3  

13 Sceptrumgenin Spirosta-5,25(27)-dien-3β-ol fruit 94
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Figure 1.10 Monohydroxy steroidal sapogenins isolated from C. australis 
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Figure 1.11 Dihydroxy steroidal sapogenins isolated from C. australis  
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The finding of these 5α-spirostanes in C. australis 92 (Figure 1.10, Figure 1.11), 

contrasts with the report of the 5β-spirostane, smilagenin, in C. australis by Marker 

and Wall 33,34. 

 

A new steroidal sapogenin was isolated from the fruits of C. australis and 

characterized by IR, 1H NMR, and mass spectral data as 5α-spirost-25(27)-ene-

1β,3β-diol (australigenin) 94.  (Figure 1.11).  Thirteen other steroidal sapogenins 

have been identified in the fruits of C. australis including: polygenin, 1β-

hydroxycrabbogenin and sceptrumgenin 94 (Figure 1.10 and Figure 1.11). 

 

Mistry 97 has identified sapogenins in extracts obtained from the different parts of 

C. australis using GCMS and NMR methods.  Dry leaves, stems and roots of young 

cabbage tree were first extracted with hexane to recover free sapogenins.  

Subsequent extraction with methanol : water (4 : 1) was employed to recover 

steroidal glycosides.  Extracted steroidal glycosides were hydrolyzed with 1 mol/L 

HCl, methylated with diazomethane and acetylated using acetic anhydride-pyridine 

(1 : 1) to prepare them for GCMS analysis.  1H and 13C NMR spectra of the hexane 

extracts showed that only trace amounts of sapogenins were present in stem extracts.  

GCMS analyses showed that only the methanol : water extract of roots and the 

stems contained saponins, which were detected as the corresponding sapogenin 

acetates or diacetates.  A total of six acetylated sapogenins were detected.  Three 

were identified as the acetylated analogues of diosgenin, tigogenin and gitogenin 97. 

 

 

 

1.3.2 Steroidal Glycosides from Genus Cordyline 

Although many steroidal sapogenins have been determined in Cordyline spp., no 

steroidal saponins or glycosides appear to have been isolated until 1997 98.  The 

only reported isolation and structural determination of several saponins from 

Cordyline species, is that of Mimaki et al 98,99, who reported the isolation from  

C. stricta of several steroidal glycosides.  Structures of four new spirostanol and 

three new furostanol glycosides isolated from the dry leaves of C. stricta were 

determined by NMR spectroscopy and their acid hydrolysis products.  Each of the 

isolated compounds possesed a dihydroxy aglycone with a 3-α-O-glucopyranose 



 15

residue 98.  (Figure 1.12).  Three new spirostanol saponins and two new furostanol 

saponins were isolated from the fresh leaves of C. stricta.  Their structures were 

elucidated on the basis of spectroscopic analysis, including various 2D-NMR 

techniques, hydrolysis, and by comparison of spectral data determined for known 

compounds.  Two of the isolated saponins contained a new branched triglycoside 

moiety assigned as O-α-L-rhamnopyranosyl-(1→2)-O-{β-D-xylopyranosyl-

(1→3)}-β-D-xylopyranose with formation of an O-glycosidic linkage to C-1 of the 

aglycone 99 (Figure 1.13).  There are no published accounts of the isolation and 

structural elucidation of steroidal glycosides from C. australis. 
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1. (25S)-5α-spirostane-1β,3α-diol 3-O-β-D-glucopyranoside 
2. 25(27)-spirostene-1β,3α-diol 3-O-β-D-glucopyranoside 
3. (25S)-5-spirost-20-ene-1β,3α-diol 3-O-β-D-glucopyranoside 
4. (25R)-5α–spirostane-1β,3α, 25-triol 3-O-β-D-glucopyranoside 
5. 26-O-β-D-glucopyranosyl-22-O-methyl (25S)-5α-furostane-3α,22ξ,6-triol 3-O-β-D-

glucopyranoside 
6. 26-O-β-D-glucopyranosyl-22-O-methyl-(25S)-5α-furostane-1β,3α,22ξ,26-tetrol 3-O-β-D-

glucopyranoside 
7. 26-O-β-D-glucopyranosyl-5α-furost-20(22)-ene-1β,3α,26-triol 3-O-β-D-glucopyranoside 
8. 1β,3α-dihydroxy-5α-pregn-16-en-20-one 3-O-β-D glucopyranoside. 
 

Figure 1.12 Steroidal saponins isolated from the dry leaves of C. stricta 
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(1→3)]-β-D-fucopyranoside} 
2. (25S)-5α-spirostane-1β,3α-diol 1-O-{α-L-rhamnopyranosyl-(1→2)-[β-D-xylopyranosyl-

(1→3)]-β-D-fucopyranoside} 
3. 5α-spirost-25(27)-ene 1β,3α-diol 1-O-{α-L-rhamnopyranosyl-(1→2)-[β-D-xylopyranosyl- 

(1→3)]-β-D-fucopyranoside} 
4. 26-O-β-D-glycopyranosyl-22-O-methyl-5α-furost-25(27)-ene 1β,3β,22ξ,26-tetraol 1-O-{α-

L-rhamonopyranosyl-(1→2)-O-{β-D-xylopyranosyl-(1→3)}-β-D-fucopyranoside} 
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Figure 1.13 Steroidal saponins isolated from the fresh leaves of C. stricta 
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1.3.3 Traditional Maori Use of Cordyline spp. 

 

C. australis (or Ti) was used by Maori in a variety of applications 86,87,100.  For 

traditional usage of Cordyline species for medicinal purposes, see Chapter Four.  

Maori commonly used three plants, flax (Phormium tenax), mountain flax 

(P. cookianum) and cabbage tree (C. australis) as sources of dye.  C. australis 

invariably afforded a black dye 86,101,102. 

 

The fiber from the leaves of Ti was used for making sandals, baskets, bird snares, 

sieves, thatch for roofs, rope and cord.  Leaves (rau ti) or the tender young shoots 

were eaten raw, or roasted in the embers.  Pith (commonly called Ti), was dried in 

the sun and cooked to make porridge 86,88,100-103.  Roots of Ti were used for making 

sweet drinks.  Sugar was extracted by cooking in an earth oven called an umu-ti 
86,104.  Large pits were used to steam the roots.  The handling of Ti was always 

accompanied by ceremonial protocols 86,87. 

 

 

 

1.3.4 Other Classes of Compounds from C. australis 

 

The Maori tradition of recovering sugar from the roots of the cabbage tree 

(Cordyline spp.) 86-88,100-102 has been revived by Fankhauser and Brasch 104,105.  

High-fructose syrup can be obtained from stems and roots of C. australis and the 

possible use of the syrup and the plant has been discussed 105.  Glucofructo- 

furanan comprises 60 % of the dry weight of the roots of C. australis 106.  

 

Seed fats of some New Zealand and Australian monocotyledons, eg. C. australis, 

P. tenax, and other plants showed high level of linoleic acid 107-109.  Sterols and 

flavonols (quercetin and kaempherol) have been detected in the seeds and flowers 

of C. indivisa 110-112.  Fresh flowers of C. australis yielded 0.418% volatile oil, 

containing α- pinene, camphene, β-pinene, etc 113.  Formaldehyde, as its dimedone 

adduct, formaldemethone, has been detected by TLC and HPLC in C. australis 114. 
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CHAPTER TWO 
 

Methods and Materials 
 

 

2.1 General Experimental Procedures  

 

2.1.1 Column Chromatography 

 

Column chromatography was carried out on Merck silica gel 60 (200 - 400 mesh).  

TLC was carried out on Merck silica gel 60 F254 (0.20 mm layer) plates using CHCl3 

- MeOH - H2O (65 : 35 : 7) or CHCl3 - CH3OH (4 : 1) as the developing solvents.  

Spots were visualised by spraying with a solution of 1% vanillin in 50% H3PO4 115,116 

or H2SO4 117 and/or with Erlich reagent 118,119 followed by heating at 100-115oC.  

 

 

 

2.1.2 Melting Points 

 

Melting points were determined using a Reichert-Jung micro-melting point apparatus 

and are uncorrected.  

 

 

 

2.1.3 Nuclear Magnetic Resonance (NMR) Spectra 

 

1D and 2D-NMR spectra (1H, 13C, DEPT135, H,H-COSY, H,H-TOCSY, H,H-

ROESY, g-HSQC, g-HMBC, and NOE-difference experiments) were determined 

for pyridine-d5 solutions using a Bruker Advance DRX400 spectrometer and 

standard XWIN-NMR pulse programs.  Chemical shifts are given in δ ppm values 

with reference to tetramethylsilane (TMS) as an internal standard based on 

pyridine-d5 (1H at 8.72, 7.57, 7.21 ppm and 13C at 149.50, 135.50, 123.50 ppm). 
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Typical acquisition and processing conditions for Bruker DRX 400 spectra were as 

follows: 

 
1H NMR SW = 5593 Hz, 90o pulse, SI = 32 K, TD = 32 K, Acq = 2.9 sec. 

D1 = 0.1 s, LB = 0. 
13C NMR SW = 24691 Hz, 70o pulse, SI = 32 K, TD = 32 K, Acq = 0.664 

sec, D1 = 1 s, LB = 2. 

DEPT135 SW = 24154 Hz, SI = 32 K, TD = 32 K, D1 = 1 sec, D2 = 1/2J = 

3.8 ms, Acq = 0.664 s, LB = 2. 

COSY SW1 = SW2 = 2688 Hz, SI1 = 1 K, TD1 = 400, SI2 = 1 K, TD2 = 

1 K, D1 = 0.25 s, Acq = 0.19 s, MC2 = QF, SSB1 = SSB2 = 0, 

WDW1 = WDW2 = SINE. 

TOCSY SW1 = SW2 = 2723 Hz, SI1 = 1 K, TD1 = 320, SI2 = 1 K, TD2 = 

1K, D1 = 0.4 s, mixing time = 150 ms, Acq = 0.188 sec, MC2 = 

TPPI, SSB1 = SSB2 = 2, WDW1 = WDW2 = QSINE. 

ROESY SW1 = SW2 = 2874 Hz, SI1 = 1 K TD1 = 400, SI2 = 1 K, TD2 = 

1K, D1 = 1 s, P15 = 200 ms (spin lock time, with PL1 = 25 db), 

Acq = 0.178 s, MC2 = TPPI, SSB1 = SSB2 = 2, WDW1 = 

WDW2 = QSINE. 

HMQC SW1 = 15092 Hz, SW2 = 2723 Hz, SI1 = 1K, TD1 = 400, SI2 =  

1 K, TD2 = 1 K, D1 = 0.4 s, D2 = 1/2J = 3.45 ms, Acq = 0.188 s, 

MC2 = TPPI, SSB1 = SBS2 = 2, WDW1 = WDW2 = QSINE. 

HMBC SW1 = 19118 Hz, SW2 = 2723 Hz, SI1 = 1 K, TD1 = 160, SI2 = 

1 K, TD2 = 1 K, D1 = 0.7 sec, D2 = 1/2J = 3.45 ms, Acq = 0.188 

s, MC2 = QF, SSB1 = SSB2 = 0, WDW1 = WDW2 = SINE. 

 

 

 

2.1.4 GCMS 

 

SIM-GCMS analyses were performed using a 25 m x 0.22 mm id HP-5 (Hewlett 

Packard) column installed in a HP6890 GC interfaced to a HP5973 mass selective 

detector.  
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Experimental methods for GCMS analyses were as reported by Wilkins et al 70, 

with the following modifications of operating conditions to the oven temperature 

program 200oC (0.5 min) then 35oC/min to 250oC and then 10oC/min to 295oC 

(20 min). 

 

 

 

2.1.5 IR Spectra 

 

IR spectra were obtained using samples prepared as KBr discs and recorded using a 

Perkin Elmer, Model 1600, FT-IR spectrophotometer.  

 

 

 

2.1.6 HPLC 

 

Preparative HPLC was performed using three Waters Delta-Pak C18 25 x 100 mm 

Radial-Pak cartridges eluted with MeOH - H2O (10 mL/min).  Analytical HPLC was 

performed using a Waters 8 x 100 mm Radial Pak C18 column eluted with MeOH - 

H2O (1 mL/min). Detection was by refractive index and by UV.  

 

 

 

2.1.7 ESMS 

 

The molecular formulae was determined using an LCQ Advantage Thermo Finnigan  

MS instrument operating with an Electrospray Ionisation Source (ESI).  Sample 

solutions were introduced by direct infusion using a syringe pump. 
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2.1.8 Biological Screening 

 

Biological screening was performed at the Department of Chemistry, University of 

Canterbury, New Zealand.  Antimicrobial (bacterial and fungal), antiviral and 

antitumuor assays were carried out.  Escherichia coli, Bacillus subtilis and 

Pseudomonas aeruginosa were used for antibacterial assays.  Candida albicans, 

Trichophyton mentagrophytes and Cladosporium resinae were used for antifungal 

assays.  The antiviral assay used BSC-1 cells (African Green Monkey kidney), 

infected with Herpes simplex type 1 virus (ATCC VR 733) or Polio virus type 1 

(Pfiser vaccine strain).  P388 (Murine Leukemia) cells were used for the antitumor 

cytotoxicity assay. 

Parazitoze screening was performed at the Tibotec Pharmaceutical Research and 

Development Company in Geneva Switzerland.  Antiprotozoal (antimalaria), 

antitrypanosoma and cytotoxicity assays were carried out.  Plasmodium falciparum 

was used for antimalaria assay.  Trypanosoma brucei (Human African 

Trypanosomiasis, HAT, or sleeping sickness), Trypanosoma cruzi (Chagas disease) 

and Trypanosoma Leishmania (Leishmaniasis) were used for antitripanosoma 

assays respectively.  MRC-5 Line (Human Fetal Lung Fibroblast Cells) was used for 

the antiviral or cytotoxicity assay. 

 

 

 

2.2 Plant Material  

 

Fresh and senescent leaves (from the ground beneath the tree) and stems of 

C  australis were obtained from The University of Waikato campus grounds, 

Hamilton, New Zealand in June 2000.  The trees were identified as Cordyline 

australis (Forst.f.) Endl by Professor Warwick Silvester of the Biology Department 

at The University of Waikato.  Voucher specimens are held by the University of 

Waikato Herbarium (voucher number WAIK18599). 
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2.3 Extraction Procedure for Preliminary GSMS  

 

2.3.1 Extraction Procedure for Obtaining Free Sapogenins for GCMS 

 

Freeze-dried sub-samples of fresh, dried and senescent, leaves (ca 0.5 g) were 

extracted with CH2Cl2 for 8 h using a Soxhlet apparatus.  The CH2Cl2 extract was 

evaporated and acetylated for 16 h using a 1 : 1 mixture of pyridine and acetic 

anhydride (1 mL), after which the mixture was diluted with HCl (1 M, 5 mL) and 

extracted with CH2Cl2 (3 x 2 mL).  The CH2Cl2 extracts were filtered through an 

alumina mini-column (Brockman Grade II) packed in a Pasteur pipette.  The column 

was washed with a further volume of CH2Cl2 (2 mL) and the combined filtrates, in a 

10 mL glass vial, were evaporated to dryness.  The dried extract was taken up in 

CH2Cl2 (2 mL) and tigogenin propionate (200 μL of a 0.094 mg/mL solution in 

CH2Cl2) was added as an internal standard. SIM-GCMS analyses were performed as 

described in Section 2.1.4. 

 

 

 

2.3.2 Extraction Procedure for Obtaining Conjugated Sapogenins for 

GCMS 

 

The CH2Cl2 extracted plant materials (see Section 2.3.1 above) were extracted with 

MeOH for 8 h using a Soxhlet apparatus.  The MeOH extract was evaporated to 

dryness using a rotary evaporator and HCl (0.5 M, 5 mL) was added and the 

resulting solutions were transferred to a 30 mL screw capped boiling tubes which 

placed in water bath (95oC) and maintained at this temperature for 60 min, after 

which the hydrolysate solutions were cooled and extracted with CH2Cl2 (3 x 2 mL).  

The CH2Cl2 extracts were filtered through an alumina mini- column (Brockman 

Grade II) packed in a Pasteur pipette.  The column was washed with a further 

volume of CH2Cl2 (2 mL) and the combined filtrates, in a 14 mL sample vial, were 

evaporated to dryness.  The dried extract was taken up in CH2Cl2 (2 mL) and 

acetylated as described in Section 2.3.1 above.  SIM-GCMS analyses were 

performed as described in Section 2.1.4. 
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2.4 Bulk Extraction of Saponins from Dried Leaves and Stems and 

Senescent Leaves of C. australis  

 

Powdered, air-dried leaves and stems and senescent leaves were extracted for 18 h 

with CHCl3 using a Soxhlet apparatus to remove lipophilic compounds, after which 

they were extracted with MeOH - H2O (4 : 1; 4 x 250 mL).  The MeOH - H2O 

extracts were concentrated to dryness using a rotary evaporator.  The dry extracts 

were dissolved in water (ca 100-150 mL) and further extracted with n-BuOH (4 x 

250 mL).  The combined n-BuOH extracts were evaporated to dryness using a rotary 

evaporator to obtain a crude saponin extract. 

 

 

 

2.5 Bulk Extraction of Saponins from Fresh Leaves of C. australis 

 

Fresh leaves of C. australis (80 g) were ground in a blender and extracted with hot 

methanol (4 x 300 mL).  The extract was taken to dryness under reduced pressure and 

the dry extract was partitioned between CHCl3 (100 mL) and H2O (150 mL).  The 

H2O layer was extracted with n-butanol (4 x 250 mL).  The combined n-butanol 

extracts were taken to dryness under reduced pressure to obtain a crude saponin 

extract. 

 

 

 

2.6 Isolation of Steroidal and Flavonoid Glycosides from Dried Leaves of  

C. australis  

 

The n-BuOH extract (3 g) was chromatographed on a silica gel column (3 x 100 cm) 

using 1000 mL portions of CHCl3 - MeOH (20 : 1, 15 : 1, 10 : 1, 4 : 1) and 1500 mL 

CHCl3 - MeOH - H2O (65 : 35 : 7); 20 x 100 mL (fractions 1-20) and 80 x 40 mL 

fractions (fractions 20-100) were collected.  TLC analyses indicated the presence of 

extractives (possibly glycosides) in fractions 33-36 (bright yellow spot, Rf 0.85 and 

Rf 0.35 in CHCl3 - CH3OH - H2O (65 : 35 : 7) and CHCl3 - CH3OH (4 : 1) 

respectively.  Similarly fractions 43 - 73 gave a dark orange spot, (Rf 0.58 and 0.28) 
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and fractions 74-110 gave an orange-brownish spot, (Rf 0.42 and 0.20).  On standing, 

crystalline material precipitated from fractions 33-36.  

 

The precipitated material was identified as 5α-spirost-25(27)-en-3β-ol 3-O{O-α-L-

rhamnopyranosyl-(1→2)-β-D-glucopyranoside}, 1, (30 mg), m.p. 253-256oC, IR 

λKBr
max 3422 (OH), 2930 (CH), 1649, 1449, 1372, 1233, 1172, 1133, 1044, 922, 877, 

833, 811 cm-1. 1H NMR (400 MHz) δ 0.83 (s, H3-18), 0.87 (s, H3-19), 1.12 (d, J = 7 

Hz, H3-21), 5.05 (1H, d, J = 7.6 Hz, Glc H-1'), 6.33. (1H, d, J = 1.6 Hz, Rha H-1''), 

other 1H and 13C NMR signals, see Table 3.3.  ESMS (-20 V) m/z 1443 [M2-H]- (55), 

1479 [M2+35Cl]- (100), 1481 [M2+37Cl]- (90), 721 [M-H]- (83), 757 [M+35Cl]- (14), 

767 [M+COOH]- (18), 781 (18, [M+CH3COOH]-(18). 

 

Evaporation of fractions 43-73 afforded a light yellow amorphous solid, a portion of 

which (0.8 g) was rechromatographed on a silica gel column (2 x 60 cm) using 3 x 

1000 mL portions of mixture of CHCl3 - MeOH - H2O (65 : 35 : 7) as a mobile phase. 

30 x 100 mL fractions were collected.  TLC analyses showed the presence of a UV 

active substance (or substances) in fractions 7-20.  

 

Preparative HPLC of fractions 7-20 afforded a 3 : 4 mixture of isorhamnetin-3-O-{O-

α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside} (isorhamnetin rutinosa) 120,121, 4, 

and isorhamnetin-3-O-{O-α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranoside} 

(isorhamnetin robinobiosa) 120,121, 5, as a yellow, amorphous solid, m.p. 180-189oC, 

λmax(MeOH) 257, 369 nm.  Repeated efforts to separate 4 and 5 by HPLC were not 

successful.  

 

Isorhamnetin-3-O-{O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside} 4 had 1H 

NMR (pyridine-d5, δ) 3.93 (3H, s, 3'-OMe), 3.76 (1H, d, J= 2.1 Hz, 6-H), 6.73 (1H, 

d, J = 2.0 Hz, 8-H), 7.30 (1H, d, J = 8.4 Hz, 5'-H), 7.91 (1H, dd, J = 8.4 Hz, 6'-H), 

8.38 (1H, d, J = 2.1 Hz, 2'-H), 6.16 (1H, d, J = 7.5 Hz, Glc, H-1'), 5.25. (1H, d, J = 

1.2 Hz, Rha H-1'').  13C NMR data is reported in Table 3.13. 

 

Isorhamnetin-3-O-{O-α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranoside} 5 had 
1H NMR (pyridine d5, δ ppm) 4.03 (3H, s, 3'-OMe), 3.78 (1H, d, J = 2.1 Hz, H-6), 

6.74 (1H, d, J = 2.0 Hz, 8-H), 7.27 (1H, d, J = 8.4 Hz, H-5'), 7.82 (1H, dd, J = 8.4 Hz, 
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6'-H), 8.61 (1H, d, J = 2.1 Hz H-2'), 6.22 (1H, d, J = 7.8 Hz, Gal H-1'), 5.33 (1H, d, J 

= 1.3 Hz, Rha H-1'').  13C NMR data is reported in Table 3.13. 

 

 

 

2.7 Isolation of Steroidal Glycosides from Fresh Leaves of C. australis 

 

The CHCl3 extract (6 g) of fresh leaves of C.australis was chromatographed on a 

silica gel column (4 x 100 cm) using 2000 mL portions of mixtures of CHCl3 - 

MeOH (20 : 1, 15 :1 , 10 : 1) as a mobile phase.  60 x 100 mL fraction were collected 

and analysed by TLC Fractions 36-50 (0.9 g) were rechromatographed on a silica gel 

column (2 x 50 cm) using CHCl3 - MeOH (5 : 1) as the mobile phase.  50 x 15 mL 

fractions were collected.   

 

Fraction 33 afforded 5α-spirost-25(27)-ene-1β,3β-diol 1-O{α-L-rhamnopyranosyl-

(1→2)-β-D-fucopyranoside} (2) (15 mg) as a white amorphous solid, TLC Rf 0.34 

CHCl3 - CH3OH (4 : 1), 1H NMR (400 MHz) δ 0.81 (s, H3-18), 1.21 (s, H3-19), 1.02 

(d, J = 6.9 Hz, H3-21), 4.68 (1H, d, J = 7.8 Hz, Fuc H-1'), 6.31 (1H, d, J = 1.6 Hz, 

Rha H-1''), other 1H and 13C NMR, see Table 3.6.  ESMS (+20 V) m/z 1467 [M2Na]+ 

(100); MS2 (from m/z 1467) m/z 745 [MNa]+; MS3 (from m/z 745) m/z 599 [MNa-

Rha]+.  Fraction 36 afforded saponin 1 (60 mg), TLC Rf 0.3 CHCl3 - CH3OH (4 : 1).  

The structure of 1 was confirmed by 13C NMR data reported in Table 3.3. 

 

 

 

2.8 Isolation of Steroidal Glycosides from Senescent Leaves of C. australis 

(Route 1) 

 

The n-BuOH extract (2 g) of senescent leaves of C. australis, prepared as described 

above, was chromatographed on a silica gel column (3 x 80) using 500 mL portions 

of mixture of CHCl3 - CH3OH (25 : 1), 2 (10 : 1), 5.5 (4.5 : 1) and CHCl3 - CH3OH - 

H2O (32 : 18 : 4). 100 x 20 mL fractions and 60 x 50 mL fractions were collected.  
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Fractions 32-39 afforded  β-sitosterol glycoside 6; m.p. 284oC (decomp) 122, Rf 0.68 

CHCl3 - CH3OH (4 : 1), IR λKBr
max 3400 (OH), 2900 (CH), 1640 (C = C) cm-1.  1H 

NMR (400 MHz) 0.68 (s, H3-18), 0.95 (s, H3-19), 1.00 (d, J = 6.5 Hz, H3-21), 0.87 

(d, J = 6.6 Hz, H3-26), 0.89 (d, J = 7.0 Hz, H3-27), 0.91 (d, J = 7.5 Hz H3-29).  The 
13C NMR shifts of C-5, C-6, C-18, C-19, C-21, C-26, C-27, C-29 and C-1' in 

pyridine-d5 occurred at 140.9, 122.0, 12.0, 19.4, 19.0, 19.2, 20.0, 12.2, and 102.6 

ppm respectively.  Other NMR spectral data are recorded in Table 3.15 and were in 

accordance with literature 122. 

 

Fractions 40-46 were rechromatographed on a silica gel column (1 x 30 cm) using 

CHCl3 - CH3OH (4 . 5 : 1) as an eluant. 20 x 20 mL fractions were collected.  

 

Fractions 3-8 afforded 5α-spirost-25(27)-ene-1β,3β-diol 1-O{β-D-fucopyranoside}, 

3, (20 mg); Rf 0.67 CHCl3 - CH3OH (4 : 1), IR λKBr
max 3448 (OH), 2923 (CH), 

1654,1457, 1045, 928, 848 cm-1 .  1H NMR (400 MHz) δ 0.85 (s, H3-18), 1.03 (s, H3-

19), 1.05 (3H, d, J = 6.9 Hz, H3-21), 4.81 (1H, d, J = 7.5 Hz, Fuc, H-1').  13C NMR 

spectral data see Table 3.9.  ESMS (+20 V) m/z 1175 [M2Na]+ (100).   

 

Fractions 82-91 (60 mg) afforded 5α-spirost-25(27)-en-3β-ol 3-O{O-α-L-

rhamnopyranosyl-(1→2)-β-D-glucopyranoside}, 1.  The structure of 1 was confirmed 

by 13C NMR. 

 

 

 

2.9 Isolation of Steroidal Glycosides from Senescent Leaves of C. australis  

(Route 2) 

 

Powdered air-dried senescent leaves (100 g) were extracted with MeOH for 18 h 

using a Soxhlet extractor.  The MeOH extract was concentrated to dryness using a 

rotory evaporator and partitioned between EtOAc and H2O (3 x 200 mL, 3 : 1).  The 

EtOAc extract was concentrated to 60 mL and filtered.  The concentrated EtOAc 

extract (3 g) was chromatographed on a silica gel column (3 x 100 cm) using 1000 

mL portions of a mixture of CHCl3 - CH3OH (20 : 1, 10 : 1 , 9 : 2, 4 : 1) and CHCl3 – 

MeOH - H2O (65 : 35 : 7) as eluents.  50 x 100 mL fractions were collected and 
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analysed using TLC.  Fractions 18-40 Rf 0.78 CHCl3 - CH3OH - H2O (65 : 35 : 7), 

Rf 0.35, CHCl3 - CH3OH (4 :1 ) were shown by NMR analyses to be mixtures of 

saponin 1 and diosgenin 3-O{O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside, 

7, also known as prosapogenin A of dioscin 71,123.  The H2O layer was extracted again 

with diethyl ether.   The ether extract (0.2 g) was chromatographed on a silica gel 

column (1.5 x 50 cm) using 400 mL portions of a mixture of CHCl3 - CH3OH (10 : 1, 

9 : 2) as a mobile phase. 50 x 15 mL fractions were collected.  Fraction 5-6 gave 25R, 

spirost-5-en-3β-ol, 3-O-β-D-glucopyranoside 8, (trillin) 71,124, as a white amorphous 

solid, tentatively identified as trillin as reported by Agrawal et al 71. 

 

 

 

2.10 Isolation of Steroidal Glycosides from Dry Stems of C. australis  

 

The n-BuOH extract (3 g) was chromatographed on a silica gel column (5 x 140 cm) 

using 1500 mL of portions of CHCl3, CHCl3 - MeOH (9 : 1, 8 : 1, 4 : 1, 9 : 2, 4 : 1) 

and CHCl3 – MeOH - H2O (65 : 35 : 7), 50 x 200 mL fractions were colleted.  TLC 

analyses indicated the presence of steroidal glycosides in all fractions.  

 

Fraction 13-16 gave a white amorphous solid identified as (25R)-5α-spirostane-

1β,3α-diol 1-O-β-D glucopyranoside, 9, (15 mg), Rf 0.52 CHCl3-CH3OH (4:1), 1H 

NMR (400 MHz) δ 0.86 (s, H3-18), 1.03 (s, H3-19), 1.10 (d, J = 7.1 Hz, H3-21), 1.08 

(d, J = 7.4 Hz, H3-27), 5.00 (1H, d, J = 7.7 Hz, Glc, H-1).  Other 1H and 13C NMR 

see Table 3.11.  ESMS (+20 V) m/z 1211 [M2Na]+ (100). 

 

 

 

 



 29

CHAPTER THREE 
 

 

Structural Elucidation of Steroidal and Flavonoid Glycosides 

from C. australis 
 

 

3.1 Introduction 

 

3.2 Preliminary GCMS Analyses of C. australis Leaves Extracts 

 

Prior to the bulk extraction investigations reported in Section 2.4 preliminary 

GCMS analyses of three C. australis leaf types (fresh, dried, senescent leaves) were 

undertaken in order to determine whether or not free and conjugate steroidal 

sapogenins (saponins) were present in the extracts of the various plant parts.  Leaf 

samples were extracted, derivatived with acetic anhydride/pyridine (see Sections 

2.3.1 and 2.3.2) and analysed using the SIM and TIC GCMS methods described in 

Sections 2.1.4.  SIM-GCMS analyses were performed as described by Wilkins  

et al 70.  Quantification was performed using tigogenin propionate (200 μL of a 

0.094 mg/mL solution in CH2Cl2) as an internal standard (see Sections 2.3.1 and 

2.3.2). 

 

Sapogenin acetates were identified from a combination of their relative retention 

time, mass spectral data and comparison with authentic standards where available.  

The results obtained are summarised in Table 3.1. 

 

Three acetylated sapogenins, namely tigogenin, neotigogenin and Δ25(27)-tigogenin 

acetate were observed in the total ion chromatograms of the conjugated extracts of 

all leaf types.  Additionally diosgenin acetate was observed in the chromatogram of 

the conjugated extract of dried leaves.  Weak molecular ions were observed at m/z 

458 for tigogenin (25R) and neotigogenin (25S) acetates.  Both acetates showed a 

similar mass spectral fragmentation patterns with diagnostic ions at m/z 344, 329, 
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315, 284, 269 and 255, and a base peak at m/z 139 attributable to saturated ring F 

spirostanol structure 70. 

 

Blunden et al 68 and Wilkins et al 70 have previously reported that the ratios of the  

intensities of some of the spectral fragment ions of sapogenins facilitates their 

identification.  Wilkins et al 70 have reported that the ratio of three pairs of ions 

observed in the mass spectra of sapogenin acetates are more diagnostic than is the 

case for the corresponding ions of the parent sapogenins.  The ion ratios which 

Wilkins et al 70 determined were m/z 284/mz/344, m/z 269/m/z 329 and m/z 255/m/z 

315.  Possible structures for the foregoing six ions are presented in Figure 3.1. 

 

HOAc

HOAc-

HOAc-

AcO
m/z 344 m/z 284

m/z 329
m/z 269

m/z 315 m/z 255

AcO

-

AcO  
 

Figure 3.1 Structures of possible fragment ions 
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Table 3.1 Typical m/z 284/m/z 344 ratios for different sapogenin acetates 70

Trivial name of 

sapogenins 

Name of parent sapogenin m/z 284/m/z 344 

Tigogenin acetate (25R) 5α-Spirostan-3β-ol  0.22 

Neotigogenin acetate (25S) 5α-Spirostan-3β-ol  0.22 

Epitigogenin acetate (25R) 5α-Spirostan-3α-ol  0.31 

Smilagenin acetate (25R) 5β-Spirostan-3β-ol  2.92 

 

 

The presence in the acetylated extracts of Δ25(27)-tigogenin was demonstrated by a 

molecular ion at m/z 456, fragment ions at m/z 344, 329, 315, 284, 269 and 255, and 

a base peak at m/z 137 attributable to an unsaturated spirostenol ring F structure.   

 

The highest observed ion in the mass spectrum of diosgenin acetate occurred at 

m/z 396 (M+-HOAc) and 139 ions were also observed in the mass spectrum of 

diosgenin acetate 70.  Acetylated analogues of dihydroxygenins were also observed 

in the GCMS profiles but were not quantified because of the lack of suitable 

standards.   

 

The only free genin detected (as the corresponding acetate) was Δ25(27)-tigogenin, 

which was found in the extract of senescent leaves. 

 

The results presented in Table 3.2 showed that while leaves of C. australis would 

not be a good source of free sapogenins, significant levels of conjugated sapogenins 

(saponins) were present in the fresh, dried and senescent leaf extracts.   
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Table 3.2 Retention times and levels of acetylated sapogenins identified in  

 C. australis leaf extracts 

Sapogenins (mg/kg DM)a

Sample 

 

Extract Tigogenin Neotigogenin Diosgenin Δ25(27)Tigogenin 

Retention 
time (min) 

 15.48 15.85 15.19 16.07 

Fresh 
Leaves 

Freeb - - - - 

 Conj.c 10.3 27.7 - 8.4 

Dried 
Leaves 

Free - - - - 

 Conj. 48.2 10.1 4.8 51.4 

Senescent 
Leaves 

Free - - - 11.9 

 Conj. 22.2 5.9 - 67.7 

aaverage of duplicate analyses; bfree = CH2Cl2; cconj.= conjugate extract (MeOH extract after prior 
extraction with CH2Cl2. Conjugate extracts were hydrolysed prior to GCMS analysis as the 
corresponding acetates). 

 

 

 

3.3 Bulk extraction of C. australis 

 

Dried leaves and stems and fresh leaves of C. australis were extracted as described in 

Chapter Two, Section 2.4 and 2.5 and that the resulting extracts were separated as 

described in Chapter Two, Sections 2.6, 2.7, 2.8, 2.9, 2.10.  This afforded seven 

steroidal glycosides, which shown to posses structures 1, 2, 3, 6, 7, 8 and 9 and an 

inseparable mixture of two flavanoid glycosides possessing structures 4 and 5.  The 

structures of these compounds were established from detailed analyses of a 

combination of IR, ESMS and one- and two-dimensional NMR data.  The chemical 

structures established for compounds 1-9 are presented in Figure 3.2. 
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Figure 3.2 Structures of steroidal glycosides and flavonoid glycosides isolated  

 from C. australis.  
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3.4 Structure Elucidation of Saponin 1 

 

Saponin 1, 5α-spirost-25(27)-en-3β-ol 3-O{O-α-L-rhamnopyranosyl-(1→2)-β-D-

glucopyranoside}, was isolated from the n-butanol extract of the methanol extract 

of dried, senescent leaves and dried stems.  It also obtained from the chloroform 

soluble residue of the methanol extract of fresh leaves. 

 

 

 

3.4.1 IR Spectrum 

 

The glycosidic nature of 1 was shown by a strong IR absorption at 3422 cm-1 (OH 

stretch), 1044 cm-1 (C-O(H) stretch) and characteristic absorptions for the spiroketal 

moiety appeared at 982 cm-1, 920 cm-1, 902 cm-1 and 865 cm-1 60-62. 

 

 

 

3.4.2 ESMS 

 

The molecular formula of 1, C39H62O12 , (M = 722 Da) was determined by negative 

ion ESMS, which showed a [M-H] - ion at m/z 721, along with m/z 757 [M+35Cl]-, 

m/z 767 [M+COOH]-, m/z 781 [M+CH3COO]-, m/z 1443 [M2-H]-, m/z 1479 

[M2+35Cl]- and m/z 1481 [M2+37Cl]- ions.  
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3.4.3 NMR Spectra 

 

The complete assignment of the 1H and 13C NMR signal of saponin 1 presented in 

Table 3.3 were established from detailed analyses of one and two dimensional 

NMR data (see following Sections). 

 

Table 3.3. 1H and 13C NMR signal assignments (δ C5D5N) established for 

saponin 1 

 

atom 13C 1H atom 13C 1H   

1 37.0 0.81, 1.60 22 109.3  

2 29.7 1.82, 2.10 23 33.1 1.79 (2H) 

3 77.1 3.99 24 28.8 2.26, 2.72 

4 34.2 1.69, 1.96 25 144.0  

5 44.6 0.90 26 64.9 4.03, 4.46 

6 28.9 1.17 (2H) 27 108.6 4.79, 4.82 

7 32.2 0.81, 1.54    

8 35.2 1.45 1' 99.9 5.05 d, J1',2' = 7.6 Hz 

9 54.2 0.53 2' 78.4 4.24, dd J2,'3' = 9.2 Hz 

10 35.7  3' 79.6 4.28, dd, J3',4' = 9.7 Hz 

11 21.2 1.24, 1.43 4' 71.9 4.16, d, J4',5' = 9.3 Hz 

12 40.1 1.07, 1.70 5' 76.9 3.99, t 

13 40.6  6' 62.7 4.35, 4.54 (2 x m) 

14 56.4 1.05    

15 32 1.42, 2.03 1'' 102.1 6.33, d, J1'',2'' = 1.6 Hz 

16 81.3 4.54 2'' 72.1 4.80, dd, J2'',3'' = 3.5 Hz 

17 62.9 1.81 3'' 72.6 4.61, dd, J3'',4'' = 9.4 Hz 

18 16.4 0.83 (3H, s) 4'' 73.8 4.37, dd, J4''5'' = 9.5 Hz 

19 12.3 0.87 (3H, s) 5'' 69.4 4.94, d, J5'',6'' = 6.3 Hz  

20 41.8 1.97 6'' 18.4 1.76, d 

21 14.8 1.12 (3H, d, J = 7.0 Hz)    
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3.4.3.1 1H and 13 C NMR Spectra 

 

The 1H NMR spectrum of saponin 1 in pyridine-d5 included three methyl protons at  

0.83 (s), 0.87 (s), 1.12 (d, J = 7.0 Hz) ppm, two oxygenated methylene protons at 

4.79 and 4.82 (s) ppm and two anomeric glycosidic protons at 5.05 (d, J = 7.6 Hz) 

and 6.33 (d, J = 1.6 Hz) ppm.   

 

The genin portion of the 13C NMR spectrum of 1 consisted of a total of 27 signals 

including three methyl groups, ten non-oxygenated and one oxygenated methylene 

groups, six non-oxygenated and two oxygenated methine groups and two non-

oxygenated and one oxygenated quaternary carbons.  In addition, a CH2 signal was 

observed at 108.6 ppm and a C signal at 144.0 ppm consistent with the presence of 

25(27)-olefinic unsaturation.  A quaternary carbon (C-22) signal appeared at 

109.3 ppm.   

 

The foregoing 1H and 13C NMR data indicated a spirostane skeleton with an 

exocyclic double bond on the F ring and a single glycosidic linkage at C-3.  The 

orientation of the C-3 glycosidic group was subsequently established to be equatorial 

(β) (see Sections 3.4.3.3 and 3.4.3.4.) 

 

The 13C NMR chemical shifts of C-5, C-7, C-9 and C-19, (44.6, 32.2, 54.2 and  

12.3 ppm respectively) were consistent with the presence of a 5α-spirostane steroidal 

skeleton (tigogenin type), rather than a 5β-spirostane skeleton 71,78.  The glycosyl 

portion of the 13C NMR spectrum of saponin 1 contained twelve signals comprising 

ten oxygenated methine signals, one oxygenated methylene and a methyl group.   

 

 

 

3.4.3.2 COSY and TOCSY Spectra 

 

Correlations observed in COSY and TOCSY spectra, along with coupling constant 

data were consistent with the presence of glucopyranosyl and rhamnopyranosyl units.  

Starting with the signal at 5.05 ppm (J1',2' = 7.6 Hz, H-1') the couplings were traced 

around the pyranosyl ring giving J2',3' = 9.2 Hz, J3',4' = 9.7 Hz and J4',5' = 9.3 Hz 



 37

indicating a β-D-glucopyranosyl residue.  Similarly, starting with the signal at 6.33 

ppm (J1'',2'' = 1.6 Hz, H-1'') coupling constants were measured around the ring giving 

J1'',2'' = 1.6 Hz, J2'',3'' = 3.5 Hz, J3'',4'' = 9.4 Hz and J4'',5'' = 9.5 Hz.  This pattern confirms 

the presence of a rhamnopyranosyl unit, which was assumed to be an α-L-

rhamnopyranosyl unit in common with other natural products 78.  

 

The COSY and TOCSY spectra of saponin 1 also included correlations between H-23 

(1.79 ppm), H-24α/H-24β (2.26 and 2.72 ppm) and the olefinic H-27 protons (4.79 

and 4.82 ppm).  

 

 

 
Figure 3.3 COSY spectrum of saponin 1 
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Figure 3.4 TOCSY spectrum of saponin 1 

 

 

Table 3.4 COSY connectivities (δ C5D5N) observed for glycosyl protons of 

saponin 1 

 

δ 1H correlated signal(s) δ 1H correlated signal(s) 

5.05 (H-1') 4.45 (H-2') 6.33 (H-1'') 4.80 (H-2'') 

4.24 (H-2') 4.68 (H-1'), 4.07 (H-3') 4.80 (H-2'') 6.33 (H-1''), 4.61 (H-3'') 

4.28 (H-3') 4.45 (H-2'), 3.88 (H-4') 4.61 (H-3'') 4.80 (H-2''), 4.37 (H-4'') 

4.16 (H-4') 4.07 (H-3'), 3.66 (H-5') 4.37 (H-4'') 4.61 (H-3''), 4.94 (H-5'') 

3.99 (H-5') 3.88 (H-4'), 1.49 (H-6') 4.94 (H-5'') 4.37 (H-4''), 1.70 (H-6'') 

4.35 (H-6') 3.99 (H-5') 1.70 (H-6'') 4.94 (H-5'') 

 

 



 39

3.4.3.3 g-HSQC and g-HMBC Spectra 

 

The g-HSQC spectrum correlated proton resonances with those of the corresponding 

carbons.  The angular methyl group signals of saponin 1, which occurred as a singlets 

at 0.83 and 0.87 ppm, and the secondary methyl group signal which occurred as a 

doublet at 1.12 ppm (d, J = 7.0 Hz) showed g-HSQC correlations at 16.4, 12.3 ppm 

and 14.8 ppm respectively. 

 

The presence of a β-oriented hydroxyl group at C-3 was initially established by 

examination of the splitting pattern of the axial H-4 proton in a phase sensitive g-

HSQC NMR experiment.  A quartet-like signal, attributable to three couplings 

(J4ax,4eq, J4ax,5ax, J4ax,3ax) was observed.  Notwithstanding the limited resolution of the 

2D spectral data, it was apparent that all of these couplings were greater than or equal 

to ca 10 Hz.  This indicated a trans diaxial relationship between H-4ax and each of H-

3 and H-5, and further defined the C-3 hydroxyl group to be equatorially oriented.  

NOESY and ROESY data (see Section 3.4.3.4) subsequently verified this conclusion. 
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Figure 3.5 g-HSQC spectrum of the saponin 1 

 

The carbon signals which occurred at 99.6 and 102.1 ppm showed g-HSQC 

correlations with 1H doublets which occurred at 5.05 (J1',2' = 7.6 Hz) and 6.33 (J1'',2'' = 

1.6 Hz) ppm respectively, consistent with their identification as the anomeric carbons 

of two glycosyl units.  

 

g-HMBC spectral analyses gives valuable information for quaternary carbons 

assignments and confirmative analyses of neighbouring atoms in molecule.  A g-

HMBC correlation between the signal at 78.4 ppm (C-2') and the proton signal at 

6.33 ppm (H-1'') indicated that the rhamnopyranosyl residue was attached at C-2' of 

the D-glucopyranosyl residue.  A g-HMBC correlation between H-1' (5.05 ppm) and 

the C-3 genin signal at 77.1 ppm indicated that the glucopyranosyl residue was linked 

to the aglycone at C-3.   

 

Structurally significant g-HMBC correlations observed for selected atoms of  

saponin 1 are listed in Table 3.5.  
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Table 3.5 g-HMBC correlations observed for selected atoms of saponin 1 

δ 1H signal correlated signal(s) (2J or 3J) 

0.83 (H3-18) 40.6 (C-13), 40.1 (C-12), 56.4 (C-14), 62.9 (C-17) 

0.87 (H3-19) 35.7 (C-10), 37.0 (C-1), 44.6 (C-5), 54.2 (C-9) 

6.33 (H-1'') 78.4 (C-2') 

5.05 (H-1') 77.1 (C-3) 

4.46-4.03 (H2-26) 108.6 (C-27) 

 

 

 

 
Figure 3.6 g-HMBC spectrum of saponin 1 

 

 

 

3.4.3.4 NOESY and ROESY Spectra 

 

NOESY and ROESY data verified that C-3 glycosyl group was equatorial (β) 

oriented since H-3α (3.99 ppm), H-1α (0.81 ppm), H-2α (2.10 ppm), H-4α (1.96 

ppm) and H-5α (0.90 ppm) exhibited mutual correlations in separate NOESY and 

ROESY experiments.   
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Figure 3.7 ROESY spectrum of the glycosyl region of saponin 1 

 

The rhamnosyl H-1'' (6.33 ppm) resonance showed a strong correlation at 4.24 ppm 

(H-2') indicating that rhamnosyl sugar residue to be attached to the glucosyl C-2' 

atom. 

 

The foregoing ESMS and NMR data showed that saponin 1 contained a 2'-O-α-L 

rhamnopyranosyl-β-D-glucopyranosyl moiety which was attached at O-3 of 5α-spirost-

25(27)-en-3β-ol (or Δ25(27)-tigogenin).  This genin, which has a limited occurrence in 

nature, was first reported from Hosta kiyosumiensis 24,125.  Later, it was isolated from 

Tristagma uniflorum and spectrally characterised 126.  Saponin 1, for which the trivial 

name raukāukain* is proposed is the dominant steroidal saponin from the dry leaves of 

C. australis.  This saponin demonstrated antifungal activity against T. mentagrophytes 

(see Chapter Four). 

 
*We thank Mr Waldo Houia of the School of Māori and Pacific Development, The University of 

Waikato, for suggesting raukāuka (= leaves of the Ti kōuka) for this saponin. 
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3.5 Structure Elucidation of Saponin 2 

 

Saponin 2, 5α-spirost-25(27)-ene-1β,3β-diol 1-{O-α-L-rhamnopyranosyl-(1→2)-β-

D-fucopyranoside}, was isolated from the chloroform extract of fresh leaves of  

C. australis. 

 

 

 

3.5.1 IR Spectrum 

 

Strong IR absorptions at 3422 and 1044 cm-1 and IR absorption at 980 cm-1, 920 cm-

1, 900 cm-1 and 865 cm-1  confirmed the glycosidic nature of saponin 2 and the 

presence of a spiroketal moiety in this saponin 60-62. 

 

 

 

3.5.2 ESMS 

 

The molecular formula of 2, C39H62O12 was confirmed by positive ion ESMS, 

which showed a M2Na+ ion at m/z 1467. Under MS-MS (MS2) conditions this ion 

fragmented to afford a MNa+ ion at m/z 745, which in turn afforded a m/z 599 ion 

(MS3 ion), consistent with the loss of a rhamnopyranosyl unit from the MNa+ ion 

(MS2 ion) 

 

 

 

3.5.3 NMR Spectra 

 

The complete assignment of the 1H and 13C NMR signals of saponin 2 presented in 

Table 3.6 were established from detailed analyses of one and two dimensional 

NMR data (see following Sections). 
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Table 3.6 1H and 13C NMR signal assignments (δ C5D5N) established for 

saponin 2 

atom 13C 1H atom 13C 1H   

1 83.1 3.78 22 109.4  

2 37.6 2.18, 2.69 23 33.1 1.75 (2H) 

3 73.2 3.92 24 28.8 2.22, 2.68 

4 39.4 1.66, 1.71 25 144.2  

5 43.0 1.02 26 64.9 4.00, 4.43 

6 28.7 1.24 (2H) 27 108.7 4.75, 4.79 

7 32.4 0.81, 1.53    

8 36.5 1.51 1' 99.9 4.68, d, J1',2' = 7.8 Hz 

9 55.2 0.98 2' 76.6 4.45, dd, J2',3' = 9.4 Hz 

10 41.4  3' 76.8 4.07 dd, J3',4' = 3.5 Hz 

11 23.5 1.38, 3.15 4' 67.9 3.88  dd, J4',5' = 1.1 Hz 

12 40.6 1.19, 1.57 5' 71.1 3.66, m 

13 40.3  6' 17.1 1.49, d, J5'6' = 6.5 Hz 

14 56.9 1.10    

15 32.3 1.40, 2.01 1'' 101.3 6.31, d, J1'',2'' = 1.6 Hz 

16 81.4 4.57 2'' 72.3 4.71, dd, J2'',3'' = 3.4 Hz 

17 63.0 1.80 3'' 72.1 4.62, dd, J3'',4'' = 9.5 Hz 

18 16.8 0.81 4'' 74.1 4.28, dd, J4''5'' = 9.5 Hz 

19 8.6 1.21 5'' 69.1 4.81, m  

20 41.9 1.92 6'' 18.8 1.70, d, J5'',6'' = 6.4 Hz 

21 14.8 1.02  
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3.5.3.1 1H and 13C NMR Spectra 

 

The 1H NMR spectrum of saponin 2 in pyridine-d5 included three methyl group protons 

at 0.81 (s), 1.21 (s), 1.02 (d) ppm, two oxygenated methylene protons at 4.75 and 4.79 

(s) ppm and two anomeric glycosidic protons at 4.68 (d, J = 7.8 Hz) and 6.31 (d, J = 1.6 

Hz) ppm. 

 

The genin portion of the 13C NMR spectrum of 2 contained 27 signals including three 

methyl groups nine non-oxygenated and one oxygenated methylene groups, six non-

oxygenated and three oxygenated methine groups and two non-oxygenated and one 

oxygenated quaternary carbons.  In addition to the foregoing signals, a C=CH2 signal 

was observed at 108.7 ppm and a quaternary C=CH2 signal at 144.2 ppm indicating 

the presence of a 25(27)-olefinic unsaturation.  A quaternary carbon (C-22) signal 

also appeared at 109.4 ppm.  Thus a dihydroxy spirostane skeleton with an exocyclic 

double bond on the F ring was indicated. 

 

The 13C NMR chemical shifts of C-5, C-7, C-9 and C-19, (43.0, 32.4, 55.2 and 8.6 

ppm respectively) were consistent with the presence of a 5α-spirostane steroidal 

skeleton (tigogenin type), rather than a 5β-spirostane skeleton 71,78.  The orientation 

of the C-1 and C-3 hydroxyl groups were established to be equatorial (β-) (see 

Section 3.5.3.4). 

 

The glycosyl portion of the 13C NMR spectrum of saponin 2 contained twelve signals 

comprising ten oxygenated methine signals and two methyl groups.  The anomeric 

region contained signals at 99.9 and 101.3 ppm (see Section 3.5.3.3).  

 

 

 

3.5.3.2 COSY and TOCSY Spectra 

 

Starting with the signal at 4.68 ppm (H-1') the couplings were traced around the 

pyranosyl ring giving J1',2' = 7.8 Hz, J2',3' = 9.4 Hz, J3',4' = 3.5 Hz and J4',5' = 1.1 Hz 

indicating a β-D-fucopyranosyl residue.  Similarly, starting with the signal at 6.31 ppm 

(H-1'') coupling constants were measured around the ring giving J1'',2'' = 1.6 Hz, J2'',3'' = 
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3.4 Hz, J3'',4'' = 9.5 Hz and J4'',5'' = 9.5 Hz.  This pattern was consistent with the presence 

of an α-L-rhamnopyranosyl residue. 

 

These and some other structurally significant COSY and TOCSY correlations arising 

from selected protons of saponin 2 are listed in Table 3.7 

 

 

 
Figure 3.8 COSY spectrum of saponin 2 
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Figure 3.9 COSY spectrum of the glycosyl region of saponin 2 

 

 

Table 3.7 COSY connectivities (δ C5D5N) observed for glycosyl protons of  

saponin 2 

δ 1H correlated signal(s) δ 1H correlated signal(s) 

4.68 (H-1') 4.45 (H-2') 6.31 (H-1'') 4.71 (H-2'') 

4.45 (H-2') 4.68 (H-1'), 4.07 (H-3') 4.71 (H-2'') 6.31 (H-1''), 4.62 (H-3'') 

4.07 (H-3') 4.45 (H-2'), 3.88 (H-4') 4.62 (H-3'') 4.71 (H-2''), 4.28 (H-4'') 

3.88 (H-4') 4.07 (H-3'), 3.66 (H-5') 4.28 (H-4'') 4.62 (H-3''), 4.81 (H-5'') 

3.66 (H-5') 3.88 (H-4'), 1.49 (H-6') 4.81 (H-5'') 4.28 (H-4''), 1.70 (H-6'') 

1.49 (H-6') 3.66 (H-5') 1.70 (H-6'') 4.81 (H-5'') 
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Figure 3.10 TOCSY spectrum of saponin 2 

 

The COSY and TOCSY spectra of saponin 2 also included correlations between H-

11α (3.15 ppm) and H-12α (1.57 ppm), H-11β (1.38 ppm), H-12 β (1.19 ppm) and 

H-9α (0.98 ppm), also H-1α (3.78 ppm) and H-2α (2.69 ppm), H-2 β (2.18 ppm), H-

4α (1.71 ppm) and H-4 β (1.66 ppm). 

 

 

 

3.5.3.3 g-HSQC and g-HMBC Spectra 

 

The anomeric region of glycosyl units contained signals at 99.9 and 101.3 ppm and  

these were coupled in the g-HSQC spectrum to H-1' and H-1'', doublets at  

4.68 ppm (J1',2' = 7.8 Hz) and 6.31 ppm (J1'',2'' = 1.6 Hz) respectively.  These coupling 

constants are consistent with the presence of a β-D-fucopyranosyl and an α-L-

rhamnopyranosyl residue, respectively, in saponin 2. 
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Figure 3.11 g-HSQC spectrum of saponin 2 

 

 

The location of the glycosyl linkages was elucidated from a combination of g-HMBC 

and ROESY spectral data (see Figure 3.12, Table 3.8 and Section 3.5.3.4) 

 

A g-HMBC cross peak between the rhamnopyranosyl H-1'' signal (6.31 ppm) and  

C-2' (76.6 ppm) indicated that the rhamnopyranosyl residue was attached at C-2' of  

the D-fucopyranosyl residue.  Similarly a g-HMBC cross peak between 

fucopyranosyl H-1' signal (4.68 ppm) and C-1 of the genin (83.1 ppm) indicated that 

the fucopyranosyl residue was linked to the aglycone at C-1. 
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Figure 3.12 g-HMBC spectrum of saponin 2 

 

 

Table 3.8 g-HMBC correlations observed for selected atoms of saponin 2 

δ 1H signal correlated signal(s) (2J or 3J) 

0.81 (H-18) 40.3 (C-13), 40.6 (C-12), 56.9 (C-14), 63.0 (C-17) 

1.21 (H-19) 41.4 (C-10), 83.1 (C-1), 43.0 (C-5), 55.2 (C-9) 

6.31 (H-1'') 76.6 (C-2') 

4.68 (H-1') 83.1 (C-1) 

 

 

 

3.5.3.4 NOESY and ROESY Spectra 

 

NOESY and ROESY data verified that the orientation of the C-1 and C-3 hydroxyl 

groups were equatorial (β-) since H-1α (3.78 ppm), H-3α (3.92 ppm) and H-5α (1.02 

ppm) exhibited mutual correlations in separate NOESY and ROESY experiments. 
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Thus saponin 2 is 5α-spirost-25(27)-ene-1β,3β-diol 1-{O-α-L-rhamnopyranosyl- 

(1→2)-β-D-fucopyranoside}.  Saponin 2 did not exhibit biological activity in the  

assays used.   

 

 

 

3.6 Structure Elucidation of Saponin 3 

 

The n-butanol extracts of senescent leaves of C. australis afforded a third new 

spirostanol glycoside that was identified as 5α-spirost-25(27)-ene-1β,3β-diol 1-

O{β-D- fucopyranoside}, saponin 3. 

 

 

 

3.6.1 IR Spectrum 

 

Strong IR absorptions at 3400 and 1044 cm-1 and IR absorption at 980 cm-1,  

920 cm-1, 900 cm-1 and 865 cm-1  confirmed the spirostanol nature of saponin 3 60-62. 

 

 

 

3.6.2 ESMS 

 

The molecular formula of 3, C33H52O8 was defined by ESMS which showed an 

[M2-H]- ion at m/z 1151 in the negative ion ESMS spectrum, and an [M2Na]+ ion at 

m/z 1175 in the positive ion ESMS spectrum. 

 

 

 

3.6.3 NMR Spectra 

 

The complete assignment of the 1H and 13C NMR signal of saponin 3 presented in  

Table 3.9 were established from detailed analyses of one and two dimensional 

NMR data (see following Sections). 
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Table 3.9 1H and 13C NMR signal assignments (δ C5D5N) established for  

 saponin 3 

atom 13C 1H atom 13C 1H   

1 81.2 3.95 22 109.3  

2 38.0 1.99, 2.88 23 33.0 1.78, 1.82 

3 67.5 3.94 24 28.8 2.27, 2.74 

4 39.5 1.65, 1.76 25 144.2  

5 42.8 1.13 26 64.8 4.03, 4.47 

6 28.7 1.28 (2H) 27 108.3 4.78, 4.82 

7 32.1 0.88, 1.59    

8 36.3 1.54 1' 101.2 4.81, d, J1', 2' = 7.5 Hz 

9 54.8 1.03 2' 72.1 4.33, dd J2'3' = 9.4 Hz 

10 42.3  3' 75.1 4.08, dd 3'4' = 3.5 Hz 

11 23.5 1.40, 3.17 4' 72.3 4.02, dd 4'5' = 1.2 Hz 

12 40.5 1.23, 1.64 5' 71.0 3.78, m, J5',6' = 6.5 Hz 

13 40.4  6' 17.1 1.59 d  

14 56.6 1.15  

15 32.2 1.45, 2.06  

16 81.2 4.54  

17 63.0 1.83  

18 16.7 0.85  

19 8.2 1.03  

20 41.7 1.88  

21 14.7 1.05  
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3.6.3.1 1H and 13 NMR Spectra 

 

The 1H NMR spectrum of saponin 3 in pyridine-d5 included three methyl group 

protons at 0.85 (s), 1.03 (s), 1.05 (d) ppm, two oxygenated methylene protons at 4.78 

and 4.82 (s) ppm and an anomeric glycosidic proton at 4.81 ppm (d, J = 7.5 Hz). 

 

The genin portion of the 13C NMR spectrum of 3 contained 27 signals including three 

methyl group carbon signals, nine non-oxygenated and one oxygenated methylene 

carbon signals, six non-oxygenated and three oxygenated methine group signals and 

two non-oxygenated and one oxygenated quaternary carbon signals.  In addition to 

these 25 signals, a CH2 signal was observed at 108.3ppm and a C signal at 144.2 ppm 

indicating the presence of a 25(27)-olefinic unsaturation.  A quaternary carbon (C-22) 

signal appeared at 109.3 ppm.  Thus a dihydroxyspirostane skeleton with an 

exocyclic double bond on F ring was indicated.  

 

The A/B ring junction was established as trans by examination of the 13C NMR 

chemical shifts of C-5, C-7, C-9 and C-19 (42.8, 32.1, 54.8 and 8.2 ppm 

respectively), which corresponded to those expected for a 5α-spirostane type 

steroidal skeleton 71,78.  The orientation of the C-1 and C-3 hydroxyl groups were 

established to be equatorial, (β-) (see Section 3.6.3.4). 

 

The glycosyl portion of the 13C NMR spectrum contained six signals comprising five 

oxygenated methine signals and a methyl group signal.  The anomeric methine signal 

occurred at 101.2 ppm (see Section 3.6.3.3). 

 

 

 

3.6.3.2 COSY and TOCSY Spectra 

 

Starting with the signal at 4.81 ppm (H-1') the couplings were traced around the 

pyranosyl ring giving J1',2' = 7.5 Hz, J2',3' = 9.4 Hz, J3',4' = 3.5 Hz and J4',5' = 1.2 Hz 

J5',6' = 6.5 Hz indicating a β-D-fucopyranosyl residue.   
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These and some other structurally significant COSY and TOCSY correlations arising 

from selected protons of saponin 3 are listed in Table 3.10. 

 

 

 
Figure 3.13 COSY spectrum of the fucosyl region of saponin 3 
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Figure 3.14 TOCSY spectrum of saponin 3 

 

 

Table 3.10 COSY and TOCSY connectivities (δ C5D5N) observed for selected 

protons of saponin 3 

δ 1H correlated signal(s) 

4.81 (H-1') 4.33 (H-2') 

4.33 (H-2') 4.81 (H-1'), 4.07 (H-3') 

4.07 (H-3')a 4.33 (H-2'),  

4.02 (H-4')a 3.78 (H-5') 

3.78 (H-5') 3.88 (H-4'), 1.59 (H-6') 

1.59 (H-6') 3.78 (H-5') 

4.80 (H-27) 4.47 (H-26α), 2.74 (H-24α) 

4.54 (H-16) 2.06 (H-15α), 1.83 (H-17), 1.45 (H-15β) 

3.95 (H-1) 2.88 (H-2α), 1.99 (H-2β) 
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3.94 (H-3) 1.76 (H-4α), 1.65 (H-4β) 

3.17 (H-11 α) 1.64 (H-12α), 1.40 (H-11β),1.26 (H-12β) 

2.74 (H-24 α) 2.27 (H-24β), 1.78/1.82(H-23α/β) 

 
a no cross peak H-3' and H-4' observed 

 

 

 

3.6.3.3 g-HSQC and g-HMBC Spectra 

 

The anomeric glycosyl proton (H-1') which resonated at 4.81 ppm (d, J1',2' = 7.5 Hz) 

showed a correlation in the g-HSQC spectrum to the carbon which occurred at 101.2 

ppm.  The g-HSQC spectrum of the glycosyl region of saponin 3 is shown in 

Figure 3.15. 

 

 

 
 

Figure 3.15 g-HSQC spectrum of saponin 3 
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 Figure 3.16 g-HMBC spectrum of the expanded region of saponin 3 

 

A g-HMBC correlation observed between H-18 (0.85 ppm) and C-13/C-12 (40.4/40.5 

ppm), C-14 (56.6 ppm), C-17 (63.0 ppm), and between H-19 (1.03 ppm) and C-10 

(42.3 ppm), C-9 (54.8 ppm) and C-1 (81.2 ppm).  Also, a g-HMBC correlation 

between H-1' (4.81 ppm) and C-1 (81.2 ppm) indicated that the fucopyranosyl 

residue was linked to the aglycone at C-1. 

 

 

 

3.6.3.4 NOESY and ROESY Spectra 

 

NOESY and ROESY data verified that the orientation of the C-1 and C-3 hydroxyl 

groups were equatorial (β-) since mutual NOE’s were exhibited by the proton signals 

which occurred at 3.95 (H-1α), 3.94 (H-3α) and 1.13 (H-5α) ppm.   
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Figure 3.17 ROESY spectrum of the genin region of saponin 3 

 

Thus saponin 3 was identified as 5α-spirost-25(27)-ene-1β,3β-diol 1-O-β-D-

fucopyranoside.  Saponnin 3 did not exhibit biological activity in the assays used.  

 

 

 

3.7 Structure Elucidation of Saponin 9 

 

The n-butanol extract of dried stems of C. australis afforded (25S)-5α-spirostane-

1β,3α-diol 1-O-β-D-glucopyranoside, saponin 9.  
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3.7.1 IR Spectrum 

 

Strong IR absorptions at 3400 and 1044 cm-1, 980 cm-1, 920 cm-1, 900 cm-1 and 

865 cm-1 confirmed the spirostanol nature of saponin 9 60-62. 

 

 

 

3.7.2 ESMS 

 

The molecular formula C33H54O9 for saponin 9 was defined by positive ion ESMS 

which showed [M2Na]+, [MNa]+ and [MH]+ ions at m/z 1211, 617 and 595 

respectively. 

 

 

 

3.7.3 NMR Spectra 

 

The complete assignment of the 1H and 13C NMR signals of saponin 9 presented in 

Table 3.11 was established from detailed analyses of one and two dimensional 

NMR data (see following Sections). 

 

 

Table 3.11 1H and 13C NMR signal assignments (δ C5D5N) established for 

saponin 9 

 13C 1H 13C 1H  

1 78.7 4.60 22 109.7  

2 34.9 1.87, 2.64 23  26.2 1.45, 1.90 

3 65.8 4.36 24 26.1 1.36, 2.13 

4 37.0 1.58 (2H) 25 27.4 1.59 

5 38.9 2.02 26 65.0 3.36, 4.08 

6 28.6 1.28 (2H) 27 16.2 1.08 (3H d, J=?) 

7 32.4 0.85, 1.58    

8 36.3 1.54 1' 100.5 5.00, d, J1',2' = 7.7 Hz 

9 54.6 1.10 2' 75.5 4.02, dd, J2',3' = 8.7 Hz 
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10 42.4  3' 78.5 4.18, dd, J3',4' = 9.1 Hz 

11 23.8 1.45, 3.09 4' 72.1 4.11, dd, J4',5' = 9.4 Hz 

12 40.2 1.25, 1.70 5' 78.1 3.83, t 

13 40.6  6' 63.3 4.52, 4.30, d 

14 56.5 1.03    

15 32.3 1.43, 2.02    

16 81.1 4.50    

17 62.8 1.79    

18 16.8 0.86 (3H s)    

19 7.1 1.03 (3H s)    

20 42.3 1.90    

21 14.7 1.10 (3H d, J =7.5Hz)    

 

 

 

3.7.3.1 1H and 13 C NMR Spectra 

 

The 1H NMR spectrum of saponin 9 in pyridine-d5 included four methyl protons at 

0.86 (s), 1.03 (s), 1.10 (d) and 1.08 (d) ppm and an anomeric glycosidic proton at 

5.00 ppm (d, J = 7.5 Hz). 

 

The genin portion of the 13C NMR spectrum of 9 contained 27 signals including four 

methyl groups, nine non-oxygenated and one oxygenated methylene, seven non-

oxygenated and three oxygenated methine and two non-oxygenated and one 

oxygenated quaternary carbon signals.  A quaternary carbon (C-22) signal appeared at 

109.7 ppm.  These data indicated a dihydroxyspirostane skeleton with an exocyclic 

equatorial secondary methyl group (25S) in ring F.   

 

The H3-27 resonance of 9 occurred at 1.08 ppm, ca 0.3 ppm downfield of the 

corresponding resonance of (25R)-spirostanes.  All of the 13C resonances of the ring F 

atoms of 9, except C-22 (Table 3.11) occurred at higher field than for the (25R)-

spirostanes21.  The A/B ring junction was established as trans by examination of the 
13C NMR chemical shifts of C-5, C-7, C-9 and C-19 (38.9, 32.4, 54.6 and 7.1 ppm 

respectively) which corresponded to the 5α-spirostane type steroidal skeleton 71,78 .   
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The orientation of the C-1 hydroxyl group was established to be equatorial (β-) and 

the orientation of the 3-OH group was shown to be axial (α-) (see Section 3.7.3.4). 

Also, the orientation of the 3-OH group was shown to be axial by the lesser width of 

the H-3β multiplet (W1/2 ~ 10 Hz, fully resolved) of 9 compared to that observed for 

the H-3α multiplet of 3 (W1/2 ~ 15 Hz, partially resolved).  

 

The glycosyl portion of the 13C NMR spectrum contained six signals comprising five 

oxygenated methine signals and a one oxygenated methylene signals.  The anomeric 

methine signal of saponin 9 occurred at 100.5 ppm. 

 

 

 

3.7.3.2 COSY and TOCSY Spectra 

 

Starting with the signal at 5.00 ppm (H-1') couplings were traced around the 

pyranosyl ring giving J1',2' = 7.7 Hz, J2',3' = 8.7 Hz, J3',4' = 9.1 Hz and J4',5' = 9.4 Hz.  

This data indicated a β-D-glucopyranosyl residue.  These and some other structurally 

significant COSY and TOCSY correlations arising from selected protons of saponin 9 

are listed in Table 3.12. 
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Figure 3.18 COSY spectrum of saponin 9 
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Figure 3.19 TOCSY spectrum of expanded region of saponin 9 

 

 

Table 3.12 TOCSY connectivity (δ C5D5N) observed for glucosyl proton of  

saponin 9 

δ 1H correlated signal(s) 

5.00 (H-1') 4.52 (H-6'α), 4.30 (H-6'b), 4.18 (H-3'), 4.11 (H-4'), 4.02 (H-2'), 3.83 (H-5')

4.52 (H-6'α) 4.30 (H-6'b), 5.00 (H-1'), 4.18 (H-3'), 4.11 (H-4'), 4.02 (H-2'), 3.83 (H-5') 

 

 

The COSY and TOCSY spectra of saponin 9 also included correlations between H-

23α/23β (1.90/1.45 ppm), H-24α/H-24β (1.36 and 2.13 ppm), and H-25 proton (1.59 

ppm).   
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3.7.3.3 g-HSQC and HMBC Spectra 

 

The angular methyl group protons of saponin 9 which occurred as a singlets at 0.86 

and 1.03 ppm, and as doublets at 1.10 and 1.08 ppm (J = 7.5 Hz and 7.2 Hz 

respectively), showed g-HSQC correlations to carbon signals which occurred at 16.8, 

7.1 ppm and 14.7, 16.2 ppm respectively. 

 

The g-HSQC spectrum of the glycosyl region of saponin 9 is shown in Figure 3.20. 

The carbon signal which occurred at 100.5 ppm showed a correlation to the anomeric 

H-1' glycosyl proton which resonated at 5.00 ppm (d, J1',2' = 7.7 Hz).  The carbon 

signals which occurred at 78.5, 78.1, 75.5, 72.1 and 63.3 ppm showed correlations to 

H-3', H-5', H-2', H-4' and H-6' glucosyl protons which resonated at 4.18 ppm (dd, J3',4' 

= 9.1 Hz), 3.83 ppm (t), 4.02 ppm (dd, J2',3' = 8.7 Hz), 4.11 ppm (dd, J4',5' = 9.4 Hz) 

and 4.52 and 4.30 ppm (d) respectively.  Also the C-26 carbon signal which occurred 

at 65.0 ppm showed correlation to the (H-26) protons at 4.08 and 3.36 ppm 

accordingly. 

 

 
Figure 3.20 g-HSQC spectrum of the glucosyl region of 9 
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A g-HMBC spectrum included a correlation between H-1' (5.00 ppm) and C-1 (78.7 

ppm), which indicated that the glucopyranosyl residue was linked to the aglycone at 

C-1.  Also, a g-HMBC spectrum showed H-18 (0.86 ppm) and H-19 (1.03 ppm), 

correlations (2J, 3J, and 4J) to C-13 (40.6 ppm), C-12 (40.2 ppm), C-14 (56.5 ppm), 

C-17 (62.8 ppm) and C-11 (23.8 ppm), C-10 ( 42.4 ppm), C-1 (78.7 ppm), C-5 

(38.9 ppm), C-9 (54.6 ppm), C-6 (28.6 ppm) accordingly. 

 

 

 
Figure 3.21 g-HMBC spectra of saponin 9 

 

 

3.7.3.4 NOESY and ROESY Spectra 

 

The orientation of the C-1 hydroxyl group was established to be equatorial (β-) since 

the genin H-1α (4.60 ppm) exhibited strong correlations at H-2α (2.64 ppm) and H-

5α (2.02 ppm) in separate NOESY and ROESY experiments.  The absence of 

ROESY or NOESY correlations between the H-1 and H-3 signals were also 

consistent with the presence in saponin 9 of an axial 3α-OH group.  Similarly, the 

glucosyl H-1' (5.00 ppm) resonance exhibited strong ROESY correlations at H-1α 

(4.60 ppm), H-3' (4.18 ppm) and H-5'(3.83 ppm), demonstrated that H-1' H-3' and H-
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5' are mutually (α-) oriented and therefore the glucopyranosyl unit is (β-) linked to C-

1 aglycone (Figure 3.22). 

 

 
Figure 3.22 ROESY spectrum of the genin region of saponin 9 

 

Thus saponin 9 was identified as (25S)-5α-spirostane-1β,3α-diol 1-O-β-D-

glucopyranoside.  This saponin showed moderate cytotoxicity against Herpes simplex 

type 1 virus (ATCC VR733) and Polio Virus Type 1 (Pfizer vaccine strain).  See 

Chapter Four. 

 

 

 

3.8 Structure Elucidation of Flavonoid Glycosides 4 and 5 

 

A ca 47:53 mixture of two flavonoid glycosides which were identified as 

isorhamnetin-3-O-{O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside} (4) (also  
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known as 3'-methylquercetin-3-O-rutinoside, isorhamnitin-3-rutinozide, or 

rhamnazin-3-O-rutinoside) 120,121,127,128 and isorhamnetin-3-O-{O-α-L-

rhamnopyranosyl-(1→6)-β-D-galactopyranoside} (5) (also known as isorhamnetin-

3-O-robinobioside) 120,127-129, were isolated from the n-butanol extract of dried 

leaves of C. australis.  Efforts to separate the two flavonoid glycosides were not 

successful. 

 

 

 

3.8.1 NMR Spectra 

 

The complete assignment of the 1H and 13C NMR signals of flavonoid glycosides 4 

and 5 presented in Table 3.13 was established from detailed analyses of one and 

two-dimensional NMR data. 

 

Table 3.13 13C and 1H NMR chemical shifts (δ C5D5N) determined for 

mixture of 4 and 5. 

 4  5 

atom 13Cb 1H 13C 1H 

2 157.8  157.8 

3 136.1  136.1 

4 178.4  178.5 

5 157.9  157.9 

6 100.1 6.76, J6,8 = 2.1 Hz 100.1 6.78, J6,8 =2.1 Hz 

7 166.9  166.9    

8 94.9 6.73 94.8 6.74   

9 162.7  162.8    

10 104.9  104.9    

1' 123.7  123.7    

2' 114.4 8.38, J2',6' = 2.1 Hz 114.6 8.61, J2',6' = 2.1 Hz 

3' 148.1  148.1    

4' 151.4  151.4    

5' 116.4 7.30, J5',6' = 8.4 Hz 116.2 7.27, J5',6' = 8.4 Hz 

6' 123.5 7.91 123.0 7.82   
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OCH3 56.1 3.93 56.5 4.03  

  

Glu/Gal-1'' 104.3a 6.16, J1'',2'' = 7.5 Hz 104.4c 6.22, J1'',2'' = 7.8 Hz 

Glu/Gal-2'' 76.2 4.30, J2'',3'' = 9.3 Hz 73.2 4.71, J2'',3'' = 9.3 Hz 

Glu/Gal-3'' 78.6 4.32, J3'',4'' = 9.8 Hz 75.1 4.27, J3'',4'' = 3.3 Hz 

Glu/Gal-4'' 71.6 4.05, J4'',5'' = 9.4 Hz 69.5 4.40, J4'',5'' = 1.8 Hz 

Glu/Gla-5'' 77.6 4.12, J5'', '6a'' = 5.9 Hz 75.1 4.16, J5'',6a'' = 5.6 Hz 

Glu/Gal-6'' 68.3 4.50, 4.02 66.6 4.42, J5'',6b'' = 4.2 Hz, 

    3.99 J6a'',6b'' = 11.4 Hz 

 

Rha-1''' 102.6 5.25, J1''',2''' = 1.2 Hz 101.9 5.33, J1''',2''' = 1.3 Hz 

Rha-2''' 72.5 4.12 72.1 4.18 

Rha-3''' 69.5 4.38 69.7 4.35 

Rha-4''' 73.8 4.28 73.8 4.18 

Rha-5''' 72.1 4.40 69.7 4.40 

Rha-6''' 18.4 1.48 18.5 1.52 
a Refs  120,121,127,128, 130 

b Refs  121,127  

c Refs  120,121,127-130 

 

 

 

3.8.1.1 1H and 13 C NMR Spectra 

 

The 1H NMR spectrum of the mixture of 4 and 5, determined in pyridine-d5 was 

comprised of a signals attributable to a ca 47:53 mixture of 4 and 5. 

 

The 1H NMR spectrum of 4 included five aryl protons at 6.76 ppm (H-6), 6.73 ppm  

(H-8), 8.38 ppm (H-2') (d, J2',6' = 2.1 Hz), 7.30 (H-5') (dd, J5',6' = 8.4 Hz), and 7.91 

ppm (H-6') (dd, J6',5' = 8.4 Hz), a methoxyl (-OCH3) proton at 3.93 ppm (s) and two 

anomeric glycosidic protons at 6.16 (d, J1'',2'' = 7.5 Hz) and 5.25 ppm (d, J1''',2'''  = 1.2 

Hz).  Other proton NMR signals are listed in Table 3.13. 
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The 1H NMR spectrum of flavonoid glycoside 5 included five protons at 6.78 ppm 

(H-6), 6.74 ppm (H-8 ), 8.61 ppm (H-2') (d, J2',6' = 2.1 Hz), 7.27 ppm (H-5'), (dd, 

J5',6' = 8.4 Hz), and 7.82 ppm (H-6') (dd, J6',5' = 8.4 Hz), a methoxyl (-OCH3) proton 

at 4.03 (s), and two anomeric glycosidic protons at 6.22 ppm (d, J1'',2'' = 7.8 Hz) and 

5.33 ppm (d, J1''',2''' = 1.3 Hz).  Other proton NMR signals are listed in Table 3.13. 

 

The genin portion of the 13C NMR spectrum of 4 and 5 contained total of 16 signals 

including methoxyl group signals at 56.1 and 56.6 ppm (C-3' of 4 and 5 

respectively), and conjugated keto signals at 178.4 and 178.5 ppm (C-4 of 4 and 5 

respectively). 

 

The glycosyl portion of the 13C NMR spectrum of 4 and 5 contained twelve signals 

comprising ten oxygenated methine signals, one oxygenated methylene and a 

methyl group respectively. 

 

 

 

3.8.1.2 COSY and TOCSY Spectra 

 

Correlations observed in COSY and TOCSY spectra, along with coupling constant 

data were consistent with the presence of glucopyranosyl and rhamnopyranosyl units 

in 4 and galactopyranosyl and rhamnopyranosyl units in 5, respectively.  Starting 

with the signals at 6.16 ppm (J1'',2'' = 7.5 Hz, H-1''), 4 and 6.22 ppm (J1'',2'' = 7.8 Hz, H-

1''), 5 the couplings were traced around the pyranosyl ring giving J2'',3'' = 9.3 Hz, J3'',4'' 

= 9.8 Hz and J4'',5'' = 9.4 Hz indicating a β-D-glucopyranosyl residue for 4 and J2'',3'' = 

9.3 Hz, J3'',4'' = 3.3 Hz and J4'',5'' = 1.8 Hz indicating a β-D-galactopyranosyl residue 

for 5.  Similarly, starting with the signal at 5.25 ppm (J1''',2''' = 1.2 Hz, H-1'''), 4 and 

5.33 ppm (J1''',2''' = 1.3 Hz, H-1'''), 5, coupling constants were measured around the 

ring giving J1''',2''' = 1.2 Hz and 1.3 Hz for 4 and 5 accordingly.  This pattern defined 

the presence of α-rhamnopyranosyl unit, which was assumed to be an α-L-

rhamnopyranosyl unit, as commonly found in with other natural products.  

 

The COSY and TOCSY spectra of 4 and 5 also included correlations between H-5' 

(7.30 and 7.27 ppm in 4 and 5 respectively) and H-6' (7.91 and 7.82 ppm in 4 and 5 
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respectively), H-2' (8.38 and 8.61 ppm in 4 and 5 respectively) and H-6'(7.91 and 

7.82 ppm in 4 and 5 respectively) and H-6 (6.76 and 6.78 ppm in 4 and 5 

respectively) and H-8 (6.73 and 6.74 ppm in 4 and 5 respectively) (see Figures 3. 23 

and 3.24). 

 

 
Figure 3.23 COSY spectrum of the aromatic region of 4 and 5 
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Figure 3.24 COSY spectrum of the glycosyl region of 4 and 5 

 

The TOCSY spectrum of the glycosidic region of 4 and 5 traced out the connectivity  

for the glycopyranosyl residues of 4 of 5, and in the case of glucosyl residue included 

correlations between 6.16 ppm (H-1'') to 4.50 ppm (H-6''), 4.30 ppm (H-2'') 4.32 ppm 

(H-3''), 4.12 ppm (H-5'') and 4.05 ppm (H-4'') for 4 and in the case of galactosyl 

residue included correlations between 6.22 ppm (H-1'') to 4.71 (H-2''), 4.40 ppm (H-

4'') and (H-3'') for 5 (see Figure 3.25). 
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Figure 3.25 TOCSY spectrum of expanded region of 4 and 5 

 

 

 

3.8.1.3 g-HSQC and g-HMBC Spectra 

 

The g-HSQC spectrum of the mixture of the two flavanoid glycosides showed 

correlations which linked all of the proton resonances with those of the corresponding 

carbons.  For example, the carbon signals for 4 and 5, which occurred at 104.3 and 

104.4 ppm, (C-1'' of 4 and 5 respectively), and 102.6 and 101.9 ppm (C-1''' of 4 and 5 

respectively), showed g-HSQC correlations with 1H doublets which occurred at 6.16 

or 6.22 ppm (J1'',2'' = 7.5 Hz or 7.8 Hz of 4 and 5 respectively) and 5.25 or 5.33 ppm 
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(J1''',2''' = 1.2 Hz or 1.3 Hz of 4 and 5 respectively), consistent with their identification 

as the anomeric carbons of two glycosyl units. 

 
 

Figure 3.26 g-HMBC spectrum of the glycosyl region of the mixture of 

4 and 5 

 

The aromatic proton signals which occurred a at 6.76 or 6.78 ppm (H-6 of 4 and 5 

respectively) and 6.73 or 6.74 ppm (H-8 of 4 and 5 respectively), showed g HSQC 

correlations at 100.1 ppm (C-6 of 4 and 5) and 94.9 or 94.8 ppm (C-8 of 4 and 5 

respectively).  Similarly the aromatic proton signals which occurred at 8.38 or 8.61 

ppm (H-2' of 4 and 5 respectively) correlated to carbon signals which occurred at 

114.4 or 114.6 ppm (C-2' of 4 and 5 respectively),  the aromatic proton signals which 

occurred at 7.30 or 7.27 ppm (H-5' of 4 and 5 respectively) correlated to carbon 

signals which occurred at 116.4 or 116.2 ppm (C-5' of 4 and 5 respectively), the 

aromatic proton signals which occurred at 3.93 or 4.03 ppm  

(-OCH3 of 4 and 5 respectively) correlated to carbon signals which occurred at 56.1 

and 56.5 ppm (C-3' 4 and 5 respectively). 
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A g-HMBC correlation between H-1'' signals of 4 and 5 (6.16 or 6.22 ppm of 4 and 5 

respectively) and the C-3 flavonoid signals at 136.1 ppm in each of 4 and 5 indicated 

that the glucopyranosyl and galactopyranosyl residues were linked to the flavonoid 

skeleton at C-3.  

 

Importantly, a g-HMBC correlation between the proton signals at 5.25 or 5.33 ppm 

(H-1''' of 4 and 5 respectively) and the 13C signals at 68.3 or 66.6 ppm (C-6'' of 4 and 

5 respectively) indicated the presence of rhamnopyranosyl residues linked to C-6'' in 

each of 4 and 5. 

 

These and other structurally significant HMBC correlations observed for 4 and 5 in 

Table 3.14 and depicted graphically in Figure 3.26. 

 

Table 3.14 g-HMBC correlations observed for selected atoms of 4 and 5 

δ 1H signal correlated signal(s) (2J or 3J) 

8.38 or 8.61 ppm (H-2') 157.8 (C-2), 151.4 ppm (C-4'), 148.1 ppm (C-3'), 123.7

(C-1')   

3.93 or 4.03 ppm (-OCH3 ) 148.1ppm (C-3'), 

6.73 and 6.74 ppm (H-8) 166.9 ppm (C-7), 162.7 or 162.3 ppm (C-9), 157.9 

ppm (C-5), 104.9 ppm (C-10), 100.1 ppm (C-6) 

6.76 or 6.78 ppm (H-6) 166.9 ppm (C-7), 157.9 ppm (C-5), 104.9 ppm (C-10), 

94.9 or 94.8 ppm (C-8) 
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3.8.1.4 NOESY and ROESY Spectra 

 

The location of the interglycosyl linkages of 4 and 5 were established using ROESY 

and NOESY experiments.  The rhamnosyl H-1''' (5.25 or 5.33 ppm of 4 and 5 

respectively) resonances showed strong correlations at 4.50 or 4.42 ppm (H-6'' of 4 

and 5 respectively) indicating the rhamnosyl sugar residues of 4 and 5 to be attached 

to the glucosyl or galactosyl C-6'' atoms respectively. 

 
Figure 3.27 ROESY spectrum of 4 and 5 
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Thus glycosides 4 and 5 were identified as isorhamnetin-3-O-{O-α-L-

rhamnopyranosyl-(1→6)-β-D-glucopyranoside} 120,121,127,128, and isorhamnetin-3-O-

{O-α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranoside} 120,127-129 respectively.  

Flavonoid glycosides 4 and 5 did not exhibit biological activity in the assays reported 

in Chapter Four. 

 

 

 

3.9 Structure Elucidation of Compound 6 

 

Compound 6 was isolated from the n-butanol extract of senescent leaves of C. 

australis and identified as β-sitosterol glucoside (6) (22,23-dihydrostigmast-5-en-3-

O-β-D-glucoside).  

 

 

3.9.1 NMR Spectra 

 

The complete assignment of the 1H and 13C NMR signals of compound 6 presented 

in Table 3.15 was established from detailed analyses of one and two dimensional 

NMR data (see following Sections). 

 

Table 3.15 1H and 13C NMR signal assignments (δ C5D5N) established for 

compound 6 

atom 13C 1H atom 13C 1H   

1 37.5 1.74, 1.00 22 34.2  

2 30.3 2.15, 1.75 23 26.4 1.26 

3 78.6 3.92 24 46.0 1.00 

4 39.4 2.76, 2.49 25 29.4 0.88 

5 140.9  26 19.2 0.87, (d, J = 6.6.Hz) 

6 122.0 5.40 27 20.0 0.89, (d, J = 7.0 Hz) 

7 32.2 1.92, 1.55 28 23.4 1.32 

8 32.1 1.39 29 12.2 0.91, (d, J = 7.5 Hz) 

9 50.3 0.91 

10 36.9  1' 102.6 5.02 d, J1',2' = 7.8 Hz 
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11 21.3 1.48 2' 75.4 4.09 dd, J2',3' = 8.5 Hz 

12 40.0 1.98, 1.12 3' 78.7 4.32 t, J3',4' = 9.2 Hz 

13 42.5  4' 71.7 4.32 t, J4',5' = 9.1 Hz 

14 56.8 0.96 5' 78.1 4.01 t,  

15 24.5 0.92 6' 62.8 4.59, 4.45 dd 

16 28.6 1.09  

17 56.2 1.12  

18 12.0 0.67, (s)  

19 19.4 0.95 (s)  

20 36.4   

21 19.0 1.00 (d, J = 6.5 Hz) 

 

 

 

3.9.1.1 1H and 13C NMR Spectra 

 

The 1H NMR spectrum of compound 6 in C5D5N included six methyl group protons 

at 0.67 (C-18) (s), 0.95 (C-19) (s) 1.00, (C-21) ( d, J = 6.5 Hz), 0.87 (C-26) (d, J = 6.6 

Hz), 0.89 (C-27) (d, J = 7.0 Hz) and 0.91 ppm (C-29) (d, J = 7.5 Hz) and an anomeric 

glycosidic proton at 5.02 ppm (d, J = 7.8 Hz).   

 

The genin portion of the 13C NMR spectrum of 6 contained 29 signals including six 

methyl groups, eleven methylene groups, eight non oxygenated, one oxygenated 

methine group and three non oxygenated quaternary carbons.  These data indicated 

the genin to be monohydroxylated.  

 

The 13C NMR chemical shifts of C-5, C-6, C-7, C-9 and C-19, (140.9, 122.0, 32.2, 

50.3 and 19.4 ppm respectively) were consistent with the presence of a Δ5-steroidal 

Skeleton 71,78, while the chemical shift of the glycosylated carbon (C-3, 78.6 ppm) 

corresponded closely to that reported by Faizi et al 122 for the C-3 carbon of β-

sitosterol glucoside (78.34 ppm).   

 

The glycosyl portion of the 13C NMR spectrum of compound 6 consisted of six 

signals and was comprised of four oxygenated methine signals in the region 70-80 
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ppm, an oxygenated methylene signal at 62.8 ppm and an anomeric methine signal at 

102.6 ppm.  Coupling constant and COSY and TOCSY spectral data (Figure 3.28 

and Figure 3.29) were consistent with the presence of a glucosyl unit. 

 

 

 

3.9.1.2 COSY and TOCSY Spectra 

 

Starting with the signal at 5.02 ppm (H-1') couplings were traced around the 

pyranosyl ring giving J1',2' = 7.8 Hz, J2',3' = 8.5 Hz, J3',4' = 9.2 Hz and J4',5' = 9.1 Hz.  

This data indicated a β-D-glucopyranosyl residue 122,130.   

 

 

 
Figure 3.28 COSY spectrum of compound 6 
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TOCSY correlations observed for glucosyl protons of compound 6 demonstrated 

connectivity between 5.02 ppm (H-1') and 4.59 (H-6'β), 4.45 (H-6'α), 4.32 (H-3', H-

4'), 4.09 (H-2'), and 4.01 ppm (H-5).   

 

The TOCSY spectra of compound 6 also showed correlations between the genin 

proton at 3.92 ppm (H-3) and protons which occurred at 2.76 (H-4β), 2.49 (H-4α), 

2.15 (H-2β) 1.75 (H-2α), 1.74 (H-1β) and 1.00 (H-1α).  Correlations were also 

observed between 5.40 ppm (H-6) and 2.76 (H-4β), 2.49 (H-4α), 1.92 (H-7β), 1.55 

(H-7α), 1.39 (H-8), 1.12 (H-12α), 0.96 (H-14) and 0.91 (H-9) respectively. 

 

 

 
Figure 3.29 TOCSY spectrum of expanded region of compound 6 
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3.9.1.3 g-HSQC and g-HMBC Spectra 

 

The six angular methyl group protons of compound 6 which occurred as a singletsat 

0.67 and 0.95 ppm, or as doublets at 1.00, 0.87, 0.89 and 0.91 ppm (J = 6.5 Hz , J = 

6.6 Hz, J = 7.0 and J = 7.5 Hz respectively ), showed g-HSQC correlations to carbon 

signals which occurred at 12.0, 19.4 ppm and 19.0, 19.2, 20.0 and 12.2 ppm 

respectively.  These and other HSQC correlations observed for compound 6 are 

shown in Figure 3.30. 

 

 

 
 Figure 3.30 g-HSQC spectrum of compound 6 

 

 

The g-HMBC spectrum of 6 included a correlation between H-1' (5.02 ppm) and C-3 

(78.6 ppm), which indicated that the glucopyranosyl residue was linked to the 

aglycone at C-3.  Some other structurally significant HMBC correlations are listed in  

3.16 and depicted graphically in Figure 3.31. 
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Table 3.16 g-HMBC correlations observed for selected atoms of compound 6 

δ 1H signal correlated signal(s) (2J or 3J) 

0.67 (H-18) 42.5 (C-13), 40.0 (C-12), 56.2 (C-17) 

0.95 (H-19) 36.9 (C-10), 37.5 (C-1), 140.9 (C-5), 50.3 (C-9). 

0.87 (H-26), 0.89 (H-27) 29.4 (C25) 

0.91 (H-29) 23.4 (C-28), 46.0 (C-24) 

 

 

 
Figure 3.31 g-HMBC spectra of compound 6 

 

 

 

3.9.1.4 NOESY and ROESY Spectra 

 

NOESY and ROESY data verified that the C-3 glucosyl group was equatorial (β-) 

oriented since H-3α (3.92 ppm), H-1α (1.00 ppm), H-2α (1.75 ppm) and H-4α (2.49 

ppm) exhibited mutual correlations in separate NOESY and ROESY experiments.  
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The glucosyl H-1' (5.02 ppm) signal showed a strong NOESY and ROESY 

correlation at 3.92 ppm (H-3) indicating that glucopyranosyl residue to be attached to 

the genin at C-3 atom. 

 

 

 
Figure 3.32 ROESY spectrum of the glucosyl region of compound 6 

 

Thus compound 6 was identified as a β-sitosterol glucoside or 22,23-

dihydroxystigmast-5-en-3-O-β-D-glucopyranoside.  The NMR assignments 

presented in Table 3.15 for 6 correspond closely to those reported by Faizi et al 122 

for this compound which they incorrectly named as stigma-5-en-3-O-β-D-

glucopyranoside. 
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3.10 Other Saponins 

 

Two diosgenin saponins were also detected in the methanol extract of senescent 

leaves of C. australis.   

 

 

 

3.10.1 Prosaponin A of Dioscin  

 

One of the diosgenin saponins was detected as a minor component of some of the 

fractions (see Section 2.9) which afforded saponin 1.  The NMR spectra of these 

fractions were consistent with their being ca 3:1 mixtures of saponin 1 and 

diosgenin 3-O{O-α-L-rhamnopyranosyl-(1→2)-β-D-glycopyranoside}, also known 

in the literature as prosaponin A of dioscin 123. 

 

The 13C NMR spectrum of fractions which contained prosapogenin A of dioscin 

included signals at 140.7, 12l.6, 109.4 and 100.1 ppm attributable to the Δ5-

sapogenin structure and the anomeric glucosyl and rhamonosyl carbons 

respectively.  These signals corresponded closely to those reported by for this 

compound 71,78. 

 

 

 

3.10.2 Desrhamnoprosapogenin A of Dioscin (Trillin) 

 

Some fractions from the methanol extraction of senescent leaves of C. australis (see 

Section 2.9) afforded a saponin which was tentatively identified as 

desrhamnoprosapogenin A dioscin, or diosgenin 3-O-β-D-glucopyranoside, also 

known in the literature as trillin 71,78,123. 
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CHAPTER FOUR 
 

 

Biological Activity of Saponins and Extracts from 

C. australis 
 

 

4.1 Biological Activity of Steroidal and Flavonoid Glycosides 

 

Anticancer, antitumour, antiinflamatory, antiviral, antifungal and molluscicidal 

activities have been variously reported for steroidal 3,15,17-22,25-27,29,30,32,38,40-44,47,48, 

50,51,53,123,131-137 and flavonoid 120,138 glycosides derived from a variety of plants other 

than Cordyline spp.   

 

 

 

4.1.1 Biological Activity of Steroidal Glycosides of Genus Cordyline  

 

Traditional medicine often provides clues to biological activity in native plants 14.  

The Maori used an infusion of leaves of Cordyline spp as a remedy against 

dysentery, diarrhea and cuts 86,87,100.  Softened leaves were applied as an ointment 

onto cuts, cracks in the skin and sores 86,87,100.  The young inner shoot and top of the 

stem were boiled and eaten by nursing mothers and were also given to children for 

colic 86,87,103.  Malays treated dysentery with a decoction of C. fruticosa and the fern 

Ligodium spp 87.  C. fruticosa has been used in New Caledonia for a variety of 

ailments of the mouth and stomach 87. 

 

Nursing mothers have used C. terminalis in Tubuai and Tahiti for diarrhea, in Tahiti 

for abscesses, in Samoa for skin disease and in Hawaii for headaches, in the 

Philippines for diarrhea, dysentery and for heart ailment 87,98,100,139.  Extracts of 

C. stricta leaves have been used for their haemostatic property in traditional 

Chinese medicine 98.   



 85

C. dracenoides (Kunth) is used in traditional medicine in the South of Brazil as an 

anti-inflammatory preparation for the treatment of rheumatoid and related  

diseases 140.  Results obtained from pharmacology experiments carried out in Brazil 

suggested that a crude extract from C. dracenoides exhibits a potent and long-

lasting antioedematogenic effect and has central nervous system depressant effects.  

The authors pointed out that this effect may be related to the presence of steroidal 

saponins in this plant 140 . 

 

A nonpolar compound from C. terminalis (Ti or Ki), which is a traditional 

Polynesian medicinal plant, showed antibacterial activity against certain American 

Type Culture Collection (ATCC) bacteria using the Kirby-Bauer method 141. 

 

 

 

4.2  Biological Activity of Crude Saponin Extracts and Isolated 

Substances from C. australis 

 

4.2.1 Antimicrobial, Antivirus, Antitumour and Cytotoxicity Assay of 

Extracts from C. australis 

 

Nine samples of crude plant extract were tested for antimicrobial, antiviral, 

cytotoxicity and antitumour activity.  Samples included the butanol-soluble fraction 

of a methanol extract of dry leaves, dry stems, fresh leaves, dry roots and senescent 

leaves (Extract 1, Extract 2, Extract 3 Extract 4, Extract 5) and the water-soluble 

fraction remaining after butanol extraction of the methanol extract of dry leaves, dry 

stems, fresh leaves, dry roots (Extract 1', Extract 2', Extract 3' Extract 4'), eleven 

samples of isolated substances, saponins 1 (7 samples), 2, 3, 9 and flavonoid 

glycosides 4 and 5 (as a mixture).  Of these only Extracts 1-5 and saponin 1, 3, and 

9 showed biological activity.  Extracts 1-5, saponin 1 and 3 showed antifungal 

activity against T. mentagrophytes, the most sensitive organism, Table 4.1.  Saponin 

9 showed moderate cytotoxicity against Herpes simplex type 1 virus (ATCC 

VR7330) and Polio Virus Type 1 (Pfizer vaccine strain). 
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Table 4.1 Antifungal activity against T. mentagrophytes and saponin content 

for bioactive samples from C. australis 

Sample  Dose (μg) Zone of 
inhibition 
(mm) 

Compound 
isolated 

GCMS results for 
conj.sapogenin types 

Extract 1 600 5 1 Tigogenin (R, S, Δ25(27)), 
diosgenin 

Extract 2 600 7 9 Not studied 
Extract 3 600 8 - Tigogenin (R, S, Δ25(27))  
Extract 4 600 5 - Tigogenin (R, S, Δ25(27)), 

diosgenin 
Extract 5 200 3 1, 3, 6 Tigogenin (R, S, Δ25(27)) 
1 2.3* 2 1  
3 200 1 3  

 
*Minimum inhibitory doze 

 

 

The results presented in Table 4.1 showed that Extracts 1-5 have antifungal activity 

and Extracts 2 and 3 showed the strongest activity against T. mentagrophytes.  

While GC MS showed significant levels of conjugated sapogenins in the methanol 

extract of fresh, dried and senescent leaves, only saponin 1 has been isolated from 

the dry leaves and saponins 1 and 3 from the senescent leaves of the butanol-soluble 

fractions (Extract 1 and Extract 5) of the methanol extraction of C. australis.  The 

results in Table 4.1 indicate that saponin 1, with the minimum inhibitory dose 

2.3 μg is probably responsible for the activities presented for Extracts 1 and 5.  

Saponin 9 with the moderate cytotoxicity activity did not show any antifungal 

activity.  Unfortunately, time did not permit further study of Extracts 1-5 for 

isolation and characterisation of saponins.  Due to time constraint, only Extracts 1, 2 

and 5 were investigated more closely. 
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4.2.2 Anti-Protozoal and Cytotoxicity Screening of some Extracts 

 from C. australis  

 

One sample of crude saponin extract, the butanol-soluble fraction of a methanol 

extract of senescent leaves of C. australis (Extract 5), and two isolated substances, 

saponin 1 and flavonoid glycosides 4 and 5 (as a mixture) were tested for 

antiprotozoal and cytotoxicity activity at the Tibotec Pharmaceutical Research and 

Development Company in Geneva Switzerland, Table 4.2. 

 

The results outlined in Table 4.2 are given in micromolar concentrations producing 

50% inhibition (IC50) in the assays used. 

 

Table 4.2 Anti-protozoal and cytotoxicity screening assay results of some 

samples from C. australis (Tibotec) 

IC50 (μM) Code Results 

of activity P. falciparuma T. bruceib T. cruzic MRC5 cell 

Extract 5 weak  12 23.479 >32 16.241 

1 aspecific 10 5.012 3.896 3.283 

4 and 5 ND >32 >32 >32 >32 

 

Results from the same assays for standard compounds used: 
a Chloroquine:0.018  
b Suramin:0.14  
c Nifurtimox:0.66  

 

The results presented in Table 4.2 showed that saponin 1 has aspecific activity, that 

is it affected the protozoa, but this is likely to be a result of its cytotoxicity.  The 

cytotoxicity shown here against MRC5 cell was not duplicated against BSC-1 cells 

(African Green Monkey kidney),infected with Herpes simplex type 1 virus (ATCC 

VR 733) or Polio virus type 1 (Pfiser vaccine strain) or P388 (Murine Leukemia) as 

in the other assay (see Section 2.1.8).  Extract 5 was very weakly antiprotozoal also 

weakly cytotoxic and the mixture of 4 and 5 was inactive. 
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The results show that saponin 1 has strong antifungal activity against 

T. mentagrophytes and also has some aspecific activity and cytotoxicity against 

MRC5 cell. 

 

The results indicate saponin 1 would be worth further investigation and 

development.  Saponin 9 also warrants further investigation and studies as do the 

extracts of fresh leaves, dry stems and dry root. 
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