Stable isotope probing: Technical considerations when resolving 15N$_2$-labeled RNA in gradients

S.L. Addison1, I. R. McDonald2 & G. Lloyd-Jones1

1Scion, Private Bag 3020, Rotorua 3010, New Zealand. 2Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.

Keywords: bacteria, diazotroph, 15N$_2$, stable isotope probing (SIP).
Abstract

RNA based stable isotope probing (SIP) facilitates the detection and identification of active members of microbial populations that are involved in the assimilation of an isotopically labeled compound. 15N-RNA-SIP is a new method that has been discussed in recent literature but has not yet been tested. Herein, we define the limitations to using 15N-labeled substrates for SIP and propose modifications to compensate for some of these shortcomings. We have used 15N-RNA-SIP as a tool for analysing mixed bacterial populations that use nitrogen substrates. After incubating mixed microbial communities with 15N-ammonium chloride or 15N$_2$ we assessed the fractionation resolution of 15N-RNA by isopycnic centrifugation in caesium trifluoroacetate (CsTFA) gradients. We found that the more isotopic label incorporated, the further the buoyant density (BD) separation between 15N- and 14N-RNA, however it was not possible to resolve the labeled from unlabeled RNA definitively through gradient fractionation. Terminal restriction fragment length polymorphism (T-RFLP) analysis of the extracted RNA and fluorescent in situ hybridisation (FISH) analysis of the enrichment cultures provided some insight into the organisms involved in nitrogen fixation. This approach is not without its limitations and will require further developments to assess its applicability to other nitrogen-fixing environments.
Introduction

Stable isotope probing (SIP) allows the identification of an actively metabolising population due to incorporation of an isotopically labeled substrate via a particular metabolic pathway (Dumont and Murrell, 2005; Neufeld et al., 2007; Radajewski et al., 2000; Radajewski et al., 2003; Radajewski and Murrell, 2000; Whitby et al., 2005). Active members in a microbial community incorporate the heavy isotope into cellular material, from which labeled nucleic acids (DNA or RNA) can be isolated for analysis after fractionation by isopycnic centrifugation. The migration of specific templates into heavier fractions over time as the pulse of label is consumed can be compared by using an unlabeled control. Stable isotope enrichment is then indicated only if the amount of RNA in specific fractions exceeds the amount that is detected in the unlabeled control (Uhlik et al., 2008).

The structure of labeled and unlabeled communities is resolved by analysing functional marker genes or rRNA genes to determine community composition. SIP provides a very useful tool for exploring microbial communities under in situ conditions, however one of the drawbacks associated with SIP and especially DNA-SIP is that cross-feeding can allow non-target organisms to accumulate isotopic label leading to misidentification. It is here that RNA-SIP offers an advantage over DNA-SIP.

RNA-SIP was first used to identify phenol-degrading microbes from an aerobic industrial bioreactor (Manefield et al., 2002a; Manefield et al., 2002b). These studies showed that RNA-SIP holds significant potential for exploring active populations from a variety of environments. RNA-SIP can reduce the unwanted influence of cross feeding since RNA synthesis rates, which are higher than those of
DNA, allow for greatly decreased incubation times reducing the opportunity for significant cross-feeding (Manefield et al., 2002b). Not only is RNA rapidly synthesised, but it is the most active population that becomes labeled, further decreasing cross-feeding effects. Separation is then based on the newly synthesised RNA from community members that have assimilated the isotopically labeled substrate. The resolution of labeled RNA provides access to the gene sequences which are expressed by functional organisms during substrate assimilation. Manefield and co-workers showed that the isotope incorporation into the biomass and the rate of the incorporation into RNA exceeded that of DNA by more than 8-fold over the same time period.

The feasibility of SIP has been demonstrated using small 13C compounds but has recently evolved to include 18O compounds (Schwartz, 2007) and 15N compounds (Buckley et al., 2007b; Buckley et al., 2007a; Buckley et al., 2008; Cadisch et al., 2005; Cupples et al., 2007; Roh et al., 2009). 15N containing substrates used for DNA-SIP include; 15NH$_4$Cl (Buckley et al., 2007a; Cupples et al., 2007), 15NH$_4$NO$_3$ (Cadisch et al., 2005), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) (Roh et al., 2009), and 15N$_2$ (Buckley et al., 2007b; Buckley et al., 2008). 15N-substrates have yet to be used successfully in a RNA-SIP experiment.

A potential drawback of 15N-RNA-SIP is the lower density gain that is possible from the incorporation of 15N compared to 13C isotopes. The average stoichiometry calculated per nucleotide of C relative to N in RNA is 9.5 carbon molecules to 3.75 nitrogen molecules, which allows the incorporation of 2.5 times more heavy isotope from 13C labeling compared to 15N. Fully 15N-labeled DNA in CsCl shows a density gain of \sim0.016 g ml$^{-1}$ (Birnie and Rickwood, 1978) and fully 13C-labeled DNA shows a density gain of \sim0.04g ml$^{-1}$ (Lueders et al., 2004a), both of
which can be resolved from unlabeled material through a CsCl gradient. Fully ^{13}C-labeled RNA in CsTFA shows a density gain of $\sim 0.04 \text{ g ml}^{-1}$ (Manefield et al., 2002a) over unlabeled material (Lueders et al., 2004a).

In this study we have compared ^{15}N-labeled RNA with unlabeled RNA in CsTFA to determine whether the gain in density is sufficient for resolution of ^{15}N-labeled RNA in a CsTFA gradient. The use of ^{15}N-labeled substrates offers the potential to use dinitrogen $^{15}\text{N}_2$ to identify nitrogen-fixing bacteria, as well as the identification of organisms capable of utilising ammonium, nitrate, nitrite, and nitrogen-containing organic compounds as sole nitrogen sources. We have applied ^{15}N-RNA-SIP methodology to study nitrogen-fixing communities and identify diazotrophs that are actively engaged in nitrogen fixation from environmental samples using full cycle analysis. The model population used in this study was taken from an environment with known high nitrogen fixation rates (Bruce and Clark, 1994; Clark et al., 1997; Gauthier et al., 2000).

2. Materials and methods

2.1. Bacterial pure culture growth with ^{15}N

Novosphingobium nitrogenifigens Y88T (DSM 19370) previously isolated from pulp and paper wastewater (Addison et al., 2007), was grown overnight at 30°C, 150 rpm in nitrogen-limited minimal medium (NLMM) (containing, 1 l, 0.4 g KH$_2$PO$_4$, 0.1 g K$_2$HPO$_4$, 0.2 g MgSO$_4$, 0.1 g NaCl, 10 mg FeCl$_3$, 2 mg Na$_2$MoO$_4$, 5 g glucose, 50 mg yeast extract and pH 7.2 ± 0.1) supplemented with 0.5 g ^{15}N- or unlabeled ammonium chloride (98+ atom % ^{15}N, Aldrich Chem. Co.).
2.2. Bacterial mixed culture growth and labeling with 15N

Mixed cultures for 15NH$_4$Cl labeling were collected from New Zealand pulp and paper mill effluents (C:N ratio of 140:1) undergoing biological treatment in a bioreactor operated under nitrogen-limited conditions. A sample of pulp and paper mill effluent was grown overnight at 30°C, 150 rpm in NLMM supplemented with 0.5 g 14N- or 15N-ammonium chloride (98+ atom % 15N, Aldrich Chem. Co.).

Mixed cultures for 15N$_2$ labeling were collected from New Zealand pulp and paper mill effluent (C:N ratio of 140:1). A 10% vol/vol inoculum of the community was grown in NLMM supplemented with 1 g l$^{-1}$ glucose and 1 g l$^{-1}$ sodium acetate, for 24 hours at 30°C, 150 rpm. A 10% inoculum was sub-cultured into two 160 ml sealed flasks in which the headspace (100 ml) was first flushed for 2 minutes with argon gas and then 40 ml was replaced with 20 ml O$_2$ and 20 ml N$_2$ (unlabeled N$_2$ in one flask and 15N$_2$ (98+ atom % 15N, ISOTEC) in the other). Flasks were incubated for 24 hours at 30°C, 150 rpm, with a further 10 ml O$_2$ added to both flasks after 10 hours. An acetylene reduction assay was conducted on a sub sample to confirm the presence of the nitrogenase enzyme as an indicator of nitrogen fixation (Sprent and Sprent, 1990).

2.3. RNA extraction and quantification

RNA from pure laboratory-grown cultures and mixed cultures were extracted using an RNA/DNA mini kit that uses mechanical bead beating to disrupt cells, alkaline lysis followed by column purification (Qiagen, Hilden, Germany). Cells were washed in phosphate-buffered saline with 0.25 g biomass re-suspended in 0.5 ml of 240 mM potassium phosphate buffer (pH 8.0) and 0.5 ml of phenol:chloroform:isoamyl alcohol (25:24:1). Cell suspensions were transferred to bead beater vials containing 0.5 g each of 0.1 mm and 0.3 mm silica-zirconium beads.
and lysed by agitation in a FastPrep bead beating system for 30 s at 5.5 m/s. The aqueous phase was separated by centrifugation and the RNA purified by RNA/DNA mini kit protocol for bacteria (Qiagen, Hilden, Germany). RNA was stored at -80°C and used within one month of extraction to avoid degradation of RNA. Aliquots of RNA extracts were visualised by standard agarose gel electrophoresis to verify the quality of extracted RNA preparations. RNA was quantified in extracts using the ultrasensitive fluorescent nucleic acid stain RiboGreen (Molecular probes, Invitrogen) according to manufacturer’s instructions. Briefly, a series of standards are made from supplied stock RNA and Ribogreen solution is added to all samples and standards and measured on a fluorometer at an excitation of 485 nm and emission of 520 nm, detecting down to 1 ng/mL RNA.

2.4. Isotopic enrichment using isotope ratio mass spectrometry (IRMS)

The 15N and 14N enriched samples were analysed by the Waikato Stable Isotope Unit (University of Waikato, New Zealand). After freeze-drying, an internal standard of urea was added to an accurately weighed amount (~3 mg) of freeze dried biomass. A 30 mg N carrier was used in the samples with the detection limit of the machine being no less than 20 mg N. The urea was standardized against a certified standard and calibrated relative to atmospheric nitrogen. Samples were analysed using a Dumas elemental analyser (Europa Scientific ANCA-SL) interfaced to an isotope mass spectrometer (Europa Scientific 20-20 Stable Isotope Analyser) to give the atom % 15N.

2.5. Gradient centrifugation and fractionation

7
Density gradient centrifugation was performed in 6.5 ml polyallomer Conetop tubes in a T-1270 Sorvall rotor spun at 40000 r.p.m (146 000 gav) at a temperature of 16°C for 42 hours. Caesium trifluoroacetate (CsTFA) was used as the gradient forming material; 3.72 ml of a 1.99 g ml\(^{-1}\) stock solution (Amersham Pharmacia Biotech) was combined to a final volume of 4.62 ml with 150 µl of deionised formamide (Manefield et al., 2002b), 1000 ng RNA and pure water (Gibco). The centrifuge tubes were overlaid with mineral oil (Sigma).

Centrifuged gradients were fractionated from below by water displacement using an 1100 HPLC pump (Hewlett Packard) operating at a flow rate of 1 µl/s. The buoyant density of gradient fractions was determined by weighing measured 200 µl volumes on a four-figure milligram balance. RNA was isolated from gradient fractions by precipitation with 1 volume of isopropanol, washed with 70% ethanol and re-eluted into 10 µl for determination of RNA using the RiboGreen assay.

2.6. Community profiling with terminal restriction fragment length polymorphism (T-RFLP)

T-RFLP analysis of density-resolved rRNA was performed with primers 27F-FAM/1492R (Lane, 1991), by RT-PCR using a one-step RT-PCR system (Superscript III One-Step RT-PCR system, Invitrogen). 15 µl of the resulting PCR product was digested with a mix of MspI and HhaI (Roche) in 30 µl reaction volumes as per the manufacturer’s instructions. The digested PCR products were resolved on an Amersham Biosciences MegaBACE DNA Analysis System alongside a 600 bp ladder. The T-RF profile was run through Phylogenetic Assignment Tool (PAT) and the T-RF’s were assigned groups based on data from restriction enzyme digests (Kent et al., 2003).
2.7. Fluorescent in situ hybridisation (FISH) and image analysis

Samples from the enriched cultures grown with N$_2$ were fixed immediately in paraformaldehyde (PFA) as described by (Amann, 1995). All hybridisations were performed as described by Manz et al. (1992), with 8 µl of sample dried on a Teflon coated slide and dehydrated for 2 minutes each in 50%, 80% and 90% ethanol series. The slides were hybridised at 46°C for 2 h in hybridisation buffer containing 0.9 M NaCl and formamide (percentage of formamide as described in cited references Table 1), 20 mM Tris-HCl, 0.01% SDS, and the oligonucleotide probe at a concentration of 50 ng µl$^{-1}$. After washing briefly with distilled water and air dried, the slides were mounted in Vectashield® mounting medium (Vector Laboratories, Inc. Burlingame, California, USA). Oligonucleotide probes used in this study are described in Table 1, and were purchased from Thermo Scientific (Germany); these were modified on the 5’ end, with either indocarbocyanine dye Cy3 or Cy5 and the 3’ end labeled with Amino-C6. Unlabeled competitor oligonucleotides for BET42a and GAM42a were used to improve the specificity of the hybridisation as described previously (Manz et al., 1992). Cell counts of images were calculated using daime to determine the average number of β- and γ-proteobacteria present (Daims et al., 2006).
3. Results and Discussion

The use of 15N substrates for labeling RNA has been proposed as a method for which technical difficulties exist due to the low amount of labeling that can be produced with nitrogen substrates (Buckley et al., 2007a; Whiteley et al., 2006). Other limitations have been discussed previously with respect to 15N-SIP (Buckley et al., 2007a; Cadisch et al., 2005) including the resolution of 14N/15N bands, different GC contents and the effects of the percent of 15N label. To evaluate the methodology, pure culture bacterial RNA labeled with 15N-ammonium chloride and RNA from an environmental sample from a New Zealand pulp and paper mill effluent grown with 15N$_2$ as the nitrogen source was used.

3.1. 15N-Ammonium chloride labeled gradient evaluation

RNA isolated from a pure culture was used to establish conditions for separating labeled (15N) and unlabeled (14N) RNA. 15N-labeled RNA was isolated from *Novosphingobium nitrogenifigens* Y88T (DSM 19370) grown with 15N-ammonium chloride as sole nitrogen source. Isotope ratio mass spectrometry (IRMS) analysis showed the labeled biomass contained 95.0 atom % 15N. RNA extracts from labeled and unlabeled cultures were loaded individually into CsTFA gradient material and isopycnically separated. The average buoyant densities (BD) of CsTFA resolved gradient fractions were determined gravimetrically and the RNA enriched fraction for 15N had a 0.03 ± 0.004 g ml$^{-1}$ ($n = 3$) higher BD compared to the 14N control. Fig. 1 shows representative labeled and unlabeled RNA from *N. nitrogenifigens* Y88T resolved through separate CsTFA gradients (BD shift by 15N-labeling of RNA of 0.032 g ml$^{-1}$).
A mixed community taken from a bioreactor treating pulp and paper mill effluent was grown supplemented with 15N-ammonium chloride. RNA was extracted to determine whether 15N-labeled and unlabeled mixed community RNA could be separated based on BD. IRMS analysis of mixed community biomass showed enrichment of 80.2 % atom 15N. 15N-labeled RNA from a mixed community resolved at a heavier density than the unlabeled control. Gradients for mixed community RNA showed a gain in BD for 15N-RNA of $0.02 \pm 0.004 \, \text{g ml}^{-1}$ ($n = 3$) compared to the 14N control.

3.2. Environmental sample 15N$_2$-labeled gradient separation assessment

The labeled and unlabeled incubations gave strong positive results for the acetylene reduction assay, which is indicative of active nitrogen fixation. The RNA extracted from mixed communities, incubated with either 15N$_2$ or 14N$_2$, was resolved using CsTFA density gradient fractionation. IRMS analysis of total cell biomass confirmed nitrogen fixation with incorporation of 32.6 % atom 15N from 15N$_2$. The natural abundance of 15N in this biomass was 0.37 atom % compared with 99.63 atom % for 14N. Gradients run individually with labeled and unlabeled RNA from the mixed community showed that 15N-labeling of RNA increased BD by $0.013 \pm 0.002 \, \text{g ml}^{-1}$ ($n = 3$) compared to the 14N control. A representative gradient (Fig. 2a) demonstrates that individually run unlabeled RNA migrated to a BD of 1.777 g ml$^{-1}$ and labeled RNA migrated to a BD of 1.788 g ml$^{-1}$, showing a difference of 0.011 g ml$^{-1}$.

When the mixed community 14N$_2$-RNA and 15N$_2$-RNA were run together in a single gradient the separation achieved was less than when run on separate gradients (Fig. 2b). The mixed RNA peak was spread over a density range 1.7682–1.7836 g ml$^{-1}$.
which is smaller than the sum of the two unmixed parent RNAs. Longer spin times
of 66 hours did not increase the resolution of the RNA. When run separately the RNA
spanned 5-6 fractions but when combined the RNA spanned only 3-4 fractions. This
observation suggests that there is co-mingling of \(^{14}\text{N}-\) and \(^{15}\text{N}-\)RNA. It is unlikely an
environmental sample would be fully labeled so the resolution of \(^{14}\text{N}-\) and \(^{15}\text{N}-\)RNA
in a single gradient is important. A mix of \(^{14}\text{N}-\) and \(^{15}\text{N}-\)labeled RNA was run together
in one gradient and compared with the pooled RNA density results from the
separately run gradients. This shows that even when run separately the major peak
density is similar to when \(^{14}\text{N}-\) and \(^{15}\text{N}-\)labeled RNA is run together. This
demonstrates that it would be difficult to achieve separate peaks when labeled and
unlabeled RNA are run together in a gradient.

This study used an environment with known high nitrogen fixation rates to
achieve a high proportion of labeling (Bowers et al., 2008; Gauthier et al., 2000). It is
likely that for separation of labeled and unlabeled RNA from an environment with
lower fixation rates it would be difficult to obtain enough heavy labeled biomass for
separation. Experiments with \(^{15}\text{N}-\)labeled RNA from both pure culture and mixed
communities demonstrated that gradient fractionation and resolution between labeled
and unlabeled RNA was suggestive, but not conclusive, for showing separation of the
nitrogen-fixing portion of the community. This may be because only 32% of the RNA
was labeled in the mixed community. Cadisch et al. (2005) were unable to separate
\(^{15}\text{N}-\)labeled DNA from unlabeled with less than 40% incorporation, with another
paper demonstrating similar results (Roh et al., 2009). The issues involved in
resolving the mixed community \(^{15}\text{N}_2\)-RNA compared with the pure culture \(^{15}\text{N}-\)RNA
indicates that a higher percentage of incorporation may lead to better resolution in a
gradient. A mixed community will also generate a broader spread of RNA due to the
heterogeneity of community rRNAs compared to those from a pure culture (Amann et al., 1990; Lueders et al., 2004a).

3.3. Correlation between gradient fractionation and T-RFLP profiling

At a BD of 1.788 g ml\(^{-1}\) RNA was enriched in the \(^{15}\)N-gradient compared to the corresponding RNA in the \(^{14}\)N-gradient. Successful incorporation of the heavy isotope was based on IRMS analysis. Initial RNA loading concentrations of the gradients were identical. At this BD a terminal-restriction fragment (T-RF) profile could be generated from the \(^{15}\)N-RNA gradient, while none could be obtained for the corresponding fraction in the \(^{14}\)N-RNA (Figure 3). The inability to produce a T-RF profile for the \(^{14}\)N-gradient at densities >1.783 g ml\(^{-1}\), suggests isotopic enrichment with \(^{15}\)N in this region in the \(^{15}\)N-gradient. This is taken to be due to enrichment of \(^{15}\)N in the RNA leading to a higher buoyant density. This serves to highlight that this methodology has potential to highlight populations that are significantly enriched in \(^{15}\)N, within a range of \(^{15}\)N incorporation levels (32–95%). Additional experiments and validation would be needed to determine whether the methodology described here would be applicable to other environments with lower fixation rates.

RNA is spread across any given gradient, with low background levels of unlabeled RNA expected throughout all the gradient fractions (on average 0.7% of maximum quantities) and is most apparent when using PCR to detect templates (Lueders et al., 2004a; Uhlik et al., 2008). Our results showed low levels of RNA throughout the gradients but these levels were so low that RT-PCR was unable to amplify products in the unlabeled heavy density fractions. Manefield et al. (2002b) reported similar results and concluded that density gradients typically used to isolate RNA based on buoyant density have limited ability to focus RNA into tightly defined
bands, and that this could be caused by the interactions of different rRNA molecules during gradient centrifugation not being fully prevented. The heterogeneity of rRNA molecules and some reversal to an un-denatured state in density gradients can result in rRNA from different species displaying buoyant densities that range over 0.08 g ml\(^{-1}\) (Lueders et al., 2004a). These phenomena explain some of the likely co-occurring of labeled and unlabeled RNA seen within the \(^{15}\)N\(_2\) mixed community sample. This low resolution in gradient separation might be resolved by employing a second ultracentrifugation step with bisbenzimide as an intercalating agent to alter the buoyant density of RNA from high G+C micro organisms (Buckley et al., 2007a).

3.4. Community profiling of mixed community sample

Diversity within the highest RNA peaks from the two gradients (\(^{15}\)N\(_2\)- and \(^{14}\)N\(_2\)-labeled mixed communities) were similar, with the same major and minor T-RFs represented in similar quantities in the profiles (Figure 3). There were some differences in the proportions, but the two major T-RFs (86 and 492) were present at the same proportion of the community for both \(^{14}\)N- and \(^{15}\)N-gradients (68% and 70% respectively).

Analysis of the \(^{15}\)N-enriched RNA fraction by T-RFLP (Table 2) revealed major T-RF signatures at 492, 85 and 500 bp, which represented 46.9 %, 23.2% and 14.5% of the community profile. The major signature T-RF 492 shows that \(\gamma\)-proteobacterial lineages, possibly as *Klebsiella* and *Pseudomonas*, are dominant in the nitrogen-fixing population. The closest taxonomic group for T-RF 85 was *Azoarcus* (\(\beta\)-proteobacteria) and *Flavobacterium* (Bacteroidetes), two genera that are known to contain nitrogen-fixing bacteria. The organisms matching to T-RF 500 are not known
as archetypal wastewater bacteria and may represent novel nitrogen-fixing wastewater bacteria.

To confirm the presence and abundance of the organisms identified in the T-RF profile, FISH was performed with the use of generic bacterial group probes. The T-RF profile identified that the community was dominated by \(\gamma \)-proteobacteria, FISH with GAM42a probe confirmed these results with an average of \(87.5 \pm 4.0 \% \) of the community highlighted by this probe compared to the EUB mix probe. The BETA42a probe was used to confirm the presence and abundance of \(\beta \)-proteobacteria within the enrichment community with these organisms representing \(10.5 \pm 2.0 \% \) of the community. This number is lower than that found for \(\gamma \)-proteobacteria and confirms the profile from the enriched \(^{15}\text{N}_2 \) fraction.

Nucleic acid fingerprinting methods can be used to determine the isotopic enrichment by particular microbial groups by comparing fingerprints of gradient fractions from isotopically labeled samples relative to the unlabeled controls (Lueders et al., 2004b; Lueders et al., 2004a). To identify the organisms that assimilated the label, it is necessary to match T-RFs from the enriched gradient fraction with sequences obtained from clone libraries: the possibility that two or more organisms may share a particular T-RFs makes it difficult to interpret these data (Kent et al., 2003; Takeshita et al., 2007). The T-RFLP data from the labeled \(^{15}\text{N}_2 \) mixed community fraction showed a mixture of possible organisms for each T-RF with the dominance of \(\gamma \)-proteobacteria, including both Klebsiella and Pseudomonas. FISH analysis confirmed the dominance in the community of \(\gamma \)-proteobacteria and the negligible existence of any Enterobacter. The average percentages of the groups found in the community with FISH are similar to that predicted with T-RFLP; \(~85\%\) (FISH) and \(~60\%\) (T-RFLP) of \(\gamma \)-proteobacteria and \(~10\%\) (FISH) and \(~5\%\) (T-
β-proteobacteria. Klebsiella are known to be able to fix nitrogen and have been shown using culture-based approaches to be present in nitrogen-fixing wastewaters (Gauthier et al., 2000). Numerous studies have looked at different wastewater systems and used DNA based approaches showing α-proteobacteria and β-proteobacteria dominance (Bowers et al., 2008; Reid et al., 2008; Wagner and Loy, 2002), however, these studies did not examining the active portion of the community and did not involve an enrichment to select for nitrogen-fixing bacteria on a defined carbon source. The identification of the active predominance of nitrogen-fixing γ-proteobacteria from wastewater opens the path for the identification of undiscovered nitrogen-fixing organisms.

4. Conclusion

15N-RNA-SIP is a new method that has been discussed in recent literature and this is the first study which investigates the validity of SIP methodology for the separation of 15N-labeled RNA. After incubating mixed microbial communities with 15N-ammonium chloride or 15N2 we assessed the fractionation resolution of 15N-RNA by isopycnic centrifugation in caesium trifluoroacetate (CsTFA) gradients. We found that the more isotopic label incorporated, the further the buoyant density (BD) separation between 15N- and 14N-RNA, however it was not possible to resolve the labeled from unlabeled RNA definitively through gradient fractionation. Terminal restriction fragment length polymorphism (T-RFLP) analysis of the extracted RNA and fluorescent in situ hybridisation (FISH) analysis of the enrichment cultures provided some insight into the organisms involved in nitrogen fixation. These initial experiments indicate that this method has potential for mixed microbial communities with a higher degree of labeling however this method is not without its limitations and
will require further developments to assess its applicability to other nitrogen-fixing environments.
Acknowledgements

This work was supported by the New Zealand Foundation for Research Science and Technology. We would like to thank Marie Dennis for her help with the FISH methodology.
References

LIST OF FIGURES

Fig. 1. Representative analysis of CsTFA density gradient of *N. nitrogenifigens* Y88\(^T\) RNA labeled with \(^{14}\)N- (▲) or \(^{15}\)NH\(_4\)Cl (□) substrate centrifuged individually.

Fig. 2. (a). Representative analysis of CsTFA density gradient of mixed community RNA labeled with \(^{14}\)N\(_2\) (▲) or \(^{15}\)N\(_2\) (□) substrate centrifuged individually. (b). A mix of \(^{14}\)N and \(^{15}\)N-labeled RNA run together (-■-) and the addition of individually run gradients (-○-).

Fig. 3. Terminal restriction fragment length polymorphism (T-RFLP) analysis across CsTFA density gradients of mixed community RNA labeled with \(^{15}\)N\(_2\) or \(^{14}\)N\(_2\) substrate and centrifuged individually.
Fig. 1.

RNA concentration ng/fraction vs. CsTFA buoyant density g/ml
Fig. 3.

T-RF length (bp)

<table>
<thead>
<tr>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

Relative fluorescence

15N2-labeled

- [1.8039]
- [1.7959]
- [1.7879]
- [1.7799]
- [1.7719]
- [1.7639]
- [1.7559]

14N2-labeled

No PCR products from corresponding fractions

- [1.7776]
- [1.7722]
- [1.7664]
- [1.7552]
Table 1. Fluorescent in situ hybridisation probes used in this study

<table>
<thead>
<tr>
<th>Probe name</th>
<th>Sequence (5’-3’)</th>
<th>Formamide %</th>
<th>Target microorganisms</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUB338</td>
<td>GCTGCCTCCCCGTAGGAGT</td>
<td>0-50</td>
<td>Most bacteria</td>
<td>(Amann et al., 1990)</td>
</tr>
<tr>
<td>EUB338 II</td>
<td>GCAGCCACCCGTAGGTGT</td>
<td>0-50</td>
<td>Planctomycetales</td>
<td>(Daims et al., 1999)</td>
</tr>
<tr>
<td>EUB338 III</td>
<td>GCTGCCACCCGTAGGTGT</td>
<td>0-50</td>
<td>Verrucomicrobiales</td>
<td>(Daims et al., 1999)</td>
</tr>
<tr>
<td>BET42a</td>
<td>GCCTTCCCCACTTCGT</td>
<td>35</td>
<td>β-proteobacteria</td>
<td>(Manz et al., 1992)</td>
</tr>
<tr>
<td>GAM42a</td>
<td>GCCTTCCCACATCGTT</td>
<td>35</td>
<td>γ-proteobacteria</td>
<td>(Manz et al., 1992)</td>
</tr>
<tr>
<td>ENT183</td>
<td>CTCTTTGGTCTTTGCGACG</td>
<td>20</td>
<td>Enterobacteriaceae</td>
<td>(Friedrich et al., 2003)</td>
</tr>
</tbody>
</table>
Table 2. T-RFLP results from high density fraction (1.7879 g ml⁻¹) in the ^15N₂ labeled gradient with pseudo phylogenetic classification.

<table>
<thead>
<tr>
<th>Characteristic T-RF lengths (bp)</th>
<th>Relative abundance of T-RFs (% of community)</th>
<th>Closest taxonomic groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>85*</td>
<td>23.2</td>
<td>Azoarcus, Flavobacterium</td>
</tr>
<tr>
<td>152</td>
<td>3.9</td>
<td>Bacillus, Bradyrhizobium</td>
</tr>
<tr>
<td>200</td>
<td>2.2</td>
<td>Chryseobacterium</td>
</tr>
<tr>
<td>205</td>
<td>1.4</td>
<td>Acinetobacter, Burkholderia, Pseudomonas</td>
</tr>
<tr>
<td>488</td>
<td>3.3</td>
<td>Achromatium, Acidovorax, Pseudomonas</td>
</tr>
<tr>
<td>492</td>
<td>46.9</td>
<td>Acinetobacter, Klebsiella, Pseudomonas</td>
</tr>
<tr>
<td>495</td>
<td>2.0</td>
<td>Very diverse range of groups</td>
</tr>
<tr>
<td>500</td>
<td>14.6</td>
<td>Actinobacillus</td>
</tr>
</tbody>
</table>

*Major T-RFs in bold

Only T-RFs with peak height >1 % of total peak height of electropherograms were considered.