
Working Paper Series
ISSN 1177-777X

History Navigation
in Location-Based Mobile Systems

Knut Müller & Annika Hinze

Working Paper: 07/2010
1st December 2010

c©Knut Müller & Annika Hinze
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

History Navigation
in Location-Based Mobile Systems

Knut Müller1 and Annika Hinze2

1Humboldt-Universität zu Berlin, Germany
knut.mueller@informatik.hu-berlin.de,

2University of Waikato, New Zealand
a.hinze@cs.waikato.ac.nz

1 Introduction
The aim of this paper is to provide an overview and comparison of concepts
that have been proposed to guide users through interaction histories (e.g.
for web browsers). The goal is to gain insights into history design that may
be used for designing an interaction history for the location-based Tourist
Information Provider (TIP) system [8]. The TIP system consists of several
services that interact on a mobile device.

Why do we need an interaction history? A typical user of the TIP system
may not remember all places they visited and pages they have seen. We like
to give the users the opportunity to discover points-of-interest they have
encountered before and whose information they may have forgotten: They
could use the history function to virtually walk backwards on their route.
The TIP system will thus support the users by reminding them of things
they have seen and of information that has been presented to them before.

We selected three different approaches to analyze: A whiteboard system
with multiple-levels of history [1], the well-known web browser back but-
ton [3], and the representation of history as trees within a web browser [11].
In the remainder of this section, the TIP system is introduced and we give a
brief motivation for the project.

1

82

Eine Besonderheit in der Verwendung des Kartenservice stellt die in diesem Projekt notwen-
dige Einbindung eigener Symbole innerhalb der Karte dar. Google stellt lediglich eine Sym-
bolform zum Einbinden in die Karte zur Verfügung. Diese Form ist in Abbildung 38 (2.v.l.)
auf Seite 69 zu sehen. Da für das TIP-System jedoch der Einsatz unterschiedlicher Symbolfor-
men notwendig ist, muss auf externe Symbole zurückgegri!en werden. Listing 3 auf Seite 81
zeigt die Umsetzung dessen. Durch das Speichern der gezeichneten Symbol-Objekte erfolgt
der Zugri! und somit das Ein- und Ausblenden der einzelnen Symbolformen. Die Symbole,
die im Dateiformat „.png“ vorliegen, müssen auf dem Server zur Verfügung stehen.

Ansichten des fertigen Prototypen7.6

Die Abbildungen 48 und 49 präsentieren beispielha" zwei ausgewählte Ansichten des Prototy-
pen und damit des neuen TIP-Userinterface.

In Anhang A ab Seite 96 #nden sich zusätzliche Ansichten des neuen Userinterface. Durch
Aufruf der URL h!p://tip.medana.info kann darüber hinaus auch auf den Prototypen zuge-
gri!en und dieser ausprobiert werden. Eine Kurzanleitung wird in Anhang D ab Seite 110 ge-
liefert. Der Prototyp sowie die Kurzanleitung #ndet sich ebenfalls auf der beiliegenden CD.

7 Implementierung des Prototypen

Ansicht des neuen Karten-ServiceAbbildung 48: Ansicht des neuen Details-ServiceAbbildung 49: (a) map service

97

Anhang A: Ansichten des Prototypen

Ansicht 5: Details-Seite mit geöffneter lokaler Navigation

Ansicht 6: Details-Seite mit Empfehlungen

Ansicht 7: Details-Seite mit geöffneter Historyliste

Ansicht 8: Suche-Seite mit Suchergebnissen

(b) information service

97

Anhang A: Ansichten des Prototypen

Ansicht 5: Details-Seite mit geöffneter lokaler Navigation

Ansicht 6: Details-Seite mit Empfehlungen

Ansicht 7: Details-Seite mit geöffneter Historyliste

Ansicht 8: Suche-Seite mit Suchergebnissen

(c) recommendation service

Figure 1: Services provided by the TIP system [13].

1.1 Tourist Information Provider (TIP)
The Tourist Information Provider (TIP) is a mobile software system for
portable devices [4, 5, 6, 7]. The typical user is a tourist visiting a un-
known city assisted by TIP.

TIP provides a number of services for tourists. Here we focus on a selec-
tion of three services: A map service, an information service and a recommen-
dation service (see Figure 1). The map service displays the current position of
the user and points-of-interest on a map. A user’s movements are represented
on the map and additionally a user can select points-of-interest on a map and
receive additional information. The information service displays textual and
visual information related to points-of-interest. The recommendation service
detects semantic correlations between points-of-interest and recommends re-
lated points to the user. As a user walks through the city, they can navigate
their way using the map to access information according to points-of-interest
at their current location or by following recommendations.

Each interaction with the system may generate a history entry. These
entries could be accessed by the user through a history or a back button
such as the ones typically used in web browsers. However, what is meant by
“going back” through history in a location-based system? Going back is an
action used to reach a previous system state. The state may be a global or
local one: Global states influence all services, local ones refer to the state of
a single service.

2

96

Anhang A: Ansichten des Prototypen

Ansicht 1: Startseite mit bereits getätigten Interaktionen

Ansicht 2: Karten-Service mit geöffneter lokaler Navigation

Ansicht 3: Startseite mit geöffneter lokaler Navigation

Ansicht 4: Karten-Service mit geöffneter Historyliste

(a) history on map

96

Anhang A: Ansichten des Prototypen

Ansicht 1: Startseite mit bereits getätigten Interaktionen

Ansicht 2: Karten-Service mit geöffneter lokaler Navigation

Ansicht 3: Startseite mit geöffneter lokaler Navigation

Ansicht 4: Karten-Service mit geöffneter Historyliste

(b) history in list

Figure 2: History entries in TIP [13].

1.2 Motivation
The storing of history entries in the TIP system is triggered by interactions
with TIP services. Each entry consists of a timestamp, the service which
triggered the recording and the geographical coordinates where the TIP user
is located.

These history entries are represented in a two-dimensional time-location
graph on the map (see Figure 2(a)). The concept of TIP as a location-based
and service-oriented system prompts three groups of questions:

1. How many histories do we need? Should each service use its own history
or should all services share a global history?

2. How to manage histories? Is it useful to cluster histories by locations
or by services or both? Is a time-based order encoded into histories (as
typically done in web browsers)?

3. Do users understand the history behaviour? Will users expect and un-
derstand the displayed behaviour? Is a user aware of different modes in
a service (physically visited versus virtually visited points-of-interest)?1

This project aims to give answers to all of these questions.
1This phenomenon is called mode confusion of the user [6]. The term is inspired by

aviation, where a pilot can be in mode confusion because of the amount of options, buttons
and switches he has to control.

3

(a) bird’s eye view (b) route on map

Figure 3: Berlin with points-of-interest from scenario.

1.3 Structure of the Paper
We design a scenario in the next section, so that we have a reference for all
system examples. In the subsequent three sections, we introduce three ap-
proaches to present histories. For each system we will give a system overview,
a description of its history representation and a comparison to the TIP sys-
tem. The system overview contains the system’s functionality and possible
user interactions. The history representation describes what information the
system remembers and how the user can access them. In the comparison sec-
tions, we compare each system to the TIP system to identify which aspects
may be used in this context.

In Section 6, we provide a summary of insights and recommendations of
how to design history concepts in TIP.

2 Scenario in TIP
To compare the TIP system with the three different history systems, we
design a scenario of a tourist visit to Berlin. Our tourist Lisa visits four
places in Berlin: The boulevard Unter den Linden, the Brandenburg Gate,
the Holocaust Memorial and the Reichstag building (see Figure 32).

Scenario Yesterday Lisa stopped her visit Unter den Linden and starts to-
day on Ebertstraße. Walking south on Ebertstraße she reaches the Holocaust
Memorial. After taking some photos, she turns towards the Brandenburg

2Bird’s eye view and route with courtesy of Google Maps (maps.google.com).

4

CHI Letters vol 2, 2 33

CAUSALITY AND SIDE EFFECTS

The simple history model described above is appropriate for
applications in which the nodes in a timeline do, in fact, fully
capture the state of the application, and can be invoked and
reversed atomically. But is this always the case in “real
world” applications?

Often, and as we shall see, the effects of a particular
operation cannot be known a priori, and therefore the
expression of such operations in the command idiom of time
raises problems. This is best illustrated through an example.

A Case Study: Flatland

The impetus for much of the work described in this paper
was a computer augmented whiteboard system, called
Flatland [8][14]. Flatland presents a user model in which a
whiteboard is loosely subdivided into regions of activity
called segments; each segment represents some task on
which the user is working.

In Flatland, segments can contain simple “raw” strokes that
are unprocessed by the computer, or they can have
application-specific behaviors added to them that can
process the strokes. These behaviors can modify the
interpretation and display of strokes in a domain-specific
manner, and they can be flexibly added to and removed from
a collection of strokes as desired. For example, a user may
begin jotting notes in a “raw” segment, and then later decide
to treat the information there as a to do list. By applying a “to
do” behavior, the system will reinterpret the strokes as a
structured list that allows the user to easily reorder and delete
items. Figure 3 shows an image of a Flatland whiteboard
containing a few segments.

Behaviors have complete control over the state of the
segment, and can even remove user strokes and add new
strokes as needed. For example, a “map drawing” behavior
lets the user draw strokes that correspond to streets. After the
user draws a single stroke, the map behavior removes the
original input, replacing it with two parallel strokes that
represent the street. Intersections between streets are handled
appropriately. Figure 4 shows an example of this map

For the purposes of this discussion, the key point about the
Flatland architecture is that the system allows arbitrary,
pluggable bits of application code to be dynamically bound
to particular regions of the whiteboard. The actual
operations that take place in a segment are not dependent just
on user input, but also the behaviors associated with the
segment, and their respective states.

The Problem of Side Effects

The Flatland design presented some problems that prevented
its state from being accurately represented as a linear graph
of command objects. In “traditional” uses of the command
object idiom, each command is atomic—that is, it can
reliably and completely do or undo its operation, and has no
side effects that aren’t represented by the state in the
command object itself. As an example, when a command
object in a drawing program is rolled forward, it must take
care to store all information needed to completely reset the
state of the application if it is rolled back.

In simple terms, no operation may make changes that would
be impossible for it to undo, and thus each command object
must be fully “aware” of the semantics and implications of
the updates that it performs on the state of the application.
To revisit the drawing program example, if performing the
operation causes some change to be made to the graphics
context of the application, the creator of the command object
must be aware of this side effect, and must account for it
when performing the corresponding undo. All of these
possible side effects must be known at the time the set of

command classes are written.

This situation is in contrast to the basic architecture of
Flatland, and to many other applications in which side
effects can not always be known or computed a priori
(including, for example, Kramer’s Translucent Patch system
[11]). In Flatland, the use of extensible, pluggable behaviors
means that essentially every interesting update to the state of
the application does occur as a side effect to user input. The
set of operations that can occur when a user draws a stroke
on the board is dependent on the set of behaviors installed,
and the current state of each of those behaviors.

Likewise, other applications—whether because of difficulty
of implementation or core design issues—may not be able to
fully know and express the consequences of each operation
at the time the set of command objects is created. This leads

FIGURE 3: The Flatland Whiteboard Application

FIGURE 4: An Example of a Complex Behavior

(a) Implementation.

3 Multi-Level Undo and Redo

begin writing. The system will use heuristics to try to group

strokes into segments as needed, and users can flexibly override

the system's behavior by joining and splitting segments as

desired. Likewise, behaviors---code that supports the semantics

of a particular domain or application--can be flexibly attached to

or removed from the segment on the fly. So a user can write a "to

do" list on the board and then later apply a behavior to cause the

strokes to begin to "act like" a to do list. Other behaviors could be

applied to the same strokes over the lifetime of the segment. This

flexible relationship is quite different from static, persistent

relationship between windows and applications in standard

window systems.

Finally, drawings on whiteboards can persist for a very long time

and can be continuously changing. Additionally, each "chunk" of

information on a board can be very small compared with a

document in a desktop environment. Traditional file based open-

edit-close style document management causes too much overhead

to maintain this fine grained, ever-changing information. So

instead, Flatland is equipped with automatic backup mechanisms

and allows the user to recover the drawing at any time in the past.

This history maintenance mechanism actually records every

event occurring on the board, and thus influenced the design of

entire architecture.

The rest of the paper is organized as follows. After discussing

related work, we briefly introduce how Flatland works from the

user's point of view. Then we describe the overall architecture of

the system in detail. Finally, we briefly note some

implementation issues, and discuss limitations and implications

of our architecture.

2. RELATED WORK
This work is closely related to Kramer's seminal work on

dynamic interpretations [10][11]. He introduced the idea of

dynamic association between representation and intemal data

structure in the context of electronic whiteboards. He allowed the

user to apply different interpretations (applications) to the same

marks (freeform strokes on the screen). His goal was to capture

the ambiguous nature of design activities.

We share basic ideas and research goals with him. The

contribution of this paper is to extend and complement his work.

While he established the framework for the representation-

centered architecture, we address various implementation issues

with more details and introduce a variety of example applications.

To be specific, we discuss how a stroke-oriented architecture

enables flexible screen real-estate control and efficient history

management.

Pen based computing has become an active research area recently.

In addition to research and commercial work on handwriting

recognition, much work has been done on efficient text input

methods [18] and gesture recognition [9]. Many systems use a

pen-based sketching interface to encourage creative activities:

SILK [14] uses it for GUI design, MusicPad [6] uses it for music

composition, SKETCH [22] and Teddy [13] use it for 3D

modeling. Pen-based techniques are commonly used on

electronic board systems [8][19][20], with specialized interfaces

designed for large boards. For example, a series of papers on the

Tivoli system [15] proposes many interaction techniques to

organize handwritten notes in meeting environment.

Although this previous work discusses the interaction techniques

and specific applications for pen computers, relatively few papers

discuss the software architecture to support pen based activities in

general. Kramer's preceding papers and this paper are the

attempts to design software architecture suitable for hosting these

pen-based applications in a unified way. In a broader perspective,

Flatland can be seen as one of a group of efforts (such as Pad++

[1] and Magic Lens [2]) that explore alternative software

architectures beyond existing GUIs.

3. FLATLAND USER INTERFACES
This section briefly illustrates how the Flatland system works

from the user's point of view. Some minor features are

abbreviated because of space limitations. Detailed discussion on

the user interface design is found in [17].

3.1 Inking and Segmenting
As the very first level approximation, Flatland works just like a

physical office whiteboard. The user can draw any handwritten

stroke anywhere in the screen just by dragging the stylus on the

surface (called stroking). Erasing is done by drawing a scribbling

stroke with the stylus's modifier button down (called

metastroking).

Unlike a physical whiteboard, painted strokes are automatically

grouped together into clusters, which we call segments. Each

segment is explicitly presented to the user by a boundary

surrounding its strokes. When the user draws a stroke on some

open space, a new segment is created for the stroke. If a stroke is

drawn within or close to an existing segment, the stroke joins to

the segment. If necessary, the user can also manually split or join

segments (Figure 2).

To ensure visibility, segments are not allowed to overlap. The

user can drag a segment by grabbing its boundary, but if the

segment collides with another segment, the collided segment is

pushed away. If no more space is available, the collided segment

starts to shrink to give more space (Figure3). When the user starts

working on a shrunken segment, it restores its original size.

a)Joining to an existing segment

el segment joining

b, As, og a nlw segm!

d) segment splitting

Figure 2: Segmenting

a) start dragging b) pushing away c) squashing

Figure 3: Moving and squashing

3.2 Application Behaviors
In addition to functioning as a simple whiteboard, Flatland

supports specific activities by allowing the user to attach

application behaviors to segments. An application behavior

interprets the user's freeform strokes, and gives appropriate

feedback in "handwriting" style to preserve informal appearance.

An active behavior is indicated as an animal figure in the comer

of the segment. The following is the list of currently available

application behaviors.

To do list: maintains a vertical list of handwritten items with

check boxes. A new item is created when the user draws a short

stroke (tap). A vertical stroke starting at a check box reorders the

item, and a horizontal stroke deletes it (Figure 4).

oUlS~- []UtS"1" o U I 5 ~ []c~i
 cHr []ulS'r

[] [] []

a) Adding a new item b) reordering items

Figure 4: To Do behavior

Map drawing: tums strokes into a double line representing a

69

begin writing. The system will use heuristics to try to group

strokes into segments as needed, and users can flexibly override

the system's behavior by joining and splitting segments as

desired. Likewise, behaviors---code that supports the semantics

of a particular domain or application--can be flexibly attached to

or removed from the segment on the fly. So a user can write a "to

do" list on the board and then later apply a behavior to cause the

strokes to begin to "act like" a to do list. Other behaviors could be

applied to the same strokes over the lifetime of the segment. This

flexible relationship is quite different from static, persistent

relationship between windows and applications in standard

window systems.

Finally, drawings on whiteboards can persist for a very long time

and can be continuously changing. Additionally, each "chunk" of

information on a board can be very small compared with a

document in a desktop environment. Traditional file based open-

edit-close style document management causes too much overhead

to maintain this fine grained, ever-changing information. So

instead, Flatland is equipped with automatic backup mechanisms

and allows the user to recover the drawing at any time in the past.

This history maintenance mechanism actually records every

event occurring on the board, and thus influenced the design of

entire architecture.

The rest of the paper is organized as follows. After discussing

related work, we briefly introduce how Flatland works from the

user's point of view. Then we describe the overall architecture of

the system in detail. Finally, we briefly note some

implementation issues, and discuss limitations and implications

of our architecture.

2. RELATED WORK
This work is closely related to Kramer's seminal work on

dynamic interpretations [10][11]. He introduced the idea of

dynamic association between representation and intemal data

structure in the context of electronic whiteboards. He allowed the

user to apply different interpretations (applications) to the same

marks (freeform strokes on the screen). His goal was to capture

the ambiguous nature of design activities.

We share basic ideas and research goals with him. The

contribution of this paper is to extend and complement his work.

While he established the framework for the representation-

centered architecture, we address various implementation issues

with more details and introduce a variety of example applications.

To be specific, we discuss how a stroke-oriented architecture

enables flexible screen real-estate control and efficient history

management.

Pen based computing has become an active research area recently.

In addition to research and commercial work on handwriting

recognition, much work has been done on efficient text input

methods [18] and gesture recognition [9]. Many systems use a

pen-based sketching interface to encourage creative activities:

SILK [14] uses it for GUI design, MusicPad [6] uses it for music

composition, SKETCH [22] and Teddy [13] use it for 3D

modeling. Pen-based techniques are commonly used on

electronic board systems [8][19][20], with specialized interfaces

designed for large boards. For example, a series of papers on the

Tivoli system [15] proposes many interaction techniques to

organize handwritten notes in meeting environment.

Although this previous work discusses the interaction techniques

and specific applications for pen computers, relatively few papers

discuss the software architecture to support pen based activities in

general. Kramer's preceding papers and this paper are the

attempts to design software architecture suitable for hosting these

pen-based applications in a unified way. In a broader perspective,

Flatland can be seen as one of a group of efforts (such as Pad++

[1] and Magic Lens [2]) that explore alternative software

architectures beyond existing GUIs.

3. FLATLAND USER INTERFACES
This section briefly illustrates how the Flatland system works

from the user's point of view. Some minor features are

abbreviated because of space limitations. Detailed discussion on

the user interface design is found in [17].

3.1 Inking and Segmenting
As the very first level approximation, Flatland works just like a

physical office whiteboard. The user can draw any handwritten

stroke anywhere in the screen just by dragging the stylus on the

surface (called stroking). Erasing is done by drawing a scribbling

stroke with the stylus's modifier button down (called

metastroking).

Unlike a physical whiteboard, painted strokes are automatically

grouped together into clusters, which we call segments. Each

segment is explicitly presented to the user by a boundary

surrounding its strokes. When the user draws a stroke on some

open space, a new segment is created for the stroke. If a stroke is

drawn within or close to an existing segment, the stroke joins to

the segment. If necessary, the user can also manually split or join

segments (Figure 2).

To ensure visibility, segments are not allowed to overlap. The

user can drag a segment by grabbing its boundary, but if the

segment collides with another segment, the collided segment is

pushed away. If no more space is available, the collided segment

starts to shrink to give more space (Figure3). When the user starts

working on a shrunken segment, it restores its original size.

a)Joining to an existing segment

el segment joining

b, As, og a nlw segm!

d) segment splitting

Figure 2: Segmenting

a) start dragging b) pushing away c) squashing

Figure 3: Moving and squashing

3.2 Application Behaviors
In addition to functioning as a simple whiteboard, Flatland

supports specific activities by allowing the user to attach

application behaviors to segments. An application behavior

interprets the user's freeform strokes, and gives appropriate

feedback in "handwriting" style to preserve informal appearance.

An active behavior is indicated as an animal figure in the comer

of the segment. The following is the list of currently available

application behaviors.

To do list: maintains a vertical list of handwritten items with

check boxes. A new item is created when the user draws a short

stroke (tap). A vertical stroke starting at a check box reorders the

item, and a horizontal stroke deletes it (Figure 4).

oUlS~- []UtS"1" o U I 5 ~ []c~i
 cHr []ulS'r

[] [] []

a) Adding a new item b) reordering items

Figure 4: To Do behavior

Map drawing: tums strokes into a double line representing a

69

Figure 3: Segmenting, Moving and Squashing of Segments with Flatland [7].

through a merge, the merge becomes a split (and a split becomes a merge).
Splitting, merging and deleting is recognised in the history of the root seg-
ment.

3.3 Comparison to TIP

To compare TIP with Flatland history, we constructed a scenario of a tourist
visit to Berlin. Our tourist, lets call her Lisa, visits four places in Berlin: She
starts at her Hotel walks to Hauptbahnhof take the train to Brandenburger Tor
visits the Gate. Staying in front of the Gate she wants to know more about the
surrounding buildings. She find out that she is located on Pariser Platz which
is surrounded by of course the Gate, the American embassy, the Academy of
Arts, the Museum of the Kennedys and the hotel Adlon. She decides to have a
look into the academy of arts and the museum of the Kennedys. After this she
walks to Holocaust Memorial and Potsdamer Platz. At Potsdamer Platz she

8

(b) Segmenting, Moving and Squashing.

Figure 4: Flatland, Computer Augmented Whiteboard System [1].

Gate and walks to have a rest at Pariser Platz in front of the Brandenburg
Gate. Sitting there, she wants to know whether she has missed any points-of-
interest. She uses her TIP system to virtually go back via the Brandenburg
Gate to Ebertstraße. At the northern end of the street she arrives at the
Reichstag building.

3 Flatland: Multi-Level Undo and Redo

3.1 System Overview
Edwards et al. developed a temporal model for multi-level undo and redo
for an electronic whiteboard [1]. Their electronic whiteboard is a computer-
augmented system, called Flatland [9, 10].

Flatland presents a user model in which the whiteboard is loosely subdi-
vided into regions of activity called segments (see Figure 4(a)). The empty
area of the whiteboard represents the root segment. When some strokes are
drawn on the root segment, automatically a new segment is created and a
frame is drawn around the strokes. Segments can be merged, split, dragged,
pushed and squashed by gestures (see Figure 4(b)).

3.2 History Representation
Every segment has an infinite undo and redo function. The user can access
any past state of each segment stored in the linear history. With the undo and
redo function of the root segment (the underlaying whiteboard) all segments

5

at once can be changed to global states in the past.
Unfortunately, the paper gives no information of how the Flatland system

handles branches in history: We assume that the Flatland history operates
like the Timewarp history [2] – a project published by the same authors. In
Timewarp uses two history views: a slider to select states within the current
linear history line and a graph with all existing history states.

When splitting one segment into two segments, two new segments are
created in the history structure. Then the corresponding content of the
areas of the original segment is copied to these. The original segment is
removed. Merging is similar: a new segment is created and the content
of both segments is copied to the new segment. The original segments are
removed.

The user does not have to delete segments when no space is left. By
moving segments, other segments are pushed and if needed squashed, so that
they take less space on the whiteboard.

3.3 Comparison to TIP
Although the TIP system and the Flatland system differs in size, mobility,
and maybe also in the number of users, we can show similarities. The Flat-
land segments behave similar to points-of-interest in TIP: The segments have
locations on the whiteboard and the points-of-interest have locations on the
map. While the points-of-interests behave like segments, the information
presented by the TIP services can be considered as content of the Flatland
segments.

Moving backwards in history of a TIP services can be considered as mov-
ing backwards in the history of a single Flatland segment. Moving back in
the history of the TIP map can be considered as a global moving backwards
in Flatland history.

Therefore, we can reproduce the TIP scenario on the Flatland whiteboard
(see Figure 5): At A and B the user creates new segments on the whiteboard.
Segment 1 relates to the boulevard Unter den Linden. Segment 2 relates to
Ebertstraße, the start of Lisa’s trip next day. From Ebertstraße Lisa chooses
first to walk to Holocaust Memorial (Segment 4) and then to Brandenburg
Gate (Segment 3). This is shown in C as a split of Segment 2 into the
segments 3 and 4. From Brandenburg Gate (Segment 3) she walks towards
Unter den Linden (Segment 1) until she reaches Pariser Platz (Segment 5).
This is displayed as a merge of segments 1 and 3 to Segment 5 in D.

Comparing branching in history (moving back and choosing an alterna-
tive) is difficult, because it is not clearly described by Greenberg et al.. We
assume that Flatland history behaves like Timewarp history. Thus Lisa’s

6

(a) states on the whiteboard

(b) states in the history

Figure 5: Flatland example according to TIP scenario.

virtual going backwards from Pariser Platz (Segment 5) to Ebertstraße (Seg-
ment 2) can be considered as a global back to B. There she virtually walks
on Ebertstraße (Segment 2) until she reaches the Reichstag building (Seg-
ment 6).

The Flatland system stores every interaction with the whiteboard in the
history: Each drawing, moving, splitting or merging is recorded. In addition,
the users rarely need to remove segments from the whiteboard, because the
segments are squashed if necessary. The multiple layers of history give the
user the opportunity to access past states of each segment independent from
the other segments. Due to the fact that Flatland generate a global history
out of all local histories, each past state of the Flatland whiteboard as a
whole can be reaccessed. However, the behaviour while branching from past
states remains unclear.

7

4 Back Button: Linear History without Loss

4.1 System Overview
Tauscher and Greenberg analysed sequences of page visits to produce a re-
currence distribution [12]. They found that 58% of page visits are, in fact,
revisits. The rest of visits belongs to new pages. With an 39% chance the
next page is one of the six last pages.

This motivates Greenberg et al. to propose an alternative behaviour for a
web browser back button [3]: Unlike commonly used Back Button systems,
their back button will not lose pages in history. Although the paper is from
1999 the back button is still present in all browsers.

Why is it used anyway? The back and forward buttons are simple to
use, even without completely understanding the underlying model. The two
buttons do not take much space on a screen.

4.2 History Representation
The common stack-based back button concept implicates loss of history
states. Greenberg et al. developed four methods to avoid these losses: (1)
pure recency, (2) recency with adding spokes only, (3) recency with adding
hubs and spokes and, finally, (4) recency with adding temporal ordering en-
hancement [3]. All methods work on a linear history list.

• Pure recency simply adds each page visited to the top of the list. Un-
fortunately, this results in a loop between the last two pages.

• Recency with spokes move a pointer through the history list. Recency
with adding spokes only adds every newly visited page to the end of
the list, regardless of the position of the pointer, any older duplicates
are removed. This results in a long history list and requires a lot of
clicks to go back to a desired page in the history.

• Recency with adding hubs and spokes adds both the current page and
the newly visited page to the end of the list. This shortens the history
list, but the temporal order is destroyed.

• The last method, recency with temporal ordering enhancement, records
back steps in a second list. When a new branch is opened by visiting
a new page, the second list and the new page are added to the end of
the history list.

8

(a) page graph (b) stack-based (c) recency with temporal
ordering enhancement

Figure 6: Comparing stack-based history versus recency with temporal or-
dering enhancement history.

Figure 6 compares this last approach to the usual stack-based approach.
All these methods prevent from losing history states. However, the com-

plexity increases, the history list become larger, caused by extra navigation
through intervening children to navigate back up the tree. And the ease
of use of the back function decreases because of the complexity, users may
find the reordering of pages on the history list unpredictable. Greenberg et
al. suspects this to be a minor problem, because most users will use the Back
and Forward buttons in a mechanical fashion, repeatedly clicking the buttons
until they recognise the desired page.

However, when Greenberg et al. wrote the paper, browsers did not have
tabs implemented. Using tabs while browsing may be a practical work around
to prevent loss of history states in stack-based histories.

4.3 Comparison to TIP
Obviously Greenberg et al.’s improvement is practicable to every software
using back and forward buttons like web browsers. Our information and
recommendations service are typical examples of this category. They mainly
provide textual and pictured information.

The text-based TIP services can be easily adapted to the back button
improvement. However the map service behaves different. Thus we decide to
adapt the map view from our TIP scenario to the back button improvement.

9

(a) unreachable state B (b) reachable state B

Figure 7: Browser window history with reachable and unreachable state B.

Figure 7 shows two versions of this adoption.
Greenberg et al. considered a single window, single tab web browser,

but the TIP system is a multi-service system. So we have to use multiple
instances of web browser to rebuild our scenario, where each page represents
a point-of-interest.

For example: Lisa visits the boulevard Unter den Linden in Page 1 (see
Figure 7). Next day, Lisa starts her trip at Ebertstraße (Page 2 in a new
window). There she chooses first to walk to Holocaust Memorial (Page 4)
and then to Brandenburg Gate (Page 3). One of these pages needs to be
opened in a new window (compare Figure 7(a) with 7(b)).

From Brandenburg Gate (Page 3) she walks to Pariser Platz (Page 5).
At Pariser Platz she can see the boulevard Unter den Linden and remembers
yesterday’s trip. She closes this Page 5 and follows from Unter den Linden
(Page 1) to Pariser Platz (Page 5).

Moving back to B requires backwards steps in two windows. This is not
always possible: If we have closed the “wrong” window (see Figure 7(a)) we
can not reach B again.

When Lisa reaches B, she recognises a recommendation and opens the
Reichstag building (Page 6) in a new window.

The Back Button system stores each page opening in its history. Closings
are not remembered: When the browser window is closed the history is lost.
With the back button improvement each past state within a linear history
can be reaccessed, past states in different branches too. However the history
belongs only to one window without tabs. Thus there is no global history. In
contrast to the stack-based behaviour, the history list becomes larger, so that
navigating backwards takes more steps and the behaviour is more complex,
so that it might not be understood.

10

(a) Grid of thumbnails view. (b) History tree view.

Figure 8: The History Tree window.

5 History Tree: Divergent History

5.1 System Overview
History Tree is an add-on to the firefox web browser written by Solomon [11].
It provides an extra window to the browser, extending its history views by a
grid of thumbnails view and a history tree view (see Figure 8).

The add-ons menu bar provides controls to switch between these views
and to select one of the open browser windows. Additionally, the user can
filter the pages of a window by selecting a tab from a list of tabs or by states
of tabs and pages. The main area shows the history tree.

5.2 History Representation
The History Tree add-on introduces three states of tabs and pages and relates
them to colours: current page or tab – orange, closed pages and tabs – blue
and not reachable by back button – grey.

The root of the history tree represents the current browser window. All
its children are pages visited in this browser session (see Figure 8(b)). The
first generation children of the root also represent the tabs of the current
browser window. Branches in the history tree are results from hub and spoke
navigation. Closed tabs can be displayed by selecting the option “Show all
closed tabs” in the menu bar.

However, the History Tree add-on has no global history, just as the Back
Button system: A newly opened window creates a new history tree and will
not integrate into the existing tree.

11

(a) all open tabs view (b) all closed tabs view

Figure 9: The History Tree window with open and closed tabs view.

5.3 Comparison to TIP
To adapt the TIP scenario to the History Tree system we can use the same
adaptation to the Back Button system (compare Figure 7(b) to Figure 9).

However, when a new window is opened in the back button adaptation
we now open a new tab, so that we can use the advantages of the History
Tree system.

Yesterday, Lisa visited the boulevard Unter den Linden in Page 1 (see
Figure 7(b) and 9). Next day, Lisa starts her trip at Ebertstraße (by opening
Page 2 in a new tab). There she chooses first to walk to Holocaust Memorial
(Page 4 in same tab) and then to Brandenburg Gate (Page 3 in a new tab).

From Brandenburg Gate (Page 3) she walks to Pariser Platz (Page 5).
At Pariser Platz she can see the boulevard Unter den Linden and remembers
yesterday’s trip. She closes this Page 5 and follows from Unter den Linden
(Page 1) to Pariser Platz (Page 5).

Moving back to B requires backwards steps in two tabs. There her virtual
walk brings her to Reichstag building (Page 6 in a new tab).

The History Tree add-on stores in its history all page and tab openings
and tab closings within one browser window. Thus each page of a single
browser window can be revisited. However there is no global history across
multiple browser windows and the history is lost by closing its browser win-
dow. Although the system saves states from multiple tabs, no global back
step across multiple tabs is supported. To reset the browser to a specific tab
configuration, it might be necessary to move backwards in more than one
tab. Additionally the History Tree add-on needs an extra window, which
consumes much space on a screen.

12

open close move branch split merge focus
Flatland yes yes yes yes yes yes no
History Tree yes only tabs yes no no no no
Back Button yes no no no no no no

Table 1: Actions captured by the analysed systems.

6 Suggested Improvements for TIP
In the previous three sections we analysed three different history systems. In
this section, we use insights from analysing the systems to suggest adaptions
to the TIP system. We present our suggestions according to selected aspects
of a history system.

Layers Layers are sub-histories or local histories for parts of the overall
system. Several layers may be combined to an overall global history.

The Flatland system uses multiple local histories, one for each segment,
and combines them to a global history for the whole whiteboard. The History
Tree system and the Back Button system use one history for each browser
window. These local histories are completely independent; a global history
does not exist. Within the History Tree system, the history of each browser
window is stored as a tree and displayed in two separate trees: One tree
contains all open tabs and another tree contains all closed tabs.

The TIP system consists of several services effecting each other, each
with a local history. However the TIP system should interact as one single
application, thus we need a global history. We suggest a multiple layer history
system which construct a global history out of the local histories.

History Content We identify the following actions that may be captured:
open, close, move, branch, split, merge and change of focus. None of the the
analysed systems capture all these actions; changes of focus are not captured
by any system (see Table 1).

The Flatland system captures create, delete, move, split and merge ac-
tions of segments. Provided that the Flatland history behaves like the Time-
warp history, the branch action is also stored Due to the fact that all seg-
ments are displayed at once, changes of focus are changes of the user’s view
direction, which are not detectable by Flatland. Creation and deletion of
segments can be considered as open and close actions. Moving is a change
of location of a segment on the whiteboard.

The History Tree system captures open, close and branch actions of pages

13

and close action of tabs. When a page is opened the History Tree system
stores the page as a leaf of the previous page. Tabs are considered as pages
without a previous page. They are children of the root which represents the
browser window.

The Back Button system only stores page openings. Earlier representa-
tives of the page are deleted from the list.

For the TIP system we suggest to capture open, close, move, branch and
change in focus actions. Open and close actions especially belongs to text-
based services like the information and recommendation service. The move
action can be sub-divided into a physical movement and a virtual movement
of the user. While virtual movement is generated when the users navigate
to points-of-interest different to their current physical location. The branch
action opens a new branch in the history tree of the TIP system. Branching
is caused by browsing in one of the text-based services or by virtual back and
forward movements.

We suggest to not only capture actions by order, which is sufficient for
the three analysed systems, but also by time. The time reference is needed
to display history entries by imprecise time specification.

Ordering of Entries History entries need to be sorted according to a
specific order to display them. All analysed systems store or order their
history events by time of triggered actions.

The Flatland system additionally stores changes of locations. But it
only uses these changes to reset a past configuration of segments on the
whiteboard, not for ordering.

Within the TIP system, it may be important to also remember which
service caused a history entry at which location. Thus the history can be
organised and browsed by time, location and service.

Complexity The challenge is to construct a comprehensive history pre-
sentation.

The Back Button system uses a straightforward interface; just two but-
tons, back and forward. Unfortunately unexpected pages in the history may
confuse the user: It is possible that the target of the back button is not the
parent of the current page like in stack-based back button implementation
(compare Figure 6).

This particular risk of confusion is faced by displaying the history as a
tree, like in History Tree system. However the history tree can grow in size
so that it will not fit on the screen. Especially when it is displayed on a
small screen like installed in mobile devices. The user may not get an overall

14

image of the history content, which might be confusing.
Due to the large screen size, the Flatland system can display its overall

system state at once. However displaying branches in history will result in
history trees with all their disadvantages.

On the map of the TIP system, all visited points-of-interest are displayed.
The physically visited are connected by streets and paths. These streets and
paths correspond to edges of a graph and the points-of-interest correspond
to nodes of a graph. With the start point of a trip as root, this graph is
a tree. Thus we suggest to use the map of the TIP system as basis for a
history tree representation of the TIP history. To compensate the heavy
screen consumption of a tree, we suggest to underlay the route with content
of the TIP services, which was active at a particular position on the route.
If the position is not unique the content is displayed ordered by time.

Overall we suggest to implement the TIP system with a multiple layer
history consisting of several local histories, one for each service, and a global
history, which connects all actions.

As actions we suggest to capture open, close, move, branch and change
in focus actions.

The history entries of the TIP system should be browse-able (imprecise)
time, location and service, so each interaction with the TIP system needs to
store, which service caused the entry, at which location, at which time.

To keep the complexity handy we suggest an interface, which display the
route of a trip underlayed with the content of the active service. Then the
TIP history could be traversed first by location and second by time.

7 Conclusion and Future Work
In Section 1, we identified three groups of challenging questions, which we
now attempt to answer.

How many histories do we need? Should each service use its own
history or should all services share a global history? In general we
need one system-wide history. We would like to present to the user at most
two histories at a time: the local history of the current service and the
system-wide global history.

In storage we need access to one global history and to as many local histo-
ries as we have services. Whether the global history is stored and subdivided
into several local histories or several local histories are stored and combined
to one global history, does not matter.

15

How to manage histories? Is it useful to cluster histories by lo-
cations or by services or both? Is a time-based order encoded
into histories (as typically done in web browsers)? The TIP system
should capture each user interaction and store time, physical location, virtual
location and service id. The physical location describes the location of the
user in the real world. The virtual location describes where the user browses
the TIP system on the virtual map when interaction occurred. The service
id identifies the service, which triggered the history entry.

We expect that locations especially in combination with content from a
service are remembered better by humans than time references. We may also
store interactions with the history itself, even these interactions can help the
user to remember certain situations. The TIP history could be implemented
as a TIP service.

Do users understand the history behaviour? Will users expect and
understand the displayed behaviour? Is a user aware of differ-
ent modes in a service (physically visited versus virtually visited
points-of-interest)? We will have to evaluate whether the users will un-
derstand the behaviour of the new TIP system. A user study could give us
insights into whether locations combined with content of services are remem-
bered better than time references and if the user is aware of the difference
between virtual and physical location within the TIP system.

Future Work This paper provides an overview and comparison of concepts
that have been proposed to guide users through interaction histories. We
gained insights into history design, which we now can use for designing and
implementing interaction histories for a new location-based TIP system.

We plan to evaluate these new TIP systems towards the previous three
groups of questions.

16

References
[1] W. K. Edwards, T. Igarashi, A. LaMarca, and E. D. Mynatt. A temporal

model for multi-level undo and redo. In UIST ’00: Proceedings of the
13th annual ACM symposium on User interface software and technology,
pages 31–40. ACM, 2000.

[2] W. K. Edwards and E. D. Mynatt. Timewarp: techniques for au-
tonomous collaboration. In Proceedings of the SIGCHI conference on
Human factors in computing systems, CHI ’97, pages 218–225. ACM,
1997.

[3] S. Greenberg and A. Cockburn. Getting back to back: Alternate behav-
iors for a web browser’s back button. In Proceedings of the 5th Annual
Human Factors and the Web Conference, June 3 1999.

[4] A. Hinze and G. Buchanan. The challenge of creating cooperating mobile
services: experiences and lessons learned. In ACSC ’06: Proceedings
of the 29th Australasian Computer Science Conference, pages 207–215.
Australian Computer Society, 2006.

[5] A. Hinze and S. Junmanee. Providing recommendations in a mobile
tourist information system. In Information Systems Technology and
its Applications, 4th International Conference ISTA’2005, 23-25 May,
2005, Palmerston North, New Zealand, volume 63 of LNI, pages 86–100,
2005.

[6] A. Hinze, P. Malik, and R. Malik. Interaction design for a mobile
context-aware system using discrete event modelling. In Proceedings of
the 29th Australasian Computer Science Conference - Volume 48, ACSC
’06, pages 257–266. Australian Computer Society, 2006.

[7] A. Hinze and A. Voisard. Location- and time-based information delivery
in tourism. In Proceedings 8 th International Symposium in Spatial and
Temporal Databases (SSTD), pages 489–507. Springer, 2003.

[8] A. Hinze, A. Voisard, and G. Buchanan. Tip: Personalizing informa-
tion delivery in a tourist information system. Journal on Information
Technology and Tourism, 11(4), 2009.

[9] T. Igarashi, W. K. Edwards, and A. LaMarca. An architecture for
pen-based interaction on electronic whiteboards. In Proceedings of the
Working Conference on Advanced Visual Interfaces, pages 68–75. ACM,
2000.

17

[10] E. D. Mynatt, T. Igarashi, W. K. Edwards, and A. LaMarca. Flatland:
new dimensions in office whiteboards. In CHI ’99: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 346–
353. ACM, 1999.

[11] N. Solomon. Firefox add-on: History tree. http://normansolomon.
org.uk/histTreeHelp/tutorial.html, July 2009.

[12] L. Tauscher and S. Greenberg. How people revisit web pages: Empirical
findings and implications for the design of history systems. International
Journal of Human Computer Studies, Special issue on World Wide Web
Usability, 47(1):97–138, 1997.

[13] C. Thunack. Konzeption einer Benutzerschnittstelle für ein kontextsen-
sitives Informationssystem. Diplomarbeit, Fachhochschule für Technik
und Wirtschaft Berlin, 2008.

18

