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Abstract

This thesis is concerned with robust estimation of the parameters of statis-
tical models. Although robust estimation is a very good idea, it has some
shortcomings when seen from the statistical modelling point of view. For ex-
ample, there are no easily applicable principles for creating robust estimates
in new situations.

In this thesis, we are trying to introduce a unified method to obtain the
robustified statistics for various situations such as the linear model and the
generalized linear model. We wish to modify the maximum likelihood esti-
mation procedure, which is very sensitive to the outliers. In order to reduce
the effect on these estimates by outliers, we add an additional component,
which would be of no interest but would contain all outliers, to the regular
component forming a finite mixture. In fact, we use the finite mixture model
to obtain a “robustified” estimate for a model parameter θ, where the finite
mixture form is being used as a mathematical tool to have a tractable form of
analysis rather than being used as a serious model for the data. We employ
the EM algorithm to obtain the our proposed robustified estimates for the
parameters. Our estimates are compared with some other estimates defined
in the robust statistics literature.

This thesis examines the robustness of the proposed estimates using the con-
cept of influence function. The estimates are defined iteratively, so that the
implicit differentiation method of Jorgensen is used to obtain the influence
functions of the estimates. We give example plots of these influence functions
which are bounded.

In this thesis, we give mathematical results for all cases and we use well
known real data sets to investigate our method. The statistical software R
is used for all investigation. Finally, we hope that this method may give a
unified approach for making parameter estimation in statistical models more
robust.
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Chapter 1

Two Approaches to the
Problem of Bad Data

Statisticians have long recognized that the analysis of a real data set using
a given statistical method should not be automatically carried out without
some preliminary checking of the adherence of the data to the assumptions
underlying the method. For this reason, a complementary set of statistical
methods, known as diagnostic methods, has been developed for detecting
violations of the assumptions and for the identification of particular data
points whose values are particularly in conflict with the assumptions.

However, in many situations data are very plentiful and skilled human inter-
vention is expensive, so another theme in statistics has been the development
of a class of methods, which perform well when traditional assumptions are
not met. This theme, which goes by the name of Robust Statistics, does not
seek to identify troublesome data but rather seeks estimators whose values
are determined by the bulk of the data and are insensitive to large changes
in the values of a small proportion of the data. As a consequence, it may
be expected that these “robust estimators” are largely unaffected by a small
proportion of bad or spurious data.

1.1 Diagnostic Statistics

The theme of diagnostic statistics initially focussed on statistics supplemen-
tary to regression output. Work in this field was presented in the two books
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[6] and [10] which summarized the material in previously published papers
by these authors and others.

It is now common for regression output to present plots and tables based
on residuals, and leverages, and distance measures such as Cook’s distance,
which summarize the effect an individual data point has on the parameter
estimates. Pregibon [46] extended these diagnostics to logistic regression
modelling and now many types of statistical models have complementary di-
agnostic statistics of this kind.

Diagnostic statistics are used in various ways. Often they may suggest an
alteration to the model such as a transformation of the response variable
which may bring the data into greater conformity with the assumed model.
If a point is flagged as particularly influential it should, if possible, be verified
as correct. If a point has a particularly large residual, it may be regarded as
an outlier and considered for deletion from the data.

1.1.1 Outliers

Outliers are data values that are remote from the main body of the data.
They have long been a problem in the application of statistics and their
handling is addressed by several authors. Hawkins [22] discussed outliers
from various angles. We introduce the topic by considering the following
example:

Example 1.1

The data set introduced by Stigler [49]: sixty-six measurements of the speed
of light, were made by Newcomb between July and September 1882. Simon
Newcomb measured the time required for light to travel from his laboratory
on the Potomac River to a mirror at the base of the Washington Monument
and back, a total distance of about 7400 meters. These measurements were
used to estimate the speed of light. The original data is given in Appendix
B1 of [18]. It has been analyzed in the Bayesian frame work in pages 77 and
160. The data is plotted in Figure 1.1.

Figure 1.1 shows that two observations were quite atypical by the virtue
of being far from the bulk of the data: they are outliers. The term outlier
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Figure 1.1: Density of speed of light.

is used collectively for discordant observations and contaminants. An obser-
vation that appears surprising or discrepant to the investigator is considered
as a discordant observation [29] and an observation that is not a realization
from the target distribution is considered as a contaminant.

If the contaminating distribution, generating ‘contaminants’, has tails which
are heavier than the distribution which generates the ‘good’ observations,
then there will be a tendency for the contaminants to be outliers. For ex-
ample, the basic distribution might be standard normal and the contami-
nating distribution a normal distribution with mean zero and large variance
σ2(>> 1). A mixture F of these two distributions is known as a contaminated
normal and we may write symbolically

F = (1 − p)N (0, 1) + pN (0, σ2)

where p is the probability that a given observation comes from the contam-
inating distribution. The pattern of these three distributions can be viewed
in Figure 1.2, where p = 0.05 and σ2 = 9 are chosen.
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Tukey [27] used this method to generate artificial contaminated data and
later Huber [27] generated contaminated data for examining the efficiency of
the estimates such as mean absolute deviation and standard deviation with
divisor n.

Outliers for roughly normal data can be detected by a number of meth-
ods such as z-score, modified z-score, and modified box plot, [29], [3]. In the
regression analysis, the outlier may be defined based on the the residual, the
difference between actual response value and predicted response value. Note
that it is different from an influential point, which is an outlier in the space of
explanatory variable points. Leverages, which are discussed in section 1.4.3,
may be used to identify the influential points in regression analysis. Cook
distance is commonly used to identify the outliers. Anderson ([1], page 83)
explains to identify outliers in the case of GLM. Note that outliers may be
incorrectly identified when we assume an incorrect model.
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1.2 Robust Statistics

Many classical statistical methods are vulnerable in the presence of outliers,
parameter estimates particularly are very sensitive to outliers. It is possible
to use other statistics, such as the median, which are insensitive to outliers.
However, such statistics may have low efficiency (large variance) compared
with classical estimates. The simplest situation occurs when we seek a mea-
sure of the centre or location of a set of data. For example, the sampling
variance of the mean is smaller than the sampling variance of the median
when the data is sampled from a normal distribution.

John W. Tukey was interested in looking for location estimators that shared
the median’s property of being insensitive to outliers but with smaller vari-
ance than the median when the data was sampled from a normal distribution.
This project started to attract serious academic attention when several statis-
ticians, including Frank Hampel, Peter Bickel and Peter Huber, were invited
to join John Tukey at Princeton University for the academic year 1971-72
to study this and related questions. Many estimators were studied during
this year, which became known as the “Princeton Robustness Year”. Some
of the results of this collaboration were initially published in [2], [27], and [21].

Huber [27] defines a statistic as being robust when its distribution is not
sensitive to “small” departures from assumptions about how the data is ob-
tained. For example, the data is a sample from a normal distribution. A
related concept is resistance which signifies that a statistic is not greatly
changed by small changes to the data. Both definitions can be made precise
in different ways depending on how small is interpreted. In fact the two
properties tend to go together and except in very technical contexts it is not
necessary to make a sharp distinction between them.

The standard estimation procedures for robust statistics were developed in
the 1970s. In simple language they handle good and bad (outlier) data to-
gether in such a way as to limit the effect of the bad data.

There are three main classes of robust procedures in practice. They are:

• M-estimators: based on the maximum likelihood;

• L-estimators : based on the linear combination of ordered observations;
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and

• R-estimators : derived from the rank tests.

Although robust statistics is a precise approach for obtaining reasonable es-
timates for possibly contaminated data, in practical situations it has short-
comings, for example:

• There are so many choices and no clear idea of which method to use;

• Computational problems can arise with some methods; and

• Although asymptotic results for robust statistics are available, the gen-
eral impression is that robust techniques can only be used for moderate
sized data sets.

Robust estimation procedures are somewhat different in concept from model-
based parametric estimation. Robust statistics are often algorithmically, de-
fined as statistical functionals, whereas model-based parametric estimates are
designed to estimate the parameters of an assumed distribution. Statistical
functionals can be applied to both theoretical and empirical distributions.
They can also be applied to distributions in the neighborhood of a given
distribution.

1.2.1 Statistical Functionals

Let y1, y2, . . . , yn be a sample from a population with parameter θ and dis-
tribution function F ∈ F , where F is a collection of distribution functions
including the empirical distribution function Fn to be defined immediately
below and let Tn = Tn(y1, y2, . . . , yn) be a statistic for a parameter θ. If Tn
can be written as a functional T of the empirical distribution function Fn,
then we can say that T is a statistical functional.

The empirical distribution function Fn(y) based on the sample observations
y1, y2, . . . , yn can be defined as follows

Fn(y) =
1

n

n
∑

i=1

I[yi,∞)(y) (1.1)
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where I[yi,∞)(y) is the indicator function for the set of real numbers greater
than or equal to yi. In robust statistics, a parameter θ is defined as a func-
tional T of the distribution function F , which is often approximated by Fn.
Hence an estimator, θ̂, of the parameter θ can be defined as a functional T
of the empirical distribution function Fn. For example, the median can be
written as Tn = T (Fn) = F−1

n (1
2
), where F−1

n (1
2
) = inf{y | Fn(y) ≥ 1

2
}.

Note that the empirical distribution function is unaffected if the sample is
repeated α times, where α ∈ Z+. Hence statistics which may be written
as functionals of the empirical distribution function, are not affected if the
sample is repeated α times.

The following numerical example describes this situation. If Y = {3, 6, 7}, α =
2, then the new data set is Y Y = {3, 6, 7, 3, 6, 7}, and the empirical distri-
bution functions for Y and Y Y are the same. Note that mean(Y ) = 5.33 =
mean(Y Y ), but var(Y ) = 4.33 6= 3.47 = var(Y Y ) due to the (n − 1) di-
visor. Being unable to study the usual sample variance directly within the
function of distribution frame work is not a great limitation as we can study
the divisor-n variance as an alternative. Note that some statistics cannot be
written in the form of a statistical functional.

Statistical functionals T (F )are often defined expectations

T (F ) =







∫

g(y)dF (y) if F is a continuous distribution

∑

i g(yi)pi if F is a discrete distribution

where g is a real valued function and pi is the point probability mass at yi.
For example, if g(y) = y2, then T (F ) becomes the second moment and is
denoted as EF (Y 2) and

T (Fn) =

∫

y2dFn(y) =
1

n

n
∑

i=1

y2
i

Note that robust statistics is mainly focused on the consistency property,
rather than unbiased property. The estimator T (Fn) is said to be consistent
at F if T (Fn) → T (F ) in probability.
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1.3 Maximum Likelihood Estimators

We are mainly focused on the M-estimator in our research. This will be
discussed in section 1.4. We begin to discuss the maximum likelihood esti-
mation (MLE) here because the M-estimator is considered as an extension of
MLE, and also because our robustified estimators will be defined using MLE .

Let f(y, θ) be the joint probability density function of random vector Y =
(Y1, . . . , Yn), where θ is a parameter. The likelihood L(θ, y) has the same
form as the joint density function f(y, θ) with a different order of the ar-
guments. If the Yi’s are identically and independently distributed, then the
likelihood L(θ, y)

L(θ, y) = Πn
i=1f(yi, θ)

The maximum likelihood estimate of θ is the value θ̂, that maximizes L(θ, y).

Subject to regularity conditions, this implies that ∂L(θ,y)
∂θ

= 0 when θ = θ̂.
Thus,

L(θ̂, y) ≥ L(θ, y) ∀ θ
In addition, the variance of θ̂ can be shown under regularity conditions to be
given by

var(θ̂) =

[

−∂
2L(θ, y)

∂θ2

]−1

For mathematical simplification, l(θ, y) = logL(θ, y) is often considered in-
stead of L(θ, y). Please refer to [15] for more details.

1.3.1 The Exponential Family

Many of the standard distributions belong to the exponential family.

Definition: Exponential Family
The function f(y, θ) is said to be a member of the exponential family if it
can be written as

f(y, θ) = exp[a(y)b(θ) + c(θ) + d(y)]

where a and d are functions of y, and b and c are functions of the parameter
θ. The density function which belongs to the exponential family is said to
be a canonical form if a(y) = y, and b(θ) is called a natural parameter.
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Dobson [15] discussed the properties of exponential family distributions, in-
cluding mean and variance.

E[a(Y )] = −c
′(θ)

b′(θ)

V [a(Y )] =
b′′(θ)c′(θ) − c′′(θ)b′(θ)

[b′(θ)]3

For example, consider the Gamma distribution with a scale parameter θ,
which is the parameter of interest, and a known shape parameter λ, its
probability density function fY (y, θ) can be written in the exponential family
form

fY (y, θ) =
yλ−1 θλ e−y θ

Γ(λ)

= exp[y × (−θ) + λ log(θ) + (λ− 1) log(y) − log(Γ(λ))]

= exp[a(y)b(θ) + c(θ) + d(y)]

where

a(y) = y, indicates canonical form,

b(θ) = −θ,
c(θ) = λ log(θ), and

d(y) = (λ− 1) log(y) − log(Γ(λ))

Hence, E(Y ) = −λ/θ
−1

= λ
θ

and V (Y ) = 0−(−λ/θ2)×(−1)
(−1)3

= λ
θ2

. For the maximum
likelihood estimator of θ

l(θ, y) = logL(θ, y) = log [Πn
i=1f(yi, θ)]

=
n
∑

i=1

[yi(−θ) + λ log θ + (λ− 1) log yi − log Γ(λ)]

dl(θ, y)

dθ
=

n
∑

i=1

[

−yi + λ
1

θ

]

= 0

θ̂ =
nλ

∑n
i=1 yi

13



1.4 M-estimators

An M-estimator, Tn, is defined in (1.2)

Tn = arg min
θ

n
∑

i=1

ρ(yi, θ) (1.2)

where ρ, often referred to as objective function (loss function), is a function
chosen to provide the estimator with good properties when the data come
from a distribution with density proportional to exp(−ρ(y, θ)) or close to it.

For the minimization of (1.2),

n
∑

i=1

ψ(yi, θ) = 0 (1.3)

where ψ is a known real valued function and defined in (1.4)

ψ(yi, θ) =
∂ρ(yi, θ)

∂θ
(1.4)

This method is called M-estimation, because it is a generalized form of
MLE. That means −ρ(y, θ) need not necessarily be the log-density of y.
If ρ(yi, θ) = − log f(yi, θ), it is known as a maximum likelihood estimator
(MLE). For MLE, ψ(yi, θ) is often called the score function.

From (1.3), we can write EFn
[ψ(y, Tn)] = 0. Hence the statistical functional

corresponding to Tn is defined as a solution of (1.5).

EF [ψ(y, T (F ))] =

∫

ψ(y, T (F ))dF = 0 (1.5)

For the regression situation, an M-estimator can be defined as being a value
of θ satisfying

n
∑

i=1

ψ(yi, xi, θ) = 0 (1.6)

where ψ(yi, xi, θ) = ∂ρ(yi,xi,θ)
∂θ

=
∂ρ( yi−xi,θ

σ )
∂θ

.
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Iterative computation is required to solve (1.3), because (1.3) is a set of
non-linear equations. Holland and Welsch [24] give a good survey of the use
of iterative re-weighted least squares (IRLS) for robust M-estimation of the
parameters. These estimates down-weight observations with large residuals
in order to achieve resistance to small proportions of discordant observations.

We need to choose starting values to run IRLS. It is important to choose
good starting values, because of the non-convex ρ functions, [24]. Holland
and Welsch suggest various starting values for various cases in their paper
[24]. Note that the application of IRLS in robust estimation of linear regres-
sion is different from its application in the standard generalized linear model
(GLM), where the response variable is often adjusted. For example, the M-
estimator for location can be expressed as a weighted mean. Let w(y, θ) be
a weight function.

w (y, θ) =







ψ(y,θ)
y

if y 6= 0

ψ′(0) if y = 0

(1.7)

Since ρ is our choice, a number of ρ functions are defined in the robust
literature. For example:

Lp Estimator
If we choose ρ(y, θ) = |y − θ|p, the resultant M-estimator is known as
Lp estimator. If p = 1, the location L1 estimate is the median, and if
p = 2 it is the mean.

Huber ρ function
Huber [25] defined a ρ function based on the density with a Gaussian
in the center and double exponential in the tails. The Huber ρ (r)
function is defined in (1.8).

ρ (r) =







r2

2
if |r| ≤ c

c |r| − c2

2
if |r| > c

(1.8)

Bi-square ρ function
Tukey introduced another common ρ function for M-estimators, defined
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in (1.9). It is known as the Tukey Bi-square (Bi-weight) estimator.

ρ (r) =















c2

6

[

1 −
(

1 − r2

c2

)3
]

if |r| ≤ c

c2

6
if |r| > c

(1.9)

The values ‘c’ used in (1.8) and (1.9) are called tuning constants, which,
roughly speaking, govern whether a point is treated as typical or as an outlier.
With smaller value of the tuning constant more points will be treated as
outliers. With a large value of the tuning constant, only residuals that are
large relative to variance will be treated as outlying and downweighted. The
tuning constant is chosen as a trade off between robustness of the estimator
and efficiency of the estimator at normal errors. Page 27 of [35] explained
this situation with various contamination proportions. In practice, we often
choose c = 1.345 for (1.8), and c = 4.685 for (1.9) in order to have 95%
efficiency at the normal. Corresponding ψ functions for (1.8) and (1.9) are
given below.

ψ (r) =

{

r if |r| ≤ c
c sign(r) if |r| > c

(1.10)

ψ (r) =

{

r
[

1 −
(

r
c

)2
]2

if |r| ≤ c

0 if |r| > c
(1.11)

Since the ψ function in (1.11), after initially increasing, decreases to zero as
r → ±∞, the estimator is known as re-descending. In general, re-descending
M-estimators are more efficient than Huber estimators but may be more sen-
sitive to the choice of starting values when computed by IRLS.

From (1.10) and (1.7) we can say that Huber assigned unit weight for the
center and small weights (closer to zero, but not exactly to zero) to obser-
vations that are outlying from the centre. Different weights are assigned for
other ρ-functions [24].

Definition: Translation invariance
An estimator, T , is called translation invariance if

T (y1 + a, . . . , yn + a) = T (y1, . . . , yn) + a
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Definition: Scale equivariant
An estimator, T , is called scale equivariant if

T (ay1, . . . , ayn) = aT (y1, . . . , yn)

where a is a constant.

A drawback of the location M-estimator is that it is translation invariance
but it is not scale equivariant [31]. This problem may be solved by one of
the following approaches:

1. Define r = y−θ
σ

if σ is known.

2. Compute the robust estimate, σ̂, for the scale parameter σ before esti-
mating the location parameters and define r = y−θ

σ̂
.

3. Compute robust estimate for location and scale together by defining
r = y−θ

σ
(Refer to section 1.4.2).

The median absolute deviation (MAD) is considered as a better robust esti-
mate for scale parameter, σ, than the sample standard deviation, because it
is insensitive to outliers.

MAD = median|yi − θ̂|

where θ̂ is the median. It is advisable to determine the scale parameter σ first
if we are interested in computing the location parameter. Another choice for
scale is normalized MAD (MADN) ([35], page 33)

MADN =
MAD

0.675

Holland and Welsch [24] list some familiar ρ and ψ functions for M-estimators.
Next, we will use M-estimator procedures to compute the robust estimators
for linear models.

1.4.1 M-estimators of Location

We can assume that the outcome yi is generated around the true value θ,
which is the parameter to be estimated. Consider the model (1.12)

yi = θ + ǫi , i = 1 . . . n (1.12)
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where the errors ǫ1, . . . , ǫn are independent random variables, which have
the same distribution function. If the data come from exactly normal dis-
tribution, the optimal estimate for θ is mean. Our goal here is to seek for
estimates that are reasonably good in some sense when the distribution is
approximately normal.

The ∆ =
∑

i ρ(
yi−θ
σ

) needs to be minimized to find the estimate of θ. Note
that we are not seeking to find the estimator for the scale parameter, σ. At
the minimum

d∆

dθ
= 0

∑

i

d

dθ

[

ρ

(

yi − θ

σ

)]

= 0

The estimator θ̂ of the parameter θ satisfies the following equation:

∑

i

ψ

(

yi − θ̂

σ

)

= 0 (1.13)

Based on (1.7), the estimating equation (1.13) can be written as follows:

∑

i

(yi − θ̂)

[

w

(

yi − θ̂

σ

)]

= 0

θ̂
∑

i

wi −
∑

i

wiyi = 0

This leads to

θ̂ =

∑

i wixi
∑

iwi
(1.14)

where wi = w
(

yi−θ̂
σ

)

. The common and well known choices for weight func-

tion w are the Huber and the Tukey weight functions. The expression (1.14)
is not an explicit form, because w in the right hand side of the expression
(1.14) depends on θ. Therefore, solving this problem requires an iteration
process. That means, a given initial value for θ will give new weights, which
gives new θ and so on. Let θ̂(m) be the mth iteration of the process with
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initial value θ(0).

θ̂(m) =

∑

i w
(m−1)
i yi

∑

i w
(m−1)
i

If θ̂(m) ≈ θ̂(m+1), then θ̂ = θ̂(m+1).

1.4.2 M-estimators of Location and Scale

Until now, we have considered only M-estimators for the location parameter
with a previously estimated scale parameter. M-estimators for the parame-
ters location θ and scale σ can be computed simultaneously. The estimates
θ̂ and σ̂ for the parameters θ and σ are defined in (1.15).

(θ̂, σ̂)t = arg min
θ, σ

{

n
∑

i=1

σρ

(

yi − θ

σ

)

+ aσ

}

(1.15)

where a is a positive appropriate constant and t indicates the transpose. A
necessary condition for a minimum is that θ̂ and σ̂ satisfy

∑

i

ψ

(

yi − θ

σ

)

= 0 (1.16)

∑

i

χ

(

yi − θ

σ

)

= a (1.17)

where χ(r) = rψ(r) − ρ(r). To obtain robust statistics, the ψ function may
be defined with standard robust functions such as Huber, Tukey bi-weight,
etc.

Huber [25] defined another possible function χ(r) = ψ(r)2 and

a = 2Φ(c) − 1 − 2cϕ(c) + 2c2(1 − Φ(c))

where ϕ and Φ are the standard normal density and distribution function
respectively, c is the Huber turning constant, and ψ is a Huber function
defined in (1.10). It is known as Huber’s proposal 2. MLE for θ and σ are
obtained if ψ(r) = r and χ(r) = n− rψ(r).
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1.4.3 M-estimators of Regression

The robust estimation of the parameters for the multiple linear regression
model is briefly discussed in this section. The least squares method is not
appropriate to estimate the regression parameters for contaminated data, be-
cause unusual observations have a heavy impact on the least square estimates
of the regression coefficients. In the regression analysis, there are two types
of unusual observations. One is outliers, where observations are distant from
bulk of the data, and the other one is influential points (points of leverage)
which are outlying in the space of predictor variables.

Consider the classical multiple linear regression model:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ǫi, i = 1, . . . , n

or, in matrix form.
y = X β + ǫ (1.18)

where

y = [yi]n×1 is a vector of response values

X = [xij ]n×(k+1) is a data matrix with full rank and xi0 = 1 ∀i
β = [βj](k+1)×1 is a vector of parameters to be estimated

ǫ = [ǫi]n×1 is a random error vector with the following properties).

Note that E(ǫ) = 0 and Cov(ǫ) = σ2I where I is an n × n identity matrix.
The estimates for the parameter of regression coefficients can be obtained
using the least squares (LS) method

β̂ =
(

X tX
)−1

X ty (1.19)

var(β̂) = (X tX)−1σ2 (1.20)

where σ̂2 = ǫ̂tǫ̂/(n− (k + 1)) and ǫ̂ = y − ŷ.

H = X (X tX)
−1
X t is called the hat matrix (or projection matrix). A di-

agonal element, hi of zero, indicates no influence on the fit by the ith row
vector xi of the design matrix, X. In contrast, high leverage points can be
determined by looking at the diagonal elements of H . A rule of thumb is
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that if hi >
2(k+1)
n

then attention to row vector xi of the design matrix, X,
needs to be given, where hi is a ith diagonal element of H , (k+1) is a number
of parameters in the model and n is the sample size. Rousseeuw and Leroy
([48], page 217) discuss the usefulness of the hat matrix in detail.

Our main intention is to find the robust estimators for the regression co-
efficients. Huber [26] introduced the M-estimator method to calculate robust
estimates for the regression parameters. It is a direct modification of M-
estimation for location.

We are able to compute the estimator, β̂ = (β̂0, β̂1, ...., β̂k) by minimizing
∆ with respect to β:

∆ =
n
∑

i=1

ρ
(ǫi
σ

)

=

n
∑

i=1

ρ

(

yi − β0 − β1xi1 − β2xi2 − · · · − βkxik
σ

)

=
n
∑

i=1

ρ

(

yi − xi β

σ

)

where xi = (xi0 = 1, xi1, xi2, ....xik) is a ith row vector of the matrix X. For
minimization of ∆, ∂∆

∂β
= 0, which gives

n
∑

i=1

ψ

(

yi − xi β

σ

)

xij = 0; j = 0, 1, . . . k (1.21)

The equations (1.21) can be written by replacing the ψ(r) function by rw(r).

n
∑

i=1

wi × [yi − xiβ] × xij = 0 ∀j = 0, 1, . . . k

=⇒ (xj)tWy − (xj)tWXβ = 0 ∀j = 0, 1, . . . k

where xj is a jth column of design matrix X and W is a n×n diagonal matrix
whose elements are wi

wi = w

(

yi − xiβ̂

σ

)
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Hence, we can write in matrix form

X tWy −X tWXβ = 0 (1.22)

The iteration process is required, because wi depends on the parameter β.
Finally, β̂ may be defined as the limit of an IRLS process in which y is the
dependent variable and the weight function is w(r) = ψ(r)

r
. It is important to

choose starting a value for β; say β(0) = (β
(0)
0 , β

(0)
1 , ....β

(0)
k ). Green [19] gives

an example that shows that good starting values for parameters may have an
effect on the speed of convergence, and that the choice of parameterization
can strongly influence the sensitivity of the IRLS to the choice of starting
values.

The following steps will lead a solution for (1.22) when the scale parame-
ter σ is not of interest.

Step 1: Compute MAD / MADN for scale parameter, σ.

Step 2: Give initial values for β.

Step 3: Compute ri = yi−xi β
σ

.

Step 4: Compute weights for each observation using the appropriate objec-
tive function.

Step 5: Use (1.22) to compute β with weights computed in Step 4.

Step 6: Go to Step 3 and repeat steps 4 and 5 until convergence is achieved
for the estimated coefficients.

Huber [27] discusses the asymptotic covariance variance matrix, V, given
below, for the robust β̂

V(β̂) =
E(ψ2)

[E(ψ′)]2
(

XX t
)−1

Therefore, the estimated covariance matrix, Vest, for the robust β̂ is given
by:

Vest(β̂) =
n−1

∑

i [ψ(ri)]
2

[n−1
∑

i ψ
′(ri)]

2

(

XX t
)−1
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Up to now we have assumed in the regression analysis that the response
variable y may have outliers and the design matrix X contains no rows with
high leverage. The design matrix X may be assumed as random, partic-
ularly for observational study, even though it is considered to be fixed in
the theory. If X contains at least one high leverage point, the estimates are
somewhat weak because estimates are highly influenced by those points in X.

An approach to overcome this issue is to down-weight the influential xi’s
to prevent them from dominating the estimating equations. Based on this
concept, [36] and [37] proposed a generalized M-estimator, known as the
GM-estimator. This topic is extensively discussed in ([35], section 5.11), and
([31], section 4.4)

1.4.4 Generalized Linear Model

In this section, we introduce a model which permits the response variable to
have any distribution, with a mean value equal to the function of a linear
combination of predictor variables while data is contaminated. It is discussed
briefly here and a detailed discussion appears in Chapter 6.

We mainly review the existing robust estimation method for regression coef-
ficients of generalized linear model (GLM). The development of robust infer-
ence for GLM is very limited [8]. At present, only logit and Poisson models
are commonly investigated in detail in the robust literature [1].

In the early stage, robust methods for GLM are developed in the same way as
M-estimation in the linear model. Pregibon [46] found a way to make logistic
regression more robust. Later, Bianco and Yohai [7] found that these estima-
tors are not Fisher consistent (Eβ[ψ(y, x, β)] = 0). They proposed amending
Pregibon’s method [46] by adding a correction term. Still, these estimates
are not B-robust, defined in section 2.5, if the design matrix X is random.
Croux and Haesbroeck [12] modified the version of Bianco and Yohai [7] to
overcome this problem by down-weighting high leverage observations.

Apart from these methods, [32] introduced another method under the frame-
work of M-estimation. It is a more complicated method and it is known
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as conditionally unbiased bounded influence (CUBIF) estimates. Recently,
Cantoni and Ronchetti [8] developed a method based on the quasi-likelihood
generalized estimating equations of Preisser and Qaqish [47]. Estimates ob-
tained by this method have bounded influence functions, defined in Chapter
2.

1.5 Goal of the Thesis

The M-estimator is an alternative to the classical estimator, but it is not
considered globally for the whole class of generalized linear models in the
robust literature [8]. Moreover, due to the number of ρ functions defined by
various authors, it is hard to decide which method to use.

We propose a unified method to obtain robustified estimates, which are alter-
native to the maximum likelihood estimates (MLEs), for the whole class of
generalized linear models. We use mixture models (see Chapter 3) to obtain
the robustified estimates. We will demonstrate that our proposed estimators
have good robustness properties.

For the thesis, we investigate a range of situations from simple to compli-
cated models. Our aim is to show that our method provides a way to make
the construction of statistical models for applications more robust. Loca-
tion parameter estimation is considered in Chapter 4 and followed by linear
models in Chapter 5. The more important problem of the generalized linear
model is analyzed in Chapter 6. Chapter 7 describes how to estimate the pa-
rameters of location and scale together. Chapter 8 focus on how to compute
robust statistics for the non-linear model parameters. Chapter 9 explains the
computation of estimates using improper method. Finally, we discuss a very
general case in Chapter 10. In the last Chapter, we summarize the thesis.

1.6 R Software

The object oriented programme R is used for the statistical analysis through-
out this study. Therefore we would like to give a brief introduction about R
here.
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The R was introduced to the globe by University of Auckland, New Zealand
in 1996, officially released in 1999. This is similar to the statistical pro-
gramme Splus. Due to the free access and the main feature of flexibility,
usage of R has increased exponentially. It can be freely downloaded from
the web site http://www.r-project.org.

R comes with the base libraries and recommended packages. A number
of authors contribute to R by supplying packages and now there are more
than 300 packages available. The packages can be easily installed in R as
required. For example, many packages for robust statistics are not installed
in standard R.

For robust estimation, a number of packages are available in R. Some of
these packages are given below.

1. MASS:

huber(), hubers() - M-estimator for location.

rlm() - Robust fitting of linear models using M-estimation method.

rnls() - Robust non-linear regression.

Other functions eg: cov.rob(), lqs(), etc.

2. robustbase:

lmrob() - Computes fast MM-estimators for linear regression models.

glmrob() - Robust fitting for generalized linear models especially for bino-
mial and Poisson.

anova() - Model selection for both ‘lmrob’ and ‘glmrob’.

Other functions eg: anova.lmrob(), Qn(), Sn() etc.

3. robust: This is exactly similar to the robust package in Splus.

lmRob() - Robust fitting for linear regression models.

glmRob() - Robust fitting for generalized linear models especially for bino-
mial and Poisson. In addition, the CUBIF estimator can be obtained
here.
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Most of these functions are used in the appropriate places to compare our
numerical results. We have written R functions based on our method to
obtain estimates for parameters.
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Chapter 2

Property of Robustness

In this chapter, we describe how to assess the robustness of an estimator
quantitatively. Robustness is commonly measured by influence function,
breakdown point and gross-error sensitivity. We use only influence function
to examine the robustness of the estimator for this research.

2.1 Influence Function

Hampel is the originator of influence function [25]. It is sometimes called the
influence curve, particularly when statistical functional T is one dimensional
and F is defined over the real numbers.

Definition: Influence Function
Let T be a statistical functional and y be a point in a sample space. Then
the influence function of T is defined by

IFT,F (y) = lim
ǫ→0

T ([1 − ǫ]F + ǫ∆y) − T (F )

ǫ
(2.1)

where ∆y is the cumulative distribution function representing the unit prob-
ability mass at the point y. Often F will be taken as an empirical distribu-
tion function Fn, then the influence function is known as empirical influence
function (EIF). The form of the right hand side of the (2.1) may be in-
terpreted as the first derivative of T for an underlying distribution F . In
fact, the influence function is known mathematically as Gâteau derivative of
the functional T for the distribution F in the direction of the distribution ∆y.
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Suppose ǫ = 0.1, we could imagine a sample size 10n made up of 9 copies
of y1, . . . , yn and n copies of y, then this sample would have (1 − ǫ)F + ǫ∆y

as its empirical distribution function. Alternatively, we could think of a
weighted sample in two parts, the first part having Fn and having equally
weighted observations whose weights are 1 − ǫ and the second part being
the single number {y} with weight ǫ. For example, if Y = {3, 6, 7}, y =
{100} and ǫ = 0.1, then the sample size is 30 (= 3 × 10), made up by
Y Y = {3, 3, . . . , 3, 3, 6, 6, . . . , 6, 6, 7, 7, . . . , 7, 7, 100, 100, 100}, which follows
Hence ¯Y Y = 14.8 = 0.9 × Ȳ + 0.1 × 100.

Since T ((1− ǫ)F + ǫ∆y) is an estimate for the distribution (1− ǫ)F + ǫ∆y, a
member of the contamination neighborhood of F , and T (F ) is an estimate
for exact distribution F , the difference between these two estimates is caused
by contamination in the observations, approximated by ǫ IFT,F (y). In fact,
the influence function measures the relative effect on T (F ) of a very small
(infinitesimal) amount of contamination at y. If IFT,F (y) = 0 at the statistic
T , then adding new data y to the data set will not change the statistic T .

One finite sample version of (2.1) is called the sensitivity curve, SCn, where
we replace F by Fn and ǫ by 1

n+1
. It is also known as Tukey’s sensitivity

curve.

SCn(y) = (n + 1)[T (
n

n+ 1
Fn +

1

n + 1
∆y) − T (Fn)]

= (n + 1)[Tn+1(y1, . . . , yn, y) − Tn(y1, . . . , yn)]

For example, consider the harmonic mean for a set y1, . . . , yn of non-zero
numbers. Here

T (Fn) = T

(

1

n

n
∑

i=1

I[yi,∞)

)

=

(

1

n

n
∑

i=1

1

yi

)−1

hence

T ([1 − ǫ]Fn + ǫ∆y) =

(

1

n
(1 − ǫ)

n
∑

i=1

1

yi
+ ǫ

1

y

)−1
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T ([1 − ǫ]Fn + ǫ∆y) − T (Fn) =
1

1
n
(1 − ǫ)

∑n
i=1

1
yi

+ ǫ 1
y

− 1
1
n

∑n
i=1

1
yi

=
ǫ[ 1
n

∑

i
1
yi
− 1

y
]

[ 1
n
(1 − ǫ)

∑n
i=1

1
yi

+ ǫ 1
y
][ 1
n

∑n
i=1

1
yi

]

lim
ǫ→0

T ([1 − ǫ]Fn + ǫ∆y) − T (Fn)

ǫ
= lim

ǫ→0

1
n

∑

i
1
yi
− 1

y

[ 1
n
(1 − ǫ)

∑n
i=1

1
yi

+ ǫ 1
y
][ 1
n

∑n
i=1

1
yi

]

IFT,Fn
(y) =

1
n

∑

i
1
yi
− 1

y
(

1
n

∑

i
1
yi

)2

=
T−1 − y−1

T−2

= T − T 2

y

In fact, we often have no way of knowing whether new data is bad or not;
so we measure, for each point in the sample space, how much the estimate is
affected by the introduction of more observations at that point. Figure 2.1
shows the influence function for the harmonic mean of a sample from -3 to
3 with harmonic mean equal to 4. Notice that the harmonic mean is very
sensitive to numbers close to zero and unbounded, but the effect of large
numbers on the harmonic is small and bounded.

When a statistic is computed via an iterative algorithm, as is often the case
in this thesis, the direct method of computing the influence function we used
for the harmonic mean is not available.

2.2 Iteratively Defined Statistics

Estimates are frequently computed iteratively when MLE or robust methods
are used. In this thesis, we are concerned with statistics that are iteratively
defined in the following sense:

1. An initial value θ(0) is given.;

2. The new estimate, θ(1) is obtained by a known function h(θ(0), Fn). In
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Figure 2.1: Influence function for harmonic-mean

general, we can write

θ(k+1) = h(θ(k), Fn) k = 0, 1, 2, . . .

where k indicates the kth step of the iterative process; and

3. The estimate θ̂ is defined as the limit of the sequence
{

θ(k)
}∞
k=1

if it
exists.

Notice that, θ̂ = h(θ̂, Fn). The function h we call the updating function when
the first argument θ is free and the second argument Fn is fixed. In contrast,
when the first argument θ is fixed and the second argument Fn is free, it is
a statistical functional.

Jorgensen [30] mentioned that it is often easy to compute the empirical in-
fluence function for closed formulae like the second part of the algorithm
above, but it is computationally expensive to compute the influence function
for estimates generated by the iterative process like the third part of the al-
gorithm above. For example, suppose an estimator θ̂ is iteratively obtained
after ten steps, then computing the influence function for θ̂ at seven arbitrary
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points in the sample space requires seventy steps altogether. In addition, it
is desirable to have an analytical result for the influence function for the
iteratively defined statistics. An alternative method is required to compute
the influence function for this situation. It will be discussed in section 2.3.

2.3 Computing the Influence Function of It-

eratively Defined Statistics

Jorgensen [30] introduced the method to compute the influence function for
an estimator. It is computed based on the one-step influence function and
the derivative of the iteration function of the algorithm evaluated at the fixed
point.

2.3.1 Jorgensen’s Method

The true influence function for iteratively defined statistics T can be com-
puted by (2.2), using the concept of the one-step influence function

IFT,Fn
(y) = (I − J)−1IF 1

T,Fn
(y) (2.2)

where

1. I is an identity matrix;

2. J is the derivative of the iteration matrix evaluated at the estimate θ̂,
defined as

J =

[

∂

∂θ
h(θ, Fn)

]

θ= θ̂

where h is the updating function; and

3. The statistical functional G may be defined by the updating function

h from the mth step to the (m+ 1)th step,

G(Fn) = h(θ̂, Fn)

where θ̂ is fixed. IFG,Fn
(y) is an influence function forG. This measures

the change to the parameter estimate caused by a single step of the
algorithm with infinitesimally contaminated data. We define IFG,Fn

(y)
as a one-step influence function of T and we use the notation

IF 1
T,Fn

(y) = IFG,Fn
(y)
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2.3.2 Jacobian Matrix

Definition: Jacobian Matrix
Let f : Rm → Rn be a vector function. That means, yi = fi(x1, . . . , xm), i =
1, . . . , n. The Jacobian matrix J is the matrix of all first order partial deriva-
tives of f = (f1, . . . , fn) with respect to x = (x1, . . . , xm).

J =













∂f1
∂x1

. . . . . ∂f1
∂xm

. . . . . . .

. . . . . . .

. . . . . . .
∂fn

∂x1
. . . . . ∂fn

∂xm













In practice often m = n, although it is useful not to assume this as it makes
the confusion of J with its transpose less likely. We are interested having an
analytical expression for the derivative of the iteration function, h, which is
required to compute the true influence function for iteratively defined statis-
tics (section 2.3.1). In fact, h is mapping from Rp to Rp by θ(m+1) = h(θ(m)),
where p is a number of parameters and m denotes the iteration step. There-
fore the derivative of the iteration function, h, is a Jacobian matrix. We use
the notation

J(θ) =
∂h

∂θ

Jorgensen [30] describes how to obtain this matrix in a fairly general form
for the case of iteratively reweighted least squares.

2.3.3 Example of the Jorgensen Method

In this section, the influence function will be computed analytically and
numerically based on Jorgensen method.

The One Step Influence Function

Consider a statistic defined by the iteration with updating function h(θ, Fn),
where w() satisfies (1.7). For example, the location M-estimates of robust
statistics may be specified by (2.3)

h(θ, Fn) =

∑n
i=1w(yi − θ)yi
∑n

i=1w(yi − θ)
(2.3)
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Note that θ̂ = h(θ̂, Fn). Now consider the perturbed data set y1, . . . , yn, y
with weights 1−ǫ

n
, . . . , 1−ǫ

n
, ǫ. The empirical influence function for the statistic

G(Fn) = h(θ̂, Fn), is therefore given below.

IFG,Fn
(y) = lim

ǫ→0

h(θ̂, (1 − ǫ)Fn + ǫ∆y) − h(θ̂, Fn)

ǫ

IFG,Fn
(y) = lim

ǫ→0

h(θ̂, (1 − ǫ)Fn + ǫ∆y) − θ̂

ǫ
(2.4)

From (2.3), we can write

h(θ̂, (1 − ǫ)Fn + ǫ∆y) =
(1−ǫ)
n

∑

i wiyi + ǫw y
(1−ǫ)
n

∑

iwi + ǫw

where wi = w(yi − θ̂) and w = w(y − θ̂). Consider

h(θ̂, (1 − ǫ)Fn + ǫ∆y) − h(θ̂, Fn) =
ǫw (y

∑

i wi −
∑

i wiyi)
∑

iwi (
(1−ǫ)
n

∑

i wi + ǫw)

lim
ǫ→0

h(θ̂, (1 − ǫ)Fn + ǫ∆y) − h(θ̂, Fn)

ǫ
=

w
(

y
∑

iwi − θ̂
∑

i wi

)

(1/n) (
∑

i wi)
2

IFG,Fn
(y) =

w(y − θ̂) (y − θ̂)

(1/n)
∑

i w(yi − θ̂)
(2.5)

Derivative of Updating Function

From (2.3), we can write

h(θ, F )

n
∑

i=1

w(yi − θ) =

n
∑

i=1

w(yi − θ)yi

Differentiate both sides with respect to θ

d

dθ
h(θ, F )

n
∑

i=1

wi − h(θ, F )

n
∑

i=1

w′
i = −

n
∑

i=1

w′
i × yi
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where w′
i = w′(yi − θ).

J =
d

dθ
h(θ̂, F ) = −

∑n
i=1(yi − θ̂)w′

i
∑n

i=1wi
(2.6)

1 − J =

∑n
i=1wi +

∑n
i=1(yi − θ̂)w′

i
∑n

i=1wi

True Influence Function using Jorgensen’s Method

True influence function, IFT,Fn
(y)

IFT,Fn
(y) = [1 − J ]−1IFh,Fn

(y)

=

∑n
i=1wi

∑n
i=1wi +

∑n
i=1(yi − θ̂)w′

i

(y − θ̂)w

(1/n)
∑

i wi

=
(y − θ̂)w

1
n

[

∑n
i=1wi +

∑n
i=1(yi − θ̂)w′

i

]

The influence function of an M-estimate of location [27] is

IFθ,F (y) =
ψ(y − θ)

EF (ψ′((y − θ)))

We know ψ(r) = w(r)r, where r = y − θ. Hence ψ′(r) = w′(r)r + w′(r)

IFθ,Fn
(y) =

rw(r)
1
n
(
∑n

i=1w
′(r)r +

∑n
i=1w(ri))

This result is exactly same as Jorgensen’s result.

2.3.4 Numerical Illustration

Based on the series of previous results, we compute the one-step influence
function and the Jacobian matrix followed by the true influence function.
Later, we will compute the empirical influence function using the definition
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of (2.1). We describe this situation numerically by considering the simple
example of a location estimate, even though they are theoretically same.

Consider the Example 1.1 to compute the influence function of the Huber
location estimate. Before computing the influence function, we need to esti-
mate the location parameter θ. In this situation, we do not know the scale
parameter which is required to avoid the scale equivariant problem. Hence,
robust statistics (s = mad = 4.45) for this parameter is computed before
estimating the location parameter. The location estimate, θ̂, by the Huber
method, is 27.38.

We investigate the effect on the estimate throughout the sample space. We
generated the data points from -60 to 60 in steps of 0.01. Results are given
in Figure 2.2. Figure 2.2(d) shows that the plot of empirical influence val-
ues using (2.1) versus influence values obtained by Jorgensen’s method gives
a straight line with 450 degree slope. That means, the influence function
obtained by Jorgensen’s method tallies with the original definition of the
influence function.

2.4 Asymptotic Results for M-estimates

Result: ([27], page 14)

√
n(T (Fn) − T (F )) =

1√
n

n
∑

i=1

IFT,F (y) +Rn

Since the term Rn, which is the remaining terms of the Taylor expansion, is
asymptotically negligible,

√
n(T (Fn) − T (F )) is asymptotically normal with

mean zero and variance, V [T (F )].

V [T (F )] = EF (IF 2
T,F )
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Figure 2.2: Influence functions for Huber location estimator of speed of light
data: (a) Influence Function for θ̂ obtained using (2.1); (b) Influence Function
for the one-step estimate obtained using (2.1); (c) True and one-step influence
function for θ̂ obtained using Jorgensen’s method; (d) Comparison between
influence functions obtained by (a) and Jorgensen’s method.
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In the speed of light example, T (F ) = θ, T (Fn) = θ̂ = 27.38, s = 4.45 and

IFT,Fn
(y) =

s×ψ
(

y−θ̂
s

)

1
n

∑n
i=1 ψ

′

(

yi−θ̂

s

) ([35], page 56). Hence

V (θ̂) =
4.452

0.7582
EFn

[

ψ2

(

y − θ̂

s

)]

=
4.452

0.7582
× 1

n

∑

ψ2

(

yi − θ̂

s

)

=
4.452

0.7582
× 0.778

= 26.81

A robust 95% confidence interval for θ based on the previously computed

scale parameter is [26.1, 28.6](= 27.38 ± 1.96 ×
√

26.81
66

).

2.5 Gross Error Sensitivity

The maximum absolute value of the influence function of the statistics T
over the sample space, is called gross error sensitivity, and denoted as γ∗.

γ∗ = sup
y

|IFT,F (y)|

If the influence function of T is bounded ((i.e.) γ∗ < ∞), the estimate T is
called B-robust. If γ∗ = ∞, then the estimator is completely intolerant of
outliers; a single outlier can ruin the estimator.
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Chapter 3

Mixture Models and the EM
Algorithm

In this chapter, we consider classification of the subjects into groups, followed
by the finite mixture model and its applications. Later, we describe how to
estimate the mixture model parameters.

3.1 Clustering

The classification of observations into groups, which means observations are
similar to each other within a group in some way, is an important part of
study in statistics, particularly where there is no prior information about the
underlying group structure. Such a classification in statistics is called cluster
analysis. There are many different methods of cluster analysis. These meth-
ods can be accommodated into two classes: (i) Hierarchical techniques; (ii)
Non-hierarchical techniques. The main difference between these two classes
is that the classification into groups can be optimized in the non-hierarchical
techniques, by considering the reallocation of observations to other possible
groups based on the statistical criteria; but an observation once assigned
to one group, is not allowed to move to another group in the hierarchical
techniques. Further information about these techniques is found in ([38],
section 1.3), [39] and [28]. The mixture model approach for clustering is a
non-hierarchical technique, and is recognised as perhaps the best method for
grouping observations.
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3.2 Mixture Models

Let Y = (Y1, Y2, . . . , Yp) be a p−dimensional random variable and let yi =
(yi1, yi2, . . . , yip) be the ith observation, where i = 1, . . . , n. Assume that the
probability density function, f(.), of an observation y is of the form

f(y) = π1f1(y, θ1) + π2f2(y, θ2) + · · ·+ πkfk(y, θk) (3.1)

where θj is a vector of unknown parameters in the jth group;

fj(y, θj) ≥ 0,

∫

fj(y, θj)dy = 1, j = 1, . . . , k

; and

πj > 0 j = 1, . . . , k;
k
∑

j=1

πj = 1

This is known as a finite mixture density function. Let φ = (θt, πt)t be the
unknown model parameters in the mixture model to be estimated, where θ

= (θ1, . . . , θk)
t is associated with the parametric form and θj = (θ1j , . . . , θljj)

t

is a vector for all j = 1, . . . , k, and π= (π1, . . . , πk)
t is a mixing proportion.

The mixture density function above with parameters may then be written as
follows

f(y,φ) =

k
∑

j=1

πjfj(y, θj) (3.2)

Finite mixture models are often applied in one of two ways, described as
direct or indirect ([50], page 2). In direct applications, we believe that the
observations come from one of these k underlying groups. In indirect applica-
tions, the mixture model is used as a mathematical tool to obtain a flexible,
tractable form of analysis. This is used in robust literature. For example,
heavy tailed normal distributions may be defined as a contaminated normal
distribution (see section 1.1). Next we describe how to estimate the mixture
model parameters.
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3.3 Parameter Estimation

The MLE method is often used for estimating the vector parameter φ. The
likelihood function of the φ based on the observed data y is

Lo(φ) =
n
∏

i=1

k
∑

j=1

πjfj(yi, θj)

It is not easy to handle Lo to obtain the estimates, because the set of score
equations cannot be solved explicitly, and the likelihood for the mixture
model is often unbounded. This means, the maximum likelihood estimator
does not exist. For further details about this problem see [16] , [38], [50].

If the data were fully categorized, the MLE would have an explicit form.
The completely categorized data xi may be expressed as ordered pairs (yi, zi),
where zi = zij , i = 1, . . . n, and j = 1, . . . , k, where

zij =

{

1 if yi ∈ jth group
0 if otherwise

The density function fX(x) of the random variable X is a joint probability
density function fY Z(y, z) of the random variables Y and Z.

fX(xi) = fY,Z(yi, zij) =

k
∏

j=1

[πjfj(yi)]
zij and

fY (yi) =
∑

j

fY,Z(yi, zij) =

k
∑

j=1

πjfj(yi)

The likelihood function corresponding to x1, . . . ,xn is the complete likelihood
function, Lc(φ), for the model (3.2)

Lc(φ) =
n
∏

i=1

k
∏

j=1

π
zij

j [fj(yi, θj)]
zij

Hence, the complete log-likelihood function, lc(φ), is

lc(φ) = logLc(φ) =

n
∑

i=1

k
∑

j=1

{zij log πj + zij log[fj(yi, θj)]}
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The unobservable indicator variables zij are initially treated as unknown
parameters to be estimated along with parameter φ. This MLE is not con-
sistent, because the zij increases in number with the number observations,
which means there are more parameters to be estimated than there are ob-
servations. Later the alternative approach, which is described in section
3.4.1,was maintained.

Lo(φ) corresponding to the marginal density of y1 . . . yn is obtained by sum-
ming the Lc(φ) over z1, . . . , zn. That means, mixture data is considered as
incomplete data with missing values of indicator vector z. Therefore, this
problem can be seen as a missing value problem. The EM algorithm can be
used to compute the parameters when missing values are present. This will
be described in the next section.

3.4 The EM Algorithm

It is difficult to use the maximum likelihood estimator when information for
part of the data is absent. The EM algorithm is a method for finding roots
of a score function when information is missing. In other words, the EM
algorithm is a tool to obtain the maximum likelihood estimates of the pa-
rameters iteratively when data can be viewed as incomplete.

Dempster, Laird and Rubin [13] introduced the EM algorithm and derived
important fundamental properties of the algorithm. This paper is known
as ‘DLR’ paper. The name EM algorithm, given by Dempster, Laird, and
Rubin, indicates the Expectation and Maximization to be made for each it-
eration. The two steps for each iteration are known as E-step and M-step.
Dempster, Laird and Rubin [14] show that the EM algorithm under certain
distributional assumptions may be considered as an IRLS procedure.

3.4.1 Application of EM Algorithm to the Mixture
Models

We describe the application of the EM algorithm for finite mixture models.
This procedure may be described in the simple format below.

Step 1: Give initial values to the parameter φ .
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Step 2: Estimate the membership probabilities of each observation for each
component, zij .

Step 3: Estimate the parameters φ̂ based on the complete log likelihood
function, lc(φ).

Step 4: Replace the initial parameter values by Step 3.

Step 5: Repeat Steps 2 to 4 until parameter values converge.

Algebraic description of these steps for the finite mixture models are given
below.

Step 1: Appropriate initial values are chosen for the parameters, say φ̂(0).

Step 2: E-step

ẑ
(0)
ij = E

[

Zij|y and φ(0)
]

=
1
∑

zij=0

zij
fY,Z(yi, zij |φ(0))

fY (yi|φ(0))

=
fY,Z(yi, zij = 1|φ(0))

fY (yi|φ(0))

=
π

(0)
j fj(yi, θ

(0))
∑k

j=1 π
(0)
j fj(yi, θ

(0))

Step 3: Maximize the log-likelihood lc(φ) replacing zij by ẑ
(0)
ij . This step is

the M-step. Maximization can be easily implemented because the data
is now considered as complete data.

φ̂
(1)

= arg max
φ

lc(φ)

= arg max
π, θ

n
∑

i=1

k
∑

j=1

{ẑ(0)
ij log πj + z

(0)
ij log[fj(yi, θj)]}

Since the parameter vectors π and θ are not related, the M-step sep-
arates into two maximization problems, one involving the mixing pro-
portions π1 . . . πn and the other involving the parameters of θ.
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Step 4: Repeat steps 2 and 3. The general forms ẑ
(m)
ij and φ̂(m+1) are defined

at the mth iteration.

ẑ
(m)
ij =

π
(m)
j fj(yi, θ

(m))
∑k

j=1 π
(m)
j fj(yi, θ

(m))

φ̂
(m+1)

= arg max
π, θ

n
∑

i=1

k
∑

j=1

{ẑ(m)
ij log πj + z

(m)
ij log[fj(yi, θj)]}

Step 5: If limit of the sequence
{

φ̂
(m)
}∞

m=1
exists, the estimate for φ is

φ̂ = lim
m→∞

φ̂
(m)

3.4.2 Overview of the EM Algorithm

DLR show that the likelihood function, L(φ), is an non-decreasing sequence,

L(φ(m+1)) ≥ L(φ(m)) m = 1, 2, . . .

and it will converge. Note that the convergence of the sequence may de-
pend on the starting values, especially if the likelihood function has more
than one maximum value. Moreover, DLR show that convergence is linear,
with a rate of convergence proportional to the maximal fraction of missing
information. This implies that the convergence of the EM algorithm may
be a slow process. However, the EM algorithm is simple and numerically
stable compared with existing numerical methods such as Newton-Raphson
and Fisher’s method of scoring. The methods are compared in ([50], page 88).

Unlike the Newton-Raphson and Fisher’s scoring method, the EM algorithm
does not need a storage space for the matrix, of second derivatives of the like-
lihood or inverse Fisher’s information matrix. But the observed information
matrix, which is a useful result to compute the standard errors of the param-
eters, may not be easily obtained in the EM algorithm. However, Louis [34]
presents a procedure for extracting the observed information matrix when
using the EM algorithm. Later, Oakes [43] discusses how to obtain the ob-
served information matrix directly for the case of EM algorithm. McLachlan
and Basford [38] discuss the observed information matrix for mixture models.
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3.4.3 Remark on Starting Values

In general, no optimization algorithm, including the EM algorithm, is guaran-
teed to converge to a local maximum. However, the EM algorithm may con-
verge to a local maximum under fairly general conditions, and good choice of
starting values from the parameter space. To ensure that the local maximum
is achieved, we have to try a number starting values for the EM algorithm
and look for the most common result. Such a unique result is considered as
the local maximum.

Everitt and Hand [16] found that two sets of starting values may give two
different sets of final values. This may happen due to the existence of multi-
ple roots. It is common in mixture models, where the likelihood equation has
multiple roots. An obvious choice is the one with the largest maximum. Al-
though many starting values may need to be explored to increase the chance
of obtaining the global optimum.

Peters and Walker ([44], [45]) find that consistent estimates φ̂ for φ, may
be obtained by choosing initial estimates close enough to φ̂. McLachlan and
Basford [38] give detail about choosing the initial values for mixture models.

3.4.4 Information Matrices

In the EM algorithm, there are three sets of data: incomplete data, complete
data and missing data. Three information matrices, the observed information
matrix, Io(φ, y), the complete information matrix, Ic(φ, x), and the missing
information matrix, Im(φ, y), for the EM estimates can be defined and given
below.

Observed Information Matrix: Io(φ, y) = −∂
2[lo(φ)]

∂φ∂φt

Complete Information Matrix: Ic(φ, x) = −∂
2[lc(φ)]

∂φ∂φt

Missing Information Matrix: Im(φ, y) = −Eφ

[

∂2[log fX|Y (x| y, φ)]

∂φ∂φt | y
]

where fX|Y is the conditional probability density function. Note that analyt-
ical evaluation of the right hand side of the Io(φ, y) is not easy, particularly
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for mixture models. For this reason, the observed information matrix is ex-
tracted from the complete information matrix and from the expected missing
information matrix. The link for these three quantities is

Io(φ, y) = Ic(φ, y) − Im(φ, y) (3.3)

where
Ic(φ, y) = Eφ [Ic(φ, X)|y]

For further detail about information matrices of the EM estimates, see McLach-
lan and Krishnan ([40], Chapter 4). The rate of convergence of the EM al-
gorithm is given by the largest eigenvalue of I−1

c (φ, y)Im(φ, y).

DLR show that if φ(k) → φ̂ as k → ∞ then

J(φ̂) = I−1
c (φ̂, y)Im(φ̂, y)

where J is a Jacobian matrix, which is easy to compute numerically (see,
McLachlan and Krishnan ([40], section 4.5.2). Hence (3.3) can be written as

Io(φ̂, y) = Ic(φ̂, y)[I − J(φ̂)] (3.4)

where I is an identity matrix with a dimension equal to the number of pa-
rameters in the model.

3.4.5 Examples using the EM Algorithm

In this section, examples such as contaminated models and mixtures of mul-
tivariate normal distribution, are considered to explain the usage of the EM
algorithm. These examples help us to understand our proposed robust statis-
tics.

Contaminated Normal Model

Huber [25] uses a contaminated normal model with known parameters to
generate contaminated data. In contrast, Little and Rubin ([33], section
10.5), and Meng and Rubin [41] considered the estimation of the unknown
parameters for the contaminated data. Later McLachlan and Krishnan [40]
use this example to compute the observed information Io. It is useful to
discuss this in detail for motivating our proposed robust estimates in the
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following chapters. Here all parameters are treated as unknown and in the
original scale.

Let y = (y1, . . . , yn) be a random sample of size n from the univariate contam-
inated normal model, which is obtained from (3.2). In the expression (3.2),
we have k = 2, π2 = 1 − π1, θ1 = (µ, σ)t, θ2 = (µ, α ∗ σ)t and f1 = f2 = Φ,
where α is a constant. For convenient notation, we use π = π1 and zi = zi1.

lc(φ) = constant − n

2
log σ2 +

n
∑

i=1

[−zi
2

(

yi − µ

σ

)2

− 1 − zi
2c

(

yi − µ

σ

)2

+zi log π + (1 − zi) log(1 − π)]

where c = α2. zi at the mth iteration can be computed at the E-step of the
EM algorithm.

ẑ
(m)
i =

π 1√
2πσ(m) exp(−1

2
[d

(m)
i ]2)

π 1√
2πσ(m) exp(−1

2
[d

(m)
i ]2) + (1 − π) 1√

2πcσ(m) exp(− 1
2c

[d
(m)
i ]2)

where d
(m)
i = yi−µ(m)

σ(m) . At the M-step, π, µ and σ can be obtained by solving
the following score functions

Uc,π =
∂lc(φ)

∂π
= 0

Uc,π =
n
∑

i=1

zi − nπ

π(1 − π)
= 0

⇒ π(m+1) =

∑n
i=1 ẑ

(m)
i

n

Uc,µ =
∂lc(φ)

∂µ
= 0

Uc,µ =
1

cσ2

n
∑

i=1

(yi − µ)(czi − zi + 1) = 0

⇒ µ(m+1) =

∑n
i=1[ẑ

(m)
i c− ẑ

(m)
i + 1]yi

∑n
i=1[ẑ

(m)
i c− ẑ

(m)
i + 1]
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Uc,σ2 =
∂lc(φ)

∂σ2
= 0

Uc,σ2 = − n

2σ2
+

1

2cσ4

n
∑

i=1

(yi − µ)2(czi − zi + 1) = 0

⇒ σ(m+1)2 =

∑n
i=1[ẑ

(m)
i c− ẑ

(m)
i + 1](yi − µ(m+1))2

nc

Therefore, the estimates may be defined: π̂ = limm→∞ π(m), µ̂ = limm→∞ µ(m),
and σ̂2 = limm→∞ σ(m)2 .

Mixtures of Multivariate Normal Distributions

This is an extension of the contaminated model in terms of the number of
variables and the number of mixtures. We assume that the density of the
components for the mixture is a normal density with different parameters.
The dimension of the data matrix is (n × p). The standard multivariate
normal density function is

fj(y, θj) =
1

(2π)p/2|∑i |1/2
exp

{

−1

2
(y − µj)

t
∑

j

−1
(y − µj)

}

j = 1, 2, ...k

where µj and
∑

j are the p×1 column vector of mean and (p×p) covariance

matrix of jth component of the mixture respectively.

µj = (µ1j , µ2j, . . . , µpj)
t

φ = (θ1, θ2, . . . , θk, π1, π2, . . . , πk−1)

where θj = (µj,
∑

j) is an ordered pair. The log likelihood functions for
observed and completed data respectively are given below

lo(φ) =

n
∑

i=1

log

{

k
∑

j=1

πjfj(yi, θj)

}

lc(φ) =

n
∑

i=1

k
∑

j=1

{−zij
2

[

(yi − µj)
t
∑

j

−1
(yi − µj) + log(|

∑

j
|) + log(2π)

]

+zij log(πj)}
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The EM algorithm can be applied to lc(φ) where zij are treated as missing
observations. Therefore, the E-step gives estimated values for the missing
observations zij , given below at mth iteration.

ẑ
(m)
ij =

π
(m)
j fj(yi, θ

(m)
j )

∑k
j=1 π

(m)
j fj(yi, θ

(m)
j )

Since our intention is to estimate the parameter (φ), it can be obtained at
the M-step and is given below.

π̂j =

∑n
i=1 ẑij
n

µ̂j =

∑n
i=1 ẑijyi
∑n

i=1 ẑij

ˆ∑

j
=

∑n
i=1 ẑij(yi − µ̂j)(yi − µ̂j)

t

∑n
i=1 ẑij

More specifically, the rth element of the vector µ̂j is given by:

µ̂rj =

∑n
i=1 ẑijyir
∑n

i=1 ẑij
r = 1, . . . p and j = 1, . . . , k

These results are obtained after the M-step converges to a fixed number,
known as the local maxima. McLachlan and Basford [38] consider various
situations for the mixtures of multivariate normal distributions, such as com-
mon covariance (

∑

=
∑

1 =
∑

2 =, . . . ,=
∑

k) and the robust estimation
for mixture models.
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Chapter 4

Robust Location Estimator

A location estimator can be viewed as a summarized result or as an estimator
for central tendency of a set of observations y1, . . . , yn. One class of these
is the Lp estimator, which may be defined as the value of the parameter θ
which minimizes the expression E

E =
n
∑

i=1

|yi − θ|p (4.1)

where p ≥ 0. The cases p = 1, 2 yield the median and mean respectively.
More generally, we may replace the function |y−θ|p by the function ρ(y−θ),
where ρ is a function (often termed a loss function) that is symmetric about 0
and increasing over the positive real numbers. Because the focus of this thesis
is on the maximum likelihood estimators in statistical models, we introduce
a model whose maximum likelihood estimators are location estimators of this
kind.

4.1 Model

Consider the probability density function over the real numbers

f(y, θ) = f(y − θ) = k(θ) exp{−ρ(y − θ)} (4.2)

where k(θ) is a normalizing constant. We will consider location estimators
for a data set y1, . . . , yn that are maximum likelihood estimates of θ with
respect to this density.
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Figure 4.1: A Histogram of the generated data

For numerical illustration, a set of 80 observations randomly generated from
N (θ = 10, σ2 = 9), which we consider to be correct, contaminated by 20 ob-
servations from N (θ = 10, σ2

1 = 3σ2). The advantage of using generated data
is that we know the true value of the location parameter, θ = 10, which can
be compared with the estimated value. We also know other parameters such
as the scale parameter, σ = 3 and the proportion of the non-contaminated
observations (0.8). A histogram for the generated data is given in Figure 4.1.

4.2 Calculating the Estimator

The parameter estimate θ̂ is defined by

θ̂ = arg min
θ

{

n
∑

i=1

ρ(yi − θ)

}

(4.3)
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where “arg min” stands for “the value which minimizes”. Note that if αi is
a weight associated with the observation yi for all i = 1 . . . n, then we will
minimise (4.4) to obtain a weighted version of the estimator.

n
∑

i=1

αi ρ(yi − θ) (4.4)

A necessary condition for θ̂ in (4.3) to exist is

n
∑

i=1

ψ(yi − θ̂) = 0 (4.5)

where ψ(r) = ρ′(r). In general, ψ is non-linear except for the case ρ(r) = 1
2
r2.

One of the methods to solve the non-linear equation (4.5) is to use iteratively
re-weighted least squares [5]. Let

w(r) =







ψ(r)
r

if r 6= 0

ψ′(r) if r = 0

(4.6)

Then (4.5) can be written as

n
∑

i=1

w(yi − θ̂) (yi − θ̂) = 0 (4.7)

So that θ̂ must satisfy

θ̂ =

∑n
i=1wiyi
∑n

i=1wi
(4.8)

where wi = w(yi − θ̂). This is not an explicit expression for θ̂, because the
weights wi depends on θ̂. Hence it leads to an iterative computation for θ̂.
This means, for a given initial value θ̂(0), we can get the new estimate of θ̂(1)

using the equation (4.9)

θ̂(1) =

∑n
i=1w(yi − θ̂(0))yi
∑n

i=1w(yi − θ̂(0))
(4.9)

The limit of the sequence {θ̂(m)}∞m=1, if it converges, is the estimate for θ.
Holland and Welsch [24] explain this method for various ρ functions.
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However, it is an explicit equation for some situations. For example, if
ρ(r) = 1

2
r2 then ψ(r) = r and w(r) = 1, which does not depend on θ.

In this case, we do not need an iterative process and the estimate is the
mean, ȳ.

4.3 Influence Function of the Estimator

The influence function of a location estimator, θ̂ defined in (4.3), is given by
[27] as

IFθ̂(y, F ) =
ψ(y − θ̂)

EF [ψ′(y − θ̂)]
(4.10)

Notice that the influence function is proportional to the ψ function, so if ψ
is unbounded then the influence function is unbounded.

Let Fn be the empirical cumulative distribution function of y1, . . . , yn then

EFn
[ψ′(y − θ)] =

1

n

n
∑

i=1

ψ′(y − θ) (4.11)

In the case of MLE, where ρ(r) = 1
2
r2, which leads to ψ(r) = r and θ̂ = ȳ,

so that we have from (4.10)

IFȳ(y, Fn) =
y − ȳ

1
= y − ȳ

Since IFθ̂(y, Fn) → ±∞ as y → ±∞, the influence function for MLE is
unbounded. Therefore, we can say that the estimate will be heavily affected
by a single large observation.

4.4 Mixture Model

Because many maximum likelihood estimates, like the mean, are sensitive
to extreme observations. We seek in this thesis to find alternatives that are
less sensitive to extreme observations. Our strategy is to consider a two
component mixture between the nominal model for the data and a dispersed
distribution over the data space. The hope is that on fitting the mixture
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model, the extreme data will tend to be assigned to the dispersed component
and so have their influence on the estimated parameters of the nominal model
reduced. Formally, we consider the mixture model

p(y, θ) = λf(y, θ) + (1 − λ)g(y) (4.12)

where g is the dispersed parameter free function over the sample space and
1 − λ is a fixed small positive number which may be thought of as the pro-
portion of contaminated data. We will often choose λ to be 0.95 or similar.
Remember f is defined in (4.2).

For fixed choices of g and λ we will consider the robustness properties of

θ̃ = argmax
θ
Lo(θ) (4.13)

where Lo(θ) is the observed likelihood function for θ.

Lo(θ) = Πn
i=1p(yi, θ) (4.14)

It is expected that this will give a robustified estimator.

4.5 Calculating the Robustified Estimator

In this section, we would like to explain how to obtain the estimator, θ̃. It
is complicated to maximize the observed likelihood, Lo(θ) in (4.13), so we
consider the complete likelihood Lc(θ) to achieve (4.13)

θ̃ = argmax
θ
Lc(θ) (4.15)

where
Lc(θ) = Πn

i=1

[

[λf(yi, θ)]
zi × [(1 − λ)g(yi)]

1−zi
]

(4.16)

and

zi =

{

1 if yi ∈ f
0 if yi ∈ g

(4.17)

In general, zi’s are treated as unobserved random variables. They can be
estimated using the E-step of EM algorithm and then θ is estimated at the
M-step.
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4.5.1 E-Step

Let q(y, z) be a joint probability density function of random variables Y and
Z, where θ is fixed

q(y, z) = [λf(y, θ)]z × [(1 − λ)g(y)]1−z

The marginal distribution of y is defined as

p(y) =
1
∑

z=0

q(y, z) = λf(y, θ) + (1 − λ)g(y)

We use the expectation of z given y to derive an estimator for z

z̃ = E[z|y] =

1
∑

z=0

zp(z|y)

= 0 × p(0|y) + 1 × p(1|y)
= p(1|y)

=
q(y, 1)

p(y)
[Bayes Theorem]

z̃ =
λf(y, θ)

λf(y, θ) + (1 − λ)g(y)
(4.18)

In simple language, we can say that z̃ is a function of y and θ and denote
z̃ = z(y, θ).

4.5.2 M-Step

The M-step is to maximize the complete likelihood function (4.16) with zi
replaced by z̃i for i = 1, . . . , n

lc(θ) = logLc(θ)

=
n
∑

i=1

z̃i log f(yi − θ) + constant

For MLE, therefore

lc(θ) =

n
∑

i=1

z̃i(yi − θ)2 + constant (4.19)
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In order to maximize the lc(θ) with respect to θ,
[

dlc(θ)
dθ

]

θ=θ̂
= 0, which gives

(4.20)
n
∑

i=1

z̃i(yi − θ) = 0 (4.20)

This leads to the simple form of θ given in (4.21)

θ =

∑n
i=1 z̃iyi
∑n

i=1 z̃i
(4.21)

Since z̃i in the right hand side of (4.21) does depend on θ, we iterate the
E-step of (4.18) and the M-step of (4.21) until the updates no longer change
the parameter estimates. For a given initial value for θ, say θ̃(0), the new
estimate θ̃(1) is obtained by

θ̃(1) =

∑n
i=1 z̃

(0)
i yi

∑n
i=1 z̃

(0)
i

where z̃
(0)
i = z(yi, θ̃

(0)) for i = 1, . . . , n. At the mth process of the iteration,
we can write

θ̃(m+1) =

∑n
i=1 z̃

(m)
i yi

∑n
i=1 z̃

(m)
i

(4.22)

where z̃
(m)
i = z(yi, θ̃

(m)) form = 0, 1 . . . . If the limit of sequence of
{

θ̃(m)
}∞

m=0

exists, the estimate, θ̃, for θ is taken as the limit

θ̃ = lim
m→∞

θ̃(m)

4.6 Influence Function for θ̃

The θ̃ is computed iteratively so that Jorgensen’s [30] method is employed to
compute the influence function for θ̃. Before applying this method, we need
to define the updating function.

Let h(θ, Fn) be the updating function defined by (4.23)

h(θ, Fn) =

∑n
i=1 z(yi, θ)yi
∑n

i=1 z(yi, θ)
(4.23)
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In simple language, we can write θ(m+1) = h(θ(m), Fn), m = 0, 1, 2, . . . , and
the statistical functional θ̆(Fn) is a statistic obtained from one step to the
next step when θ = θ̃. This means

θ̆(Fn) = h(θ̃, Fn) = θ̃ (4.24)

In order to compute the true influence function of θ̃ using the Jorgensen’s
method, we need to compute two important components, the one-step in-
fluence function and a Jacobian matrix, which are discussed in the sections
4.6.1 and 4.6.2.

4.6.1 One-Step Influence Function for θ̃

Consider the perturbed data set y1, . . . , yn, y with weights 1−ǫ
n
, . . . , 1−ǫ

n
, ǫ.

The new estimate can be derived from the likelihood concept for this case.
However, the new estimate can be easily defined by (4.25) based on (4.23)
and (4.24)

θ̆((1 − ǫ)Fn + ǫ∆y) = h(θ̃, (1 − ǫ)Fn + ǫ∆y) =
1−ǫ
n

∑n
i=1 ziyi + ǫ z y

1−ǫ
n

∑n
i=1 zi + ǫy

(4.25)

Note that the true influence function of θ̆ is an one-step influence function
of θ̃, which is denoted by IF 1

θ̃
(y, Fn).

IF 1
θ̃
(y, Fn) = IFθ̆(y, Fn)

= lim
ǫ→0

θ̆((1 − ǫ)Fn + ǫ∆y) − θ̆(Fn)

ǫ

= lim
ǫ→0

ǫ [zy
∑n

i=1 zi − z
∑n

i=1 ziyi]

ǫ [
∑n

i=1 zi]
[

1−ǫ
n

∑n
i=1 zi + ǫz

]

=
[zy
∑n

i=1 zi − z
∑n

i=1 ziyi]
1
n

[
∑n

i=1 zi]
2

=
n z (y − θ̃)
∑n

i=1 zi

where zi = z(yi, θ̃) and z = z(y, θ̃).
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4.6.2 Jacobian Matrix

We focus only on the parameter θ here so that the Jacobian matrix is a single
term matrix. In this section, the Jacobian matrix will be derived based on
the formula given in (4.26)

J =

[

dh(θ, Fn)

dθ

]

θ=θ̃

(4.26)

h(θ, Fn) =

∑n
i=1 ziyi
∑n

i=1 zi
[

n
∑

i=1

zi

]

h(θ, Fn) =

n
∑

i=1

ziyi

Differentiate both sides of the above equation with respect to θ, we will get

[

n
∑

i=1

z′i

]

h(θ, Fn) +

[

n
∑

i=1

zi

]

dh(θ, Fn)

dθ
=

n
∑

i=1

z′iyi

[

n
∑

i=1

zi

]

dh(θ, Fn)

dθ
=

n
∑

i=1

z′i(yi − h(θ, Fn))

[

dh(θ, Fn)

dθ

]

θ=θ̃

=

∑n
i=1 z

′
i(yi − θ̃)

∑n
i=1 zi

J =

∑n
i=1 z

′
i(yi − θ̃)

∑n
i=1 zi

where z′i = dzi

dθ
and zi = λf(yi,θ)

λf(yi,θ)+(1−λ)g(yi)
.

z′i =
dzi
dθ

=
λ(1 − λ)g(yi)f

′(yi, θ)

[λf(yi, θ) + (1 − λ)g(yi)]2

=
λ(1 − zi)f

′(yi, θ)

λf(yi, θ) + (1 − λ)g(yi)
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4.6.3 True Influence Function for θ̃

The true influence function for θ̃ is denoted by IFθ̃(y, Fn).

IFθ̃(y, Fn) = (1 − J)−1IF 1
θ̃
(y, Fn)

=

(

∑n
i=1 zi

∑n
i=1 zi −

∑n
i=1 z

′
i(yi − θ̃)

)(

n z (y − θ̃)
∑n

i=1 zi

)

=
n z (y − θ̃)

∑n
i=1 zi −

∑n
i=1 z

′
i(yi − θ̃)

4.7 Numerical Results

We begin to illustrate the method for the generated data described in section
4.1. Our main interest here is to compute θ̂ and θ̃ numerically when σ = 3.
In addition, the influence functions for θ̃ are computed.

For the mixture approach, the function g needs to be defined as a parameter
free function. We know the smallest and largest values for the data set, which
are -42.0743 and 46.2700 respectively, so that we have chosen a very dispersed
uniform distribution with parameters [a = −80, b = 80]. Note that, if y goes
beyond the support of g then weights z′s become one and the robustness will
be lost. Therefore g must be chosen after inspecting the data. This is a reason
we chose the domain g beyond the minimum and maximum value of the data.

The estimates for θ based on the various λ, including true λ = 0.8, and
MLE are given in Table 4.1. These results are obtained after considering
various initial values of the parameter θ in order to obtain a unique result.
However, the mean of the data was finally chosen as an initial value for the
θ. The estimates θ̃ for various λ are almost same and all values of θ̃ are very
close to the true value, 10. It is evident that θ̃ is a better estimate than the
maximum likelihood estimate, θ̂ = 8.7313.

For the numerical distribution of the estimate θ̃, this procedure is repeated
a thousand times (that means a thousand new sets of data were generated)
for the particular case of λ = 0.95. A summary of the θ̃ is given in Table
4.2. A histogram of the θ̃ is given in Figure 4.2; 96.1% (= 961/1000) of the
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Table 4.1: Location estimates (MLE and Mixture) for the generated data

θ̂ θ̃0.8 θ̃0.9 θ̃0.95

Estimate for θ 8.7313 9.7637 9.7736 9.7854

θ̃λ∗ is an estimate for θ by mixture approach when λ = λ∗

Table 4.2: Summary statistics of θ̃

Min 1st Qu. Median Mean 3rd Qu. Max

9.182 9.819 9.982 9.985 10.151 10.758

estimated values lie between 9.5 and 10.5.

We like to determine whether θ̃ is affected by a large observation or not.
The true and one-step empirical influence functions for the θ̃ = 9.7854 are
given in Figure 4.3, where J = 0.1133. Notice from Figure 4.3 that the in-
fluence functions are bounded. That means, the estimate θ̃ is not heavily
affected by extreme values.

4.7.1 Comparison of θ̃ with Standard Robust Estimates

In this section, when λ = 0.95, the estimate θ̃ is compared with the estimates
generated by the Huber and the Tukey ρ functions, defined in section 1.4.
This investigation is made using the generated data set explained in sec-
tion 4.1. The standard turning constants such as c = 1.345 for Huber, and
c = 4.685 for Tukey were chosen. The scale parameter σ is here chosen as
the true value of 3, which was used in the mixture model too. This was used
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Table 4.3: Location estimates for the generated data

MLE θ̃0.95 Tukey Huber
estimator estimator

8.7313 9.7854 9.7518 9.6620

to standardize the data to compute the Huber estimate and Tukey estimate.

Again, the mean is allocated as the starting value of the parameter θ to
run the iterative algorithm. The estimates for θ are based on the various
methods given in Table 4.3. The estimate θ̃0.95 is very similar to the Huber
and Tukey estimates. We know that the influence functions for Huber and
Tukey estimates are always bounded, so that attention was not given to de-
rive the influence function for those estimates. However, we found that the
influence function for θ̃ has a similar pattern to the Tukey estimate. That
means, the weights allocated to the very extreme observations are almost
zero for both methods.

4.8 Efficiency

In this section, we are comparing the mixture estimate with the M estimates
such as Huber and Tukey based on efficiency. That means, the main inten-
tion is to compute the variance of the estimates via a simulation study.

Before computing the variance of the estimate, we need to fix the λ in the
mixture model, and tuning constants c in the loss functions of Huber and
Tukey in order to ensure that these estimates have similar efficiency at nor-
mal. We know from the literature that the efficiency of the M-estimates such
as Huber and Tukey at the normal are 5% less efficient than the mean when
c = 1.345 and c = 4.685 respectively. We would like to choose the λ for
computing the mixture estimate, which has 95% efficiency when sampling
from a normal distribution.
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4.8.1 Choosing λ

In order to fix the λ, we generate one thousand random observations from the
standard normal distribution. Then we compute mean and mixture estimates
for various lambda using this data. This procedure is repeated 1000 times.
Now, we can able to compute the variance of these estimates, listed in Table
4.4. When λ = 1, the mixture estimate is considered as the maximum
likelihood estimate. We can see from Table 4.4 that when λ = 0.900, the
variance of the mixture estimate at the normal is 5% larger than the mean.
We will use this λ value for comparing the efficiency of estimates.

4.8.2 Comparing Estimates Based on the Efficiency

For the comparison, a set of 100 observations is randomly generated, in which
80 are considered as “good” observations generated from the standard nor-
mal distribution and 20 are considered as “bad” observations generated from
the N (0, 10). Estimates based on methods such as the mixture, Huber and
Tukey can be computed. This procedure is repeated 1000 times to evaluate
the variance of these estimates.

Table 4.5 gives the average value of the estimates and variance of the es-
timates. All four estimates for location are closer to zero, which is the true
value of the model. The variance of the mixture estimates is smaller than
other estimates, even though all three variance of the robustified statistics
are quite similar.

Up to now we have investigated the efficiency of the estimate when obser-
vations are contaminated by the symmetric distribution. Next we try to
examine the non-symmetric situation. Here we randomly generate “bad”
data from the gamma distribution with the shape parameter = 4 and the
scale parameter = 1.

Table 4.6 gives estimates of the parameter and their variance for the non-
symmetric contamination situation. The variance of all four estimates are
very similar; however, the mixture estimate is a much better estimate than
other estimates, because the mixture estimate is close to the true value, which
is zero.
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Table 4.4: Variance of mixture estimates for various λ when sampling from
a standard normal distribution

λ Variance Efficiency = Variance of Mixture estimates
Variance of mean

0.895 0.0010340410 0.9488459
0.900 0.0010320769 0.9506516
0.905 0.0010300905 0.9524848
0.910 0.0010280799 0.9543476
0.915 0.0010260431 0.9562421
0.920 0.0010239779 0.9581706
0.925 0.0010218819 0.9601360
0.930 0.0010197522 0.9621411
0.935 0.0010175860 0.9641893
0.940 0.0010153796 0.9662845
0.945 0.0010131291 0.9684309
0.950 0.0010108301 0.9706335
0.955 0.0010084773 0.9728980
0.960 0.0010060647 0.9752310
0.965 0.0010035853 0.9776404
0.970 0.0010010305 0.9801355
0.975 0.0009983893 0.9827284
0.980 0.0009956472 0.9854349
0.985 0.0009927813 0.9882797
0.990 0.0009897449 0.9913115
0.995 0.0009863897 0.9946834
1.000 0.0009811455 1.0000000
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Table 4.5: Location estimates by various methods and their variance in the
case of symmetric contamination

Mean Mixture Huber Tukey

θ 0.00660239 0.0004006751 0.0009648057 0.001350660

Var(θ) 0.03137133 0.002697769 0.003463336 0.00625405

Table 4.6: Location estimates by various methods and their variance in the
case of non-symmetric contamination

Mean Mixture Huber Tukey

θ 0.7966905 0.2730741 0.3981594 0.665913

Var(θ) 0.01642922 0.01618420 0.01220916 0.01201733
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Chapter 5

Robust Estimation for Linear
Models

In this chapter, we begin the discussion on the robust estimation of the
parameters of linear regression models. We consider the standard regression
model

y = µ+ ǫ (5.1)

where µ = Xβ is a linear, the response variable y is an (n×1) vector, ǫ is an
(n × 1) error vector, β is a (p × 1) unknown parameter vector and X is an
(n× p) design matrix. The structure of this chapter is similar to Chapter 4.

5.1 Model

In some cases, (5.1) may be written as

y = Xβ + σǫ (5.2)

where σ is a known or previously estimated scale parameter.

We assume the random variable ǫ is distributed as the standard normal dis-
tribution. The probability density function of the random variable ǫ is given
in (5.3)

fǫi(ǫi) = k exp{−1

2
ǫ2i } (5.3)
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where k = 1√
2π

. Hence, the probability density function of Yi is

FYi
(yi) = P [Yi ≤ yi]

= P

[

ǫi ≤
yi − xiβ

σ

]

FYi
(yi) = Fǫi

(

yi − xiβ

σ

)

fYi
(yi) =

1

σ
fǫi

(

yi − xiβ

σ

)

where xi is a ith row vector of the matrix X. Therefore, we can define the
probability density function of Yi as

fYi
(yi) =

1√
2 π σ

exp

{

−1

2

(

yi − xiβ

σ

)2
}

(5.4)

We consider regression coefficient estimates for a data set (y1, x1), . . . (yn, xn),

where xi = (xi1 . . . xip) i = 1 . . . n is the ith row vector of the matrix X, that
are maximum likelihood estimates of β with respect to the density in (5.4).
We start with a real example to show the ineffectiveness of the least-square
estimates and proceed to find alternative robust estimates.

Example 5.1 - Belgium Phone Call Data: The source for this data
is P. J. Rousseeuw and A. M. Leroy ([48], page 25), where they explain the
data in detail. The total number of international phone calls (in tens of mil-
lion) per year from Belgium were recorded from 1950 to 1973. It was found
that another recording system (the total number of minutes of these calls)
was used from 1964 to 1969. As far as total number of international phone
calls point of view, the given information is invalid. This data set is available
in the R library MASS under the name of “phones”. In phones, the total
number of phone calls were recorded in millions per year, which is considered
as the response variable, and year is considered as the predictor variable for
this analysis. Figure 5.1 shows the data and the straight line fitted by least
squares to the linear regression model

yi = β0 + β1xi + ǫi i = 1 . . . n

where y is the number of phone calls in millions per year and x is the year.
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Figure 5.1: Number of international phone calls from Belgium in the years
1950 − 1973 with least squares (LS) fit

67



5.2 Calculating the Estimator

The parameter estimate β is defined by

β̂ = arg max
β

{L(β)} (5.5)

where L(β) is the likelihood function for β and defined below

L(β) = Πn
i=1fYi

(yi)

A necessary condition for β̂ in (5.5) is

∂ logL(β)

∂β
= 0

n
∑

i=1

(

yi − xiβ̂

σ

)

xij = 0 ∀j = 1 . . . p (5.6)

This leads to the following result in matrix form

X ty − (X tX)β̂ = 0

where “t” indicates the transpose of a matrix. Therefore

β̂ = (X tX)−1X ty (5.7)

In the case of Example 5.1, β̂0 = −260.059, β̂1 = 5.041, and the LS fitted
model is ŷ = −260.059 + 5.041 x. Figure 5.1 shows that the fitted straight
line does not fit the bulk of the data.

Note that if αi is a weight associated with the observations (yi, xi) for all
i = 1 . . . n, then the parameter estimate β is defined by (5.8) to obtain a
weighted version of the estimator

β̂ = arg max
β

{Πn
i=1 [fYi

(yi)]
αi} (5.8)

This leads to
X tΛy − (X tΛX)β = 0 (5.9)

where Λ is an (n × n) diagonal matrix, whose elements are Λi = α0.5
i i =

1 . . . n. Hence
β̂ = (X tΛX)−1X tΛy
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5.3 Influence Function for β̂

As there is more than one parameter, (4.10) needs to be modified to (5.10)
([35], page 71)

IFβ̂((x0, y0), F ) = −B−1Ψ((x0, y0), β̂) (5.10)

where β̂ is a (p×1) vector, x0 is a (1×p) vector, Ψ = (ψ1, . . . , ψp)
t is the first

derivative of log likelihood with respect to the parameter β, and the matrix
B has elements

bjk = E

{

[

∂ψj
∂βk

]

β=β̂

}

where Ψ = (ψ1, . . . , ψp)
t and ψ(i+1) = ∂

∂βi

1
2

(

y−β0−β1x1−···−β(p−1)x(p−1)

σ

)2

; i =

0, . . . , (p− 1). Hinkley [23] derived the influence function for ordinary least
squares, which is also given by Cook and Weisberg ([10], section 3.3)

IFβ̂((x0, y0), F ) = [EF (X tX)]−1xt0(y0 − x0β̂) (5.11)

In the case of Example 5.1, β̂ = (β̂0, β̂1)
t and

Ψ =





ψ1

ψ2



 =





−y−β0−β1x
σ2

−(y−β0−β1x
σ2 )x



 = −





1

x



 (y−β0−β1x
σ2 )

and

B =
1

nσ2





n
∑

xi

∑

xi
∑

x2
i



 =
1

nσ2
(X tX)

Therefore, the influence function for β̂ using (5.10) is

IFβ̂((x0, y0), Fn) = n (X tX)−1 xt0 (y0 − x0β̂)

Note that this result is similar to (5.11). The influence function for the LS
estimate (MLE) tends to infinity for any fixed x0 if y0 tends to infinity. Hence,
we can say that these estimates are heavily affected by extreme values.
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5.4 Mixture Model

In the following sections, we seek to develop a procedure that gives a good
fit to the bulk of the data without being perturbed by a small proportion
of outliers, and that does not require us to decide which observations are
outliers.

Our strategy here is similar to that in section 4.4. Formally, we consider
the mixture model

p(y,X, β) = λf(y) + (1 − λ)g(y) (5.12)

where g is a dispersed parameter free function over the sample space and 1−λ
is a fixed small positive number which may be thought of as the proportion
of contaminated data. Often we choose λ to be 0.95 or similar. Remember
f is defined in (5.4).

For fixed choices of g and λ we will consider the robustness properties of

β̃ = argmax
β

Lo(β) (5.13)

where Lo(β) is the observed likelihood function for β.

Lo(β) = Πn
i=1 [λf(yi) + (1 − λ)g(yi)]

This will be referred to as the robustified estimator.

5.5 Calculating the Robustified Estimator

It is hard to maximize the observed likelihood function, Lo(β), so that the
complete likelihood function, Lc(β), is needed to estimate β. That is,

β̃ = argmax
β

Lc(β) (5.14)

where
Lc(β) = Πn

i=1

[

[λf(yi)]
zi [(1 − λ)g(yi)]

1−zi
]

zi =

{

1 if yi ∈ f
0 if yi ∈ g

Since zi’s are unknown, the zi’s are treated as missing observations. They can
be estimated using the E-step of the EM algorithm; followed by an estimation
of β at the M-step.
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5.5.1 E-Step

Following section 4.5.1, the zi’s are estimated by (5.15)

z̃i = E[zi|yi, xi, β] =
λf(yi)

λf(yi) + (1 − λ)g(yi)
(5.15)

Sometimes we use the notation z̃i = z(yi, xi, β) = z(yi − xiβ).

5.5.2 M-Step

The M-step is to maximize the complete likelihood function Lc(β), where zi
is replaced by z̃i i = 1, . . . , n

lc = logLc(β)

=

n
∑

i=1

z̃i log f(yi) + constant

= −1

2

n
∑

i=1

z̃i

(

yi − xiβ

σ

)2

+ constant

A necessary condition for β̃ is

n
∑

i=1

z̃i

(

yi − xiβ

σ

)

xij = 0 ∀j (5.16)

In matrix form, we can write

X tZy −X tZXβ = 0 (5.17)

where Z is a diagonal matrix whose elements are z̃i i = 1 . . . n. It is similar
to (5.9), but with the matrix Λ replaced by Z.

It is an iterative algorithm. For a given starting value for β, say β̃(0), we
can compute the new estimate β̃(1) using the fixed point equation (5.17).

X tZ(0)y − (X tZ(0)X)β̃(1) = 0

The elements of the matrix Z(0) are z̃
(0)
i = z(yi, xi, β̃

(0)), i = 1 . . . n. In
general, we can write

X tZ(m)y − (X tZ(m)X)β̃(m+1) = 0 m = 0, 1, . . .
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The limit of the sequence {β̃(m)}∞m=1, if it converges, is the estimate for β.
That is,

β̃ = lim
m→∞

β̃(m)

5.6 Influence Function for β̃

Since the estimate β̃ is obtained using iteration, we use the Jorgensen’s [30]
method to derive the influence function for β̃. Let h(β, Fn) be the updating
function defined by

h(β, Fn) = (X tZX)−1X tZy (5.18)

where Fn is the empirical distribution which places mass 1
n

at the n points
{(x1, y1), . . . (xn, yn)} in R(p+1). Note that h is a (p× 1) column vector. The
one step statistical functional β̆ is defined in (5.19)

β̆(Fn) = (X tZX)−1X tZy (5.19)

where the matrix Z is considered as fixed at Z(β̃). The link between β̆ and
β̃ is given in (5.20).

β̆(Fn) = h(β̃, Fn) = (X tZX)−1X tZy (5.20)

5.6.1 One-Step Influence Function for β̃

Jorgensen derived the influence function for weighted ordinary least squares,
which is presented in [30]. This result was derived from the influence function
for ordinary least squares done by Hinkley [23].

The empirical influence function for β̆, IFβ̆((x0, y0), Fn), is derived using
the definition of influence function and given in (5.21). The derivation for
this result is given in Appendix 5.10.

IFβ̆((x0, y0), Fn) = nz̃0(X
tZX)−1xt0(y0 − x0β̃) (5.21)

We call IFβ̆((x0, y0), Fn) the one-step influence function for β̃ denoted as

IF 1
β̃
((x0, y0), Fn). If z̃0 = 1, β̃ = β̂ and Z is an n × n identity matrix,

the result in (5.21) is exactly similar to the influence function of maximum
likelihood estimate β̂, described in section 5.3.

72



5.6.2 Jacobian Matrix

We derive the Jacobian matrix J , which is the derivative of the updating
function h. From (5.18), we can write

(X tZX)h(β, Fn) = X tZy

Differentiate both sides with respect to β.

(X t∂Z

∂β
X)h(β, Fn) + (X tZX)

∂h

∂β
= X t∂Z

∂β
y

(X tZX)
∂h

∂β
= X t∂Z

∂β
(y −Xh(β, Fn))

J =

[

∂h

∂β

]

β=β̃

= (X tZX)−1X t∂Z

∂β
(y −Xβ̃)

Let ri = yi − xiβ̃ and consider

∂Z

∂βj
(y−Xβ̃) =















r1
∂z1
∂βj

.

.

.
rn

∂zn

∂βj















=













r1x1jz
′
1

.

.

.
rnxnjz

′
n













=













r1z
′
1 0 . 0

. . . .

. . . .

. . . .
0 0 . rnz

′
n

























x1j

.

.

.
xnj













Therefore

∂Z

∂β
(y −Xβ̃) =

(

∂Z

∂β1
(y −Xβ̃), . . . ,

∂Z

∂βp
(y −Xβ̃)

)

=













r1z
′
1 0 . 0

. . . .

. . . .

. . . .
0 0 . rnz

′
n

























x11 . . x1p

. . . .

. . . .

. . . .
xn1 . . xnp













= V X

where V is (n× n) diagonal matrix whose elements are vii = riz
′
i. Hence

J = (X tZX)−1X tV X (5.22)
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zi =
λf(yi, xi, β)

λf(yi, xi, β) + (1 − λ)g(yi)

z′i =
∂zi
∂β

=
(1 − λ)λg(yi)

∂f(yi,xi,β)
∂β

λf(yi, xi, β) + (1 − λ)g(yi)

=
(1 − zi)λ

∂f(yi,xi,β)
∂β

λf(yi, xi, β) + (1 − λ)g(yi)

f(yi, xi, β) = K exp

{

−1

2

(

yi − xiβ

σ

)2
}

log f(yi, xi, β) = constant − 1

2

(

yi − xiβ

σ

)2

∂f(yi, xi, β)

∂βj
=

1

σ2
f(yi, xi, β) (yi − xiβ) ∀j = 1 . . . p.

5.6.3 True Influence Function for β̃

Let I be the p× p identity matrix.

I − J = I − (X tZX)−1(X tV X)

= (X tZX)−1[(X tZX) − (X tV X)]

= (X tZX)−1[X t(Z − V )X]

(I − J)−1 = [X t(Z − V )X]−1(X tZX)
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The true influence function for β̃ is denoted by IFβ̃((x0, y0), Fn)

IFβ̃((x0, y0), Fn) = (I − J)−1IF 1
β̃
((x0, y0), Fn)

= nz̃0[X
t(Z − V )X]−1xt0(y0 − x0β̃)

= nz̃0[X
tUX]−1xt0(y0 − x0β̃)

where U = Z − V is a diagonal matrix whose elements are ui = zi − riz
′
i.

5.7 Comparison of Methods Based on the In-

fluence Function of β

The influence function for β̂ obtained by the maximum likelihood method is
discussed in section 5.3 and given below

IFβ̂((x0, y0), Fn) = n (X tX)−1 xt0 (y0 − x0β̂)

Obviously, the maximum likelihood estimator β̂ is not robust against both
outliers and high leverage points.

The M-estimator β̂M is defined in (1.22) and given below.

β̂M = (X tWX)−1X tWy

where W is a diagonal matrix, whose elements are w(r) = ψ(r)
r

, and ψ(r) is

redescending function. The influence function for the M-estimator β̂M can
be obtained using the result in section 5.6.3. In order to get this, we have
to replace ẑ0 by w0, β̃ by β̂M , and U = W − V is a diagonal matrix whose
elements are ui = wi − vi = wi − (yi − β̂Mxi)w

′
i, where w′ = ∂w

∂β
. Therefore,

the influence function for β̂M is given below

IFβ̂M
((x0, y0), Fn) = nw0 (X tUX)−1 xt0 (y0 − x0β̂M)

= nσ ψ(r0)(X
tUX)−1xt0
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where r0 = y0−x0β̂M

σ
. Since ψ(r) is redescending function, ψ(r) tends to 0 if ei-

ther x0 → ±∞ or y0 → ±∞ or both x0, y0 → ±∞ so that IFβ̂M
((x0, y0), Fn)

diverges only when x0 → ±∞. That means, M-estimator is robust against
outliers but not robust against high leverage points. It gives better a esti-
mate than MLE.

The influence function for the mixture estimate β̃ is given in section 5.6.3,
where

z̃0 =
K exp(− 1

2σ2 (y0 − x0β̃)2)

K exp(− 1
2σ2 (y0 − x0β̃)2) + constant

=
exp(− 1

2σ2 η
2
0)

exp(− 1
2σ2 η

2
0) +K∗

=
1

1 +K∗ exp( 1
2σ2 η

2
0)

where η0 = y0 − x0β̃0.

If η0 = 0, then z̃0 is positive constant and the influence function IFβ̃((x0, y0), Fn)
tends to 0 as x0 → ∞.

Consider the case of η0 6= 0. If x0 → ±∞, y0 → ±∞, then η2
0 → ∞,

so that z̃0 quickly converges to 0. Hence IFβ̃((x0, y0), Fn) converges to 0 if
x0 → ±∞, y0 → ±∞. That means, the mixture estimator is robust against
outliers as well as high leverage points.

5.8 Numerical Results

In this section, we illustrate our method numerically using the Example 5.1.
In fact we do not know the value of scale parameter for this example. Ac-
cording to standard practice, the scale parameter is estimated before starting
the estimation of the regression parameters. We take the scale parameter as
a MAD of the response variable. That is, σ = MAD(y) = 15.1225. Another
option for σ is standardized MAD, known as MADN.

For the mixture model, the parameter free density function g needs to be
defined. We know the total number of calls will not be negative and the
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Table 5.1: Regression estimates for the Belgium phone call data

MLE λ = 0.75 λ = 0.90 λ = 0.95

Estimate for β0 - 260.059 - 63.256 - 63.404 - 63.444

Estimate for β1 5.041 1.300 1.303 1.304

largest response value is 212, so we have chosen g as a very dispersed uni-
form distribution with parameters [a = 0, b = 300]. It is an iterative process
which requires starting values for the parameters β. In this problem, we have
chosen least squares estimates as starting values.

We compute the estimates for β for the various λ values such as true value
0.75(18/24), 0.90 and 0.95. The results are given in Table 5.1. The estimates
β̃0 and β̃1 are almost equal for the various λ. This means λ has little impact
on the estimates. However, our estimates β̃0 and β̃1 are very different from
the maximum likelihood estimates β̂0 and β̂1. When λ = 0.95, the fitted line
is ỹ = −63.444 + 1.304x (plotted as a solid line in Figure 5.2), which avoids
the outliers and clearly this line fits the majority of the data.

Since this is a two-dimensional parameter problem, the Jacobian becomes
a 2 × 2 matrix. The estimated Jacobian matrix is

J =





−0.00726 −0.51432

0.00013 0.00945





The influence functions for β̃0 = −63.670 and β̃1 = −1.308 were computed
to determine whether β̃0 and β̃1 are affected by a large observation in either
x or y or both. The true and one-step influence functions for the β̃0 and β̃1

are given in Figure 5.3 and in Figure 5.4 respectively, where we can see that
the observations far away from the bulk of the data do not have any impact
on the estimates. Figure 5.3 and Figure 5.4 show that the influence functions
for β̃0 and β̃0 are bounded at different levels, which depend on the x values.
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Figure 5.2: Number of international phone calls from Belgium in the years
1950 − 1973 with LS fit and mixture model fit
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Figure 5.3: True and one-step influence functions for β̃0
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Figure 5.4: True and one-step influence functions for β̃1
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Table 5.2: Regression estimates given by various methods for the Belgium
phone call data

Estimates for β0 Estimates for β1

MLE - 260.059 5.041

Mixture - 63.444 1.304

Tukey - 62.677 1.289

Huber - 113.715 2.263

5.8.1 Comparison of β̃ with Standard Robust Estimates

Next, the estimates β̃0 and β̃1 are compared with traditional estimates ob-
tained by Huber and Tukey methods (refer sections 1.4 and 1.4.3). The
standard turning constants such as c = 1.345 for Huber, and c = 4.685 for
Tukey, and scale parameter σ = 15.1225 were used to estimate for β0 and
β1. Results are given in the Table 5.2. Results based on our method and the
Tukey method are very similar, but Huber estimates differ from the estimates
β̃ and Tukey estimates.

Figure 5.5 shows the LS, mixture, Tukey and Huber fits computed by the
relevant methods. The fitted lines made by the mixture method and by the
Tukey method overlap. In addition, the Huber line does not fit the majority
of the data. These results may be improved if we compute the scale param-
eter simultaneously with estimating the regression parameters. This will be
discussed in Chapter 7.
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Figure 5.5: Number of international phone calls from Belgium in the years
1950 − 1973 with fit made by the various methods
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Table 5.3: Regression estimates for phone data by various methods and their
variance in brackets

MLE Mixture Huber Tukey

β0 -252.229 -57.82234 -130.3087 -60.72171
(228.1466) (452.892) (780.6379) (591.4358)

β1 4.925469 1.23211 2.613586 1.289169
(0.05947817) (0.1416882) (0.2527835) (0.1923757)

5.9 Efficiency

This investigation is very similar to section 4.8, but the variance of estimates
for β0 and β1 will be discussed here. Again this is entirely a simulation study.

Initially, a set of 20 “good” observations are selected from the phone data.
This data set is used to obtain maximum likelihood estimates for β0 and β1,
which gives µ̂ = β̂0 + β̂1 ∗ year. Then a set of 20 observations are randomly
generated from N (µ̂, s), where s is the standard deviation of calls in the
good 20 observations of the phone data. The full data set is a combined
data set of generated data and a set of 6 “bad” observations in the phone
data. Now, we are able to compute β0 and β1 by various methods such as
maximum likelihood estimation, mixture method, and M-estimation of Hu-
ber and Tukey. This procedure is repeated 1000 times to obtain the variance
of these estimates.

Table 5.3 gives estimates of β0 and β1 and their variance. The variance
of the mixture estimate is smaller than M-estimates of Huber and Tukey.
However, the mixture estimates are similar to the Tukey estimates.
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5.10 Appendix: The Empirical Influence Func-

tion for One Step Estimator β̆

Consider the one step statistical functional β̆ = (X tZX)−1X tZy, and per-
turbed data set (x1, y1), . . . (xn, yn), (x0, y0) with weights 1−ǫ

n
, . . . , 1−ǫ

n
, ǫ. From

the result (5.19), we can define

β̆((1 − ǫ)Fn + ǫ∆(x0,y0)) = (X t
newZnewXnew)−1X t

newZnewynew

where

ynew =

















y1

.

.
yn
y0

















=

[

y
y0

]

(n+1)×1

Xnew =

















x11 . . x1p

. . . .

. . . .
xn1 . . xnp
x01 . . x0p

















=

[

X
x0

]

(n+1)×p

Znew =

















1−ǫ
n
ẑ1 0 . . . 0

0 1−ǫ
n
ẑ2 . . . 0

. . . . . .

0 0 . . 1−ǫ
n
ẑn 0

0 0 . . 0 ǫẑ0

















=





1−ǫ
n
Z 0

0t ǫẑ0



 =

[

Z∗ 0
0t ǫẑ0

]
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where 0t = (0, . . . , 0)1×n and Z∗ = 1−ǫ
n
Z. We use the notation β̆new =

β̆((1 − ǫ)Fn + ǫ∆y)

β̆new =

(

[

X t xt0
]

[

Z∗ 0
0t ǫẑ0

] [

X
x0

])−1

(

[

X t xt0
]

[

Z∗ 0
0t ǫẑ0

] [

y
y0

])

= [X tZ∗X + xt0(ǫẑ0)x0]
−1[X tZ∗y + xt0(ǫẑ0)y0]

=

[

(X tZ∗X)−1 − (X tZ∗X)−1xt0(ǫẑ0x0)(X
tZ∗X)−1

1 + (ǫẑ0x0)(X tZ∗X)−1xt0

]

[X tZ∗y + xt0(ǫẑ0)y0]

= β̃ +
ǫẑ0y0(X

tZ∗X)−1xt0 − ǫẑ0(X
tZ∗X)−1xt0x0β̃

1 + ǫẑ0x0(X tZ∗X)−1xt0

β̆new − β̆(Fn)

ǫ
=

ẑ0(X
tZ∗X)−1xt0(y0 − x0β̃)

1 + ǫẑ0x0(X tZ∗X)−1xt0

=
n

1−ǫ ẑ0(X
tZX)−1xt0(y0 − x0β̃)

1 + nǫ
1−ǫ ẑ0x0(X tZ∗X)−1xt0

lim
ǫ→0

β̆new − β̆(Fn)

ǫ
= nẑ0(X

tZX)−1xt0(y0 − x0β̃)

That is

lim
ǫ→0

β̆((1 − ǫ)Fn + ǫ∆y) − β̆(Fn)

ǫ
= nẑ0(X

tZX)−1xt0(y0 − x0β̃)

IFβ̆((x0, y0)Fn) = nẑ0(X
tZX)−1xt0(y0 − x0β̃)
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Chapter 6

Robust Estimation for
Generalized Linear Models

Generalized linear modeling (GLM) is a framework for statistical analysis
that is able to tackle a wide range of data with different types of response
variables. Nowadays, it is commonly applied in the fields of science, medicine,
business, etc. The non-robustness of the MLE for β has been investigated
widely in the statistical modelling literature [42].

Methods for the robust estimation of GLMs have developed much more slowly
than robust methods for linear models. At present we have some methods for
the robust estimation of GLM, described in [1], [8], [35], and those methods
are usually limited to the binomial model with logit link and to the Pois-
son model. Our robust approach, which is an alternative to the classical
approach, may be useful for the whole class of generalized linear models.

This chapter starts with a brief description of the estimation procedure of
GLM. It then shows how to compute the influence functions of the estimate.
It ends with an introduction of how to obtain the robustified estimates for
the GLM parameters and their influence functions. In addition, we provide
empirical examples for binomial and Poisson regression models.
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6.1 Introduction to GLM

Nelder and Wedderburn [42] introduced the class of generalized linear mod-
els. In a large measure, the success of this class of statistical models is due
to the ability of IRLS algorithms to reliably fit models of this kind.

GLMs are defined as follows

1. A response variable y, continuous or discrete, with a distribution from
exponential family, defined in (6.1).

f(y, θ) = exp[a(y)b(θ) + c(θ) + d(y)]; (6.1)

2. A set of independent variables X1, . . . , Xn; and

3. Let k be a monotone differentiable function, defined in (6.2)

k(µ) = Xβ (6.2)

where µ = E[Y ], X is a (n×p) design matrix, β is a (p×1) vector being the
model parameter of interest, and k is known as a link function. Indeed, we
consider more general situations in which the regressors affect the distribution
of y, which is assumed to depend on the linear combination Xβ only. In the
GLM literature, η = Xβ is called linear predictor. For further reference, see
[15].

6.2 Model

Consider the exponential family defined in (6.1). The term b(θ) is considered
to be the natural parameter, and if a(y) = y, f said to be in the canonical
form. In this chapter, we assume that f is in the canonical form of the ex-
ponential family. The natural parameters for the binomial and the Poisson
distributions are given in Table 6.1.

The mean and variance for the exponential family are defined below

µ = E(y) = −c
′(θ)

b′(θ)
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Table 6.1: Example of binomial and Poisson distributions to explain the
exponential family

a(y) b(θ) c(θ) d(y)

Binomial y log( θ
1−θ ) n log(1 − θ) log

(

n
y

)

Poisson y log θ −θ − log y!

var(y) =
b′′(θ)c′(θ) − c′′(θ)b′(θ)

[b′(θ)]3

where b′(θ) = ∂b(θ)
∂θ

, b′′(θ) = ∂2b(θ)
∂θ2

c′(θ) = ∂c(θ)
∂θ

and c′′(θ) = ∂2c(θ)
∂θ2

. For
example

1. If f is binomial probability density

µ = −
n −1

1−θ
1
θ
− −1

1−θ
= nθ

var(y) =
(−1
θ2

+ 1
(1−θ)2 )( −n

1−θ) + ( n
(1−θ)2 )(1

θ
+ 1

1−θ )

(1
θ

+ 1
1−θ )

3
= nθ(1 − θ)

2. If f is Poisson probability density

µ = −−1
1
θ

= θ

var(y) =
−−1

θ2
− 0

(1
θ
)3

= θ
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6.3 Calculating the Estimator

Consider random variables Y1, . . . , Yn satisfying the properties of a general-
ized linear model. We wish to estimate the parameters β, which are related

to the Yi’s through E[Yi] = µi and k(µi) = xiβ. where xi is the ith row vector
of the design matrix X. The parameter estimate β is defined by

β̂ = arg max
β

{L(θ)} (6.3)

where θ depends on β,and the likelihood function, L(θ), is defined below.

L(θ) = Πn
i=1fYi

(yi)

For simplicity, logL(θ) is often considered instead of L(θ)

l(θ) = logL(θ)

=
n
∑

i=1

log fY (yi)

=

n
∑

i=1

(yib(θi) + c(θi) + d(yi))

=
n
∑

i=1

li(θ)

where li(θ) = yib(θi) + c(θi)+ d(yi). A necessary condition for β = β̂ in (6.3)
is

U(β̂) =

[

∂l(θ)

∂β

]

β=β̂

= 0

where

U(β) =













U1(β)
.

.
Up(β)













=















∂l(θ)
∂β1

.

.
∂l(θ)
∂βp
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Uj(β) =
∂l(θ)

∂βj

=

n
∑

i=1

∂li(θ)

∂βj

=

n
∑

i=1

∂li(θ)

∂θi

∂θi
∂µi

∂µi
∂βj

=

n
∑

i=1

[yib
′(θi) + c′(θi)]

(

1

b′(θi)var(yi)

)

∂µi
∂ηi

∂ηi
∂βj

=
n
∑

i=1

(

yi − µi
var(yi)

)

xij
∂µi
∂ηi

U(β) = X tWΓ

where Γ is a column vector whose elements are γi = (yi − µi)
∂ηi

∂µi
and W is a

diagonal matrix whose elements are wi.

wi =
[∂µi

∂ηi
]2

var(yi)

Since wi is a function of yi and ηi, it may be written as wi = w(yi, ηi). The
U(β) is known as the score function.

The well known Fisher scoring iterative algorithm is used for finding the
roots of the equation U(β) = 0. This gives an iterative procedure

β(m) = β(m−1) +
(

Σ(m−1)
)−1

U (m−1) (6.4)
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where Σ = V ar(U) = E(UU t). The (p q)th element of Σ is

Σpq = E(UpU
t
q)

= E

[(

n
∑

i=1

(

yi − µi
var(yi)

)

xip
∂µi
∂ηi

) (

n
∑

j=1

(

yj − µj
var(yj)

)

xjq
∂µj
∂ηj

)]

= E

[

n
∑

i=1

(

yi − µi
var(yi)

)2 [
∂µi
∂ηi

]2

xip xiq

]

=
n
∑

i=1

(

1

var(yi)

)[

∂µi
∂ηi

]2

xip xiq

Σ = X tWX

From (6.4)
Σ(m−1)β(m) = Σ(m−1)β(m−1) + U (m−1) (6.5)

Consider the right hand side of (6.5)

Σβ + U = X tWXβ +X tWΓ

= X tW (Xβ + Γ)

= X tWR

where R is a column vector whose elements are

ri = xiβ + (yi − µi)
∂ηi
∂µi

= ηi + (yi − µi)
∂ηi
∂µi

Since ri is a function of yi and ηi, it may be written as ri = r(yi, ηi). The
expression (6.5) becomes

X tW (m−1)Xβ̂(m) = X tW (m−1)R(m−1) (6.6)

The (6.6) takes the same form as weighted least squares, but it has to be
applied iteratively because R and W depend on β. Hence, the estimate β̂
can be obtained by IRLS with weights w(y, η) and working response variable
r(y, η) provided we choose good initial estimates.

The limit of the sequence {β̂(m)}∞m=1, if it converges, is the estimate for β.
That is

β̂ = lim
m→∞

β̂(m)
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6.4 Influence function for β̂

The estimate β̂ is computed here as iteratively re-weighted least squares, so
the Jorgensen method is employed to compute the influence function of β̂.

6.4.1 One-Step Influence function for β̂

The one-step influence function of β̂ can be directly derived from (5.21),
where the matrix Z is replaced by the matrix W , and y0 is replaced by r0,

r0 = x0β̂ + (y0 − µ0)
∂η0

∂µ0

Hence, (5.21) becomes

IF 1
β̂
((x0, y0), Fn) = nw0(X

tWX)−1xt0(r0 − x0β̂) (6.7)

IF 1
β̂
((x0, y0), Fn) = nw0(X

tWX)−1xt0(y0 − µ0)
∂η0

∂µ0

where µ0 = k−1(η0) and η0 = x0β̂.

6.4.2 Jacobian Matrix

Next, we want to compute the Jacobian matrix J . The updating function
h(β, Fn) can be defined as follows

(X tWX)h(β, Fn) = X tWR (6.8)

The computation of the Jacobian matrix is very similar to the section 5.6.2,
but instead of y, we have R in the right hand side (6.8). It depends on β, so
that computation of J is more complicated than previously.

Differentiate (6.8) both sides with respect to β.

X t∂W

∂β
Xh(β, Fn) + (X tWX)

∂h(β, Fn)

∂β
= X t∂W

∂β
R +X tW

∂R

∂β

(X tWX)
∂h(β, Fn)

∂β
= X t∂W

∂β
(R−Xh(β, Fn)) +X tW

∂R

∂β
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J =

[

∂h(β, Fn)

∂β

]

β=β̂

= (X tWX)−1X t

{

∂W

∂β
(R−Xβ̂) +W

∂R

∂β

}

(6.9)

Let si = ri − xiβ̂, and consider

∂W

∂βj
(R−Xβ̂) =















s1
∂w1

∂βj

.

.

.
sn

∂wn

∂βj















=













s1x1jw
′
1

.

.

.
snxnjw

′
n













=













s1w
′
1 0 . 0

. . . .

. . . .

. . . .
0 0 . snw

′
n

























x1j

.

.

.
xnj













∂W

∂β
(R−Xβ̂) =

(

∂W

∂β1

(R−Xβ̂) . . .
∂W

∂βp
(R−Xβ̂)

)

=













s1w
′
1 0 . 0

. . . .

. . . .

. . . .
0 0 . snw

′
n

























x11 . . x1p

. . . .

. . . .

. . . .
xn1 . . xnp













=













s1w
′
1 0 . 0

. . . .

. . . .

. . . .
0 0 . snw

′
n













X

∂R

∂βj
=















∂r1
∂βj

.

.

.
∂rn
∂βj















=













r′1x1j

.

.

.
r′nxnj
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∂R

∂β
=













r′1x11 . . r′1x1p

. . . .

. . . .

. . . .
r′nxn1 . . r′nxnp













=













r′1 0 . 0
. . . .
. . . .
. . . .
0 . . r′n













X

W
∂R

∂β
=













w1r
′
1 0 . 0

. . . .

. . . .

. . . .
0 . . wnr

′
n













X

Therefore

∂W

∂β
(R−Xβ̂) +W

∂R

∂β
=













s1w
′
i + w1r

′
1 0 . 0

. . . .

. . . .

. . . .
0 . . snw

′
n + wnr

′
n













X = V X

where V is a diagonal matrix, whose entries are vi defined below

vi = w′
i(ri − xiβ̂) + wir

′
i

Hence, (6.9) can be written as

J = (X tWX)−1X tV X (6.10)

6.4.3 True Influence Function for β̂

From section 5.6.3, we can write

(I − J)−1 = [X t(W − V )X]−1X tWX

The true influence function for β is denoted by IFβ̂((x0, y0), Fn).

IFβ̂((x0, y0), Fn) = nw0[X
t(W − V )X]−1xt0(y0 − µ0)

∂η0

∂µ0
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6.5 Examples

In this section, we will discuss two models such as Poisson and binomial
models with canonical link function.

6.5.1 Poisson Model

Consider the Poisson model with log link

var(yi) = µi and

ηi = logµi

∂ηi
∂µi

=
1

µi
=

1

var(yi)

Hence

wi =
µ2
i

µi
= µi = var(yi)

ri = ηi +
yi − µi
µi

Uj(β) =

n
∑

i=1

(yi − µi)xij

=

n
∑

i=1

(yi − exp(xiβ))xij

From (6.7), the one-step influence function for β̂ under this model is given
below

IF 1
β̂
((x0, y0), Fn) = nvar(y0)(X

tWX)−1xt0(y0 − µ0)
1

var(y0)

= n(X tWX)−1xt0(y0 − exp(η0))
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The details of the Jacobian matrix for this case follow

wi = µi = eηi ri = ηi +
yi−eηi

eηi

w′
i = eηi = wi r′i = 1 − yi

eηi

r′i = 1 − yi

wi

vi = w′
iri + wir

′
i − w′

ixiβ̂

= wiηi + wi
yi − eηi

eηi
+ wi − yi − wiηi

= 0

That is, vi = 0 i = 1 . . . n, which leads to give J = 0. Therefore, the true
influence function and the one-step influence functions are similar. In general,
the Jacobian matrix will vanish for the model with a canonical link. But this
is not true for non-canonical links. For example, consider the Poisson model
with identity link function.

ηi = µi and
dηi
dµi

= 1

wi = 1
µi

= η−1
i ri = ηi + (yi − ηi) = yi

w′
i = −η−2

i r′i = 0

vi = w′
i(ri − ηi) + r′iwi

= −ri − ηi
η2
i

= −yi − µi
µ2
i

6= 0
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6.5.2 Binomial

var(yi) =
µi(ni − µi)

n
and

ηi = log

(

θi
1 − θi

)

= log µi − log(ni − µi)

∂ηi
∂µi

=
ni

µi(ni − µi)
=

1

var(yi)

Hence

wi =
µi(ni − µi)

ni
= var(yi)

=

(

ni
1 + e−ηi

)(

1

1 + eηi

)

w′
i = −µi

(

1

1 + e−ηi

)(

1

1 + eηi

)

+ wi

(

1

1 + e−ηi

)(

1

1 + eηi

)

=
µiw

2
i

ni
− µ2

iwi
ni

ri = ηi +
yi − µi
var(yi)

= ηi +
yi − µi
wi

r′i = 1 +
wi

(

−dµi

dηi

)

− (yi − µi)w
′
i

w2
i

= −(yi − µi)w
′
i

w2
i
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Uj(β) =
n
∑

i=1

(yi − µi)xij

=
n
∑

i=1

(

yi −
[

ni
1 + exp(−ηi)

])

xij

For binomial model with logit link, the one-step influence function for β̂ form
(6.7) is

IF 1
β̂
((x0, y0), Fn) = n(X tWX)−1xt0

(

y0 −
1

1 + exp(−η0)

)

Due to the canonical link, elements of the Jacobian matrix J is zero. There-
fore IF 1

β̂
((x0, y0), Fn) is considered as the true influence function for β̂.

6.6 Mixture Model

We estimate β using the mixture model

p(y,X, β) = λf(y) + (1 − λ)g(y) (6.11)

where g is a dispersed parameter free function over the sample space and
1 − λ is a fixed small positive number which may be thought of as the pro-
portion of contaminated data. We will often choose λ to be 0.95 or similar.
Remember f is defined in (6.1).

For fixed choices of g and λ, we will consider the robustness properties of

β̃ = argmax
β

Lo(β) (6.12)

where Lo(β) = Πn
i=1p(yi, xi, β) is the observed likelihood function for β. The

β̃ is considered as our robustified estimator.

6.7 Calculating the Robustified Estimator

It is algebraically difficult to maximize the observed likelihood function,
Lo(β), so that the complete likelihood function, Lc(β), is considered to
achieve (6.12) and is defined below.

Lc(β) = Πn
i=1

[

[λf(yi)]
zi [(1 − λ)g(yi)]

1−zi
]

(6.13)
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where

zi =

{

1 if yi ∈ f
0 if yi ∈ g

lc(β) = logLc(β)

=

n
∑

i=1

[zi log λ+ zi[yib(θi) + c(θi) + d(yi)] +

(1 − zi) log(1 − λ) + (1 − zi) log g(yi)]

=
n
∑

i=1

li

where

li = zi log λ+ zi[yib(θi) + c(θi) + d(yi)] + (1− zi) log(1− λ) + (1− zi) log g(yi)

6.7.1 E-Step

In order to maximize lc(β) with respect to β, we need to know the values
of the unknown zi. This unknowns can be replaced by expected values. In
other words, z values are computed (as explained in section 4.5.1) at the
E-step of the EM algorithm

z̃i = E[zi|yi, xi, β] =
λf(yi)

λf(yi) + (1 − λ)g(yi)
(6.14)

Sometimes we denote z̃i = z(yi, ηi) = z(yi, xi, β) = z(yi − xiβ).

6.7.2 M-Step

Now we can replace the zi by z̃i ∀i in the expression of lc(β) and we can
apply standard MLE procedures, as explained in section 6.3, to compute
the statistics for β. That is, we need to solve the following simultaneous
equations

U(β) =
∂lc(β)

∂β
= 0 (6.15)
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where

U(β) =













U1(β)
.

.
Up(β)













=















∂lc(β)
∂β1

.

.
∂lc(β)
∂βp















Consider

Uj(β) =
∂lc(β)

∂βj

=

n
∑

i=1

∂li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

∂li
∂θi

= z̃i (yi b
′(θi) + c′(θi))

= z̃i b
′(θi) (yi − µi)

∂µi
∂θi

= b′(θi) var(yi)

∂ηi
∂βj

= xij

Hence

Uj(β) =
n
∑

i=1

z̃i b
′(θi) (yi − µi)

(

1

b′(θi) var(yi)

)

∂µi
∂ηi

xij

=
n
∑

i=1

z̃i

(

yi − µi
var(yi)

)

∂µi
∂ηi

xij

U(β) = X tZW Γ

where Γ is a column vector, whose elements γi = (yi−µi)
∂ηi

∂µi
, Z is a diagonal

matrix whose elements are z̃i, and W is a diagonal matrix, whose elements
are wi

wi =
[∂µi

∂ηi
]2

var(yi)
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The (p, q)th element of Σ is

Σpq = E(U t
pUq)

= E[
n
∑

i=1

z̃i

(

yi − µi
var(yi)

)

∂µi
∂ηi

xip

n
∑

j=1

z̃j

(

yj − µj
var(yj)

)

∂µj
∂ηj

xjq]

=

n
∑

i=1

z̃2
i

(

∂µi

∂ηi

var(yi)

)2

E[(yi − µi)
2]xipxiq

=
n
∑

i=1

z̃2
i

(

[∂µi

∂ηi
]2

var(yi)

)

xipxiq

Σ = X tZWZX

Consider the right hand side of (6.5)

Σβ + U = X tZWZXβ +X tZWΓ

= X tZWZ(Xβ + Z−1Γ)

= X tZWZR

where R is a column vector whose elements are

ri = xiβ +

(

yi − µi
zi

)

∂ηi
∂µi

= ηi +

(

yi − µi
zi

)

∂ηi
∂µi

Hence, (6.5) becomes

X tZ(m−1)W (m−1)Z(m−1)Xβ̃(m) = X tZ(m−1)W (m−1)Z(m−1)R(m−1)

X tA(m−1)Xβ̃(m) = X tA(m−1)R(m−1) (6.16)

where A is a diagonal matrix, whose elements ai are

ai = z̃2
i wi

Hence, the estimate for β can be obtained by an IRLS method, because (6.16)
takes the same form of weighted least squares with weights ai and it is an
iterative process because R and A depend on β.
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The limit of the sequence {β̃(m)}∞m=1, if it converges, is the estimate for β.
That is,

β̃ = lim
m→∞

β̃(m)

Note that if Z is an identity matrix, β̃ = β̂.

6.8 Influence Function for β̃

Computation of the true influence function for β̃ is very complicated, because
each observation is associated with two weights such as zi and wi. Since β̃ is
computed by IRLS method, the Jorgensen method is employed to compute
the true influence function for β̃.

6.8.1 One-Step Influence Function for β̃

The expressions (6.6) and (6.16) are similar in form for estimating the β,
but they have different weights and different adjusted dependent variables.
Therefore the one-step influence function for β̃ can be predicted from (6.7)

by replacing W by A and by replacing r0 by r0 = η0 +
(

y0−µ0

z0

)

∂η0
∂µ0

. That is

IF 1
β̃
((x0, y0), Fn) = na0(X

tAX)−1xt0(r0 − x0β̂)

where a0 = z̃2
0w0

IF 1
β̃
((x0, y0), Fn) = na0(X

tAX)−1xt0

(

y0 − µ0

z0

)

∂η0

∂µ0
(6.17)

6.8.2 Jacobian Matrix

Next we compute the Jacobian matrix J . The updating function h(β, Fn)
can be defined in (6.18).

X tZWZXh(β, Fn) = X tZWZR (6.18)
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Differentiate (6.18) both sides with respect to β.

X t∂Z

∂β
WZXh(β, Fn) + X tZ

∂W

∂β
ZXh(β, Fn) +

X tZW
∂Z

∂β
Xh(β, Fn) + X tZWZX

∂h(β, Fn)

∂β
=

X t∂Z

∂β
WZR + X tZ

∂W

∂β
ZR +

X tZW
∂Z

∂β
R + X tZWZ

∂R

∂β

X tZWZX
∂h(β, Fn)

∂β
= X t∂Z

∂β
WZ(R−Xh(β, Fn))

+ X tZ
∂W

∂β
Z(R−Xh(β, Fn))

+ X tZW
∂Z

∂β
(R−Xh(β, Fn)) +X tZWZ

∂R

∂β

Let S = R−Xh(β, Fn) be a n by 1 column vector. Then

X tZWZX
∂h(β, Fn)

∂β
= X t∂Z

∂β
WZS +X tZ

∂W

∂β
ZS

+ X tZW
∂Z

∂β
S +X tZWZ

∂R

∂β

Consider

∂Z

∂βj
WZ =

















z′1x1jw1z1 0 . 0
0 z′2x2jw2z2 . 0
. . . .

. . . .
0 0 . z′nxnjwnzn
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∂Z

∂βj
WZS =

















z′1x1jw1z1s1

z′2x2jw2z2s2

.

.
z′nxnjwnznsn

















=

















z′1w1z1s1 0 . 0
0 z′2w2z2s2 . 0
. . . .

. . . .
0 0 . z′nwnznsn

































x1j

x2j

.

.
xnj

















∂Z

∂β
WZS =

















z′1w1z1s1 0 . 0
0 z′2w2z2s2 . 0
. . . .

. . . .
0 0 . z′nwnznsn

















X

=

















z′1s1 0 . 0
0 z′2s2 . 0
. . . .

. . . .
0 0 . z′nsn

















WZX

= Λ1WZX

Similarly, we can write

Z
∂W

∂β
ZS = ZΛ2ZX

and

ZW
∂Z

∂β
S = ZWΛ1X
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where

Λ1 =

















z′1s1 0 . 0
0 z′2s2 . 0
. . . .

. . . .
0 0 . z′nsn

















and Λ2 =

















w′
1s1 0 . 0

0 w′
2s2 . 0

. . . .

. . . .
0 0 . w′

nsn

















∂R

∂βj
=

















r′1x1j

r′2x2j

.

.
r′nxnj

















∂R

∂β
= Λ3X

where

Λ3 =

















r′1 0 . 0
0 r′2 . 0
. . . .

. . . .
0 0 . r′n

















X tZWZX
∂h(β, Fn)

∂β
= X t[Λ1WZ + ZΛ2Z + ZWΛ1 + ZWZΛ3]X

= X t[2Λ1WZ + ZΛ2Z + ZWZΛ3]X

= X tV X

where V = 2Λ1WZ +ZΛ2Z+ZWZΛ3 is a diagonal matrix, whose elements
are vi

vi = 2z′isiwizi + z2
iw

′
isi + z2

iwir
′
i ∀i = 1 . . . n

Hence

J =

[

∂h(β, Fn)

∂β

]

β=β̃

= (X tAX)−1X tV X (6.19)

Note that if Z is an identity matrix, (6.19) and (6.10) are exactly same.
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6.9 Applications

In this section, we analyse two real examples. We investigate examples of
the binomial model and the Poisson model.

6.9.1 Binomial Models

In this section, we analyse the leukemia data set, which was considered by
Cook and Weisberg ([10], Chapter 5, p.193). Later a number of authors used
this dataset for their analysis. The data set consist of 33 leukemia patients.
The response variable y is defined as follows

y =

{

1 if the patient survives at least 52 weeks
0 otherwise

Two covariates of white blood cell count (WBC), and presence or absence of
certain morphological characteristics in the white cells (AG) were considered.

Let Yi =
∑ni

j=1 yj be the number of survivors in the group i, where ni is
the sample size of group i. We assume a binomial model with logit link

log

(

µi
ni − µi

)

= β0 + β1WBCi + β2AGi i = 1 . . . 30 (6.20)

where µi = E[Yi].

The maximum likelihood estimate for β = (β0, β1, β2)
t is given in Table

6.2. Cook and Weisberg found that observation 15 is unusual, because the
patient 15 survived for a long time period when WBC = 100000. The MLE
estimates are heavily affected by this observation (See Figure 6.1). The result
MLE−15, MLE is obtained after removing observation 15, is given in Table
6.2. It was noticed by the authors that this fit is much better than MLE fit.

We like to apply the mixture method to this data. We choose g = 1
2

as
a equal chance of alive and death. Estimates for β are computed for the
various values of λ = 0.9, 0.95, and true value of λ = 0.97(32/33). The re-
sults are given in Table 6.2. We can observe that coefficients fitted with the
mixture model for various λ are very similar. In addition, these estimates are
very similar to the MLE−15. That means our method automatically takes
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Figure 6.1: Leukemia data: GLM fit with all data and omitting case 15, and
mixture fit
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Table 6.2: Estimates for leukemia data

MLE MLE
−15 λ = 0.90 λ = 0.95 λ = 0.97

Estimate
forβ0 -1.307 0.212 0.228 0.216 0.214

Estimate
forβ1 -0.000032 0.000235 -0.000255 -0.000243 -0.000240

Estimate
forβ2 2.261 2.558 2.911 2.717 2.650

into account the particular observation of 15.

The true and one-step influence functions of the mixture estimates are nu-
merically computed when λ = 0.95. The Jacobian matrix is also computed
and given below.





3.50642489760 −7.490251e+ 03 −1.6366660035
0.00038329830 2.3796280e− 01 0.00034136500
−3.7618873008 −1.806380e+ 04 −5.2759043718





The response variable y has two outcomes and one of the predictor variables
(AG) is also categorical, so that influence functions of β̃0, β̃1, and β̃2 are
computed for the four cases y = 1 and AG = 1; y = 1 and AG = 0; y = 0
and AG = 1; y = 0 and AG = 0. These are shown in the Figures 6.1, 6.3, 6.4,
6.5 in order. These plots show that the true influence functions are bounded
for all estimates. Hence, we may say that mixture estimates are B-robust.

Next, results obtained by our method are compared with existing meth-
ods mentioned in sections 1.4.4 and 1.6. These are given in Table 6.3. The
mixture model estimates are better than other estimates, because mixture
model estimates are very similar to the MLE−15. The estimate obtained by
the quasi-likelihood approach is also reasonably close to the MLE−15, where
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Figure 6.2: The one-step influence function and true influence function for
the mixture estimates when y = 1 and AG = 1
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Figure 6.3: The one-step influence function and true influence function for
the mixture estimates when y = 1 and AG = 0
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Figure 6.4: The one-step influence function and true influence function for
the mixture estimates when y = 0 and AG = 1
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Figure 6.5: The one-step influence function and true influence function for
the mixture estimates when y = 0 and AG = 0
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Table 6.3: Estimates for leukemia data based on the various methods

Estimate Estimate Estimate
for β0 for β1 for β2

Mixture 0.216 -0.000243 2.717
with λ = 0.95

CUBIF -0.678 -0.0000909 2.249
([35], Page 242)

Cantoni and Ronchetti 0.171 -0.000204 2.487
([8], 2001)

√
1 − hii is used as weight for the ith row of the design matrix X and hii is

a ith diagonal element of the hat matrix.

6.9.2 Poisson Models

In this section, we use data from the Canadian Equality, Security, and Com-
munity Survey of 2000. Altogether, 4594 observations were collected across
Canada. Andersen [1] analyzed this data for Quebec province only, which
had 949 respondents. We also use same data set for our investigation.

The response variable is the number of voluntary association to which re-
spondents belonged. The predictors are not continuous variables such as
gender (2 levels: Women, Men); Canadian born (2 levels: No, Yes); language
spoken in the home (3 levels: French, English, Other). The first level in each
variable is considered as the reference category. Figure 6.6 shows the dis-
tribution of the response variable based on the predictor variables. Because
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of the count response, we fit the Poisson regression model using IRLS under
the frame-work of GLM. Table 6.4 displays the results from the GLM model.

Figure 6.7 shows the plot for the Cook’s distance with a red dashed line
indicating the cut-off defined by Fox ([17], 281). We may say, from this plot,
that a large number of observations are influential for these estimates (MLE).
However, if we apply the Cook and Weisberg ([11], 358) criteria for the cut-
out point, none of the observations are influential for these estimates. These
cut-off rules are basically rule of thumb, so that problematic cases are not
easily distinguished in the practical situations.

Before applying our method, we use the quasi-likelihood [8] method to obtain
robustified estimates for the Poisson model parameters. This method is used
with and without applying the weights to predictors. The results are very
similar (see Table 6.4). This indicates that values in the design matrix do
not influence the estimates.

For the mixture model, the parameter free density function g is defined as a
uniform distribution with parameters [a = 0, b = 25], because the minimum
and the maximum of the response variable are 0 and 13 respectively, and the
response variable cannot be a negative value. The results are given in Table
6.4, where we can observe that the coefficients fitted with the mixture are dif-
ferent to the MLE, but reasonably similar to the quasi-likelihood estimates.
Figures 6.8 and 6.9 show the fit made by mixture is slightly better than the
quasi-likelihood fit, because the mixture fit gives a better representation of
the majority of the data. Note that these graphs are in different y-scale.
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Table 6.4: Estimates for Quebec data based on the various methods

Estimate MLE CR without CR with Mixture
weights on X weights on X λ = 0.95

β0 0.586 0.120 0.120 0.030
(Intercept)

β1 0.079 0.084 0.085 0.110
(Men)

β2 0.027 0.258 0.258 0.356
(Canadian Born)

β3 0.357 0.537 0.538 0.495
(English)

β4 -0.014 0.079 0.079 0.102
(Other)

CR-Cantoni and Ronchetti 2001 method [8]
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Figure 6.8: Quebec Data: GLM fit, quasi-likelihood fit and mixture fit for the
men group: circle with black colour indicate observed data, triangle with red
colour indicate GLM fit, plus sign with blue colour indicate quasi-likelihood
fit and dark circle with magenta colour indicate mixture fit.
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Figure 6.9: Quebec Data: GLM fit, quasi-likelihood fit and mixture fit for
the women group: circle with black colour indicate observed data, triangle
with red colour indicate GLM fit, plus sign with blue colour indicate quasi-
likelihood fit and dark circle with magenta colour indicate mixture fit.
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Chapter 7

Extension of Robust
Estimation for Linear Models

In Chapter 5, the linear regression parameters were computed based on the
assumption of the scale parameter σ being known or previously estimated.
The goal of this chapter is to deal with estimation of regression parameter, β,
and scale parameter σ simultaneously. In other words, this chapter is similar
to the location and scale estimation of the robust literature.

We use the same notation as Chapter 5 and make links with the chapter
and this chapter structure is very similar to it. We use Example 5.1 to show
the estimation of regression parameters and the scale parameter together.
At the end of this chapter, we investigate the speed of light data.

7.1 Model

Consider the model
y = Xβ + σǫ (7.1)

where σ is unknown and the probability density function of random variable
Y is defined in (5.4). We consider regression coefficient estimates and scale
estimate that are maximum likelihood estimates of β and σ with respect to
the density in (5.4).
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7.2 Calculating the Estimator

Let φ = (β, σ2)t be the model parameter. The parameter estimate φ is
defined by

φ̂ = arg max
φ

{L(φ)} (7.2)

where L(φ) is the likelihood function for φ

L(φ) = Πn
i=1f(yi)

l(φ) = logL(φ)

=

n
∑

i=1

constant − 1

2
log σ2 − 1

2

(

yi − xiβ

σ

)2

A necessary condition for φ̂ in (7.2) is

∂l(φ)

∂β
= 0

n
∑

i=1

(

yi − xiβ̂

σ

)

xij = 0 ∀j = 1 . . . p (7.3)

and
∂l(φ)

∂σ2
= 0

n
∑

i=1

[

− 1

2σ̂2
+

(yi − xiβ̂)2

2σ̂4

]

= 0 (7.4)

These give the following results

β̂ = (X tX)−1X ty (7.5)

and

σ̂2 =
(y −Xβ̂)t(y −Xβ̂)

n
(7.6)

If αi is a weight associated with the observations (xi, yi) for all i = 1 . . . n,
then the estimates are

β̂ = (X tΛX)−1X tΛy and

σ̂2 = (1tΛ1)−1(y −Xβ̂)tΛ(y −Xβ̂)
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where Λ is a n by n diagonal matrix, whose elements are Λi = α0.5
i i = 1 . . . n

and 1 is a column vector of ones.

In the case of Example 5.1, β̂0 = −260.059, β̂1 = 5.041 and σ̂2 = 2897.647.
Note that they are computed separately and we have exactly same results
as were obtained in the section 5.2. These estimates are influenced by the
outliers (see section 5.3). Next we compute robustified estimates for φ.

7.3 Mixture Model

Again, we seek for a procedure that gives a good fit to the bulk of the data
without being perturbed by a small proportion of outliers, and that does not
require us to decide which observations are outliers. In order to achieve this
goal, we consider the mixture model

p(y,X, φ) = λf(y) + (1 − λ)g(y) (7.7)

where g is a dispersed parameter free function over the sample space and
1 − λ is a fixed small positive number which may be thought of as the pro-
portion of contaminated data. We will often choose λ to be 0.95 or similar.
Remember f is defined in (5.4.

For fixed choices of g and λ, we will consider the robustness properties of

φ̃ = argmax
φ

Lo(φ) (7.8)

where Lo(φ) is the observed likelihood function for φ.

Lo(φ) = Πn
i=1 [λf(yi) + (1 − λ)g(yi)]

We believe φ̃ is our robustified estimator.

7.4 Calculating the Robustified Estimator

For mathematical simplification, we often consider complete likelihood func-
tion Lc(φ) to achieve (7.8).

φ̃ = argmax
φ

Lc(φ) (7.9)
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where
Lc(φ) = Πn

i=1

[

[λf(yi)]
zi [(1 − λ)g(yi)]

1−zi
]

zi =

{

1 if yi ∈ f
0 if yi ∈ g

In general, zi’s are not observed, so zi’s are treated as unobserved random
variables. They can be estimated using the E-step of the EM algorithm
followed by estimation the parameters, β and σ2 at the M-step.

7.4.1 E-Step

The zi’s are computed in a similar way to that explained in section 4.5.1.
Hence

z̃i = E[zi|yi, ηi, σ2] =
λf(yi)

λf(yi) + (1 − λ)g(yi)
(7.10)

where ηi = xiβ is a linear predictor. Sometimes we use the notation z̃i =
z(yi, ηi, σ

2).

7.4.2 M-Step

The M-step is to maximize the complete likelihood function Lc(β), with zi
replaced by z̃i i = 1, . . . n.

lc = logLc(β)

=
n
∑

i=1

ẑi log f(yi) + constant

=

n
∑

i=1

ẑi

[

−1

2

(

yi − xiβ

σ

)2

− 1

2
log σ2

]

+ constant

A necessary condition for β̃ is

n
∑

i=1

ẑi

(

yi − xiβ

σ

)

xij = 0 ∀j (7.11)

A necessary condition for σ̃2 is

n
∑

i=1

ẑi

[

(yi − xiβ)2

2 σ4
− 1

2 σ2

]

= 0 (7.12)
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In matrix form, we can write

β = (X tZX)−1X tZy (7.13)

and
σ2 = (1tZ1)−1(y −Xβ)tZ(y −Xβ) (7.14)

where Z is a diagonal matrix whose elements are z̃i i = 1 . . . n. It is similar
to the weighted form explained in section 7.2, but with the matrix Λ replaced
by Z.

It is an iterative process algorithm. For a given starting value for β and
σ2, say β̃(0) and σ̃2(0)

, we can immediately compute the elements of the ma-
trix Z(0). Therefore, the new estimates β̃(1) and σ̃2(1)

can be derived using

the fixed point equations (7.13) and (7.14). At the mth iterative stage, we
can write,

β̃(m+1) = (X tZ(m)X)−1X tZ(m)y

σ̃2(m+1)

= (1tZ(m)1)−1(y −Xβ(m+1))tZ(m)(y −Xβ(m+1))

The limit of the sequence {β̃(m)}∞m=0 and {σ̃2(m)}∞m=0 if they converge, are the
estimates for β and σ2. That is,

β̃ = lim
m→∞

β̃(m)

and
σ̃2 = lim

m→∞
σ̃2(m)

That is, the estimate φ̃ for φ is given below.

φ̃ = (β̃, σ̃2)t

7.5 Influence Function for φ̃

This section is more complicated, because the updating function h(φ, Fn) has
two components. That is h = (h1, h2)

t, where

h1(φ, F ) = (X tZX)−1X tZy (7.15)

h2(φ, F ) = (1tZ1)−1(y −Xβ)tZ(y −Xβ) (7.16)
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7.5.1 One - Step Influence Function for φ̃

Here the one-step influence function has two components, one for β̃ and the
other for σ̃2. The first one can be obtained directly from (5.21). That is,

IF 1
β̃
((x0, y0), Fn) = nẑ(X tZX)−1xt0(y0 − x0β̃) (7.17)

Next, we compute the one-step influence function for σ̃2 from the definition
of influence function. Let σ̆2(Fn) be a statistical functional defined in (7.18)

σ̆2(Fn) =

∑n
i=1 zi(yi − xiβ̃)2

∑n
i=1 zi

(7.18)

where Fn is the empirical distribution which places mass 1
n

at the n points
{(x1, y1), . . . (xn, yn)}.Now consider the perturbed data set (x1, y1), . . . (xn, yn), (x0, y0)
with weights 1−ǫ

n
, . . . , 1−ǫ

n
, ǫ. The new estimate σ̆2

new is defined below.

σ̆2
new = σ̆2((1 − ǫ)Fn + ǫ∆(x0,y0)) (7.19)

From (7.18)

σ̆2
new =

1−ǫ
n

∑n
i=1 zi(yi − xiβ̃)2 + ǫ(y0 − x0β̃)2

1−ǫ
n

∑n
i=1 zi + ǫz0

σ̆2
new − σ̆2(Fn)

ǫ
=

[
∑n

i=1 zi]z0(y0 − x0β̃)2 − z0
∑n

i=1 zi(yi − xiβ̃)2

[
∑n

i=1 zi][
1−ǫ
n

∑n
i=1 zi + ǫz0]

=
z0(y0 − x0β̃)2 − z0σ̃

2

1−ǫ
n

∑n
i=1 zi + ǫz0

lim
ǫ→0

σ̆2
new − σ̆2(Fn)

ǫ
=

nz0[(y0 − x0β̃)2 − σ̃2]
∑n

i=1 zi

IFσ̆2((x0, y0), Fn) =
nz0[(y0 − x0β̃)2 − σ̃2]

∑n
i=1 zi

We call IFσ̆2((x0, y0), Fn) the one step influence function for σ̃2 and denote
it as IF 1

σ̃2((x0, y0), Fn).
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7.5.2 Jacobian Matrix

Once again, another complicated Jacobian matrix, J , is to be computed. The
dimension of the Jacobian matrix is (p + 1) by (p + 1). For mathematical
simplification, we partition the matrix J as follows:

J =

[

J1 J2

J3 J4

]

where J1 is a (p × p) matrix, J2 is a (p × 1) column vector, J3 is a (1 × p)
row vector and J4 is a scalar. J1 is similar to the (5.22). That is

J1 =
∂h1(φ, Fn)

∂β
= (X tZX)−1X tV X (7.20)

J2 =
∂h1(φ, Fn)

∂σ2
=













∂β1

∂σ2

.

.
∂βp

∂σ2













(7.21)

J3 =
∂h2(φ, Fn)

∂β
=
[

∂h2(φ,Fn)
∂β1

. . . . ∂h2(φ,Fn)
∂βp

]

(7.22)

J4 =
∂h2(φ, Fn)

∂σ2
(7.23)

From (7.15), we can write

(X tZX)h1(φ, Fn) = X tZy

Differentiate both sides with respect to σ2

X t ∂Z

∂σ2
Xh1(φ, Fn) + (X tZX)

∂h1(φ, Fn)

∂σ2
= X t ∂Z

∂σ2
y

(X tZX)
∂h1(φ, Fn)

∂σ2
= X t ∂Z

∂σ2
(y −Xh1(φ, Fn))

J2 =

[

∂h1(φ, Fn)

∂σ2

]

φ=φ̃

= (X tZX)−1X t ∂Z

∂σ2
(y −Xβ̃)

126



Let R = y −Xβ be a column vector. From (7.16), we can write

(1tZ1)h2(φ, Fn) = RtZR

Differentiate both sides with respect to βj

(1t
∂Z

∂βj
1)h2(φ, Fn) + (1tZ1)

∂h2(φ, Fn)

∂βj

= −xt.jZR +Rt ∂Z

∂βj
R +RtZ(−x.j)

(1tZ1)
∂h2(φ, Fn)

∂βj
= Rt ∂Z

∂βj
R− (1t

∂Z

∂βj
1)h2(φ, Fn)

−2RtZx.j

= h2(φ, Fn)1
tZ ′x.j − (R2)tZ ′x.j − 2RtZx.j

= (h2(φ, Fn)1
tZ ′ − (R2)tZ ′ − 2RtZ)x.j

∂h2(φ, Fn)

∂βj
= (1tZ1)−1γx.j

where γ = h2(φ, Fn)1
tZ ′ − (R2)tZ ′ − 2RtZ is a row vector, x.j is the jth

column of the matrix X and Z ′ = ∂Z
∂η

.

∂h2(φ, Fn)

∂β
=

(

∂h2(φ, Fn)

∂β1
, . . . ,

∂h2(φ, Fn)

∂βp

)

= (1tZ1)−1γX

J3 =

[

∂h2(φ, Fn)

∂β

]

φ=φ̃

= (1tZ1)−1γ̃X

where γ̃ = σ̃21tZ ′ − (R̃2)tZ ′ − 2R̃tZ and R̃ = y −Xβ̃.

(1tZ1)h2(φ, Fn) = RtZR
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Differentiate both sides with respect to σ2

(1t
∂Z

∂σ2
1)h2(φ, Fn) + (1tZ1)

∂h2(φ, Fn)

∂σ2
= Rt ∂Z

∂σ2
R

(1tZ1)
∂h2(φ, Fn)

∂σ2
= Rt ∂Z

∂σ2
R− (1t

∂Z

∂σ2
1)h2(φ, Fn)

J4 =

[

∂h2(φ, Fn)

∂σ2

]

φ=φ̃

= (1tZ1)−1[(y −Xβ̃)t
∂Z

∂σ2
(y −Xβ̃) − 1t

∂Z

∂σ2
1σ̃2]

=

∑n
i=1[(yi − xiβ̃)2 − σ̃2] ∂zi

∂σ2
∑n

i=1 zi

where

zi = z(yi, ηi, σ
2) =

λf(yi, ηi, σ
2)

λf(yi, ηi, σ2) + (1 − λ)g(yi)

[

λf(yi, ηi, σ
2) + (1 − λ)g(yi)

]

zi = λf(yi, ηi, σ
2)

∂zi
∂σ2

=
zi(1 − zi)

f(yi, ηi, σ2)

∂f(yi, ηi, σ
2)

∂σ2

log f(yi, ηi, σ
2) = − log 2π − 1

2
log σ2 − 1

2

(

yi − ηi
σ

)2

1

f(yi, ηi, σ2)

∂f(yi, ηi, σ
2)

∂σ2
=

1

2σ4
[(yi − ηi)

2 − σ2]

Hence
∂zi
∂σ2

=
zi(1 − zi)

2σ4
[(yi − ηi)

2 − σ2]
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Table 7.1: Regression and scale estimates for the Belgium phone call data

MLE MLE
−6 λ = 0.75 λ = 0.90 λ = 0.95

Estimate
for β0 - 260.06 -63.48 - 51.66 -52.44 -52.54

Estimate
for β1 5.04 1.30 1.08 1.10 1.10

Estimate
for σ 56.22 4.40 0.91 1.31 1.35

7.6 Numerical Results

In this section, Example 6.1 is used to illustrate our method numerically.
The regression parameters and scale parameter are computed together, and
results will be given in the Table 7.1. The same g, defined in section 5.8,
is used here. As usual, the estimates for β and σ are computed for various
λ = 0.75, 0.9, 0.95.

The estimates σ̃, β̃0 and β̃1 are almost the same for the various λ. This
means λ has little impact on the estimates. However, the mixture estimates
σ̃, β̃0 and β̃1 heavily deviate from the maximum likelihood estimates σ̂, β̂0

and β̂1, are very close to the MLE−6 estimates, which are the MLE after
deleting the six outlier set of observations from the original data set. These
fits can be viewed in Figure 7.1. In particular, the case of λ = 0.95 is con-
sidered for the mixture model.

Next, we would like to have the influence functions for these estimates. Since
three parameters were estimated, the dimension of the Jacobian matrix J is
3× 3. In fact, the dimensions of J1, J2, J3 and J4 are 2× 2, 2× 1, 1× 2 and
1× 1 respectively. The result of the Jacobian matrix J for this case is given
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Figure 7.1: Number of international phone calls from Belgium in the years
1950 − 1973 with LS fit,MLE−6 fit, and mixture model fit
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Table 7.2: Regression and scale estimates are given by various methods using
the Belgium phone call data

Estimates for β0 Estimates for β1 Estimates for σ

MLE - 260.059 5.041 53.83

Mixture -52.542 1.104 1.35

Tukey -52.302 1.098 1.65

Huber -102.622 2.041 9.03

below when λ = 0.95.

J =













−0.1334329 −8.4569541 −0.1372100

0.00288651 0.18267840 0.00296296

−0.1439740 −9.0697582 0.14398012













The true and one-step influence functions for the β̃0, β̃1 and σ̃2 are given in
the Figures 7.2 and 7.3 when x = 70 and x = 100 respectively. Using these
figures, it can be seen that the estimates β̃0, β̃0 and σ̃2 are insensitive to
extreme values.

7.6.1 Comparison of φ̃ with Standard Robust Estimates

Like other chapters, the estimates β̃0, β̃1 and σ̃ are compared with the tra-
ditional estimates obtained by Huber and Tukey methods, where MAD is
computed as the scale estimate. Results are given in Table 7.2. Results
based on the our method and on the Tukey method are very similar here
too.
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Figure 7.2: True and one-step influence functions for estimates when x = 70
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Figure 7.3: True and one-step influence functions for estimates when x = 100
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Table 7.3: Location and scale estimates for the speed of light data

MLE MLE
−2 λ = 0.90 λ = 0.95 λ = 0.97

Estimate for β 26.21 27.75 27.73 27.74 27.75

Estimate for σ 10.75 5.08 4.91 4.98 5.01
(4.45) (5.19)

MAD values are given in the brackets.

7.7 Location and Scale

This section is a special case of this chapter. That is, we consider the same
model of (7.1), where X is a column vector whose elements are 1. The β and
σ are considered as location and scale parameters. Analytical results can
be easily obtained from the sections 7.4 and 7.5 by replacing X by the col-
umn vector of 1, so that we are directly interested in numerical analysis. We
use the data set of the speed of light, explained in Chapter 1, for this purpose.

For the mixture method, the g is defined as uniform distribution with pa-
rameters a = −60 and b = 60, because minimum and maximum value of the
observations are −44 and 40. The results for MLE, MLE−2 (compute the
MLE after removing the two outliers), and our method for various λ such as
0.90, 0.95, and true λ = 64/66 = 0.97, are given in Table 7.3. The mixture
model gives almost similar estimates for various λ, and these are very close
to the MLE−2. In addition, the mixture model estimates are definitely better
than MLE.

Next, we are computing the Jacobian matrix J in order to compute the
true influence functions of β̃ = 27.74 and σ̃ = 4.98. In this case, J is a 2 by
2 matrix and all J1, J2, J3 and J4 are single terms.

J1 =

∑n
i=1 z

′
i(yi − β̃)

∑n
i=1 zi
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Table 7.4: Location and scale estimates are computed by various methods
for speed of light data

Estimates for β Estimates for σ

MLE 26.21 10.75

Mixture 27.74 4.98

Tukey 27.67 5.19

Huber 27.39 5.03

J2 =

∑n
i=1(yi − β̃) ∂zi

∂σ2
∑n

i=1 zi

J3 =
σ̃2
∑n

i=1 z
′
i −
∑n

i=1 z
′
i(yi − β̃)2 − 2

∑n
i=1 zi(yi − β̃)

∑n
i=1 zi

J4 =

∑n
i=1[(yi − β̃)2 − σ̃2] ∂zi

∂σ2
∑n

i=1 zi

where z′i = ∂zi

∂β
. The numerical result for J is given below

J =





0.037304 0.000543

−0.062959 0.057262





Figures 7.4 and 7.5 give the true and one-step influence functions for the
estimates β̃ = 27.74 and σ̃ = 4.98 respectively. The influence functions are
bounded, which means estimates obtained by the mixture model are not un-
duly affected by outliers.

Next we compare these results with standard robust methods. The results
are given in Table 7.4. Location and scale estimates are computed simultane-
ously for all these methods. We have here chosen MAD as the scale estimate
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Figure 7.4: True and one-step influence functions for the location estimate
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Figure 7.5: True and one-step influence functions for the scale estimate

137



for the cases of both the Tukey and Huber methods. Once again we found
that mixture estimates and Tukey estimates are very similar.
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Chapter 8

Robust Estimation for
Non-Linear Models

The computation of robust statistics for non-linear model parameters is very
limited in the robust literature. However the function ’nlrob’ in the R li-
brary ’robustbase’ fits non-linear regression using iteratively re-weighted least
squares (IRWLS) method. In this Chapter, we are trying to apply our method
to non-linear models.

8.1 The Model

The nonlinear model can be written as

y = µ(β) + ǫ (8.1)

where ǫ ∼ N (0, σ2). It is similar form of (5.1), but µ(β) is not a linear com-
binations of covariates.

The definition of nonlinearity relates to the prediction equation, which form
is nonlinearity on one or more unknown parameters. Note that, it is not the
relationship between the response variable and the covariates. For example,
the prediction equation of the form µ(β) = β1 x

β2+x
is considered non-linear

model and the prediction equation of the form µ(β) = β0 +β1x+β2x
2 +β3x

3

is still considered as linear model.
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In this Chapter, we will investigate the Michaelis-Menten model (8.2) us-
ing treated Puromycin data, given in Appendix in section 8.6. Please refer
[4] for further detail of the model,

µ(β) =
β1 x

β2 + x
(8.2)

where x is substrate concentration in an enzymatic and y is the reaction
rates. The parameter β = (β1, β2) is to be estimated. Figure 8.1 shows that
the relationship between x and y is non-linear, and outliers are absent.

8.2 Calculating the Estimator

The estimate β̂ for β can be obtained by

β̂ = arg max
β

l(β)

where l(β) is the log-likelihood and defined below

l(β) = logL(β) =

n
∑

i=1

log fYi
(yi, β) (8.3)

where fY (y, β) is a probability density function of random variable Y . Since
the fYi

(yi, β) belongs to exponential family, (8.3) becomes

l(β) =

n
∑

i=1

(yib(θ) + c(θ) + d(yi))

=
n
∑

i=1

li(β)

Since we are interested to do this investigation based on the normal distri-
bution, µ = b(θ) = θ

σ2 , c(θ) = − θ2

2σ2 and d(yi) = −1
2
log(2π)− 1

2
log(σ2)− yi

2σ2 ,
and σ2 is treated as either known or 1 for simplicity.

For maximization,

U(β) =
∂l(β)

∂β
= 0 (8.4)
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where

U(β) =









U1(β)
.
.
Up(β)









=











∂l(β)
∂β1

.

.
∂l(β)
∂βp











Consider

Uj(β) =
∂l(β)

∂βj
=

n
∑

i=1

∂li(β)

∂βj

=
n
∑

i=1

∂li(β)

∂θ

∂θ

∂µi

∂µi
∂βj

=

n
∑

i=1

[yib
′(θ) + c′(θ)][1]

∂µi
∂βj

=
n
∑

i=1

(

yi − µi
σ2

)

∂µi
∂βj

Hence

U(β) =











∑n
i=1

(

yi−µi

σ2

)

∂µi

∂β1

.

.
∑n

i=1

(

yi−µi

σ2

)

∂µi

∂βp











=
1

σ2











∂µ1

∂β1
. . ∂µn

∂β1

. . . .

. . . .
∂µ1

∂βp
. . ∂µn

∂βp



















y1 − µ1

.

.
yn − µn









=
1

σ2
Dte

The matrix D is called gradient matrix. In the linear model the matrix D
must be the design matrix X, because ∂ µ(β, xi)

∂βj
= xij .
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(p, q)th element of the expected information matrix of U is defined by

Σpq = E(Up(β)Uq(β))

=
1

σ4

n
∑

i=1

E(yi − µi)
2 ∂µi
∂βp

∂µi
∂βq

=
1

σ2

n
∑

i=1

∂µi
∂βp

∂µi
∂βq

Let Σ is the expected information matrix of U .

Σ =
1

σ2











∂µ1

∂β1
. . ∂µn

∂β1

. . . .

. . . .
∂µ1

∂βp
. . ∂µn

∂βp





















∂µ1

∂β1
. . ∂µ1

∂βp

. . . .

. . . .
∂µn

∂β1
. . ∂µn

∂βp











=
1

σ2
DtD (8.5)

In order to solve (8.4), use Taylor expansion to U(β) and apply first order
approximation, we will get

β(m+1) = β(m) + (−U ′(β))−1U(β(m))

where m denotes mth of the iteration. The observed information −U ′(β) is
usually replaced by the expected information Σ. Hence

β(m+1) = β(m) + Σ−1U(β(m))

Σ β(m+1) = Σβ(m) + U(β(m))

= DtDβm +Dte = Dt(Dβm + e) = Dtr

β(m+1) = (DtD)−1Dtr

where r = Dβ + e. The estimate β̂ is given by

β̂ = lim
m→∞

β(m)

Back to our example,

µ′ =





∂µ
∂β1

∂µ
∂β2



 =





x
β2+x

β1 x
(β2+x)2





142



Table 8.1: Results of the iteration for the example

m 0 1 2 3 4

β1 205.0000 213.0289 212.6034 212.6754 212.6830

β2 0.0800 0.0629 0.0640 0.0641 0.0641

Hence,

D =





















∂µ1

∂β1

∂µ1

∂β2

. .

. .
∂µn

∂β1

∂µn

∂β2





















=









x1

.

.
xn









(

x
β2+x

β1 x
(β2+x)2

)

= X(µ′)t

Since it is an iterative process with starting values β
(0)
1 = 205 and β2(0) =

0.08, which are recommended in [4]. In Table 8.1, we have listed the value

of β
(m)
1 and β

(m)
2 for various values of m. Therefore, this method gives esti-

mates of the parameters β1 and β2 of the model (8.2), where β̂1 = 212.683
and β̂2 = 0.064. Figure 8.1 shows the prediction line based on these esti-
mates. It seems very good fit for the data.

Our intention is to develop robustify method for estimating the parameters
in non-linear models, so that we are now making new example by replacing

8th observation of the y-value by just arbitrary value 220 and rest of them
are exactly same as treated Puromycin data set.
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Figure 8.1: Treated Puromycin data with fitted Michaelis-Menten curves

8.3 The Mixture Model

We believe that robustify estimate for β of nonlinear models can be obtained
using the mixture model, defined in (8.6).

p(y,X, β) = λf(y,X, β) + (1 − λ)g(y) (8.6)

where g is a known parameter free function over the sample space. Often
λ ≈ 1, but not exactly 1.

8.4 Calculating the Robustified Estimator

The robstified estimate β̃ may be defined as

β̃ = arg max
β

l0 (8.7)

where l0 is observe log-likelihood and defined below

l0 =

n
∑

i=1

log p(yi, xi, β)
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After having mathematical simplification and algebraic operations, we will
have complete log-likelihood, lc,

lc =

n
∑

i=1

zili(β) + constant (8.8)

where z′i s are treated as missing values. It can be computed at the E-step
of the EM algorithm.

z̃
(m)
i =

λf(yi, xi, β
(m))

λf(yi, xi, β(m)) + (1 − λ)g(yi)

Now (8.8) can be considered as a weighted form of the likelihood and new
U(β) and Σ are defined below.

U(β) =









U1(β)
.
.
Up(β)









=











∂lc(β)
∂β1

.

.
∂lc(β)
∂βp











and

Uj(β) =

n
∑

i=1

zi

(

yi − µi
σ2

)

∂µi
∂βj

U(β) =
1

σ2











∂µ1

∂β1
. . ∂µn

∂β1

. . . .

. . . .
∂µ1

∂βp
. . ∂µn

∂βp



















zi 0 . 0
. . . .
. . . .
0 . . zn

















y1 − µ1

.

.
yn − µn









= DtZe

Σpq =
1

σ2

n
∑

i=1

z2
i

∂µi
∂βp

∂µi
∂βq
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Σ =
1

σ2











∂µ1

∂β1
. . ∂µn

∂β1

. . . .

. . . .
∂µ1

∂βp
. . ∂µn

∂βp



















zi 0 . 0
. . . .
. . . .
0 . . zn

















zi 0 . 0
. . . .
. . . .
0 . . zn



















∂µ1

∂β1
. . ∂µ1

∂βp

. . . .

. . . .
∂µn

∂β1
. . ∂µn

∂βp











=
1

σ2
DtZZD

Hence the robustified estimate β̃ may be obtained by iterative process.

β(m+1) = βm + Σ−1U(βm)

Σ β(m+1) = Σβ(m) + U(β(m))

= DtZZDβ(m) +DtZe

= DtZ(ZDβ(m) + e) = DtZr

β(m+1) = (DtZZD)−1DtZr

and
β̃ = lim

m→∞
β(m)

where r = ZDβ(m) + e.

8.5 Numerical Results

We use new set of data, explained in end of section 8.2 for this investigation.
First, we compute the maximum likelihood estimator for the full data set

and data set without 8th observation. Later we fit the model for the full
data set using mixture method. After investigate the data, we choose g
as uniform distribution on [40, 230], and λ = 0.97, and scale parameter is
defined as mad(y) . Results are given in Table 8.2 and a number of fits based
on various methods are given in Figure 8.2.
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Figure 8.2: Treated Puromycin data with fitted Michaelis-Menten curves
based on various methods
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Table 8.2: Estimates based on various methods

MLE MLE
−8 Mixture

β1 219.464 214.056 214.038

β2 0.061 0.063 0.0618

8.6 Appendix - Treated Puromycin Data

x y

0.02 76
0.02 76
0.06 97
0.06 107
0.11 123
0.11 139
0.22 159
0.22 152
0.56 191
0.56 201
1.10 207
1.10 200
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Chapter 9

Another Choice of g

Up to now, one of the mixture components g in our model was chosen as
a probability density function. For example, g is assigned to as either uni-
form distribution or equal probability for success and failure in the previous
chapters. We referred to this case as proper g. In this Chapter, we begin
to define another form of g, which is not associated with distribution. This
form of g is referred to as improper density g. The g may be defined as a
constant. In this chapter, we are interested in estimating the parameters
using the mixture model with a model density function f , which we refer to
as a regular component, and an improper density function g.

The mathematical results given in the previous chapters will not be changed,
because the derivations depend on g. But, in this chapter, we use partic-
ular g so that we have focused mainly on numerical results using previous
examples.

9.1 Robust Location Estimate

This section illustrates the computation of robust statistics for the location
parameter using the combination of proper and improper density functions.
The example used here is generated data, explained in section 4.1.

We fit the mixture model with a model density function f and an improper
component with the constant density g = C0, which takes successively the
values 0.005, 0.05, 0.1 to estimate the parameters of the model density f when
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Table 9.1: Location estimates (MLE and Mixture) for the generated data:
θ̂ is a maximum likelihood estimator; θ̃0.95 is a mixture estimate when g is
uniform distribution and λ = 0.95; and θ̃0.95, C0 is an estimate for θ by mixture
model with an improper constant density g = C0 when λ = 0.95.

θ̂ θ̃0.95 θ̃0.95,0.005 θ̃0.95,0.05 θ̃0.95,0.1

Estimate for θ 8.7313 9.7854 9.7896 9.7564 9.7435

the non-contamination proportion λ = 0.95. The results are displayed in Ta-
ble 9.1. In addition, MLE and the mixture estimate obtained from Table 4.1
are given in Table 9.1. The results obtained by the mixture models become
more attractive, because they are very close to the true value of 10. When
C0 increases, the results deviate slightly from the true value. Particularly,
θ̃0.95 ≈ θ̃0.95,0.005, because θ̃0.95 is obtained based on the uniform distribution
on [−80, 80] and proper density g = 0.00625, which is approximately closer
to C0 = 0.005.

9.2 Robust Regression Estimates

The data (Belgium Phone Call Data) for this example is described in section
5.1. We are trying to estimate the linear regression parameters using the
mixtures of the proper density and the improper constant density g = C0,
which take the values 0.002, 0.05, 0.1, when λ = 0.95. Results obtained by
this model and other relevant results are displayed in Table 9.2.

The results obtained by all the mixture models are far better than MLE,as
shown in Table 9.2. Figure 9.1 shows that the mixture model lines do fit the
bulk of the data. It seems the results are not heavily affected by the choice
of g. However, there is a small difference in the slope and intercept based on
the comparison between the proper g and the improper g.
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1950 − 1973 with LS fit and mixture model fits
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Table 9.2: Regression estimates for the Belgium phone calls data when λ =
0.95

MLE g is uniform g = 0.002 g = 0.05 g = 0.1
on [0, 300]

Estimate
for β0 - 260.059 - 63.444 -59.243 -59.248 -59.252

Estimate
for β1 5.041 1.304 1.227 1.227 1.227

9.3 Robust Estimates for Poisson Regression

The data analyzed in this example is the number of voluntary associations
to which respondents belonged in Quebec, Canada. More detail about the
data is explained in section 6.9.2. We describe the response variable as a
function of a number of explanatory variables such as gender, nationality
and language skills under the Poisson model.

Robust estimates for the Poisson regression parameters may be obtained
by considering the mixtures of the Poisson distribution and the improper g
with the constant values 0.005, 0.05, 0.1. These results and other relevant
comparable results are given in Table 9.3.

Once again, the results obtained by our mixture models give better esti-
mates than MLE. There is a very small difference in the estimates based on
comparisons between the proper g and the improper g. All estimates values
are increased as C0 increases except the intercept, which is the reference cat-
egory here. The estimates based on the proper g (uniform distribution on
[0, 25]) and improper g (g = 0.05) are almost similar.
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Table 9.3: Regression estimates for Quebec data when λ = 0.95

Estimate MLE Mixture Mixture Mixture Mixture
gis uniform g = 0.005 g = 0.05 g = 0.1
on [0, 25]

β0 0.586 0.030 0.244 0.006 -0.076
(Intercept)

β1 0.079 0.110 0.101 0.109 0.101
(Men)

β2 0.027 0.356 0.242 0.365 0.394
(Canadian-

-Born)

β3 0.357 0.495 0.435 0.506 0.545
(English)

β4 -0.014 0.102 0.034 0.107 0.116
(Other)

153



Table 9.4: Location and scale estimates for the speed of light data when
λ = 0.95

MLE MLE
−2 Mixture Mixture Mixture Mixture

g is g = 0.005 g = 0.05 g = 0.1
uniform

on [−60, 60]

β 26.21 27.75 27.74 27.75 27.70 27.64

σ 10.75 5.08 4.98 5.004 4.67 4.35
(4.45) (5.19)

MAD values are given in brackets.

9.4 Robust Location and Scale Estimates

The speed of light data is considered as an example to explain this case.
Descriptions of the data are given in Chapter 1. We start to compute the
robust statistics for the location and the scale parameters together by using
the mixtures of the regular component f and the constant improper com-
ponent g = C0, where C0 is assumed to take the following constant values
0.005, 0.05, 0.1. Results are given in Table 9.4 including other appropriate
results . The location parameter is denoted as β instead of the standard
notation of µ.

The estimate MLE−2, denoted in Table 9.4, indicates the maximum like-
lihood estimator of the data after removing two outliers from the original
data set. The results obtained from the mixture models are very close to the
MLE−2, especially when g = 0.005. In addition, the results in columns three,
four and five of the Table 9.4 are very similar.
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9.5 Selection of C0

If we choose large value of C0, then all points may be assigned to the outlier
component g. In contrast, all points may be assigned to the regular compo-
nent f if C0 is very small. These situations are not desired here. Hence we
may say that the choice C0 is not simple.

In our previous examples, if the density in the proper g (uniform distribution)
is approximately the same as the constant in the improper g, then the results
are almost same. Therefore, the desired C0 may be found by the following
approach: find the uniform density as explained in previous chapters and
assign this constant density value to C0, then define the C0 on a real line to
make an improper g. In other words, the suitable value for the constant C0

is the reciprocal of the range, which is the domain of the uniform distribution.

Next, we would like to find out the range of C0 based on the simulation
study to have possible good estimates for parameters. Here the range of
C0 is defined from k × 10−3 to k × 103, where k may be obtained by our
suggestion, given before.

Location

In section 4.7, the proper component g is defined as the uniform distribution
on [−80, 80], so the range for the interval is 160. Therefore, k = 1

160
= 0.00625

is chosen to make the improper g here. Now we investigate the estimate when
the C0 value changing from 0.00625×10−3 to 0.00625×103. Results are given
in Table 9.5. The estimates do not change much in this range. Note that k is
in three decimal places and estimates are also similar in the range of k×10−3

to k × 103.

Linear Regression Estimates

As in the previous section, we choose k = 0.003 here, because the g is de-
fined on [0, 300] in section 5.8. The regression estimates, which may be still
considered as location estimates, are given in Table 9.6. Again they are very
similar in the range of k × 10−3 to k × 103 when k is in the three decimal
places.
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Table 9.5: Estimates for location based on the range of C0 when λ = 0.95

C0 Estimates

0.00625 × 10−3 10.00844

0.00625 × 10−2 9.89238

0.00625 × 10−1 9.83508

0.00625 × 100 9.78538

0.00625 × 101 9.75259

0.00625 × 102 9.70584

0.00625 × 103 9.67726
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Table 9.6: Estimates for regression parameters based on the range of C0 when
λ = 0.95

Estimates for Estimates for
C0 β0 β1

0.003 × 10−3 -59.238208 1.226444

0.003 × 10−2 -59.242456 1.226521

0.003 × 10−1 -59.243077 1.226533

0.003 × 100 -59.243383 1.226538

0.003 × 101 -59.245678 1.226580

0.003 × 102 -59.277966 1.227171

0.003 × 103 -59.117012 1.224226
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Generalized Linear Estimates

According to section 6.9.2, k = 0.04 is chosen. The estimates for the range
are given in Table 9.7. It is noted that estimates become worse when the
C0 become two digit number, but estimates are also similar in the range of
k × 10−1 to k × 101.

Location and Scale Estimates

In this case, three decimal places k = 0.008 is chosen because the g is defined
on [−60, 60] in section 7.7. Results are given in Table 9.8. Note that location
parameter and scale parameter are estimated together. Reasonable good
estimates for location and scale are obtained in the range from 0.008× 10−1

to 0.008 × 101.

9.6 Discussion

Overall, we may say that the good robust estimates may be obtained in
the possible range of [k × 10−1, k × 101] when 0 < k < 1. Choice of k may
be critical, but defined by our suggestion. It works very well in our examples.

The mixture with a regular component and an improper component works
very well in our examples. It may be interpreted as one of the members
of the mixture models. In addition, convergence of the EM algorithm does
not seem to present any problems. The estimates produced by the mixture
models are far better than the maximum likelihood estimator. The choice
of g may not have a heavy impact on the estimates because the results are
quite similar in cases of proper g and improper g.

It is unlikely to have good estimates if we do not choose a proper g cor-
rectly. In this context, the mixture with regular component f , and constant
improper component g, is a better solution for this situation. In our ex-
amples, the proper choices of g in both cases give good estimates for the
parameters when data is contaminated.
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Table 9.7: Estimates for Poisson regression parameters based on the range
of C0 when λ = 0.95

Estimates Estimates Estimates Estimates Estimates
C0 for β0 for β1 for β2 for β3 for β4

0.04 × 10−3 0.4982334 0.07500358 0.08356528 0.4039187 0.03899754

0.04 × 10−2 0.4226115 0.07861811 0.1296699 0.4290372 0.03585749

0.04 × 10−1 0.2652892 0.09858947 0.2288189 0.4323557 0.02944058

0.04 × 100 0.02999085 0.110274 0.3555329 0.4951099 0.1021160

0.04 × 101 -0.3032804 0.08054619 0.4523816 0.6569848 0.1239638

0.04 × 102 -0.8445834 0.002091187 0.3562236 0.9638495 -0.1347507

0.035 × 103 -0.581695 -1.128759 -13.64093 -0.1248210 -33.71002
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Table 9.8: Estimates for location and scale paprameters based on the range
of C0 when λ = 0.95

Estimates for Estimates for
C0 β σ

0.008 × 10−3 27.74745 5.050765

0.008 × 10−2 27.74969 5.043625

0.008 × 10−1 27.74931 5.037400

0.008 × 100 27.74324 4.981607

0.008 × 101 27.66608 4.470561

0.008 × 102 27.11393 2.806708

0.008 × 103 27.28663 1.244484

160



Chapter 10

Mixture Estimates for General
Case

In this chapter, we demonstrate the method of the thesis in a general case,
where the estimator that we are trying to make robust is a maximum like-
lihood estimator of a multiparameter multivariate distribution f(y, θ). We
consider the calculation of the mixture estimator and its influence function,
and describe conditions under which the mixture estimator has a bounded
influence function, or in other words, is B-robust.

10.1 Model

The model here is simply a distribution f(y, θ), which we will sometimes
write in cumulative form F (y, θ). We will often find it useful to take F to be
in the form of a finite sum of point masses

Fw(y) =

∑n
i=1wiI(Yi ≥ y)
∑n

i=1wi
(10.1)

where w = (w1, . . . , wn) is a vector of non-negative weights and I(Yi ≥ y) is
an indicator function.

10.2 Calculating the Estimator

The estimator for given a sample y1, . . . , yn from F , is the maximum likeli-
hood estimator θ̂M taking this as our starting point with values of θ maxi-
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mizing the likelihood
L(θ;Y ) = Πn

i=1[f(yi, θ)]

In the case of multiple maxima, we concentrate on local maxima. For
later convenience, we will consider the maximum likelihood estimator for
a weighted sample {(y1, w1), . . . , (yn, wn)}, where w1, . . . , wn are positive real
numbers. A weighted sample generates a weighted likelihood with the form

L(θ;Y, w) = Πn
i=1[f(yi, θ)]

wi (10.2)

The maximum likelihood estimator θ̂ for θ satisfies

∂

∂θ
l(θ;Y, w) = 0 (10.3)

where l(θ;Y, w) = logL(θ;Y, w) =
∑n

i=1wi log f(yi, θ). From (10.3), we can
write

n
∑

i=1

wi
1

f(yi, θ)

∂f(yi, θ)

∂θ
= 0

n
∑

i=1

wiui = 0 (10.4)

where u(θ, y) = 1
f(y,θ)

∂f(y,θ)
∂θ

. If y = yi, we write ui = ui(θ) = u(θ, yi), and the

score function U(θ) =
∑n

i=1wiui(θ). In fact, U(θ̂) = 0.

10.3 Influence Function for θ̂

To compute the influence function, we begin with a contaminated distribution
function Fw,ǫ defined in (10.5).

Fw,ǫ(y) = (1 − ǫ)Fw + ǫIy (10.5)

where Iy denotes the cumulative distribution function giving mass 1 to y.

The new maximum likelihood estimator θ̂ǫ based on Fw,ǫ satisfies

(1 − ǫ)

n
∑

i=1

wiui(θ̂
ǫ) + ǫ

[

n
∑

i=1

wi

]

u(θ̂ǫ) = 0 (10.6)
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analogously to (10.4). Based on the definition of the influence function (2.1),
we can write

θ̂ǫ ≈ θ̂ + ǫIFθ̂,Fw
(y)

Application of Taylor expansion will give

ui(θ̂
ǫ) = ui(θ̂) + ǫ [u′i(θ)]θ=θ̂ IFθ̂,Fw

(y) + · · ·
= ui(θ̂) + ǫ [u′i(θ)]θ=θ̂ IFθ̂,Fw

(y) +O(ǫ2)

where u′i(θ) = ∂ui

∂θ
. Substitute this into (10.6),

(1 − ǫ)
n
∑

i=1

wi

[

ui(θ̂) + ǫ [u′i(θ)]θ=θ̂ IFθ̂,Fw
(y) +O(ǫ2)

]

+ ǫ

[

n
∑

i=1

wi

]

[

u(θ̂) + ǫ [u′(θ)]θ=θ̂ IFθ̂,Fw
(y) +O(ǫ2)

]

= 0

Since O(ǫ2) → 0 as ǫ→ 0 and (10.4), we have
n
∑

i=1

wiu
′
iIFθ̂,Fw

(y) +

n
∑

i=1

wiu = 0

n
∑

i=1

w∗
i u

′
iIFθ̂,Fw

(y) + u = 0

where w∗
i = wi

∑n
i=1 wi

and hence,

IFθ̂,Fw
(y) = −

[

n
∑

i=1

w∗
i u

′
i

]−1

θ=θ̂

u(θ̂, y) (10.7)

The first part of the right hand side of (10.7) is constant in y and u(θ̂, y)
is often unbounded. For a simple example of the estimate of θ in N (θ, σ2)

for known σ2, θ̂ = ȳ and u(θ̂, y) = y−θ̂
σ2 is unbounded. Hence the influence

function for θ̂ is unbounded. Therefore, θ̂ is not, in general, B-robust.

10.4 Mixture Model

We will base our robustified estimate of θ on the mixture model given below
in (10.8).

p(y, θ) = λf(y, θ) + (1 − λ)g(y) (10.8)
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where λ is an appropriately chosen fixed value such as 0.95, and g() is a
fixed, parameter free (possibly improper) density over the sample space of
the model. In practice, g(.) may be chosen with regard to subject area
considerations and the type of bad data anticipated.

10.5 Calculating the Robustified Estimator θ̃

The robustified estimator is taken to be the maximum likelihood estimator
of θ in the mixture model (10.8), so θ is estimated by maximizing the ob-
served likelihood function Lo(θ) = Πn

i=1 [p(yi, θ)]. This is often complicated
to maximize, so that the parameter θ is estimated using the EM algorithm.
The complete likelihood function Lc is often considered.

Lc(θ, Z) = Πn
i=1 [p(yi, θ)]

zi (10.9)

where zi = 1 if yi is sampled from f and zi = 0 if it is sampled from g. For
mathematical simplification, lc(θ, Z) = logLc(θ, Z) is considered and given
in (10.10).

lc(θ, Z) =

n
∑

i=1

zif(yi, θ) + constant (10.10)

The expectation of lc(θ, Z) for given y and θ is found in the E-step of the EM
algorithm. As zi enters linearly into lc it suffices to calculate its expectation.
If θ(m) is the current value of θ, the expectation is

z
(m)
i =

λf(yi, θ
(m))

λf(yi, θ(m)) + (1 − λ)g(yi)
(10.11)

At the M-step, an updated value θ(m+1) of θ is calculated to satisfy

U(θ(m+1)) =

n
∑

i=1

z
(m)
i ui(θ

(m) = 0 (10.12)

If θ(m) → θ̃ as m → ∞, then θ̃ is considered as our robustified estimator for
θ. We also define

z̃i =
λf(yi, θ̃)

λf(yi, θ̃) + (1 − λ)g(yi)
, (10.13)

the converged values of the weights. In addition

U(θ̃) =

n
∑

i=1

z̃iui(θ̃) = 0 (10.14)
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10.6 One-Step Influence Function for θ̃

The true influence function of θ̃ will be computed indirectly through first
calculating the one-step influence function θ̃. Let θ̆ be the mixture estimator
based on the sample y1, . . . , yn and let z̃1, . . . z̃n be the weights found by the
E-step of the EM algorithm evaluated at θ̃. We will use θ̆(y1, . . . , yn) to be
the mixture estimator when y1, . . . , yn varies but z̃1, . . . , z̃n remains fixed.
The calculation of θ̆ takes a single EM step. Note that in this case θ̆ = θ̃.
In addition, if we have observation y, we can able to compute the weights zy
using (10.13).

Let θ̆ǫ be the mixture estimator based on the weighted sample y1, . . . , yn, y
having weights (1 − ǫ)z̃1, . . . (1 − ǫ)z̃n, ǫz̃ then θ̆ǫ satisfies

(1 − ǫ)
n
∑

i=1

z̃iui(θ̆
ǫ) + ǫz̃u(θ̆ǫ) = 0 (10.15)

The influence function of θ̆, which we define to be the one-step influence
function of θ̃, is denoted by IF 1

θ̃,Fn
(y) and we can write

θ̆ǫ ≈ θ̆ + ǫIFθ̆,Fn
(y)

By the Taylor expansion, we have

ui(θ̆
ǫ) = ui(θ̆) + ǫ [u′i(θ)]θ=θ̆ IFθ̆,Fn

(y) +O(ǫ2)

ui(θ̆
ǫ) = ui(θ̃) + ǫ [u′i(θ)]θ=θ̃ IF

1
θ̃,Fn

(y) +O(ǫ2)

From (10.14) and (10.15)

ǫ

n
∑

i=1

z̃i [u
′
i(θ)]θ=θ̃ IF

1
θ̃,Fn

(y) + ǫz̃u(θ̃, y) = 0

IF 1
θ̃,Fn

(y) = −
[

n
∑

i=1

z̃i [u
′
i(θ)]θ=θ̃

]−1

z̃u(θ̃, y) (10.16)

The one-step influence function of θ̃ is bounded if the product z̃u(θ̃, y) is
bounded, because the first part of right hand side in (10.16) is constant.
Consider the following examples:
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1. Location estimate (please refer the section 4.6.1 for further details)

θ̃ =

∑n
i=1 z̃iyi
∑n

i=1 z̃i
and u(θ̃, y) =

y − θ̃

σ2

where

z̃ =
λf(y, θ̃)

λf(y, θ̃) + (1 − λ)g(y)

Since g is a constant and let k =

(

1 − λ

λ

)

g

=
f(y, θ̃)

f(y, θ̃) + k

Since f(y, θ̃) = c exp



−1

2

[

y − θ̃

σ

]2


 and let k∗ =
k

c

=

exp

(

−1
2

[

y−θ̃
σ

]2
)

exp

(

−1
2

[

y−θ̃
σ

]2
)

+ k∗

=
exp

(

−1
2
r2
)

exp
(

−1
2
r2
)

+ k∗
; r =

y − θ̃

σ
and

u(θ̃, y) =
1

σ
r

Hence

lim
y→±∞

z̃u(θ̃, y) =
1

σ
lim

r→±∞

r exp
(

−1
2
r2
)

exp
(

−1
2
r2
)

+ k∗
= 0

Hence, we can say that the one-step influence function of θ̃ is bounded.
Therefore, our estimate θ̃ is B-robust.

2. Location and scale estimates (please refer the section 7.5.1 for further
details)

φ̃ =

[

θ̃
σ̃2

]

=







∑n
i=1 z̃iyi
∑n

i=1 z̃i

∑n
i=1 z̃i(yi−θ̃)2
∑n

i=1 z̃i
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and

u(φ̃, y) =





u1(φ̃, y)

u2(φ̃, y)



 =





y−θ̃
σ̃2

1
2 σ̃4 [(y − θ̃)2 − σ̃2]





By using the similar approach in 1 to the case of z̃u1(φ̃, y), we can
easily show that z̃u1(φ̃, y) → 0 as y → ±∞.

u2(φ̃, y) =
1

2 σ̃4
[(y − θ̃)2 − σ̃2]

=
1

2 σ̃2
[r2 − 1]

Hence

lim
y→±∞

z̃u2(φ̃, y) =
1

2 σ̃2
lim

r→±∞
(r2 − 1)

(

1

1 + k∗ exp
(

1
2
r2
)

)

=
1

2 σ̃2
lim

r→±∞

[

r2

1 + k∗ exp
(

1
2
r2
) − 1

1 + k∗ exp
(

1
2
r2
)

]

=
1

2 σ̃2
lim

r→±∞

r2

1 + k∗ exp
(

1
2
r2
) − 0

By using L’Hospital rule,

=
1

2 σ̃2
lim

r→±∞

2

k∗ exp
(

1
2
r2
)

= 0

Thus the product of z̃u(φ̃, y) is bounded. Hence, the one-step influence
functions of φ̃ is bounded. Therefore our estimate φ̃ is B-robust.

Note that the bounded one-step influence functions and true influence func-
tions are graphically obtained for the situations described in Chapters 4, 5,
6, and 7.

10.7 True Influence Function of θ̃

The true influence function is computed using Jorgensen’s method. That is

IFθ̃,Fn
(y) = (I − J)−1IF 1

θ̃,Fn
(y) (10.17)
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where I is an identity matrix and J is a Jacobian matrix of the updating func-
tion evaluated at θ = θ̃, which depends on the data and constant matrix.
Therefore, the true influence function is bounded if the one-step influence
function is bounded. This implies that the boundedness of z̃u(θ̃, y) is the
necessary and sufficient condition for B-robustness of the mixture estimator.

I would like to acknowledge to my chief supervisor for providing his input to
complete some of the sections of this chapter.
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Chapter 11

Summary and Concluding
Remarks

Statistics tools such as generalized linear models, mixed models, and time
series are popular for making decisions in the fields of engineering, medicine,
agricultural science and business, because they help in extracting informa-
tion from data. The method of likelihood based statistical modelling is a
dominant frame work to estimate the model parameters and makes infer-
ences about them. This gives us a unified framework to extend models for
the various situations. Bayesian modelling also gives us a unified method for
modelling data.

Robust methods became popular after the “Princeton Robustness Year” in
1971-1972, but the application of the robust methods was limited initially
because of the unavailability of high powered computers, but nowadays usage
of robust methods is not uncommon. One of the main shortcomings in the
robust literature is that there are no general principles for creating robust
estimates in new situations. Often, the methodology of robust statistics is ad
hoc and lacks a unified approach. This is in contrast to classical statistical
modelling and Bayesian modelling. For example, a number of robust proce-
dures are available for estimating the generalized linear model parameters.
The methods are the weighted maximum likelihood estimator [9], CUBIF
[35] and later the robust estimation based on the quasi-likelihood [8].

This thesis is attempting to extend the range of robust statistics by mak-
ing the unified method of likelihood-based statistical modelling more robust.
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The main tool for achieving this goal is the two components mixture model,
which reduces the influence of “bad” data by tending to assign them to the
non-regular component. Note that this additional component would have
no intrinsic interest and does not represent a serious attempt to model the
outliers. In fact, the finite mixture form is being used as a mathematical
tool to obtain a tractable form of analysis, but is not being regarded as the
actual data-generating mechanism.

We refer to the parameter free non-regular component as an outlier com-
ponent. This will be defined either based on the data, or prior information,
or experience. In the next section, we will give possible choices for the out-
lier component in some situations. It is possible to think that more than
one outlier component is to be added to the regular component. This is not
recommended because of the following two reasons: (i) a mixture of outlier
components may be considered as a single outlier component; (ii) it seems
to make a model for the outliers, in which we are not interested. Adding one
outlier component to the regular component is sufficient for our purpose.

The mixture model parameters are estimated by maximizing the observed
likelihood function, which is a function of observations and parameters.
Weights for each observation are estimated at the E-step of the EM algo-
rithm for a given value of the parameters. We are using the EM algorithm,
so that it is an iterative process. The parameter estimates for the regular
(non-outlier) mixture component are considered as our robustified estimator
for the model parameter.

11.1 Concluding Remarks

In the first part of this section we would like to explain how to choose the out-
lier component. First, we begin by describing the outlier component chosen
for the thesis and follow with other options to define the outlier component.

We choose a parameter free uniform distribution for the outlier component
in our examples in the sections 4.7, 5.8, 6.9.2, and 7.6, and in section 6.9.1
we took equal probabilities for success and failure. In addition, the improper
g is chosen for the outlier component in Chapter 9. These choices for g give
good estimates in our examples.
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Apart from these choices for the outlier component, we give brief sugges-
tions for other options. If random variable Y takes the value y as real, we
might take the outlier component to be the normal distribution with mean
µ (same mean of the regular component) and variance σ2 (large variance
compared with the regular component).

In simple language, choosing an appropriate outlier component is a little
like choosing a prior distribution in the Bayesian frame work, but the outlier
component is defined over the sample space, not the parameter space.

A small proportion of bad data is generated by unknown mechanisms and
rest of them are good data. In our mixture context, 1 − λ is the propor-
tion of contamination. We believe that in most observations assigned to the
regular component, the parameters of which are the main interest in this
study, occasionally undesirable observations appear and these are assigned
to the outlier component. In that sense, we prefer to have λ close to 1. These
assignment are made by the mixture fit.

It is not uncommon to define the contamination proportion (1−λ) as a fixed
value in the robust measures. For example, trimmed-mean and Winsoried-
mean. In addition, it is common to choose the turning constant, which
depends on the (1 − λ) in the robust literature. We also decided to give a
fixed value for the λ. The advantage of fixing λ is that our robustified esti-
mate may be defined as weighted MLE, and the parameter θ of interest is
only estimated by our method. In addition, it is easy to drive the influence
function for the robustified estimate

Often we take λ to be fixed at 0.90, 0.95 and (1 - true contamination proba-
bility) for our numerical illustrations in the sections 4.7, 5.8, 6.9.2, and 7.6.
We found that the estimates for these λ values are similar in most cases.

There is scope for extending the research using the mixture method. The
standard errors of the estimates need to be investigated. In addition, it
could be useful to examine the situation when λ is to be estimated. These
explorations may lead to improvements the mixture method. However, our
method is still very useful to compute robustified estimates for the model
parameters even without these further investigations.
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