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Abstract 

 

This research investigated the ecology of vascular epiphytes and vines in the 

Waikato region of the North Island, and the water relations of the shrub 

hemiepiphyte Griselinia lucida. The main goal was to develop robust 

recommendations for the inclusion of epiphytic species in urban forest restoration 

projects. To achieve this, three broad questions were addressed:  

 

1. How are vascular epiphytes and vines distributed throughout the 

nonurban and urban areas of the Waikato region, and how does this 

compare to other North Island areas? 

2. Why are some epiphyte and vine species absent from urban Hamilton 

and what opportunities exist for their inclusion in restoration projects? 

3. How does Griselinia lucida respond to desiccation stress and how does 

this compare to its congener G. littoralis? 

 

To investigate questions one and two, an ecological survey of the epiphyte 

communities on host trees in Waikato (n=649) and Taranaki (n=101) was 

conducted, alongside canopy microclimate monitoring in five Waikato sites. 

Results show that epiphyte and vine populations in Hamilton City forests 

represent only 55.2 % of the total Waikato species pool, and have a very low 

average of 0.8 epiphyte species per host. In contrast, the urban forests of Taranaki 

support 87.9 % of the local species pool and have an average of 5.5 species per 

host tree. The low diversity and abundance in urban Waikato can be primarily 

attributed to the alteration of canopy microclimates by edge effects. Mean 

temperature and vapour pressure deficits in Waikato were 1.9 °C and 1.1 kPa 

(respectively) higher in the canopy of small urban patches than the larger, 

nonurban forests. These warmer and drier conditions are speculated to be 

interrupting species accumulation and community formation processes. This 

phenomenom is not as pronounced in Taranaki which has larger trees and higher 

rainfall. Epiphyte diversity and abundance was also found to be associated with 

seed dispersal distances and the size, bark type, and architecture of host trees. 

 

To link the microclimate findings with physiological limitations of epiphytes and 

to address question three, a desiccation tolerance experiment was conducted on 
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the shrub hemiepiphyte Griselinia lucida. Moderate and severe levels of 

desiccation stress were applied to seedlings of G. lucida and its terrestrial 

congener, G. littoralis. Both species endured over two months of drought with 

negligible mortality. In G. lucida, stomatal conductance reduced to zero, and leaf 

bulk elastic modulus reduced from 8.09 (±0.51) MPa in the control group to 3.66 

(±0.61) MPa under severe stress. When compared to G. littoralis, G. lucida 

exhibited a more acute response to stress and recovered faster with rewatering. 

However, the overall response of each species was similar and both species can be 

classified as desiccation postponers.  

 

To summarise and combine the findings of this research with existing information 

on Griselinia lucida, a contribution to the New Zealand Biological Flora Series 

for this species is presented.  

 

Recommendations for the inclusion of epiphytes in restoration projects are 

presented. Reintroductions should use epiphyte and vine species that are 

appropriate for the conditions of the target forest, and focus on large host trees in 

relatively humid microclimates.  
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1 Chapter One: Introduction 

 

This research addresses the challenge of restoring indigenous ecosystems in urban 

environments, in particular, the guild of vascular epiphytes and vines. This first 

chapter provides background information on the theory and practice of ecological 

restoration, and the life history, distribution and restoration potential of New 

Zealand epiphytes and vines. Following this is an introduction to Griselinia 

lucida*; the focal species chosen for this research, and the thesis objectives and 

outline. 

 

1.1 Ecological Restoration 

Restoration ecology is a new science that is continuously developing across the 

globe to support and inform the modern methods of environmental repair (Hobbs 

& Norton 1996; Ormerod 2003). Restoration of natural environments has been 

taking place for centuries, but as our society increasingly perceives environmental 

degradation as unacceptable, a surge in interest and numbers of active projects has 

occurred (Reay & Norton 1999; Palmer et al. 2004). It is important to support this 

activity with appropriate research that develops theoretical concepts, models, and 

methods. This can then assist restoration practitioners to make informed decisions 

and increase the scope and success of restoration achievements (Hobbs & Norton 

1996; Society for Ecological Restoration International Science & Policy Working 

Group 2004; Zedler 2005; Cabin et al. 2010).  

 

The motivations for ecological restoration projects are as diverse as the localities 

in which they occur, but a principal goal for all projects is the preservation and 

enhancement of biodiversity (Ormerod 2003; Menninger & Palmer 2006). 

According to the Convention on Biological Diversity (CBD), biodiversity is “the 

variability among living organisms from all sources including, inter alia, 

terrestrial, marine and other aquatic ecosystems and the ecological complexes of 

which they are part; this includes diversity within species, between species and of 

ecosystems” (CBD 1992). Biodiversity is important in maintaining ecosystem 

function, resilience, and services (Walker 1995; Chapin et al. 2000; Ormerod 

2003; Menninger & Palmer 2006).  
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Ecosystem function can be categorised into energy and material processing (e.g. 

decomposition); accumulation of energy and material stocks (e.g. biomass); and 

the stability and resilience of these rates and stocks over time (Pacala & Kinzig 

2002). Ecosystem resilience, as defined by Folke et al. (2004) is “the capacity of a 

system to absorb disturbance and reorganise while undergoing change so as to 

retain essentially the same function, structure, identity, and feedbacks.” Function 

and resilience rely upon biodiversity because genetic, species, and population 

variation provide a range of functional characteristics and the capacity for 

response to change (Walker 1995; Folke et al. 2004; Fischer et al. 2006).  

 

According to Daily (1997), ecosystem services are “the conditions and processes 

through which natural ecosystems, and the species that make them up, sustain and 

fulfil human life.” They are the components of ecosystem function which benefit 

humankind, for example; water cleansing, nutrient recycling and resource 

renewal, as well as goods that are used in everyday life such as timber and bio fuel 

(Daily 1997; Palmer et al. 2004). 

 

Environmental restoration in New Zealand is rapidly growing in both practical 

and theoretical applications (Norton 2009). Green & Clarkson‟s (2005) review of 

the New Zealand Biodiversity Strategy estimated that the number of private or 

community-led projects restoring, managing, or protecting native ecosystems 

throughout the country was between 3,000 and 5,000. As of 2007, the Waikato 

Biodiversity Forum (2007) reported 170 community group restoration projects in 

the Waikato region. A Google scholar search for articles containing the words 

“ecological restoration” and “New Zealand” illustrates the significant increase in 

research conducted in this area, returning 64 articles published in the year 1999 

and over 300 for the same search in 2009. Alongside this, most New Zealand 

universities now offer both study and research opportunities in restoration 

ecology. 

 

There are many different ecosystems that are degraded by direct and/or indirect 

human disturbance, from marine estuaries (e.g. Lotze et al. 2006) to alpine herb 

fields (e.g. Whine & Chilcott 2003). In New Zealand, many restoration projects 

are directed at temperate forest ecosystems. This is because their difficult terrain 

has frequently protected them from landuse change and development and thus 
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they are a predominant remaining land cover type throughout the country (Halkett 

1991; Wardle 1991). Examples of restoration projects in forest ecosystems include 

Maungatautari Ecological Island protection and restoration, Hamilton Gullies 

restoration, Tiritiri Matangi Island restoration, and Karori Sanctuary protection 

and restoration. 

 

On a national scale, most forest restoration occurs in nonurban settings, for 

example, pest control by the Department of Conservation in National Parks and 

Reserves, and forest acquisition and restoration by the New Zealand Native 

Forests Restoration trust. However, the latest frontier of ecological restoration is 

within towns and cities (van Andel & Aronson 2006).  

 

Urban and suburban (collectively termed “urban” hereafter) forests often harbour 

many restoration opportunities; occasionally with high levels of indigenous 

biodiversity (McKinney 2002; Ingram 2008). Forest fragments frequently exist in 

public parks, gardens and reserves, adjacent to waterways and roads, in private 

properties, and other areas protected from development (e.g. Clarkson & 

McQueen, 2004; National Parks Board Singapore, 2010). Urban forests also often 

present unique opportunities to restore vegetation types that may be less common 

throughout the region, such as fertile lowlands which are developed for 

production in rural settings (Scott et al. 2001; Clarkson et al. 2007). 

 

Over 50 % of people worldwide (United Nations 2007) and 86 % of people in 

New Zealand live in urban settings (Statistics New Zealand 2006). Miller (2005) 

explains that residents‟ interactions with urban nature can improve not only their 

appreciation of biodiversity but also their motivation to protect it. Urban forests 

therefore present an opportunity to educate and engage the public with their local 

flora and fauna in a way that nonurban forests cannot. Improved public 

engagement can also create large workforces who are willing to assist with 

restoration work in their neighbourhood (McKinney 2002; Miller 2005; Ingram 

2008).  

 

The dynamic nature of urban forests means that there are many challenges to their 

restoration, including depleted biodiversity, incessant exotic plant invasions, pest 

browsing and predation, vandalism, competition for land use, air and soil 
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pollution, altered climates, and forest isolation (McKinney 2002). Also 

problematic are the many ecosystem components that can and should be 

considered in planning and implementing restoration projects. 

 

Both urban and nonurban forest restoration projects across the country have 

celebrated numerous successes, but the complexity of forest ecosystems combined 

with a lack of experience in this relatively new endeavour, has meant that some 

components of the forest systems are frequently overlooked (B.D. Clarkson, 

University of Waikato, pers. comm. 2009). One life form or guild that is regularly 

left out of research (Burns & Dawson 2005), planning, and implementation of 

ecological restoration is vascular epiphytes and vines. This discrepancy is 

reflected by a lack of literature on these plants in restoration, or inclusion of these 

life forms in New Zealand restoration guides (e.g. Restoring Waikato's Indigenous 

Biodiversity (Waikato Biodiversity Forum 2006)). Epiphytes and vines should be 

included in forest restoration efforts because they contribute to biodiversity, 

ecosystem function, resilience, and services.  

 

This thesis aims to improve our understanding of New Zealand‟s vascular 

epiphytes and vines, and identify the ecological and physiological processes that 

are important for their future inclusion in ecological restoration theory and 

practice. This investigation focussed on the Waikato region in the central North 

Island, New Zealand with an extension to the Taranaki region in the western 

North Island. 

 

1.2 Epiphytes and vines  

Vascular epiphytes and vines are non-parasitic plants that depend on other plants 

for structural support (Schnitzer & Bongers 2002; Laube & Zotz 2006). The first 

important differentiation of this guild is between obligate species that primarily 

occur as epiphytes, and facultative species that grow on all forms of media, or 

accidental species that only occasionally occur epiphytically (Benzing 2004). The 

present study focuses on obligate species (Figure 1.1). 

 

Based on life cycles, there are two principal categories of vascular obligate 

epiphytes; holo- and hemi-epiphytes (Lowman & Rinker 2004). Holoepiphytes 

are plants that spend their entire life cycle in the canopy (Nieder et al. 2001), 
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while hemiepiphytes spend some stage of their life rooted in terrestrial soil; either 

starting in the canopy and sending roots to the ground (primary hemiepiphytes), or 

starting on the ground, growing to the canopy and losing their terrestrial 

connections (secondary hemiepiphytes) (Putz & Holbrook 1986; Holbrook & Putz 

1996a; 1996b; Nieder et al. 2001; Lowman & Rinker 2004; Benzing 2004) 

(Figure 1.1). There are no native species of secondary hemiepiphyte in New 

Zealand. Strangler hemiepiphytes are a class of primary hemiepiphyte that 

continue growing until they are freestanding trees (Putz & Holbrook 1986; Shaw 

2004).  

 

Vines are plants that root in terrestrial soil but cannot stand upright without 

structural support from other plants (Putz & Mooney 1991). They occur as 

herbaceous or woody forms. Herbaceous vines are predominantly ferns that climb 

using roots and grow within subcanopies, disturbed areas, or forest edges 

(Figure 1.2E). Woody vines climb using roots, stems, petioles, tendrils or hooks, 

and are commonly referred to as lianes or lianas (Dawson 1986; Gentry 1991; 

Putz & Mooney 1991); the latter term is used in this thesis (Figure 1.1). Lianas 

grow quickly towards higher light levels and often occupy the upper reaches of 

forest canopies of mature forests (Gentry 1991; Schnitzer & Bongers 2002). 

 

 

 

 

 

 

 

 

 

 

Epiphytes constitute ten percent of the world‟s vascular plant species and are thus 

an important component of global plant diversity (Nieder et al. 2001). These 

plants have evolved in many unrelated taxa around the world (Gentry & Dodson 

1987) and are particularly well recognised members of tropical forest ecosystems, 

Vascular 
Epiphyte

Obligate

Holoepiphyte

Hemiepiphyte

Primary 
Hemiepiphyte

Strangler 
Hemiepiphyte

Secondary 
Hemiepiphyte

Facultative and 
Accidental

Vine

Herbaceous 
Vine

Woody 
Vine/Liana

Figure 1.1: Life form classification of vascular epiphytes and vines used in the present study. 

Compiled from information in Dawson (1986); Gentry (1991); Putz & Mooney (1991); Nieder et 

al. (2001); Benzing (2004); Lowman & Rinker (2004); Shaw (2004). 
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where they can represent from 15 to 50 % of total species (Benzing 1990; 

Dickinson et al. 1993; Zotz 2005; Laube & Zotz 2006). However, New Zealand‟s 

temperate forests have also been shown to host a significant population of diverse 

epiphyte and vine species (Dickinson et al. 1993; Hofstede et al. 2001; Zotz 2005) 

(examples provided in Figure 1.2). From five North Island vegetation surveys 

(Campbell 1984; Clarkson 1985; Clayton-Greene & Wilson 1985; Dawson & 

Sneddon 1969; Wilcox 1999) the mean number of vascular epiphytes and vines 

was 45, which represented an average of 19 % of the total species count. 

 

Epiphytes and vines contribute to species richness and play a substantial role in 

the processes and interactions that make a forest function (Cummings et al. 2006). 

They constitute a large proportion of photosynthetically active material (Hofstede 

et al. 2001), and contribute to abiotic processes such as water fluxes and nutrient 

cycling (Gentry 1991; Holscher et al. 2004), while providing habitat, nectar, 

water, fruits and nesting materials for invertebrates and birds (Nadkarni & 

Matelson 1989; Benzing 1990; Gentry 1991; Nadkarni 1992; Affeld 2008; 

Alvarenga et al. 2009). Therefore, to ensure that restored forests are fully-

functioning, it is important that epiphytes are considered in the research, planning, 

and implementation of ecological restoration (Cummings et al. 2006).  

 

One particularly distinctive element of the New Zealand epiphyte and vine flora is 

the shrub epiphytes, of which there are four species (Dawson 1986). The present 

research includes a case study on the obligate shrub epiphyte Griselinia lucida. 
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A B 

C D 

E F 

G H 

Figure 1.2: Examples of New Zealand native vascular epiphytes and vines. A: Drymoanthus 

adversus, B: Hymenophyllum dilatatum, C: Metrosideros fulgens, D: Collospermum hastatum, E: 

Blechnum filiforme, F: Brachyglottis kirkii, G: Pyrrosia eleagnifolia, H: Earina mucronata.  
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1.3 Griselinia lucida 

Griselinia lucida (Griseliniaceae), or puka, was described by Dawson (1966) as 

“the most conspicuous shrub epiphyte in the New Zealand rain forest”. It is a 

primary hemiepiphyte with large glossy green leaves and thick fluted roots that 

often descend the host trunk to access terrestrial soil (Dawson 1966) (Figure 1.3). 

G. lucida is the only indigenous species that commonly makes a connection 

between a host canopy and the forest floor without losing reliance on the host tree 

for structural support.  

 

Griselinia lucida generally germinates in the fork of a large host, and often within 

the canopy soil of existing epiphytic communities. It is most abundant in the 

humid canopies of old growth forests where it can grow to be a very significant 

component of the upper forest strata; this author has observed mature G. lucida 

with spans of more than ten metres. 

 

Griselinia lucida primarily grows as an epiphyte but also occupies terrestrial 

habitats in rocky and coastal environments. In occurs throughout the North Island, 

in a limited area of the South Island, and on volcanic offshore rocky islands 

(Wardle 1964; Dawson 1966; Dawson 1986; Julian 1992; Burrows 1999). 

  

Figure 1.3: Examples of the hemiepiphyte Griselinia lucida. A: a juvenile growing in the fork of a 

large pine tree. B: grooved roots of a mature plant growing on a tawa. 

A B 
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1.4 Research Objectives and Questions 

The objectives of this research are to enhance the understanding of 1) vascular 

epiphyte and vine ecology in both nonurban and urban settings, and 2) the 

physiology of desiccation stress in Griselinia lucida. The following broad 

research questions address these objectives: 

 

1. How are vascular epiphytes and vines distributed throughout the 

nonurban and urban areas of the Waikato region, and how does this 

compare to other North Island areas? 

2. Why are some epiphyte and vine species absent from urban Hamilton 

and what opportunities exist for their inclusion in restoration projects? 

3. How does Griselinia lucida respond to desiccation stress and how does 

this compare to its congener G. littoralis? 

 

1.5 Thesis Outline 

The results of research into each of the above questions are presented in four 

chapters: 

 

Chapter One: Introduction 

This chapter provides relevant background information and sets the context for 

considering epiphytes in urban ecological restoration. It then outlines the research 

objectives and summarises the thesis content. 

 

Chapter Two: Epiphyte and vine species diversity and abundance in Waikato 

and Taranaki regions 

This chapter presents a literature review on the effects of human activity on 

indigenous forest. It then utilises an ecological survey of epiphyte populations in 

Waikato and Taranaki regions to determine which epiphyte and vine species are 

absent in urban Waikato and identify the key reasons why. This information is 

used in Chapter Five to develop recommendations for the inclusion of epiphytes 

in urban restoration. 
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Chapter Three: Water relations of Griselinia lucida and G. littoralis under 

desiccation stress 

This chapter surveys the literature on physiological plant stress strategies and 

presents the results of a drought experiment on the water relations of Griselinia 

lucida under three levels of desiccation stress with a comparison to its congener 

G. littoralis. It then discusses the characteristics of these plants under stress and 

identifies the predominate stress strategy with which they align. 

 

Chapter Four: Biological Flora of New Zealand. Griselinia lucida, puka, 

akapuka, akakōpuka, shining broadleaf 

This chapter is a summary of the findings from this research, alongside a 

comprehensive review of current literature available on Griselinia lucida. It has 

been prepared in the format of the New Zealand Biological Flora Series (e.g. 

Wardle 1966; Wehi & Clarkson 2007) and will be submitted to the New Zealand 

Journal of Botany for publication.  

 

Chapter Five: Synthesis 

This chapter summarises the findings of this thesis research and presents the 

developed recommendations for inclusion of epiphytes and vines in ecological 

restoration. 
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2 Chapter Two: Epiphyte and vine species diversity and 

abundance in Waikato and Taranaki regions 

 

2.1 Introduction 

Deforestation associated with land use change is an ongoing, international 

phenomenon that creates landscapes of spatially discrete forest fragments (Young 

& Mitchell 1994) that are surrounded by varying degrees of anthropogenic 

disturbance and activity (Laurance 2004; Bruna & Kress 2005). This destruction 

may cause irreversible ecosystem changes that affect all forest life forms and 

species; including epiphytes and vines (Belinchon et al. 2009). 

 

As forest extent is reduced, the ratio of perimeter to area is enlarged, increasing 

the area of forest that abruptly meets the distinctly different ecosystems of 

deforested land. This sharp transition creates an „edge effect‟ that alters the 

microclimate, vegetation composition and population structure up to fifty metres 

in from the forest boundary (Young & Mitchell 1994; Murcia 1995; Denyer et al. 

2006). The overall degree of disturbance caused by fragmentation is dependent on 

the time since isolation, the distance between forest patches, the connectivity 

between patches, the size and shape of the remnant, and the surrounding landuses 

(Saunders et al. 1991).  

 

In the canopy, the climate of epiphyte and vine habitat is generally drier and 

warmer than the understory. Freiberg (1997) found the canopy of a premontane 

tropical rainforest tree in Costa Rica to be 2-5 °C warmer and 15 % less humid 

than the ground below it. Forest canopies are also exposed to higher wind speeds 

and insolation, and more extreme fluctuations in water supply (Madison 1977; 

Matelson et al. 1993; Holbrook & Putz 1996a). Each of these conditions are 

intensified by edge effects (Laurance 2004; Werner & Gradstein 2008). 

Fragmentation also reduces epiphyte substrate through the removal of host trees; 

even when selective logging is undertaken, there is commonly high post-

harvesting mortality of the intended retention trees (Lohmus & Lohmus 2010). 

Another important consequence of forest fragmentation is the increased dispersal 

distances for pollen and seed as patch connectivity is reduced and isolation 

increased (Maschinski 2006; Alvarenga et al. 2009).  
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As a result of intense human modification and deforestation, forest fragmentation 

is a dominant feature in the Waikato region of the central North Island. Arrival by 

Māori around 1300 AD led to initial forest clearances and some exotic plant 

introductions, but it was in the early 1900‟s that widespread deforestation by 

European settlers occurred. This anthropogenic disturbance has been ongoing and, 

in many places, has resulted in the complete replacement of native flora with 

introduced agricultural cultivars; especially in lowland and coastal zones (Wardle 

1991; Nicholls 2002). The region is now comprised of scattered forest patches 

representing 25.3 % of the vegetation cover that was present in the 1840‟s 

(Leathwick et al. 1995).  

 

The Waikato region includes the Raglan, Kawhia, Hamilton, and Maungatautari 

Ecological Districts (Figure 2.1) and covers 508,973 ha. Overall, only 15.2 % of 

indigenous forest still remains in these four districts (separately: 15 %, 36 %, 1.6 % 

and 9.5 % respectively (Leathwick et al. 1995)). The degree of vegetation 

fragmentation also varies with a marked gradient of increasing urbanisation from 

the outer Raglan, Kawhia and Maungatautari districts into the central Hamilton 

district (Figure 2.1). As seen worldwide, this urbanisation gradient has an 

increasing human population toward its city which is associated with increasing 

populations of invasive, exotic plant species and decreasing abundance and 

diversity of indigenous species (McDonnell & Pickett 1990; McKinney 2002).  

 

Ecological restoration is imperative in these disturbed and highly modified 

landscapes in order to preserve and enhance the remaining biodiversity along 

urbanisation gradients. In the Waikato, forest patches are predominantly located 

on hills; with a smaller proportion in gullies and adjacent to waterways (Clarkson 

et al. 2002). Many of these forests, especially in gully sites, are the focus of 

ecological restoration projects run predominantly by community groups and non-

profit organisations (for examples see www.waikatobiodiversity.org.nz).  
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Urban forest patches of Hamilton City gullies have been the focus of public and 

private restoration efforts since 2001, or even earlier. Restoration has been 

encouraged through local council work, public seminars, practical workshops, 

native plant giveaways and funding programmes (Clarkson & McQueen 2004).  

 

As mentioned in chapter one, restoration programmes regularly overlook epiphyte 

and vine species that are indigenous to the Waikato region. Information on 

Figure 2.1: The ecological districts of the Waikato region, North Island, New Zealand, that 

contain study sites. The extent of desforestation throughout the region is show with decreasing 

vegetation cover and patch size towards Hamilton City. Figure courtesy of T. Cornes. 
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propagation of suitable species is limited and the plants are not widely available 

from nurseries. Instead, restoration planners and practitioners primarily focus on 

canopy and understory species. A valuable opportunity can be found in the current 

activity and enthusiasm of existing restoration groups, to include epiphyte and 

vine species in both urban and nonurban forest restoration so that the scope of 

biodiversity preservation is enhanced.  

 

Differences in vegetation diversity, abundance and assemblages between 

fragmented forest patches and more intact, old growth forests are often attributed 

to ecological and environmental variation between these sites (e.g. Saunders et al. 

1991; Young & Mitchell 1994; Giordano et al. 2004; Laurance 2004). This holds 

true for epiphyte and vine species, with factors such as canopy microclimates, 

host tree characteristics, dispersal distances and successional processes having 

been identified as important for explaining species absence (e.g. Matelson et al. 

1993; Zotz et al. 1999; Wolf 2005; Laube & Zotz 2006). This chapter reports the 

results of the first investigation into epiphyte and vine populations of the Waikato. 

It considers which factors best explain local differences between populations in 

large nonurban forest patches and small urban patches, with the aim of providing 

informed recommendations for the inclusion of epiphytes and vines in ecological 

restoration. 

 

On a national scale, the Waikato region, and in particular Hamilton City has 

relatively depauperate biodiversity and vegetation cover. To provide a wider 

scope, this chapter also compares Waikato epiphyte and vine populations with the 

results of a smaller scale study around New Plymouth city in the Taranaki region; 

an area recognised for relatively high indigenous biodiversity (Clarkson et al. 

2007). 

 

2.2 Research objectives and questions 

The present study undertakes a quantitative ecological survey of epiphyte and vine 

populations, to determine species diversity and abundance, and the most 

influential ecological factors. Temperature and relative humidity measurements 

are also analysed to determine the potential influence of climatic variables on 

epiphyte populations, in both urban and nonurban forests of the Waikato region. 
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This chapter addresses the following broad research questions: 

 How are vascular epiphytes and vines distributed throughout the 

nonurban and urban areas of the Waikato region, and how does this 

compare to other North Island areas? 

 Why are some epiphyte and vine species absent from urban Hamilton 

and what opportunities exist for their inclusion in restoration projects? 

 

2.3 Methods 

2.3.1 Study regions 

The Waikato and Taranaki regions are both in the central North Island of New 

Zealand. Hamilton is the largest city of the Waikato region (population 129,249 

(Statistics New Zealand 2006)) and New Plymouth is the largest city of the 

Taranaki region (population 40,446 (Statistics New Zealand 2006)); both of these 

urban centres are close the west coast of the North Island which borders the 

Tasman Sea. 

 

All of the Waikato study sites are in and around the Hamilton basin. The soils of 

hillslopes and well drained areas are mainly derived from volcanic tephra, while 

peat predominates in areas where wetlands currently or previously existed. The 

area experiences moderate rainfall (Table 2.1), warm humid summers, heavy 

winter frosts, and negligible wind (McEwen 1987).  

 

The Taranaki sites are located on the ring plain of Mount Taranaki which has 

recent volcanic soils from ashes and lahar deposits. The area experiences 

prevailing south-westerly winds, humid summers, mild winters, and has relatively 

high rainfall year round (Table 2.1). 

 

Forests of the Waikato region are more fragmented than those of Taranaki. 

Waikato has 8,207 separate forest patches with an average size of 196 ha; 

however the majority (95 %) of these are less than 25 ha. In contrast, Taranaki has 

2,850 forest patches with an average size of 121 ha. Therefore, Taranaki provides 

fewer and generally larger patches than the Waikato, and thus better connectivity 

between forests (Innes 2010). 
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Table 2.1: Macroclimate measurements for the cities of each studied region (New Zealand 

Meteorological Service 1983; Leathwick et al. 2003). (VPD=Vapour pressure deficit). 

 Hamilton New Plymouth 

Mean rainfall (mm per annum) 1201 1649 

Mean annual air temp. (°C) 13.3 13.5 

Mean winter minimum temp. (°C) 5.1 4.4 

Mean annual solar radiation (MJ/m
2
/day) 14.9 14.7 

Mean winter solar radiation (MJ/m
2
/day) 5.9 5.0 

Mean October (spring) VPD (kPa) 0.37 0.32 

 

 

2.3.2  Study sites 

Study forests were first allocated to three main categories for both the Waikato 

(Table 2.2) and Taranaki regions (Table 2.3). These cateogires are: mature 

nonurban forest, mature urban forest, and immature urban forest. The last 

category was further differentiated into three age classes (5-15, 15-25, and 25-100 

years since establishment). These ages were based on available literature and tree 

coring but were not included in analysis because differences between groups were 

not significant. The location of study sites in each region is shown in Figure 2.2 

and Figure 2.3.  
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Table 2.2: Waikato forest study sites surveyed for epiphyte and vine populations, categorised by 

land class, maturity, and age. “Plots” is the number of plots surveyed at each forests (e.g. 5x10= 

five plots of ten trees); see sampling methods for more detail. 

Land 

class 
Maturity Age 

class 
Forest name/location Plots 

Nonurban Mature 100+ Maungakawa Scenic Reserve 

Hakarimata Scenic Reserve 

Pukemokemoke Bush Reserve 

Waingaro Forest Reserve  

Maungatautari Ecological Island 

Pirongia Forest Park 

5x10 

5x10 

4x10 

5x10 

5x10 

5x10 

Urban Mature 100+ Claudelands Bush 

Hammond Bush 

Berkley Bush 

Hillcrest Park 

Mooney Park 

5x10 

5x5 

3x5 

5x5 

3x5 

Urban Immature 25-100 Braithwaite Park 

Chelmsford Park 

Pukete Eastern Riverbank 

Seeley‟s Gully 

River Rd. (Tauhara Gully) 

3x5 

3x5 

3x5 

3x5 

3x5 

 Immature 15-25 Howell St. (Hudson Gully)  

Morrinsville Rd. (Mangaonua Gully) 

Ranfurly Park 

St. Andrews Riverbank 

Rimu St. (Waitawhiriwhiri Gully) 

3x5 

3x5 

3x5 

3x5 

3x5 

 Immature 5-15 Ashmore Ct. (Onukutara Gully) 

Sandford Park (Mangakotukutuku Gully) 

Pickering Crs. (Onukutara Gully) 

Porritt Stadium 

Clements Crs. (Tauhara Gully) 

3x5 

3x5 

3x5 

3x5 

3x5 

 

 

Table 2.3: Taranaki forest study sites surveyed for epiphyte and vine populations, categorised by 

land class, maturity and age. “Plots” is the number of plots surveyed at each forests (e.g. 5x10= 

five plots of ten trees); see sampling methods for more detail. 

Land class Maturity Age class Forests Plots 

Nonurban 

Urban 

Mature 

Mature 

Mature 

Immature 

100+ 

50-100+ 

25-100+ 

15-100 

Ratapihipihi Scenic Reserve 

Huatoki Scenic Reserve 

Sheppards Bush 

Te Henui Walkway Forest 

5x10 

4x5 

3x5 

3x5 
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Figure 2.2: The twenty urban epiphyte and vine survey sites in Hamilton City, Waikato. Figure 

courtesy of T. Cornes. 



 

 

1
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Figure 2.3: A: The six nonurban epiphyte and vine survey sites of the Waikato region in relation to Hamilton city. B: The three urban and one nonurban (Ratapihipihi) epiphyte and 

vine survey sites in the Taranaki region. Figures courtesy of T. Cornes. 

A B 
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Forest vegetation classification 

For each site, a concise forest description is provided, based on published 

literature, the New Zealand Forest Service mapping series six (Forest Research 

Institute 1979; 1990), and personal observations. Major vegetation classes 

represented at each site are incorporated in to the headings and a summarised 

explanation of each is given below. 

 

Tawa: This class is former rimu-tawa (Dacrydium cupressinum-Beilschmiedia 

tawa) forest in which the softwoods, and sometimes rata (Metrosideros robusta), 

have been felled or destroyed by fires. The main canopy is generally intact and 

dominated by tawa. 

 

Rimu-tawa: Rimu is scattered but conspicuous; towering above a canopy of 

hardwoods in which tawa is common throughout.  

 

Kauri-softwoods-hardwoods-beeches: Kauri (Agathis australis) stands with 

sub-dominant hard beech (Nothofagus truncata) over regenerating softwoods and 

hardwoods that have commonly been affected by burning and partial clearing. 

 

Waikato nonurban site descriptions 

Maungakawa Scenic Reserve (51 ha): tawa and rimu-tawa. Also known as 

Sanitorium hill (382 m a.s.l), this reserve is situated in central Waikato, includes a 

38 ha forest patch, and is the site of the Gudex memorial park (Department of 

Conservation 2011). The forest was milled after purchase from Māori in 1868 and 

has a long history of grazing by wandering stock (Gudex 1959; Department of 

Conservation 2011). The forest is now protected and has native regeneration 

around both planted and self-establishing exotic species (Department of 

Conservation 2011). Local community groups and land owners are undertaking 

ecological restoration and pest control (Cambridge Tree Trust 2010).  

 

Hakarimata Scenic Reserve (1850 ha): rimu-tawa, tawa & kauri-softwoods-

hardwoods-beeches. This reserve is within the 2246 ha Hakarimata ranges (374 

m above sea level (a.s.l.)) that lie south of Huntly and west of Ngaruawahia. It is 

approximately 10 km long and has a disturbance history that includes fires, pest 
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browsing and light logging. It has been included in the restoration work of the 

Hakarimata Restoration Trust since 2001 (Department of Conservation 2011).  

 

Pukemokemoke Bush Reserve (38 ha): kauri-softwoods-hardwoods-beeches 

& tawa. This forest patch is within 109.5 ha of vegetation that includes pine 

forest and an unprotected native fragment that borders an active quarry. The site is 

20 km northeast of Hamilton on Pukemokemoke hill (166 m a.s.l). In the past the 

forest has been disturbed by milling and clearance for agriculture but is now under 

the care of the Friends of Pukemokemoke Bush Reserve (Department of 

Conservation 2011). 

 

Waingaro Forest Reserve (8 ha): tawa. This forest patch reaches 120 m a.s.l. 

and is located 25 km northwest of Hamilton and 15 km from the west coast of the 

North Island. It is on the edge of privately owned pine forests and council-owned 

native forest that cover a total of 467 ha. The area has a long history of 

agricultural land use which only ceased with fencing in 1995. Since then, the 

forest has naturally regenerated with the aid of regular pest control and a small 

amount of planting (B.D. Clarkson 2004, University of Waikato, unpublished 

report).  

 

Maungatautari Ecological Island (3363 ha): rimu-tawa and tawa. This reserve 

on Mount Maungatautari (797 m a.s.l) is surrounded by a pest-proof fence. It also 

contains two individually fenced enclosures; the 65 ha southern enclosure, located 

35 km from Hamilton, was chosen for epiphyte surveying. In the past, agriculture 

conversion and pest browsing, particularly by possums, have caused extensive 

damage to the forest. Intensive protection and restoration through the 

Maungatautari Ecological Island Trust has been successful in restoring a range of 

flora and fauna to the reserve (Maungatautari Ecological Island Trust 2002). 

 

Pirongia Forest Park: rimu-tawa & tawa. This western Waikato reserve 

includes both Mount Pirongia (959 m a.s.l.) and Mount Karioi (756 m a.s.l.). 

Surveying was only undertaken in 17,225 ha Mount Pirongia forest patch which is 

approximately 25 km from both Hamilton city and the west coast. Disturbance has 

included milling, burning and extensive browsing by pests (Department of 

Conservation 2011). The mountain was given Forest Park status in 1971 and is 
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now the largest unbroken remnant in the Waikato (Pirongia te Aroaro o Kahu 

Restoration Society 2010). Ecological restoration in the area is being undertaken 

by the Pirongia te Aroaro o Kahu Restoration Society. 

 

Waikato urban site descriptions 

100+ years 

Claudelands Bush (5.5 ha), or Jublilee Park, is the largest remnant kahikatea 

stand in Hamilton City. The canopy is 20-25 m and is dominated by kahikatea 

(Dacrycarpus dacrydioides) and tawa. The main disturbance pressures have been 

from logging in 1864, grazing until 1927, and ongoing weed invasion. 

Anthropogenic disturbance has altered the succession trajectory of this forest, 

resulting in low kahikatea seedling recruitment and a likely shift from wet-tolerant, 

shade-intolerant species to shade-tolerant, dry land species such as tawa and 

mahoe (Downs et al. 2000). A raised boardwalk has been installed to prevent 

damage from foot traffic, a cloth windbreak has been erected around the perimeter, 

and enrichment planting has been undertaken throughout. Also, a community 

group meet regularly to remove Tradescantia fluminensis (Weedbusters 2010). 

 

Hammond Bush (1.8 ha) is located along the Waikato River in southern 

Hamilton and within a 14.8 ha gully system. The predominant forest type varies 

with drainage and relief but includes pukatea (Laurelia novae-zelandiae), swamp 

maire (Syzygium maire), tawa, titoki (Alectryon excelsus), alder (Alnus glutinosa), 

grey willow (Salix cinerea), mahoe (Melicytus ramiflorus), and kanuka (Kunzea 

ericoides). Damage to roots and seedlings has been minimised with the 

construction of paths and raised boardwalks. Exotic invasions present a threat to 

the high native diversity at this site but restoration by the council and private land 

owners is ongoing (Downs et al. 2000). 

 

Berkley Bush is a privately owned 0.4 ha kahikatea stand in a 26.6 ha section of 

the Mangaonua Gully in southern Hamilton. It is one of the best remnant gully 

forests in the city with a relatively dense kahikatea canopy reaching 25-30 m in 

height. The understory is a combination of tree ferns (Cyathea and Dicksonia 

species), mahoe, Psuedopanax species, mapou (Myrsine australis), Coprosma 

species, and some exotics such as Fatsia japonica. This site was grazed 25 years 
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ago, but today the main threat is from weed invasion (Downs et al. 2000). 

Numerous exotic species populate the outer areas of the section and several exotic 

seedlings can be found amongst the leaf litter. The level of weed control and 

restoration has varied with different owners and will be a key factor in preserving 

the current biodiversity. 

 

Hillcrest Park is a recreational area in eastern Hamilton with a 1.4 ha stand of 

kahikatea that reaches 20-25 m. The forest understory and boundaries have been 

extensively planted with natives such as mapou, mahoe, Coprosma, Pseudopanax, 

and Pittosporum species. The park is well used by local residents and a scouts 

club; anthropogenic impact has been reduced with fencing and a boardwalk 

(Downs et al. 2000). Exotic species, including privet, Prunus, and Solanum 

species are present, but not dominant. 

 

Mooney Park is a recreational area in western Hamilton with a 0.5 ha kahikatea 

and titoki forest reaching 20 m in height (Downs et al. 2000). It has a relatively 

depauperate understory with some mahoe, mapou, Pseudopanax species, titoki, 

and the exotic Chinese privet (Ligustrum sinense). Native plantings adjacent to the 

boundary help to buffer the forest and would be beneficial if extended into the 

forest understory. Neighbouring farmland indicates that the forest is likely to have 

been grazed in the past. 

 

25-100 years 

Braithwaite Park has a 0.5 ha area of kanuka forest on steep banks of the 

Waikato River in northern Hamilton, which is part of approximately 4.3 ha of 

mixed vegetation cover in the area. The kanuka canopy reaches 15-18 m with a 

native understory including mahoe and tree ferns (Downs et al. 2000). The 

groundcover is predominantly Tradescantia fluminensis which is up to 30 cm 

thick in some places and likely to be preventing native regeneration. 

 

Pukete Eastern Riverbank (1.2 ha) is part of 4 ha of vegetation on the bank of 

the Waikato River opposite Braithwaite Park in northern Hamilton. The canopy is 

10 m high and dominated by mature mahoe, tree ferns and grey willow with an 

understory of mahoe, tree ferns, pate (Schefflera digitata), and karamu (Coprosma 

robusta). Tradescantia fluminensis has invaded the understory along with 
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Selaginella kraussiana and Chinese privet. These exotic invasions, together with 

disposal of household and garden waste, present a significant threat to the forest 

(Downs et al. 2000).  

 

River Road (Tauhara Gully) (3.7 ha) is at the northern end of the Tauhara gully, 

near River Road and has been highly altered from activity in the surrounding 

residential area. Forest type varies along the length of the Tauhara stream with 

mahoe dominating at 10-15 m. Threats to this site are predominantly weeds, 

including Tradescantia fluminensis, with some weed clearance and restoration 

planting evident in the most northern section. 

 

Seeley’s Gully (2.2 ha) in central Hamilton is part of the 6.1 ha Gibbon‟s gully. 

The canopy reaches 15-20 m and includes kahikatea, rimu, kauri, titoki, totara 

(Podocarpus totara), and kanuka; most of which were planted by the previous 

owner over the past 60 years. The understory is also largely planted but has some 

naturally regenerating species. Invasive species include Tradescantia fluminensis, 

Chinese privet and Selaginella kraussiana (Downs et al. 2000), and local vandals 

also pose a threat to the forest.  

 

Chelmsford Park is a recreational area with 0.7 ha vegetation that is part of a 

15.1 ha gully forest remnant. The canopy reaches 10-20 m and is comprised of 

exotic species such as Salix, Pinus, and Eucalyptus species, while the understory 

is predominantly native, including tree ferns, Astelia grandis, Cordyline australis, 

and karamu; many of which have been planted. Forest type is strongly controlled 

by topography and drainage with some areas being very poorly drained and bare 

of any vegetation. There are numerous exotic species including Tradescantia 

fluminensis, Chinese privet, blackberry (Rubus fruticosus agg.), Allium triquetrum, 

and ivy (Hedera helix) which pose the main threat to this forest (Downs et al. 

2000).  

 

15-25 years 

Howell Street (Hudson Gully) (0.2 ha) is a privately owned site at the northern 

end of the 1.6 ha Hudson Gully forest. The section is open in the centre with a 

culverted stream. The canopy around the edge reaches 10-15 m and includes nikau, 

karaka, totara, Japanese walnut (Juglans ailantifolia), and Cordyline australis. 
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The understory is predominantly exotic with species such as Camelia sp., 

Hedychium sp., Fatsia japonica, Tradescantia fluminensis, and Chinese privet; 

which all threaten native regeneration.  

 

Ranfurly Park is a recreational area in central Hamilton with 0.3 ha of forest 

where two gullies, totalling 9.8 ha, meet. Vegetation type varies with topography; 

a kanuka forest reaching 10-15 m runs along a ridge while the lower areas are 

dominated by 5-10 m high tree ferns (Downs et al. 2000), lacebark (Hoheria 

sexstylosa), Pittosporum species, and exotics. Threats include Allium triquetrum, 

Tradescantia fluminensis, and Hedera helix, but it is evident that some areas have 

been weeded and planted in the past. 

 

Morrinsville Road (0.4 ha) is a privately owned forest in a 26 ha section of the 

Mangaonua gully in eastern Hamilton. This site is dominated by a 15-20 m 

canopy of willow and has undergone significant weeding and planting by the land 

owner; especially with native fern species. The understory has a range of species 

including karamu, pate, Pseudopanax species, mahoe, nikau (Rhopalostylis 

sapida), and Fatsia japonica. There are many exotic species in neighbouring 

properties but current control methods are evidently excluding them.  

 

Rimu Street (0.6 ha) is a highly disturbed forest within the 30 ha 

Waitawhiriwhiri gully in central Hamilton. The canopy is made up of 

predominantly exotic trees, reaching 20 m in places, alongside a few native trees 

up to 15 m in height. Exotic weeds such as Convolvulus species, blackberry, 

Tradescantia fluminensis, Lonicera japonica, and Chinese privet are a large threat 

in this area; some planted natives were discovered underneath thick blankets of 

these weeds. The gully has also received a large amount of rubbish from the 

surrounding residential zone.  

 

St. Andrews Riverbank (2.2 ha) is part of a 10 ha forest that is located between 

recreational/residential areas and the Waikato River in northern Hamilton. A 

popular path runs the length of the forest. The canopy ranges from 5-15 m in 

height with a mix of native plantings such as mahoe, totara, miro (Prumnopitys 

ferruginea), and tree ferns, and exotics such as Salix species and alder. Thick mats 

of Tradescantia fluminensis are common, as well populations of other exotic 
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species that have “escaped” from bordering gardens. In some places the weeds 

have been cleared and replaced with native species. 

 

5-15 years 

Ashmore Court (3.1 ha) is within a 26.4 ha section of the Onukutara gully in 

northern Hamilton. This site has a 10-20 m canopy of Alnus and Salix species and 

an understory of planted natives including lacebark, karamu, and kanuka. The 

gully has open areas where weeds have been cleared and replaced with new 

plantings but others sections are threatened by abundant Tradescantia fluminensis 

and ivy. 

 

Pickering Crescent (0.5 ha) is within a seven ha section of the Onukutara gully. 

It has a few kahikatea emerging above a 10-15 m canopy of willow. The 

understory includes Salix species, karamu, kanuka, kahikatea, Chinese privet, and 

mahoe. The local primary school is undertaking restoration in the area bordering 

their property and vegetation is protected from pedestrians by boardwalks and 

concrete paths.  

 

Clements Crescent (3.1 ha) is within a 7.3 ha section of the Tauhara gully in 

northern Hamilton. It has a 10-15 m canopy of both native and exotic species, 

including Pittosporum species, totara, Cordyline australis, Pinus species, and 

Japanese walnut. The understory includes Pittosporum species, karamu, Solanum 

pseudocapsicum, and lacebark. The forest borders a recreational park and a road.  

 

Porritt Stadium (Kirikiriroa Gully) (6.3 ha) is next to a sports field and 

recreational park in eastern Hamilton. On the hill slopes, the canopy is 

predominantly 15-20 m tall exotics such as Pinus and Acacia species with areas of 

younger Cordyline australis, mahoe, and tree ferns in the gully bottom. The 

understory includes karamu, Chinese privet, Cordyline australis, mahoe, and 

woolly nightshade. Exotic species include Tradescantia fluminensis, blackberry, 

and Convolvulus species. 

 

Sandford Park (8.3 ha) is within the 60.4 ha Mangakotukutuku gully system in 

southern Hamilton. It has a canopy of lemonwood (Pittosporum eugenioides), 

kanuka, and wineberry (Aristotelia serrata) reaching 10-15 m. The understory is 
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dominated by lacebark, lemonwood, and Chinese privet. Tradescantia fluminensis 

is present in dense patches as well as ivy and Convolvulus species. A community 

group regularly works to restore the area around the Mangakotukutuku stream.  

 

Taranaki site descriptions 

Ratapihipihi Scenic Reserve: tawa (23 ha). This nonurban semi-coastal forest is 

within 54.7 ha of mixed vegetation and located five km from the west coast of the 

North Island on the outskirts of New Plymouth city. The reserve is situated in a 

large gully and is surrounded by agricultural land. The majority of large trees 

were removed during logging in the late 1850‟s. The southern section was added 

to the reserve around 1980 after retirement from cattle grazing (Clarkson & Boase 

1982).  

 

Huatoki Scenic Reserve (16 ha) is within 32.6 ha of forest in southern New 

Plymouth; approximately four km from the west coast. It is a high quality semi-

coastal urban patch dominated by tawa, pukatea, and rewarewa (Knightia excelsa) 

up to 20 m in height. King fern (Marrattia salicina), hangehange (Geniostoma 

ligustrifolium var. ligustrifolium), kawakawa (Macropiper excelsum), and nikau 

are common in the understory as well as regenerating titoki, kohekohe 

(Dysoxylum spectabile), pukatea, rewarewa, and tawa (Clarkson & Boase 1982). 

 

Te Henui (14 ha) is within a strip of vegetation, approximately 34.5 ha in size, 

that runs adjacent to the Te Henui stream and walkway. Tawa and pukatea are the 

most abundant canopy species reaching 15-20 metres, with kamahi (Weinmannia 

racemosa), rewarewa, and swamp maire occurring less commonly. 

 

Sheppards Bush is part of a 3.4 ha recreational reserve and 5.6 ha of mixed 

vegetation in southern New Plymouth. The forest is composed of a pukatea 

dominated wetland on the western side and a drier tawa-rewarewa forest on the 

southern side. The canopy is 20-25 m high and also includes swamp maire, titoki, 

and puriri (Vitex lucens). The understory has abundant king ferns and nikau. 
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2.3.3 Sampling methods 

Between December 2009 and May 2010 the epiphytic communities on 750 trees 

were surveyed; 649 in the Waikato region and 101 in the Taranaki region. All 

plots were located below 450 m a.s.l. in lowland forest (Smale & Burns 2002); the 

Waikato survey was undertaken between 10 and 350 m a.s.l.; the Taranaki sites 

were between 50 and 80 m a.s.l.  

 

Modified variable area plots (Batcheler & Craib 1985) were used to estimate the 

species abundance and diversity of epiphyte communities. Each plot was centred 

on a randomly-located mature tree (defined for this study as a tree with a diameter 

at breast height (dbh) of at least 40 cm).  

 

In the nonurban sites, the centre tree and the nine closest trees that measured over 

20 cm dbh were surveyed; ensuring that at least five over 40 cm were included. In 

the mature urban sites the number of trees per plot varied according to the size of 

the forest patch. In small fragments (0.1-5 ha) three plots of five mature trees were 

surveyed. In larger fragments (>5 ha) five plots of ten mature trees were surveyed. 

In the immature urban sites (<100 years), three plots of five mature trees were 

surveyed per site. 

 

The epiphytes on each tree were identified from the ground using binoculars. The 

location (trunk, inner branch, outer branch, all), vertical zone (in five metre 

sections), and an approximate percent coverage (following Braun-Blanquet 

(1932)), were recorded for each vascular epiphyte and vine species. For each host 

tree, the species, height, dbh, bark type, moss and lichen cover, and GPS 

coordinates were recorded.  

 

2.3.4 Edge:area ratios 

To indicate the extent of edge effects, edge:area ratios were calculated for each 

forest patch by dividing the area (ha) by the perimeter (metres). Because edge 

effects can influence forest function up to fifty metres in from the boundary 

(Young & Mitchell 1994; Denyer et al. 2006), approximate measurements of 

forest width were made to assess the degree of influence from edge effects. Area, 
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perimeter and width measurements were made using aerial photographs and 

ERSI™ ArcGIS™.  

 

2.3.5 Microclimate monitoring 

Micro data loggers (Maxim hygrochron iButtons®, DS1923) were deployed to 

quantify temperature and relative humidity variation in the canopies of two 

nonurban and three urban Waikato forests from April until December, 2010 

(inclusive). The loggers recorded measurements hourly with resolution of 

0.0625 °C for temperature and 0.04 % for relative humidity. At each site, two data 

loggers were positioned in the canopy of the forest using a rope pulley system 

(Figure  2.5) and one data logger was installed outside the forest, no more than 500 

metres from the boundary. These exterior loggers were located in open, usually 

pastoral, areas to provide a reference for local climatic conditions and compare 

forest and non-forest conditions. The interior data loggers were moved to new 

canopy locations every two months to account for within-forest variation. The 

nonurban loggers were installed between 14 and 24 m high in the canopy 

(Figure  2.5) and the urban loggers were between five and 14 m high.  

 

Prior to deployment, the loggers were calibrated for relative humidity (RH) by 

rotating them through four desiccation chambers of known RH, generated using 

saturated NaCl, KCl, MgCl and Mg(NO2)3 solutions. During RH calibration the 

chambers were stored at a constant temperature. To calibrate for temperature, the 

loggers were moved between an oven at 36 °C and a refrigerator at four °C. One 

logger was chosen as a standard for temperature and RH. The results of each 

logger were plotted against the results from the standard and fitted with a trend 

line. The slope and intercept of the line were used to correct all subsequent results.  

 

In the field, each data logger was housed in Gill radiation shields to protect the 

sensor from being heated by direct or reflected solar rays and to shelter it from 

severe weather. The loggers deployed in forest interiors were housed in custom 

made shields constructed from six plastic plates stacked approximately one 

centimetre apart to allow natural ventilation (Figure 2.4). All custom shield 

components were plastic to minimise heat absorption. The loggers deployed 

outside forests were housed in commercially-produced shields (HortPlus, New 
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Zealand). These shields were of a similar design to the interior shields (Figure 2.4) 

and tests confirm that shield design had no significant effect on results. Mean 

annual temperatures and vapour pressure deficits were calculated from hourly 

averages. Mean seasonal measurements were calculated from daily averages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Hortplus radiation shield (left) and custom-made radiation shield (right) used 

to shelter iButtons® data loggers in forest canopies, see below. 

Figure 2.5: Shielded data logger (circled) in position in the canopy of tawa forest. 
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2.3.6 Dispersal distances 

The distance between nonurban and urban sites was measured because large 

distances may limit the arrival and/or maintenance of epiphyte and vine 

populations. Mean dispersal distances were calculated from measurements of 

distance between the edges of forest patches. Distances were measured using 

aerial photographs and ERSI™ ArcGIS™. Dispersal modes for each species were 

established from New Zealand Plant Conservation Network (NZPCN 2011) and 

B.D. Clarkson, University of Waikato, pers. comm. (2011). 

 

2.3.7 Successional profiling 

Epiphytes and vines can be broadly classed into successional categories (e.g. 

Nadkarni 2000 & Giordano et al. 2004). Based on the work of Oliver (1930); 

Dawson (1986); Burns (2007), and B.D. Clarkson, University of Waikato, pers. 

comm. (2010), classifications were delineated and applied to epiphyte and vine 

species recorded in Waikato and Taranaki regions. Early successional species are 

those that colonise the high stress environments of bare branches in developing 

forests; mid successional species arrive after the colonisers have established 

branch substrate; and late successional species are typical of diverse communities 

in developed forest with large, old growth host trees (Nadkarni 2000; Burns 2007). 

Although some species may match more than one category, and others may be 

intermediary; the allocated groups represent the best ecological fit in the studied 

regions. Accidental or facultative species are excluded because their low 

abundance makes classification difficult. 

 

The epiphyte and vine species presence and absence on the 399 host trees that 

were surveyed in Taranaki and nonurban Waikato forests were analysed in 

relation to host diameter. This allowed the assessment of successional 

classifications. The proportion of trees in each diameter class that hosted each 

epiphyte was graphed to show abundance with host size. Larger trees were 

assumed to represent later successional communities. Because trees under 20 cm 

in diameter were not surveyed, the species abundance of early successional 

epiphytes and vines was not entirely captured. This analysis was only applied to 

species that were relatively abundant. 
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2.3.8 Statistical analysis 

Ecological data were analysed using Analysis of Variance (ANOVA) and post-

hoc Fisher LSD tests. The assumption of homogeneity of variance was assessed 

using the Levene‟s test and the condition of normal distribution was verified using 

the Sharpiro-Wilk test. Assumptions were ignored when sample sizes were over 

30, as per the central limit theorem. Small data sets that did not meet assumptions 

were analysed using non-parametric Kruskal-Wallis ANOVA. Correlation 

between variables was investigated using linear regression and Pearson correlation 

coefficients. The null hypothesis was rejected and statistically significant results 

reported when the p-value was less than 0.05; p values are reported with each 

result. Temperature and relative humidity data was converted to daily averages 

before being analysed in an attempt to avoid autocorrelation and false 

relationships. 

 

2.4 Results  

2.4.1 Epiphyte and vine presence and absence 

Waikato region 

In the Waikato region, a total of 1460 individual vascular epiphyte and vine 

species from 34 genera and 28 families were recorded on 649 host trees. 

Nonurban forests were host to 80.8 % of total species while 19.2 % were in urban 

forest sites. 

 

A total of 44 epiphyte and vine species were recorded in the Waikato region. Of 

those, 36 occurred in nonurban areas and 30 were recorded in urban areas. When 

species that occurred less than three times are excluded, the total is 29 species 

with 27 in nonurban forests and 16 in urban forests (Figure 2.6). 

 

Using the life form classification given in chapter one, 54 % of all records were 

holoepiphytes; 1.2 % primary hemiepiphytes; 19.7 % herbaceous vines; 24.2 % 

lianas; and 1 % accidental epiphytes; see Figure 2.7 for a breakdown of nonurban 

and urban records. The most abundant holoepiphyte species was Pyrrosia 

eleagnifolia, the most abundant liana and herbaceous vine were Metrosideros 

fulgens and Microsorum pustulatum, respectively. Griselinia lucida was the only 



 

33 

 

hemiepiphyte recorded. Leucopogon fasciculatus was the most frequent accidental 

epiphyte. Appendix one provides details of family, genera, and species abundance, 

and the life and growth forms of all recorded Waikato species. 

 

Orchidaceae was the most abundant family, with representation by five species, 

followed by Asteliaceae and Myrtaceae; each with four species. Metrosideros and 

Asplenium were the most abundant genera with four and three species respectively. 

The most common species were Pyrrosia eleagnifolia with 244 records, 

Asplenium flaccidum with 116 records, and Microsorum pustulatum with 112 

records (Figure 2.8).  

 

 

Figure 2.6: Total, nonurban, and urban epiphyte and vine species count for the Waikato and 

Taranaki regions 

 

 

Figure 2.7: Type of epiphyte or vine species recorded in Waikato nonurban and urban forests. 

(Holo: Holoepiphyte, Herb. Vine: Herbaceous vine, Hemi: Hemiepiphyte). 
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Figure 2.8: Number of each epiphyte and vine species from Waikato nonurban and urban forest 

(excluding species with fewer than three records). 

 

Taranaki region 

In the Taranaki region, 550 individual epiphytes and vine species were recorded 

from 25 genera and 21 families, on 101 host trees. The one nonurban site was host 

to 45.1 % of total species while 54.9 % were recorded in urban sites. 

 

The total number of epiphytes and vine species in the Taranaki region was 33 with 

26 in nonurban forest and 29 in urban forest. When species with less than three 

records are excluded, the total species count is 22, with 20 occurring in nonurban 

forest and 18 occurring in urban forest (Figure 2.6). 
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Using the life form classification given in chapter one, holoepiphytes represented 

48.9 % of plants surveyed, while 3.1 % were primary hemiepiphytes, 21.1 % were 

herbaceous vines, 16.4 % lianas and 10.5 % accidental epiphytes. The proportion 

of these life forms in urban and nonurban forests is shown in Figure 2.9. The most 

abundant holoepiphyte species was Pyrrosia eleagnifolia; the most abundant 

lianas were Metrosideros fulgens and Metrosideros perforata, equally. 

Microsorum scandens was the most abundant herbaceous vine and Griselinia 

lucida was the only hemiepiphyte recorded. Geniostoma ligustrifolium var. 

ligustrifolium was the most abundant accidental epiphyte. Appendix two provides 

details of family, genera, and species abundance, and the life and growth forms of 

all recorded Taranaki species. 

 

Orchidaceae and Asteliaceae were the most abundant families with four species 

each, followed by Aspleniaceae and Myrtaceae; each with three species. 

Metrosideros and Asplenium were the most abundant genera with three species 

each. The most common species were Collospermum hastatum with 59 records, 

Microsorum scandens with 54 records, and Pyrrosia eleagnifolia with 49 records 

(Figure 2.10). 

 

 

Figure 2.9: Type of epiphyte or vine species recorded in Taranaki nonurban and urban forests. 

(Holo: Holoepiphyte, Herb. Vine: Herbaceous vine, Hemi: Hemiepiphyte). 
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Figure 2.10: Number of each epiphyte and vine species from Taranaki nonurban and urban forest 

(excluding species with fewer than three records). 

 

2.4.2 Epiphytes and vines per host tree 

The forests of nonurban Waikato, urban Waikato, and Taranaki had considerably 

different assemblages of host tree species which in turn, supported different sized 

populations of epiphytes. These populations were measured in number of epiphyte 

and vine species per host and total percent cover of the host surface area by 

epiphytes and vines (Figure 2.11, Figure  2.12, and Figure  2.13)  

 

The mean number of epiphytes and vines across all host trees in Waikato forests 

were lower than Taranaki forests in every class (Table 2.4). Significant 

differences exist between Waikato nonurban forests and Waikato urban forests 

(p<0.001), and between Taranaki forests (nonurban and urban combined) and 

Waikato urban forests (p<0.001). The difference between Waikato nonurban 

forests and Taranaki forests was close to statistical significance (p=0.0501).  
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Table 2.4: Mean number of epiphytes per host tree in different forest classes in the Waikato and 

Taranaki regions. Standard errors are presented in brackets. Waikato n=27 forests, Taranaki n=4 

forests. 

Region Total Nonurban Urban 

Waikato 2.31 (0.11) 4.00 (0.17) 0.87 (0.08) 

Taranaki 5.45 (0.32) 4.84 (0.47) 6.06 (0.43) 

 

Kohekohe supported the highest species richness and abundance in nonurban 

Waikato forests and with a significantly different mean number of species than 

rimu, kahikatea, kanuka, pukatea, mahoe, tanekaha, and totara (p<0.05) 

(Figure 2.11).  

 

Pukatea had the greatest richness and abundance of epiphytes and vines in urban 

Waikato forests with a significant difference (p<0.05) over every other host 

species (Figure 2.12). The host trees in Taranaki forests supported a relatively 

high species richness and surface area cover per tree with the top three host 

species having larger epiphyte and vine populations that any of the Waikato hosts 

(Figure  2.13). In Taranaki, the mean number of species on mahoe was 

significantly different to that of rewarewa, pukatea, matai, and swamp maire. 

 

 

Figure 2.11: Mean number of epiphyte species per host tree and percent cover class on host trees 

in nonurban Waikato forests. Cut off for inclusion is 2 % of sample size (species with less than 6 

records were excluded). 
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Figure 2.12: Mean number of epiphyte species per host tree and percent cover class on host trees 

in urban Waikato forests. Cut off for inclusion is 2 % of sample size (species with less than 7 

records were excluded). 

 

 

Figure 2.13: Mean number of epiphyte species per host tree and percent cover class on host trees 

across all Taranaki forests (urban and nonurban combined), note the different y axis scale. Cut off 

for inclusion is 2 % of sample size (species with less than 2 records were excluded). 

 

Across the three forest classes, some host trees showed significant differences in 

the mean number of epiphyte and vine species they supported (Table 2.5). 
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Table 2.5: Host tree species with statistically significant differences in the mean number of 

epiphytes supported (Tree ferns: Cyathea and Dicksonia species). 

Difference between: 

Waikato nonurban & 

Waikato urban 

Difference between: 

Waikato urban & 

Taranaki 

Difference between: 

Waikato nonurban & 

Taranaki 

Beilschmiedia tawa Beilschmiedia tawa Melicytus ramiflorus 

Tree fern spp. Melicytus ramiflorus Dysoxylum spectabile 

Alectryon excelsus Tree fern spp. 

 Dacrydium cupressinum Alectryon excelsus 

 Kunzea ericoides 

  Podocarpus totara 

  Dacrycarpus dacrydioides 

  Dysoxylum spectabile 

   

Pukatea and rewarewa showed no significant differences in number of epiphytes 

between different forest classes. Other host species such as wineberry, Salix 

species, and karaka (Corynocarpus laevigatus) could not be tested because they 

only occurred in single forest classes.  

 

To establish which host species provide the best support for epiphytes and vines, 

the host tree records from the least disturbed forests (Waikato nonurban and 

Taranaki) were combined and compared without forests classes. Figure 2.14 

shows the ranking of host species for number of epiphytes and vines per host tree 

supported and percent of surface area covered.  

 

Titoki (Alectryon excelsus) had the highest mean number of epiphyte and vine 

species and percent cover. It was significantly different in number of species 

hosted from all other hosts shown in Figure 2.14, except tawa and Dicksonia 

species.  
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Figure 2.14: Mean number of epiphyte and vine species on hosts from Waikato nonurban and 

Taranaki forests; without forest classes. Cut off for inclusion is 2 % of sample size (species with 

less than 13 records were excluded). 

 

2.4.3 Variables potentially affecting number of epiphyte and vine 

species per host tree 

Host tree assemblages and characteristics 

The four most abundant host trees recorded in Waikato nonurban forests were 

tawa (68), rewarewa (31), matai (Prumnopitys taxifolia) (29), and tanekaha 

(Phyllocladus trichomanoides) (28) (Table 2.6). The most common hosts in 

Waikato urban forests were kahikatea (85), alder (21), mahoe (19), and crack 

willow (Salix fragilis) (19) (Table 2.7). In Taranaki forests, the leading dominants 

were pukatea (19 nonurban, 18 urban) and tawa (14 nonurban, 18 urban) 

(Table 2.6).  

 

Overall, host trees in Taranaki are taller than those of Waikato forests. Both 

Taranaki and nonurban Waikato host trees were significantly taller than urban 

Waikato trees (p<0.001) (Table 2.7). Host tree diameters were similar in nonurban 

and urban Waikato forests. Taranaki host trees had larger diameters than those in 

the Waikato; urban Taranaki trees were significantly larger than each other class 

(p<0.03) (Table 2.7).  
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Table 2.6: Frequency of host tree species in four forest classes. Species with an asterisk are exotic. 

Host tree species 

Waikato 

nonurban 

Waikato 

urban 

Taranaki 

nonurban 

Taranaki 

urban 

Acer palmatum* - 5 - - 

Agathis australis 4 - - - 

Alectryon excelsus 5 9 1 2 

Alnus glutinosa* - 21 - - 

Aristotelia serrata - 10 - - 

Beilschmiedia tawa 68 17 15 18 

Coprosma arborea 1 - - - 

Coprosma robusta - 1 - - 

Cordyline australis 1 9 - - 

Corynocarpus laevigatus - 3 - 1 

Cyathea spp. - 9 4 - 

Dacrycarpus dacrydioides 11 85 - - 

Dacrydium cupressinum 22 4 1 - 

Dead- unknown species - 1 - - 

Dicksonia spp. 8 24 - - 

Dysoxylum spectabile 17 - 4 2 

Elaeocarpus dentatus 1 - - - 

Eucalyptus sp.* - 1 - - 

Exotic angiosperm* - 11 - - 

Exotic gymnosperm* - 16 - - 

Ginkgo biloba* - 1 - - 

Hedycarya arborea 4 - - - 

Hoheria sexstylosa - 9 - - 

Juglans ailantifolia* - 6 - - 

Knightia excelsa 31 1 3 4 

Kunzea ericoides 6 11 - - 

Laurelia novae-zelandiae 18 12 19 18 

Litsea calicaris 3 - - - 

Melicytus ramiflorus 10 19 2 - 

Myrsine australis 2 - - - 

Nestegis spp. 2 - - - 

Olearia rani var. rani 3 - - - 

Phyllocladus trichomanoides 28 - - - 

Pinus species* 1 8 - - 

Pittosporum eugenioides 1 14 - - 

Podocarpus hallii - 1 - - 

Podocarpus totara 13 4 - - 

Prumnopitys ferruginea 1 1 1 1 

Prumnopitys taxifolia 29 - - - 

Prunus sp.* 

 

1 - - 

Pseudopanax spp. - 2 - - 

Quercus sp.* - 1 - - 

Salix cinerea* - 11 - - 

Salix fragilis* - 19 - - 

Schefflera digitata - 2 - - 

Syzygium maire - 2 - 3 

Vitex lucens - - 1 - 

Weinmannia racemosa 8 - - 1 

TOTAL 298 351 51 50 
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Table 2.7: Mean height and diameter of host trees in each region and forest class. 

  Waikato Taranaki 

 
nonurban urban nonurban urban 

Mean height (m) 18.2 (0.3) 15.8 (0.4) 19.1 (0.7) 19.4 (0.4) 

Mean diameter (cm) 48.7 (1.5) 48.5 (1.5) 56.4 (3.9) 69.0 (4.9) 

 

The number of epiphytes supported by host trees was plotted against different 

characteristics of those hosts. Host size (measured as dbh) and host bark type were 

the only characteristics that exhibited a statistically significant (p<0.01) 

relationship with number of epiphytes supported; tree height, moss coverage, and 

lichen coverage did not exhibit significant associations. 

 

Host size 

Linear regression of host tree size against number of epiphytes was performed 

using the records from nonurban Waikato and Taranaki records; urban Waikato 

was excluded to remove the effects of heavy disturbance. The results indicate a 

significant relationship between the host size and the number of epiphyte and vine 

species it supports with an r value of 0.551 (p<0.01) (Figure 2.15). When urban 

Waikato forests were included the relationship was weaker (r = 0.3896, p<0.01). 

 

 

Figure 2.15: Linear regression of host tree diameter at breast height and number of epiphyte 

species per host using records from nonurban Waikato and Taranaki forests (p<0.01). 
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mean number of species they supported. Both fibrous and smooth bark types were 

significantly different from peeling and scaly types (p<0.007). 

 

 

Figure 2.16: Mean number of epiphyte species per host by bark type. 

 

Dispersal modes and distances  

The mean distance between Waikato urban and nonurban sites was 20.1 km while 

the mean distance between Taranaki urban sites and Ratapihipihi (nonurban) was 

4.4 km. Of the 37 epiphyte and vine species recorded in both regions, 54 % of 

species dispersed seed via wind, 30 % by bird, and 16 % via gravity, capsule, or 

vegetative fragments. 

 

Edge:area ratios  

Waikato nonurban forests had the lowest mean edge:area ratio which was 

significantly less than Waikato urban immature forests patches (p<0.001) but not 

significantly lower than Waikato urban mature forests (p=0.068). The Taranaki 

forest class includes all surveyed sites in this region which have a mean edge:area 

ratio that is intermediary between Waikato nonurban and Waikato urban classes.  

 

Table 2.8: Mean edge:area ratios (E/A) for each forest class. 

Forest class Mean E/A (m/ha) 

Waikato nonurban mature 23.7 

Waikato urban mature 315 

Waikato urban immature 365.4 

Taranaki 179 
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Nonurban Waikato forests were between 100 and 9200 m in width while all 

Waikato urban forests were less than 250 m in width and most spanned only 50 to 

100 m. Taranaki forest widths ranged from 140 to 500 m in width. The survey 

plots in both regions were located between 30 and 240 m from the forest boundary 

and thus encompassed a range of edge effects. 

 

Microclimates 

The canopy data logger records show that the nonurban forests (Maungatautari 

and Waingaro) had lower mean temperatures and vapour pressure deficits than 

urban sites (Berkley, Chelmsford, and Howell). This trend is consistent and 

significant (p<0.001) across all seasons. Temperature records are significantly 

different between the two nonurban sites and between each nonurban and urban 

sites (p<0.003). Vapour pressure deficit records are significantly different 

between all sites except the two nonurban sites and two of the urban sites (Howell 

& Berkley) (Table 2.9 & Table 2.10, Figure 2.17 & Figure 2.18).  
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Table 2.9: The mean and range of daily average temperatures (°C) over the nine month monitoring period for interior (Int.) and exterior (Ext.) data loggers from each forest. Standard 

error for all means = 0.2. 

  Maungatautari Waingaro Berkley Chelmsford Howell 

  Int. Ext. Int. Ext. Int. Ext. Int. Ext. Int. Ext. 

Mean 10.5 10.8 11.4 11.7 12.2 11.7 11.8 12.7 12.3 12.0 

Range 15.1 15.1 17.0 17.7 16.0 17.5 17.6 17.3 17.0 17.7 

 

Table 2.10: The mean and range of daily average vapour pressure deficits (kPa) over the nine month monitoring period for interior (Int.) and exterior (Ext.) data loggers from each 

forest. Standard error for all means = 0.1. 

  Maungatautari Waingaro Berkley Chelmsford Howell 

  Int. Ext. Int. Ext. Int. Ext. Int. Ext. Int. Ext. 

Mean 0.12 0.13 0.11 0.16 0.23 0.15 0.19 0.31 0.20 0.17 

Range 0.71 0.76 0.67 0.70 0.75 0.85 0.68 0.97 0.92 0.84 

 

Comparisons between the temperature and vapour pressure deficit records from loggers in the canopy of forest interiors and loggers outside the forests 

showed that nonurban forest interiors were buffered (had lower ranges). Waingaro and Maungatautari canopy temperatures had consistently higher 

minimums and lower maximums than outside the forest boundary; Figure 2.19 shows the winter data set as an example and other seasons are provided 

in appendix three. Buffering was also apparent in vapour pressure deficit records for nonurban sites with consistently lower maximums inside the forest 

compared to outside; Figure 2.20 shows the winter data set as an example and other seasons are provided in appendix three. Vapour pressure deficits 

below zero are the results of relative humidity measurements over 100 % which are within the error range of the data loggers. 
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Figure 2.17: Mean temperature (
o
C) of each season across surveyed forests. Solid lines represent 

urban forests, dashed lines represent nonurban forests. (Autumn: March, April, May; winter: June, 

July, August; spring: September, October, November; summer: December (summer records are 

incomplete)). Means calculated from daily averages. 

 

 

Figure 2.18: Mean vapour pressure deficits (kPa) of each season across surveyed forests. Solid 

lines represent urban forests, dashed lines represent nonurban forests. (Autumn: March, April, 

May; winter: June, July, August; spring: September, October, November; summer: December 

(summer records are incomplete)). Means calculated from daily averages. 
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Figure 2.19: Vapour pressure deficit (kPa) data from hourly averages recorded by interior (Int) 

and exterior (Ext) loggers at each site over winter. The nonurban sites with greater buffering are 

indicated by asterisks. 

Figure 2.20: Temperature (
o
C) data from hourly averages recorded by interior (Int) and exterior 

(Ext) loggers at each site over winter. The nonurban sites with greater buffering are indicated by 

asterisks. 
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Species associations 

The communities that had both nest species (Collospermum hastatum and Astelia 

solandri) had the highest mean total number of epiphytes and vines, while those 

with one or the other have larger populations than those that have neither 

(Figure 2.21). All differences were statistically significant (p<0.01) with the 

exception of C. hastatum versus A. solandri. 

 

 

 

 

 

 

 

Successional profiling 

Each recorded epiphyte or vine species was classed into early, mid or late 

successional categories. The majority of species were mid successional while 

early and late classes had similar counts (Table 2.11). 

 

Table 2.11: Successional classification of epiphyte and vines species recorded in Waikato and 

Taranaki regions. Listings marked with an asterisk are exotic species. Accidental and facultative 

species are excluded from the classification. 

Early Successional Mid Successional Late Successional 

Blechnum filiforme Arthropteris tenella Brachyglottis kirkii 

Convolvulus spp.* Asplenium flaccidum Freycinetia banksii 

Earina mucronata Asplenium oblongifolium Griselinia lucida 

Hedera helix* Asplenium polyodon Huperzia varia 

Jasminum polyanthum* Astelia solandri Metrosideros fulgens 

Microsorum pustulatum Clematis paniculata Passiflora tetrandra 

Microsorum scandens Collospermum hastatum Pittosporum cornifolium 

Pyrrosia eleagnifolia Collospermum microspermum Ripogonum scandens 

Rubus fruticosus* Drymoanthus adversus Winika cunninghamii 

Tradescantia fluminensis* Earina autumnalis   
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Figure 2.21: Mean number of epiphyte and vine species associated with the presence and absence 

of Collospermum hastatum and Astelia solandri. Note: Species counts in each assemblage 

exclude C. hastatum and A. solandri. 



 

49 

 

  

Hymenophyllum  

sanguinolentum   

  Ichthyostomum pygmaeum   

  Lygodium articulatum   

  Metrosideros diffusa   

  Metrosideros perforata   

 

Muehlenbeckia australis 

Parsonsia spp.   

 

Tmesipteris elongata   

 

The populations of each successional class in different forests were investigated to 

identify any patterns that could contribute to the varying species richness and 

abundance across forest classes (Figure 2.22 and Figure 2.23). Throughout the 

four forest classes, early successional species-counts were relatively constant 

while mid and late successional species increased with age in the Waikato forests, 

reaching a maximum of 16 species in Waikato nonurban mature forests. Taranaki 

had 15 mid successional species and the highest number of late species with eight 

(Figure 2.2). 

 

Figure 2.22: Number of epiphyte and vine species in each successional class for Taranaki forests 

and the three forest types surveyed in the Waikato. 

 

In terms of numbers of individuals, Waikato urban immature forests (under 100 

years old) were dominated by early successional species alongside a small 

population of mid successional species and only 1.5 % from the late class 

(Figure 2.23). Waikato urban mature forests (over 100 years old) had a slightly 

smaller proportion of early plants and a higher representation from the late 
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successional group. Waikato nonurban mature and Taranaki classes and had the 

lowest percentages of early successional plants and the highest mid and late 

fractions (Figure 2.23). 

 

Figure 2.23: Percentage of individual epiphyte and vine species in each successional class for the 

three forest types surveyed in the Waikato and Taranaki regions. 

 

Moss and lichen were recorded on 71.2 % and 66.2 % of all host trees, 

respectively (data for Maungatautari and Claudelands not recorded). Lichen 

commonly occurred on the outer limbs in open sites with high sunlight. Mosses 

were more common on shaded areas near the trunk and on branch undersides. 

Moss communities were often associated with early successional epiphytes and 

vines. The moss and lichen coverage on host trees throughout all forests was 

predominantly classed as light or moderate moss and lichen coverage, with only a 

small proportion having dense cover (Figure 2.24).  

 

Figure 2.24: Percentage moss and lichen coverage in Waikato and Taranaki forests from semi-

quantitative percent cover assessments. 
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The two main patterns of species abundance and host diameter are shown in 

Figure 2.25: (1) early arrival and persistence (Metrosideros fulgens) and (2) 

increasing abundance with increasing host diameter (Astelia solandri). Fourteen 

epiphyte and vine species were abundant enough to allow construction of these 

graphs and although the patterns were similar to the examples below (Figure 2.26), 

every one showed a slightly different relationship with host size (appendix four). 

It is evident from the 14 graphs that the epiphyte and vines studied either persisted 

with increasing host size or increased in abundance; there were no species that 

were absent from all large host trees (appendix four). 
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Figure 2.25: Example graphs for A: Metrosideros fulgens and B: Astelia solandri. Bars show the 

percent of trees that host each species.  
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2.5 Discussion and conclusions 

Waikato epiphyte population 

This first specific assessment of epiphyte and vine populations in lowland (<450 

m a.s.l.) forests of the Waikato region has revealed a guild of 29 species. This 

total is comparable to North Island lowland species counts from Campbell (1984) 

and Clarkson (1985) who recorded altitudinal information in their reports 

(Table 2.12). Other reported epiphyte counts are higher because they include 

montane or submontane forests which inherently have greater species richness and 

abundance (Table 2.12).  

 

Table 2.12: Total species count and lowland species count of vascular epiphyte and vine species 

found in forest surveys in the North Island, New Zealand surveys. 

Total  

species 

count 

Lowland 

species 

count 

Location Author(s) 

45 25 Orongorongo Valley, Wellington Campbell (1984) 

52 31 Kaitake Range, Taranaki Clarkson (1985) 

50 N/A Mount Karioi, Waikato Clayton-Greene & Wilson 

(1985) 

35 N/A Maungataniwha Range, Northland Dawson & Sneddon 

(1969) 

44 N/A Pureora Forest Park, Waikato Wilcox (1999) 

 

The high proportion of holoepiphytes and obligate epiphytes (definition provided 

in chapter one) found in both Waikato and Taranaki forests is consistent with the 

relative proportions of these life forms throughout all New Zealand epiphytic 

species (Oliver 1930; Burns 2008; 2010). The high fraction of accidental species 

in Taranaki is likely to be related to the dominance of nest epiphytes in these 

forests which provide a good source of substrate (Burns & Dawson 2005), as well 

as the higher annual rainfall in this region (Table 2.1). 

 

Waikato urban forests had the lowest epiphyte and vine species diversity and 

abundance of all forests with only 55.2 % of the local species pool present in 

forest patches of Hamilton city, and a relatively low average of 0.8 epiphyte 

species per host. This result is similar to the reduction in species richness and 

cover of epiphytic bryophytes with increased human disturbance reported by 
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Giordano et al. (2004) in a comparison of urban and extra-urban sites in Campania, 

southern Italy.  

 

The total species count for Waikato forests was greater than for the Taranaki 

region but this is likely to have been affected by the significantly smaller Taranaki 

sample size. The urban forests of Taranaki, with 81.8 % of the Taranaki species 

pool represented, and a mean of 6.06 (±0.43) species per host tree, had much 

higher epiphyte and vine diversity and abundance than urban Waikato. The 

nonurban number of species per host tree was also higher in Taranaki than 

Waikato.  

 

Previous studies have found that assemblages of epiphytes in a forest represent 

neither random nor uniform selections from the local species pool; suggesting that 

multiple factors are affecting species distributions (Nieder et al. 2000; Laube & 

Zotz 2006). The following discussion considers in more detail the factors that are 

indicated to be important in the results.  

 

Influencing factors 

Host tree assemblages and characteristics 

The host tree species assemblages in urban Waikato forests were different from 

the other surveyed forest types. This can be attributed to three key factors; firstly, 

the surveyed forest patches in urban Waikato have a high abundance of introduced 

species such as alder, crack willow, and grey willow. Secondly, the highly 

modified nature of these urban forests has resulted in communities of indigenous 

species that have been planted (such as lemonwood), are colonising species (such 

as mahoe), or are remnant from original forest types (such as kahikatea); resulting 

in species assemblages that vary from that of the more mature and undisturbed 

nonurban forests. Thirdly, the terrain of urban Waikato is predominantly gullies 

which, although somewhat similar to the surveyed Taranaki landscapes, differ 

considerably to the hillslopes of nonurban Waikato, which present inherently 

different forest types. 

 

These variable host populations influence the diversity and abundance of 

epiphytes and vines in each forest because different tree species have a range of 
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associated biotic and abiotic features that affect the germination and survival of an 

epiphyte or vine. These features include host architecture, bark type, microclimate, 

fruiting, and flowering (Todzia 1986; Zotz et al. 1999; Laube & Zotz 2006). Each 

host species offers a unique combination of characteristics that result in a host-

specific epiphytic spectrum from the local species pool (Zotz et al. 1999). These 

characteristics influence the numbers of epiphytes per host tree; for example, the 

high species richness on titoki will be related to the smooth bark, large branches, 

spreading architecture and attractive fruit for seed dispersers, along with other 

factors. Thus, each forest has a unique and diffusely-related species composition 

and relative abundance of epiphytes and vines (Nieder et al. 2000; Zotz & 

Vollrath 2003; Laube & Zotz 2006).  

 

Host size 

The weak relationship between host tree size (diameter) and number of epiphyte 

and vine species (r=0.511) indicates that there is an association between large host 

trees and diverse epiphytic communities. Similar correlations have been found by 

many authors (e.g. Catling & Lefkovitch 1989; Knightbridge & Ogden 1998; 

Nieder et al. 2000; Muñoz et al. 2003; Laube & Zotz 2006; Flores-Palacios & 

Garcia-Franco 2006; Burns 2008). This relationship is related to the greater 

number of habitats provided by large trees than small trees (Flores-Palacios & 

Garcia-Franco 2006); the lifespan of larger trees providing more time for humus 

to accumulate and epiphytes to establish (Knightbridge & Ogden 1998; Hofstede 

et al. 2001; Laube & Zotz 2006); and large trees intercepting more light and water 

than small trees (Benzing 2004; Cummings et al. 2006). The greater diameter and 

height of host trees in Taranaki is likely to be related to the relatively high average 

number of species per host tree in this region. 

 

It has also been observed that the bark texture of some host tree species, such as 

kahikatea and rimu, changed with size and often exhibited increased fissuring 

which is likely to favour epiphyte establishment.  

 

Bark type 

This study found a dissimilar mean number of epiphytes species on different bark 

types, which indicates that host bark contributes to the epiphytic species spectrum 

in each forest. The characteristics that influence how well a bark type supports 
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epiphytes include texture, the degree of peeling, water-storage capacity, and the 

presence or absence of alleochemicals (Catling & Lefkovitch 1989; Callaway et al. 

2002; López-Villalobos et al. 2008). The significant differences found between 

surveyed host bark types were related to texture and the degree of peeling 

however, bark water-storage and alleopathy were not tested for. The significantly 

higher number of epiphytes per host tree for titoki and tawa reflects the suitability 

of the smooth bark of these species.  

 

The influence of bark type on epiphyte establishment and survival in the survey 

sites of the present study should be relatively direct because moss and lichen 

coverage is generally not thick enough to homogenise the substrate; as has been 

observed in tropical environments (Hofstede et al. 2001; Zotz & Vollrath 2003). 

 

Architecture 

The shape and form of a host tree influences the epiphyte and vine populations it 

supports (Laube & Zotz 2006; Blick & Burns 2009; Burns & Zotz 2010). 

Although this was not directly measured in the present study, architecture is 

clearly an important characteristic of different host tree species for both species 

richness and abundance. For example, titoki has many large branches that spread 

laterally out from the trunk and also had the highest mean number of epiphytes 

per host tree in both nonurban Waikato and Taranaki forests. 

 

It is apparent from the above that different host tree assemblages in each study site 

would likely result in an inherently different assemblage and relative abundance 

of epiphyte and vine species. However, the low species per tree in urban Waikato 

forests is unlikely to be solely related to host tree differences but also due to other 

disparities between the studied forest types; as detailed below. 

 

Dispersal modes and distances  

The establishment of epiphyte and vine species requires a seed source within 

dispersal distance but there is limited information on distances for this guild of 

plants (Benzing 1990). Similar to findings from other localities, the majority of 

epiphytes and vines in the present study are wind dispersed, and it is assumed that 

this facilitates relatively large dispersal ranges (Gentry & Dodson 1987; Nieder et 
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al. 2000). However, other authors have found dispersal distances to be quite 

limited (e.g. Wolf (2005) suggested that distances greater than 10 km are rare). 

For the studied species, it is speculated that those not dispersed by wind will be 

limited by the relatively large dispersal distances into urban Waikato (Hamilton 

City) (mean: 20.1 km) forests, while all dispersal mechanisms should be effective 

in the Taranaki region (mean: 4.4 km).  

 

Edge:area ratios and microclimates 

A high proportion of urban forests in both Waikato and Taranaki exist in gully 

systems. The branched nature of these gullies and the small size of urban patches 

is reflected in relatively large edge:area ratios and low forest width for both 

Taranaki and urban Waikato forests. These narrow strips of forest will have 

microclimates, vegetation compositions and population structures that vary from 

the larger nonurban forests because of strong edge effects (Denyer et al. 2006; 

Young & Mitchell 1994). Microclimate monitoring in five Waikato forests 

allowed quantification of these edge effects on the canopy temperature and vapour 

pressure deficits. 

 

The nine month monitoring period showed that urban forests have temperatures 

that are on average 1.9 °C higher and vapour pressure deficits that are on average 

1.1 kPa higher than nonurban forests. A similar result was reported by McDonnell 

et al. (1993) who found that temperature monitoring across an urbanisation 

gradient over a six year period showed urban forests to be consistently around two 

degrees warmer than nonurban sites. Botkin & Beveridge (1997) also reported 

urban temperatures from midlatitude areas of America to be 1–2 °C higher in the 

winter and 0.5–1.0 °C higher in summer than nonurban areas. In a relevant study 

Kessler (2001) found a correlation between epiphytic pteridophyte species 

richness with both rainfall and bryophyte cover. He explained that rainfall and 

bryophyte cover are a proxy for air humidity, reflecting the requirement of high 

humidity for early epiphyte colonisation and further epiphyte succession. Kessler 

(2001) also found a negative correlation between species richness and human 

impact but noted that this was not independent from humidity because human 

activity was focussed in more arid areas.  
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It is likely that the warmer, drier microclimates of urban Waikato are the result of 

small patch areas and strong edge effects that reduce or prevent microclimate 

buffering. It is therefore speculated that these conditions are limiting substrate 

availability and increasing desiccation stress for epiphytes and vines which 

consequently inhibits successional processes and limits species diversity and 

abundance (Nieder et al. 2000; Wolf 2005).  

 

Microclimate differences are likely to contribute to the significantly different 

epiphyte and vine diversity on the same host species across different forests. 

Similarly, the different species abundance and diversity between Waikato and 

Taranaki regions is likely to be related higher rainfall (Figure 2.1) and humidity. 

 

Facilitation and species associations 

Analysis of species presence and absence in relation to host tree diameter 

provided a method of testing the allocated successional classifications. The unique 

relationship that each species had with varying host tree size reflects the 

complexity of ecological interactions. 

 

From the persistent nature of all species across host tree sizes, it is apparent that 

the species studied do not exhibit true succession. It suggests that each 

“successional” group of species is not replaced by the next, but instead, the 

community of epiphytes and vines is gradually enriched with more species as the 

environmental conditions are altered and the suitability of habitats are improved. 

Therefore, each category described above may be better labelled as facilitative 

rather than successional because each group modifies canopy habitats in a way 

that facilitates the arrival of later groups.  

 

Most of the species-host diameter patterns (appendix four) support the allocated 

“early/mid/late” categories described above, with the exception of Metrosideros 

fulgens (Figure 2.26) and Ripogonum scandens (appendix four) which were 

relatively more abundant on smaller trees than expected. It should be noted that 

this analysis is biased because the data used excluded any immature forests and 

therefore, more accurate results could be achieved by sampling a wider range of 

forest ages. 
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Facilitation processes are important for understanding the species richness and 

abundance of epiphytes and vines across different forest classes as the underlying 

species trajectory of a forest is the result of interactions between many other 

factors; some of which have been discussed above. 

Lichens and mosses are generally the first epiphytes to colonise the high stress 

environments of bare host branches. This initial layer of organisms ameliorates 

the environmental conditions by providing the substrate, moisture, and nutrients 

that initiates succession of vascular species, often with the establishment of small 

colonising ferns such as Pyrrosia eleagnifolia and Microsorum pustulatum 

(Dawson 1986; Benzing 1990; Nadkarni 2000; Nieder et al. 2000; Burns 2007). 

As an interwoven mat forms from moss, lichen, humus and the roots of colonisers, 

more water and nutrients can be stored and more early species arrive (Matelson et 

al. 1993). In the present study these species include the orchid Earina mucronata, 

and the climbing ferns Microsorum scandens, and Blechnum filiforme. 

The community continues to slowly build with increasing species diversity and 

abundance as more moisture and substrate becomes available (Nadkarni 2000; 

Zotz & Vollrath 2003). Once an area is colonised, mid-arrival orchids (e.g. 

Ichthyostomum pygmaeum, Drymoanthus adversus, Earina autumnalis), lianas 

(e.g. Metrosideros vines), nest epiphytes (e.g. Collospermum hastatum, Astelia 

solandri), and ferns (e.g. Asplenium species) become established and continue to 

develop the habitat for the next group of species. Nest epiphytes in particular can 

create very sizeable community clumps with long, narrow leaves that impound 

water, nutrients, and detritus, which develops into large quantities of humic soil 

over time (Cockayne 1910; Burns & Dawson 2005). The substrate and resources 

provided in these nests enhances their own microhabitat and facilitates the 

establishment and growth of later species such as Pittosporum cornifolium and 

Huperzia varia. A positive relationship is thought to exist between host tree size, 

the mass of nest epiphytes and broad patterns of species diversity (Dickinson et al. 

1993; Burns & Dawson 2005). In the present study, the presence of nest epiphytes 

had a significant correlation with the number of other epiphytes on the same tree. 

 

The establishment and survival of late arrival species requires the continuously 

high atmospheric humidity that mature forest and epiphyte communities provide. 

If this is not available, the ecosystem trajectory of epiphyte and vine populations 
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can be suspended in a state of early-mid development (Nieder et al. 2000; 

Hofstede et al. 2001; Giordano et al. 2004). The combination of survey and 

microclimate results in the present study indicates that this suspension has 

occurred in urban Waikato forests, and that a healthy population of late arrival 

species is unlikely to exist until microclimate humidity is increased.  

 

The high proportion of late arrival species and the relatively high epiphyte and 

vine diversity and abundance in Taranaki forests indicates that this region has 

more suitable microclimates than urban Waikato. This study has also highlighted 

that the forests of Taranaki have larger host trees, smaller seed dispersal distances, 

and higher rainfall than those of the Waikato, as well as reasonably high edge:area 

ratios. These conditions are all likely to result in a greater abundance of suitable 

habitats for epiphytes and vines. 

 

To conclude, epiphyte and vine species richness and abundance is low in Waikato 

urban forests with current populations dominated by early and mid arrival species. 

Investigations into a range of related factors indicate that this is likely to be the 

result of large edge:area ratios and associated edge effects increasing the canopy 

temperature and vapour pressure deficits, and decreasing the availability of 

substrate and moisture; thus preventing progression from early and mid arrival 

species. This study has also indicated that the characteristics of the variable host 

tree assemblages, and the large distances between urban forests and abundant seed 

sources may also be limiting epiphyte and vine species richness and abundance. 

Chapter five presents recommendations for restoration ecology that have been 

developed from these results. 
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3 Chapter Three: Water relations of Griselinia lucida 

and G. littoralis under desiccation stress 

 

3.1 Introduction 

Epiphytes of New Zealand‟s temperate rainforests have comparable biomass and 

diversity to the famed canopy flora of many tropical forests (Dickinson et al. 1993; 

Hofstede et al. 2001; Zotz 2005), and like all canopy-dwellers, their growth and 

survival is strongly limited by the scarcity of water (Zotz & Tyree 1996; Martin 

2004; Benzing 1990). To overcome this common constraint, epiphytes are 

frequently xerophytic (Benzing 1990) with physiological features and responses 

that facilitate the maintenance of turgor and numerous associated metabolic 

functions (Richter & Kikuta 1989; Ludlow 1989). Different combinations of 

features and responses can be broadly classed into three strategies (Ludlow 1989) 

that apply to both epiphytes and terrestrial plants; (1) desiccation escape, (2) 

desiccation postponement, and (3) desiccation tolerance. Each strategy requires a 

trade-off between the ability to tolerate stress and potential growth; for example, 

while desiccation escapers are susceptible to drought stress, they have the 

advantage of fast growth to rapidly reach maturity while conditions suit (Bader et 

al. 2009). Features and physiological responses are not exclusive to one class, and 

plants often exhibit strategies that fit along a continuum between categories 

(Ludlow 1989). Stress tolerance is also related to the stage of plant development 

(Levitt 1980; Zotz et al. 2001; Bader et al. 2009) with seeds and mature forms 

generally exhibiting the most tolerance (Ludlow 1989).  

 

3.1.1 Stress strategies 

Desiccation escape 

Plants that can escape desiccation have high degrees of developmental plasticity 

which allow them to maximise resource use and complete their life cycle while 

water is available (Ludlow 1989; Chaves et al. 2003). Members of this group are 

very sensitive to substrate moisture levels and respond rapidly to available water 

with expeditious germination and growth to avoid conditions that may cause 

turgor loss (Ludlow 1989; Meyre et al. 2001). The escape strategy is important for 

plants growing in seasonally arid climates such as deserts because their existence 
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during dry conditions as a dormant seed allows maximal drought tolerance 

(Ludlow 1989). This is not often reported as a strategy in epiphytic life forms; 

most likely because the limited substrate would not support dormant seeds. An 

example of desiccation escape comes from Tevis (1958) who followed the life 

cycle of the wildflower Plantago insularis on Californian sand flats. This species 

rapidly responds to the first seasonal rainfall so as to complete its life cycle while 

conditions are favourable; in 1957 it reached maturity after receiving only 51 mm 

of rainfall between January and April (Tevis 1958). Morphological features of this 

group vary, with some species exhibiting stress-tolerating features such as high 

root to shoot ratios while others are very intolerant of any desiccation (Ludlow 

1989). 

 

Desiccation postponement 

Desiccation postponers have traditionally been labelled “drought avoiders” (e.g. 

Ludlow 1989), but because drought is a climatic phenomenon that all plants in the 

exposed area must endure, only those in the first group, the desiccation escapers 

are true “avoiders” (Taiz & Zeiger 2002). Postponers maintain their turgor and 

tissue water potential under drought stress for as long as possible because their 

tissues are sensitive to dehydration. This strategy requires the (2a) minimisation of 

water loss and/or (2b) maximisation of water uptake (Ludlow 1989), which can be 

achieved through a range of features and responses, including sensitive stomatal 

control (Bannister & Kissel 1986; Zhang et al. 2009), crassulacean acid 

metabolism (CAM), extensive root networks, small leaves, leaf shedding, 

reduction of leaf angle of incidence (Ludlow 1989), low cuticular conductance, 

high root to shoot ratios (Smith & Griffiths 1993), and water storing tissues 

(Cavelier & Goldstein 1989). The characteristics of desiccation postponement are 

often reported for epiphytes; an example is Tillandsia urticulata, a bromeliad 

epiphyte that utilises water storage, highly elastic cell walls, and CAM to maintain 

high water potential and turgor under water stress (Stiles & Martin 1996). 

 

Desiccation tolerance 

Desiccation tolerators are the least sensitive to desiccation and can withstand 

severe tissue dehydration (Ludlow 1989). This group includes the exceptional 

poikilohydric or “resurrection” species, which can tolerate extreme water loss and 
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in some cases, survive in a state of quiescence for many years (Scott 2000). 

However, the majority of desiccation tolerators cannot survive such extreme 

limitations and Kozlowski and Pallardy (2002) differentiated these non-

resurrecting members into those that survive by either (3a) maintaining high 

relative water content or (3b) enduring both low relative water content and low 

water potential (Figure 3.1). Desiccation-tolerators minimise the effect of drought 

stress through physiological adjustments over time (Ludlow 1989; Smith & 

Griffiths 1993). To maintain turgor, plants can adjust leaf osmotic potential or cell 

elasticity (Richter and Kikuta 1989). When plant water potential decreases, 

osmotic adjustment assists in turgor maintenance by increasing the net 

accumulation of solutes in a cell; thus lowering the osmotic potential and 

attracting water into the cell. Similarly, increases in cell wall elasticity (measured 

by a reduction in bulk elastic modulus (ε)) improve water storage capacity of the 

cells and reduce sensitivity to drought stress by means of prolonged turgor 

maintenance (Kirkham 2005; Lambers et al. 2008). Lambers et al. (2008) explain 

that elastic and osmotic adjustments do not occur simultaneously because lowered 

osmotic potential along with elastic walls would cause cell swelling and be 

ineffective at maintaining turgor. Therefore, plants that maintain high relative 

water content (3a) reduce water loss through osmotic adjustment, while plants that 

endure low water content (3b) can do so because elastic cells facilitate higher 

relative water loss. 

 

An example of desiccation tolerance is reported by Drivas and Everett (1988) who 

found that Artemisia arbuscula, a shrub growing on dry stony clay loams in 

western Nevada, can endure water potentials as low as -5.5 MPa while still 

actively transpiring and losing water. The ability of epiphytes to survive canopy 

climates is often described as desiccation tolerance (e.g. Hietz & Briones 1998; 

Zotz et al. 1999; Bader et al. 2009). 
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Figure 3.1: Strategies of xerophytic plants. The three main classes are escapers, postponers and 

tolerators but plant characteristics may fit along a continuum between these groups. Adapted from 

Kozlowski & Pallardy (2002). 

 

3.1.2 Water relations of Griselinia lucida and G. littoralis  

Research into the water relations and physiology of New Zealand epiphytes is 

predominantly restricted to morphological and anecdotal observations by Oliver 

(1930), along with general descriptions of a few particular genera (e.g. Holloway 

1923; Dawson 1966). New Zealand is likely to have epiphytic species belonging 

to each of the above stress classes, as well as those that exhibit features of more 

than one group. The investigations into epiphyte water stress strategies in the 

present study were focussed on the hemi-epiphyte, Griselinia lucida. This species 

is one of only four shrub epiphytes in New Zealand and one of two indigenous 

members of Griseliniaceae. It was chosen for this study because very little is 

known about its water relations and how it responds to the aridity of canopy 

climates. The terrestrial congener of Griselinia lucida, G. littoralis, was included 

in to compare characteristics of a different lifestyle. 

 

Griselinia lucida is clearly set apart from other native epiphytes by its large size 

(up to ten metres in spread) and distinctive grooved roots that regularly extend 

down the host trunk to access soil moisture and nutrients. It also has large, thick, 

glossy green leaves that have been suggested to store water (Oliver 1930; Dawson 

1966). In contrast, Griselinia littoralis has a predominantly terrestrial lifestyle 

with the exception of occasional canopy-dwelling above the altitudinal range that 

Xerophytes
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(2) Postponers
(high WP)

(2a) Minimise 
water loss

(2b) Maximise 
water uptake
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G. lucida occupies; where it has also been reported to occasionally establish 

terrestrial roots (Cockayne 1967; B.D. Clarkson, University of Waikato, pers. 

comm. 2011). 

 

The academic literature on Griseliniaceae is limited. Available research focuses 

on descriptive morphology (e.g. Oliver 1930; Dawson 1966), ecology (e.g. 

Wardle 1964; Zotz 2005), and taxonomy (e.g. Dillon & Muñoz-Schick 1993; 

Philipson 1967), with only a small number of physiology-based articles (e.g. 

White & Lovell 1984; Burrows 1995).  

 

Griselinia lucida is commonly considered to be able to withstand water stress (e.g. 

Ogden 1976) while G. littoralis has been reported to be relatively sensitive 

(Bannister 1986). The leaves of G. lucida are much larger than those of G. 

littoralis, as well as most other indigenous epiphytes. Although it often roots in 

nest epiphytes or terrestrial soil (Oliver 1930), this large shrub epiphyte will 

experience regular water stress. In order to minimise the water loss from the large 

leaf area, it is hypothesised that G. lucida is a desiccation postponer which, under 

water stress, “shuts-down” and delays turgor loss through reduction of stomatal 

conductance, photosynthesis, and growth rates; thereby minimising water loss and 

physiological damage, and enabling a relatively fast recovery. The large, fleshy 

leaves may also postpone desiccation through water storage (Oliver 1930) and 

high cell wall elasticity that allows preferential water loss from non-essential cells 

(e.g. Nowak & Martin 1997; Martin 2004). Therefore it is also hypothesised that 

the large leaves of this species store water to assist in desiccation postponement, 

allowing G. lucida to endure water stress for longer than G. littoralis.  

 

In contrast, G. littoralis does not regularly inhabit arid canopy climates and 

consequently avoids the regular water stress that its congener is exposed to. It also 

has smaller and thinner leaves, indicating less reliance on water storage and cell 

elasticity than G. lucida. Thus, it is expected that G. littoralis is a desiccation 

tolerator that can maintain a higher level of photosynthesis during water stress 

than G. lucida with less reliance on water storage and high cell elasticity. 
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A drought experiment was undertaken to address these hypotheses. The 

physiological responses of both G. lucida and G. littoralis were measured under 

moderate and severe levels of desiccation. 

 

The plants in this experiment were potted seedlings. In the case of G. lucida, these 

are considered equivalent to a juvenile epiphyte that has not developed a 

terrestrial root connection.  

 

3.2 Materials and Methods 

3.2.1 Plants and glasshouse conditions 

Seedlings of the epiphytic Griselinia lucida were approximately six months old 

when sourced from Lyndale Nurseries in March 2010. The seed source for these 

plants was terrestrial individuals in Whenuapai and Waitakare, northern North 

Island. Seedlings of G. littoralis were nine months old when received from 

Forevergreen Seedlings in May 2010. The seed source was the Taupo Botanical 

Gardens, central North Island. The seedlings were 28.1 ± 0.7 centimetres and 19.3 

± 0.6 centimetres tall with 19.2 ± 0.4 and 16.1 ± 0.6 leaves for G. lucida and G. 

littoralis, respectively. Both species were re-potted within a week of arrival into 

4.5 litre pots (16.5x16.5x19 centimetres) with standard potting mix (“Just” brand, 

supplied by Daltons Ltd., NZ, with controlled release fertiliser). Leaf thickness 

was measured with digital callipers modified to measure a single point on the 

lamina. A total of 80 measurements from four plants of each species were taken at 

0.01 millimetre accuracy. Leaf sectioning by hand was undertaken to compare the 

anatomy of each species. Measurements of cell thicknesses were made using a 

microscope and a stage micrometer. Plant height and number of leaves were 

recorded every three weeks for every plant. 

 

The experiment was conducted over the winter and spring months of July-

September in a glasshouse with the following range of temperature, relative 

humidity, and photosynthetically active radiation (PAR) (Table 3.1). 
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Table 3.1: Mean, minimum and maximum temperature (T), relative humidity (RH), and PAR in 

glasshouse over duration of experiment. 

  T (°C) RH (%) PAR (nm) 

Mean 22.53 44.72 70.64 

Minimum 15.79 27.61 -0.18 

Maximum 27.88 72.20 628.30 

 

3.2.2 Experimental design 

Seedlings were randomly assigned to thirty blocks, until each block had three 

randomly positioned seedlings of each species (Martin & Ogden 2005). Each 

seedling was then randomly assigned to one of three treatments and a subset of 30 

plants (five of each species under each treatment) was randomly chosen for 

monitoring of pot weight using a balance (Denver XL-6100).  

 

Due to the fluctuating availability of canopy water supplies, in situ epiphytes are 

likely to be drought-hardened at a young age which affects future control of water 

loss and performance under drought (Kozlowski & Pallardy 2002). To reflect this 

natural condition, all plants were drought-hardened by a three week period 

without water prior to the beginning of treatments. During treatment, pot weight 

loss and pre-dawn water potentials were monitored with weekly measurements to 

establish soil water deficits in each treatment group and estimate the volume of 

water required to create minimal (1), moderate (2) and severe (3) stress: 

 

 Treatment 1: Control/Minimal stress: watered every seven days with 

the volume of water required to maintain pot weights at the mean 

starting weight. 

 Treatment 2: Moderate stress: watered every seven days with a 

volume of water required to maintained moderate levels of stress; 

estimated to be equivalent to a pre-dawn water potential of -0.2 MPa. 

 Treatment 3: Severe stress: water withheld. 

 

The experiment was ended when 50 % of plants undergoing treatment three 

reached severe predawn wilting (Rahman et al. 1999; Ealson & Richards 2009), at 

which time all treatments were re-watered to saturation. The total duration was 70 

days. 
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3.2.1 Plant harvest and relative growth rates 

Plant harvests were conducted at the beginning and end of the experiment on ten 

randomly selected plants of each species from each treatment (start: nstart=20, end: 

nend=60). Leaves, stems and roots were separated and cleaned of all extraneous 

material. Leaf area was measured using a Li-Cor Li-3100 area meter, fresh and 

dry weights of leaves, stems and roots were measured using a Mettler AE260 

balance. Plant leaf areas were calculated from leaf counts and the average leaf 

areas for each treatment group. 

 

Relative growth rates (RGR) were calculated using the Hunt et al. (2002) software 

tool and the dry weights of leaves, stems and roots from each harvest. Total leaf 

dry weight at the end of the experiment was corrected for the number of leaves 

excised during water potential measurements. 

 

3.2.2 Water relations 

Xylem pressure at predawn (ψwPD) and midday (ψwMD) were measured every seven 

days on a randomly selected subset of 18 plants which consisted of three of each 

species of each treatment. For each measurement a leaf was covered with a 

humidified plastic bag and then excised. Xylem pressure was measured following 

Boyer (1995) using a custom-made pressure-chamber (Scholander et al. 1965). 

For predawn and midday measurements, the leaf weight and pot weight of the 

plant were recorded. Xylem pressure was assumed to be equivalent to the bulk 

water potential of the leaf, ignoring the contribution of apoplasmic solutes. Dawn 

leaf water potentials were regarded as equivalent to the soil water potential. Due 

to the destructive nature of the pressure-chamber measurements, sampling was 

distributed between all plants in each treatment group so that no plant lost more 

than 10 % of its total leaves. 

 

Pressure-volume curves were constructed (Scholander et al. 1965; Boyer 1995; 

Lenz et al. 2006) for six leaves from each species, in each treatment group (n=36) 

at the end of the experiment using the youngest fully expanded leaf that had 

grown since treatment began. The leaf was re-cut under water immediately after 

excision from the plant and placed in a dark, humidified plastic bag overnight. 

Water potential and weight loss measurements were made the next day. The first 
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water potential measurement was taken with the leaves enclosed in a humidified 

bag to minimise transpiration. Subsequent measurements were made periodically 

while the leaves dried on a lab bench. Leaf weights were measured after each 

water potential reading. At the end of the procedure, leaves were oven dried at 

36 °C and weighed to calculate relative water content (RWC) from:  

 

    
     

     
 

 

Where FW= Fresh weight of the measured leaf, DW= dry weight of measured leaf 

and SW= saturated weight of the measured leaf (Smart 1974). Pressure-volume 

curves were constructed from RWC against the inverse of water potential.  

 

Höfler diagrams were constructed to identify the relationships between water 

potential (ψw), pressure potential (ψp), and osmotic potential (ψs), and to derive the 

bulk elastic modulus for each treatment. Osmotic potential was calculated from 

the formula of the straight line section of the pressure volume curve and pressure 

potential was calculated as the difference between water potential and osmotic 

potential. 

 

Bulk elastic modulus (ε) was calculated as per Lambers et al. (2008):  

 

  
   

    
  

 

Where the change in pressure potential is taken from the initial slope of the ψp 

curve, excluding any plateau.  

 

3.2.3 Osmotic potentials 

A representative subset of leaves from the beginning and end of treatment (nstart= 

20, nend=60) were frozen immediately after harvest. When the sampling was 

complete, the leaves were thawed for sap extrusion using a hydraulic press. The 

sap was immediately frozen in liquid nitrogen and stored in a -20 °C freezer until 

measurement with a vapour pressure osmometer (Vapro
®

 5520, Wescor, Utah). 

Griselinia littoralis leaves exuded very small quantities of highly viscous sap 

which in some samples was not a sufficient volume; in these cases, the sap of two 

leaves from the same treatment was combined. The viscous sap also required the 
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j

js cRTΨ

use of the “disc immersion” technique as recommended by the osmometer user‟s 

manual. Results from the osmometer were converted to MPa using the Vant Hoff 

equation (Nobel 2009): 

 

 

 

where              is the osmolality in mmol kg
-1

. 

 

3.2.4 Stomatal conductance and photosynthesis 

Every seven days stomatal conductance (gs), and rates of photosynthesis (A) under 

ambient conditions were measured at midday using a portable photosynthesis 

system within an integrated light source (Li-6400XT, Licor, Nebraska) on a 

randomly selected subset of 18 plants; three of each species of each treatment. 

The first fully expanded leaf was chosen for measurement on each plant. 

Photosynthetically active radiation (PAR), chamber temperature, and humidity 

were set to follow natural levels in the glasshouse so as to record actual levels of 

activity (mean PAR: 282.0±15.5) μmol m
-2

s
-1

, mean leaf temperature: 

26.3±0.15 °C, mean leaf vapour pressure deficit: 1.81±0.02 kPa). 

 

3.2.5 Cuticular conductance  

Cuticular conductance (gc) was calculated (Sack et al. 2003) at the beginning of 

the experiment from measurements of leaf weight loss from ten leaves of each 

species. Leaves were left to dry on a lab bench with measurements of leaf weight, 

relative humidity and temperature every hour for the first seven hours, and then 

every two hours until changes in weight were negligible. Cuticular conductance 

was calculated from: 

   
 

  
 

 

Where T is transpiration (moles lost per m
2
 per second) estimated from the linear 

portion of the weight loss curve and Dl is the water vapour pressure difference 

between the leaf and air, in molar units, calculated from air temperature and 

relative humidity measured using a hygro-thermometer (Extech EasyView™20). 

 


j

js cRTΨ
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3.2.6 13
C measurements 

To compare the water use efficiency of plants under different levels of stress, 

three fully expanded leaves of each species from each treatment (nstart= 6, nend=18) 

were dried at 36 °C and finely ground for measurement of 
13

C discrimination by 

the Waikato Stable Isotope Unit at the University of Waikato. Ratios were 

determined using a Dumas elemental analyser interfaced to an isotope mass 

spectrometer.  

 

This method was also utilised to compare water use efficiency of 14 in situ plants 

exhibiting different stages of root development; from fully epiphytic (no roots to 

the ground) to multiple mature terrestrial roots (Table 3.2). The most recent fully-

expanded leaves from G. lucida individuals were collected for analysis. 

 

Table 3.2: Number of samples from individual G. lucida epiphytes in each root stage that were 

collected and analysed for 
13

C. 

Root stage Number 

None 4 

Early 1 

Multiple 6 

Mature, multiple 3 

 

3.2.7 Statistical analysis 

Physiological data were analysed using Analysis of Variance (ANOVA) and post-

hoc Fisher LSD tests. The assumption of homogeneity of variance was checked 

using the Levene‟s test and the condition of normal distribution was verified using 

the Sharpiro-Wilk test. Assumptions were ignored when sample sizes were over 

30 as per the central limit theorem. Small data sets that did not meet assumptions 

were analysed using non-parametric Kruskal-Wallis ANOVA. Correlation 

between variables was investigated using linear regression and Pearson correlation 

coefficients. The null hypothesis was rejected and statistically significant results 

reported when the p-value was less than 0.05; p values are reported with each 

result.  
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3.3 Results  

3.3.1 Leaf growth 

The leaf area of plants of both species shows decreased growth with increased 

stress (Figure 3.2). The severe treatments have the lowest growth and were 

significantly less than the control treatments for both species (p<0.03), while the 

moderate treatment was most comparable to the control.  

 

 

 

 

 

  

 

 

 

 

 

 

 

3.3.2 Relative growth rates 

Relative growth rates of leaf, shoot, and root growth show a similar reduction in 

growth under severe stress for both species (Figure 3.3), but due to the high 

variability in plant growth forms and sizes, the data set has high standard error and 

is thus not significant.  

Figure 3.2: Leaf growth (area) for Griselinia lucida (closed bars) and G. littoralis (open 

bars) in each treatment group with standard error bars. 
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Figure 3.3: Relative growth rates for Griselinia lucida (closed bars) and G. littoralis (open bars) in 

each treatment group with standard error bars. 

 

 

3.3.3 Time course of water potential, stomatal conductance and 

photosynthesis  

Midday water potential, stomatal conductance (gs) and photosynthesis (A) reduced 

with time under severe stress (Figure 3.4) for both species but the reductions were 

the greatest for G. lucida. The sharp decline in gs and A for G. lucida under severe 

stress around week five aligns with a reduction in predawn water potential (not 

shown). G. lucida activity reduced to almost zero until rewatered (shown by 

dotted line) when it recovered function rapidly. Both species maintain relatively 

constant or rising levels of gs and A in the control group (Figure 3.4).  
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Figure 3.4: Time course of midday water potential (ψwmd), stomatal conductance (gs), and 

photosynthesis (A) for Griselinia lucida (closed symbols) and G. littoralis (open symbols) in 

the control (A, C, E) and severe stress (B, D, F) groups. Dotted line shows rewatering 

(between week 10 and 11) to highlight the rapid recovery by G. lucida. 
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3.3.4 Leaf characteristics 

The mean area, thickness, and fresh weight per unit area (per leaf) of Griselinia lucida were all significantly higher than G. littoralis (p<0.01) but 

specific leaf area was not significantly different (Table 3.3). Measured cuticular conductance of G. lucida was significantly lower than that of G. 

littoralis (p<0.006) (Table 3.3); two outliers were removed from this analysis because the leaves were not mature and were thus skewing the result.  

 

Table 3.3: Mean leaf area, thickness, specific leaf area (SLA), and cuticular conductance (gc) per leaf for Griselinia lucida and G. littoralis. Standard errors are presented in brackets. 

Species Mean area 

(cm
2
) 

Mean thickness 

(mm) 

Mean fresh 

weight (g) per 

cm
2  

SLA (cm
2
g

-1
) gc (mol.m

2
.s

-1
)  

Griselinia 

lucida 

624.5 (30.6) 0.45 (0.01) 0.055 (0.001) 80.9 (2.3) 0.00097 

(0.00013) 

Griselinia 

littoralis 

159.3 (12.2) 0.36 (0.01) 0.042 (0.001) 85.1 (5.0) 0.00166 

(0.00016) 

 

3.3.5 Soil moisture 

Predawn water potential (ψwpd) of the control group was held between zero and -0.4 MPa with 25-50 % volumetric water capacity (θ) of soil water. The 

predawn water potential of moderately stressed plants was kept below -0.17 MPa with G. lucida dropping to a minimum of -0.53 MPa and G. littoralis 

reaching -0.34 MPa. The clearest difference between species was under the severe stress treatment, in which G lucida dropped to -1.25 MPa after 70 

days of no water, while G. littoralis reached a minimum of -0.74 MPa (Figure 3.5). This lower ψwpd in G. lucida influences other measured features and 

thus, stomatal conductance and photosynthesis have been plotted against soil moisture content rather than the time since water was withheld. 
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3.3.6 Stomatal conductance 

The stomatal conductance of both species decreased in response to reduced water 

potentials with G. lucida reaching a minimum of zero and G. littoralis reaching 

0.008 mol H2O m
-2

 s
-1

. While the stomatal response to drought appeared similar 

in the two species, there was some indication that stomatal conductance decreased 

more abruptly and at higher predawn water potentials in G. lucida compared to G. 

littoralis (Figure 3.6). 
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Figure 3.5: Mean volumetric soil moisture (θ) against mean predawn water potential (ψwpd ) for 

Griselinia lucida (closed symbols) and G. littoralis (open symbols) in control (circles), moderate 

(diamonds) and severe stress (triangle) treatment groups. 

Figure 3.6: Mean midday stomatal conductance (gs) against mean predawn water potential 

(ψwpd) for Griselinia lucida (closed symbols) (R
2
=0.70) and G. littoralis (open symbols) 

(R
2
=0.60). Data sets fitted with exponential trendlines. 
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3.3.7 Plant photosynthesis 

The relationship between midday photosynthesis and stomatal conductance was 

similar in the two species, with photosynthesis declining linearly with decreasing 

stomatal conductance in both species (Figure 3.7). The relationship between 

photosynthesis and soil water potential (not shown) was therefore similar to that 

observed for stomatal conductance (Figure 3.6), with photosynthesis declining to 

low levels in both species as predawn water potential approached -1 MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.8 Leaf pressure-volume relationships 

The bulk elastic modulus for G. lucida was significantly higher than G. littoralis 

for the control and moderate treatment groups (Table 3.4) because leaf turgor 

(pressure potential) in these treatment groups decreased faster with declining 

relative water content (Figure 3.8). However, the ε for G. lucida under severe 

stress was significantly lower (p<0.006) than the moderate and control groups and 

similar to the range of ε for G. littoralis (Table 3.4). 

 

Relative water content and water potential at turgor loss point (TLP) for all G. 

lucida treatments were significantly higher (less negative) than G. littoralis 

(p<0.05), and osmotic potential at full turgor was significantly lower (more 

negative) in G. lucida (p<0.05). These variables were not significantly different 

between treatments for either species (Table  3.4). 
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Figure 3.7: Mean midday photosynthesis (A) against mean stomatal conductance (gs) 

fitted with a linear trendline (R2=0.74) showing limited A with reduced gs. 
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Figure 3.8: Examples of Höfler diagrams for each species and treatment showing reductions in 

water, osmotic, and pressure potentials with decreasing relative water content. Closed symbols: 

Griselinia lucida, open symbols: G. littoralis, circles: control, diamonds: moderate, triangles: 

severe. 
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Table 3.4: Mean water relation values (MPa) from pressure-volume analysis of Griselinia lucida and G. littoralis leaves (n=6 per species) under each treatment: bulk elastic modulus 

(ε), relative water content (RWC) at turgor loss point (TLP), water potential (ψw) at TLP and osmotic potential (ψs) at TLP. Standard errors are presented in brackets. 

  Control Moderate Severe 

  G. lucida G. littoralis G. lucida G. littoralis G. lucida G. littoralis 

ε (MPa) 8.09 (0.51) 1.94 (0.62) 6.36 (0.85) 3.25 (0.64) 3.66 (0.61) 3.55 (0.77) 

RWC @ TLP (%) 83.52 (1.31) 75.28 (0.82) 83.83 (1.15) 71.93 (3.32) 82.68 (2.19) 77.36 (0.66) 

ψw @ TLP (MPa) -1.37 (0.07) -1.37 (0.10) -1.39 (0.03) -1.61 (0.09) -1.16 (0.09) -1.56 (0.11) 

ψs @ sat. (MPa) -1.17 (1.14) -0.76 (0.72) -1.12 (0.07) -0.95 (0.07) -0.83 (0.85) -0.79 (0.85) 

 

3.3.9 Osmotic potential 

Osmotic potentials of extracted leaf sap were significantly lower for the pre-treatment group (p<0.02), with no significant species or treatment effects 

(Table 3.5). 

 

Table 3.5: Osmotic potential (MPa) of Griselinia lucida and G. littoralis leaves (n=4-10 leaves) pre- and post-treatment for each group. Standard errors are presented in brackets. 

  Pre-treatment Control Moderate Severe 

  G. lucida G. littoralis G. lucida G. littoralis G. lucida G. littoralis G. lucida G. littoralis 

Mean -0.87 (0.03) -1.10 (0.13) -1.16 (0.03) -1.12 (0.11) -1.19 (0.03) -1.25 (0.11) -1.15 (0.02) -1.29 (0.06) 

Minimum -0.72 -0.85 -1.03 -0.61 -1.00 -0.54 -1.07 -1.10 

Maximum -1.07 -1.46 -1.30 -1.71 -1.36 -1.59 -1.27 -1.42 
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Comparison of the mean water potential results (Figure 3.5) with the mean water potential at turgor loss point (Table  3.4) indicates that G. lucida 

plants reached turgor loss point under the severe stress treatments and G. littoralis plants did not. Observations during the experiment support this 

conclusion with earlier and more frequent occurrences of wilting in G. lucida than G. littoralis plants. However, all G. lucida plants had the majority of 

leaves recover within two or three days after rewatering (Figure 3.9) while G. littoralis appeared to take longer to recover (often more than three days). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B C 

Figure 3.9: A severely stressed Griselinia lucida plant showing turgor loss at the end of treatment (A), recovery one day after rewatering (B), and three days after rewatering (C). 

Note: the leaves missing from centre stem had been excised for water potential measurements. 
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A small number of G. lucida plants (13 %) in the post-treatment harvest exhibited 

dieback in the distal portions of roots with only the core of the root mass still alive. 

The leaves and shoots of these plants still appeared turgid. In contrast, the roots of 

G. littoralis were alive under all treatments. 

 

3.3.10 13
C measurements 

Delta 
13

C analysis of G. lucida and G. littoralis for pre-treatment, control, 

moderate stress, and severe stress (Table 3.6) showed no significant differences.  

 

Table 3.6: Delta 
13

C values for Griselinia pre-treatment (PT), control, moderate stress and severe 

stress leaves. 

  PT Control Moderate Severe 

G. lucida -27.40 (0.33) -26.49 (0.60) -26.57 (0.29) -26.65 (0.45) 

G. littoralis -26.04 (0.15) -26.22 (0.54) -26.60 (0.38) -25.64 (0.23) 

 

 

Delta 13C analysis of G. lucida individuals with different stages of root growth 

also showed no significant differences (Table 3.7). 

 

Table 3.7: Delta 13C values for different stages of Griselinia lucida root development. 

Roots Mean 13C 

None -28.69 (1.28) 

Early -25.59 (0.00) 

Multiple -26.94 (0.80) 

Mature, 

multiple 
-26.58 (0.47) 

 

 

3.3.11 Plant morphology and anatomy 

Leaf sections across the midrib of Griselinia lucida and G. littoralis leaves 

showed similar anatomy. The main differences between species was the thickness 

of cell layers; G. lucida has a thicker hypodermis, epidermis and cuticle on both 

the abaxial and adaxial faces while G. littoralis has a thicker layer of palisade 

cells and a slightly thicker phloem and xylem (Figure 3.10 & Table 3.8). 

 

 



 

81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.8: Measurements of cell thickness (μm) in a section of one 

Griselinia lucida and one G. littoralis leaf. Letters refer to Figure 3.10. 

Cell type G. lucida G. littoralis 

Upper cuticle 12.5 6.25 

Upper epidermis (UE) 18.75 12.5 

Upper hypodermis (UH) 162.5 62.5 

Palisade cells (PA) 37.5 100 

Upper bundle sheath cells 50 25 

Xylem (X) 137.5 143.75 

Phloem (PH) 50 62.5 

Lower bundle sheath cells (LB) 87.5 62.5 

Mesophyll 0 137.5 

Lower hypodermis (LH) 200 100 

Lower epidermis (LE) 18.75 12.5 

Lower cuticle 12.5 6.25 

Total 787.5 731.25 

 

100 μm 

Figure 3.10: Fresh hand section through the midrib 

of a Griselinia lucida leaf stained with toluidine 

blue. Letters refer to measurements provided in 

Table 3.8. 
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3.4 Discussion and conclusions 

This drought experiment applied three levels of water stress to seedlings of 

Griselinia lucida and G. littoralis. In the severe stress treatment, both species 

endured more than two months of drought before exhibiting severe wilting. 

Measurements of acute reductions in stomatal conductance and photosynthesis in 

severely stressed G. lucida plants are consistent with the hypothesis that this 

species is a desiccation postponer. However, Griselinia littoralis also exhibited a 

similar reaction; contrary to the hypothesis that it is a desiccation tolerator. Both 

species had relatively high cell elasticity in the severe treatment and it is 

hypothesised that this response might facilitate tolerance of desiccation in leaves 

that developed during the onset of drought. 

 

Both species exhibited lower leaf growth with moderate and severe stress than in 

the control, which confirms that the seedlings were exposed to three distinct levels 

of desiccation. The greater leaf growth in G. littoralis is likely to be due to the 

significantly smaller leaf sizes of this species.  

 

The observed physiological responses to drought showed that G. lucida under 

severe stress reached lower leaf water potentials, lost leaf turgor at higher relative 

water contents, and had greater reductions in stomatal conductance than G. 

littoralis (Figure 3.4). This difference can be attributed to the larger leaf surface 

area and overall larger size of G. lucida plants at the beginning of the experiment 

resulting in greater water use. Thick layers of cuticle, epidermis and hypodermis 

cells have been suggested to aid different species under stress (e.g. Andrade & 

Nobel 1997; Helbsing 2000; Zotz & Hietz 2001; Martin 2004), but did not 

noticeably benefit desiccation postponement in G. lucida. The reduction in 

stomatal conductance of both species under severe water stress effectively 

restricted photosynthesis and suggests a high sensitivity to tissue desiccation; 

especially in G. lucida (Figure 3.4 & Figure 3.7). A similar sensitivity was found 

in hemiepiphytes plants that had not yet grown terrestrial roots and thus relied on 

canopy soil (Holbrook & Putz, 1996b), and also in a range of herbs, shrubs and 

semi-shrubs that were exposed to severe stress (Galmés et al. 2007). 

  

The bulk modulus of elasticity (ε) in G. lucida decreased with increasing stress; 

representing an increase in the elasticity of cell walls. This adjustment is 
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comparable to the reduced ε in stressed woody terrestrial species reported by Fan 

et al. (1994), and indicates that elastic adjustment is a key method for 

maintenance of turgor pressure under desiccation. The mean ε of G. littoralis 

seedlings was consistently low (1.94-3.55 MPa) across all stress levels and 

comparable to the ε of G. lucida under severe stress (3.66±0.61 MPa). This result 

is contrary to expectations because the thicker leaves of G. lucida suggest greater 

water storage than G. littoralis. 

 

In consideration of the epiphytic lifestyle of G. lucida, it is appropriate to interpret 

the ε of the severely stressed group as most relevant to plants in a natural canopy 

environment. Many authors have noted that water stress is the most limiting factor 

in canopy habitats (e.g. Zotz & Tyree 1996; Martin 2004; Benzing 1990) and thus, 

it can be assumed that epiphytic G. lucida plants have had some exposure to 

drought and therefore have adjusted leaf elasticity. 

 

The ε of both Griselinia species are comparable to the values reported for 

relatively elastic species such as the tropical atmospheric epiphyte Tillandsia 

utriculata (3.3±0.4) (Stiles & Martin 1996) and the tropical hemiepiphyte Clusia 

minor (Holbrook & Putz 1996a); while they are much lower than the ε of three 

tropical epiphytic orchids (8.7-33 MPa) and nine tropical epiphytic ferns (25-60 

MPa) (Sinclair 1983; Hietz & Briones 1998). The relatively high cell elasticity of 

native Griselinia species is likely to benefit cell turgor through the preferential 

loss of water from nonessential cells (Nowak & Martin 1997; Martin 2004) such 

as the hypodermis which has been described as “water tissue” by Oliver (1930) 

and as “dedicated water storage” by Hietz & Briones (1998).  

 

Although the severely stressed G. lucida plants reached lower water potentials and 

rates of stomatal conductance and photosynthesis than G. littoralis, they recovered 

faster from severe stress when the water supply was replenished. A similar result 

was reported by Zhang et al. (2009) in epiphytic ferns that exhibited desiccation 

postponement characteristics followed by rapid photosynthetic recovery after 

rewatering and reflects an important strategy for these species to survive the 

regular drought of epiphytic habitats. 
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The insignificant differences in osmotic potential between stress treatments 

indicate that neither Griselinia species adjusts leaf solutes to maintain turgor 

under drought conditions; this is consistent with Lambers et al. (2008) who 

explain that individual plants are unlikely to exhibit both osmotic and elastic 

adjustment.  

 

The relatively high (not very negative) osmotic potentials at full turgor for both 

Griselinia species (-1.17 to -0.79) are characteristic of values for epiphytic species 

(Martin et al. 2004). The significantly lower osmotic potential of G. lucida 

estimated from pressure volume analysis, when compared to G. littoralis, is a 

similar finding to that of Holbrook & Putz, (1996a) who reported that Clusia 

minor had higher osmotic potentials in trees than epiphytes of the same 

hemiepiphytic species. However, with regards to the current research, this result 

was not confirmed by the direct measurements of leaf symplasmic osmotic 

potentials and may be affected by the longer growth period and larger size of G. 

lucida at the time of measurement. 

 

The root dieback exhibited by G. lucida may be a pruning response to water stress 

and is supported by field observations of G. lucida shedding leaves during 

drought (B.D. Clarkson, University of Waikato, pers. comm. 2011). This suggests 

that G. lucida has more severe mechanisms to postpone desiccation than G. 

littoralis due to the demanding microclimate of epiphytic habitats; however, 

further research is required to test this hypothesis. 

 

Similar relationships between assimilation and stomatal conductance, and analysis 

of 
13

C showed that G. lucida and G. littoralis had comparable water use efficiency 

which did not change with increased stress for either species. However, because 

photosynthesis and growth was reduced under stress, the carbon in measured 

leaves is likely to have been fixed prior to severe stress and any increase in water 

use efficiency may have been undetected.  

 

The water use efficiency of G. lucida with different stages of roots was not 

significantly different. This result suggests that plants without terrestrial roots 

have access to sufficient sources of water and thus, similar water use efficiencies. 

This also aligns with the results of Holbrook & Putz (1996b) who measured 
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comparable water use efficiency in different life forms of strangler hemiepiphytes 

in Venezuela.  

 

In comparison to epiphyte species across the world, G. lucida is relatively 

sensitive to dehydration with evident prioritisation of desiccation postponement 

through reduced photosynthetic function. This is particularly apparent when 

comparing G. lucida to the desiccation tolerant epiphytic members of the 

Bromeliaceae family which can germinate, survive and reproduce in habitats as 

arid as electricity wires (Stiles & Martin 1996; Bader et al. 2009). This finding 

supports the observed distribution of G. lucida (chapter four) in wet temperate 

lowland forests and also its absence in small forest fragments that have relatively 

warm and dry microclimates (chapter two). This is also relevant for the inclusion 

of this species in restoration ecology as it supports the recommendation that future 

reintroductions should be focussed in suitably humid habitats (chapter five).  

 

In summary, the highly elastic cell walls and reductions in photosynthetic function 

indicate that both Griselinia species exhibit features of desiccation tolerance in 

the early stages of drought but primarily rely on desiccation postponement to 

survive low water supply. Greater stomatal closure, root pruning, thicker leaves, 

and faster recovery from stress indicate that G. lucida has more acute 

postponement features than G. littoralis which is in accordance with the 

fluctuating water supply of its forest canopy habitat. 

  



 

86 

 

4 Chapter Four: Biological Flora of New Zealand. 

Griselinia lucida, puka, akapuka, akakōpuka, shining 

broadleaf 

 

Catherine L. Bryan 

 

Department of Biological Sciences 

University of Waikato 

Private Bag 3105 

Hamilton 3240, New Zealand 

 

Abstract 

Information relevant to the biology and ecology of Griselinia lucida (Forst. f.) 

(Griseliniaceae) available through published and unpublished sources is 

assembled and reviewed. Griselinia lucida is a large shrub hemiepiphyte that 

grows primarily in trees of wet, lowland forests. It also occurs in open coastal and 

rocky outcrop habitats. Large, bright green, glossy leaves and grooved terrestrial 

roots make this species a very conspicuous member of New Zealand‟s endemic 

flora. Griselinia lucida has a wide geographic range, extending throughout the 

North Island and much of the South Island. Its distribution is restricted by 

temperature, rainfall, and humidity as it requires high moisture and warm climates 

to establish and thrive. Griselinia lucida is one of two native members of the 

Griselinia genus which has links to five South American species. Griselinia 

lucida is frequently associated with diverse and abundant epiphyte communities. 

The conservation and restoration of both epiphytic and terrestrial populations is 

important to ensure functionally diverse ecosystems and accordingly, it is 

recommended that this species is included in future forest ecological restoration. 

 

 

Keywords: Griselinia; epiphyte; morphology; taxonomy; distribution; 

associations; conservation; restoration; nomenclature; microclimate 
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4.1 Morphological description 

Griselinia lucida is a dicotyledonous shrub or small tree, up to eight metres tall 

that usually occurs as an epiphyte (Alan 1961; Burrows 1999). It is an evergreen 

perennial with bright green glossy leaves (Figure 4.1B), that can reach spans of 

eight metres or more in the canopy of a host tree (Cockayne 1910; 1958; Dawson 

1986; Burrows 1999). It is classified as a hemiepiphyte because of its large light-

brown to grey grooved roots that often descend to the forest floor (Dawson 1966; 

Burns & Dawson 2005) (Figure 4.3 & Figure 4.4). These unique vegetative 

features led Dawson (1966) to describe it as “the most conspicuous shrub epiphyte 

in the New Zealand rain forest”. 

 

Key morphological features are shown in Figures 4.1 - 4.4. Mature leaves are 

thick (Wylie 1954) obliquely-broadly ovate to oblong and rounded at the apex 

(Alan 1961). They are usually asymmetrical about the midrib with the proximal 

portion of each leaf, relative to the branch bearing it, being both shorter and 

thinner than the distal portion (Dawson 1966) (Figure 4.2). Very young leaves are 

not asymmetrical (Dawson 1966) and often have a reddish-purple margin 

(Figure 4.1A).  

 

Leaves are 7-18 cm long, 5-9 cm wide (Dillon & Muñoz-Schick 1993), 0.3-0.7, 

mm thick, and 240-990 cm
2
 in area. They are coriaceous (Cockayne 1958), with 

uniformly dense stomata extending over the glabrous under-surface; resulting in a 

whitish opaque appearance (Dawson 1966). Leaf veins are clearly visible on both 

upper and lower sides, and are slightly raised underneath. The midrib is raised on 

both sides, especially towards the leaf base. Petioles are 2.5-5 cm long (Dillon & 

Muñoz-Schick 1993), with varying degrees of reddish-purple colouring and a 

sheath-like base pressed closely to the stem (Philipson 1967) (Figure 4.1A & 

Figure 4.2). In mature shoots, the axillary buds are frequently separated from the 

petiole because of displacement during growth (Philipson 1967; Bell 2008). 

 

Griselinia lucida is dioecious and thus has either male (staminate) or female 

(pistillate) flowers, in branched inflorescences from October to December. 

Inflorescences are on the end of branchlets with stems (penduncles) 10-15 cm 

long that are covered by apically rounded trichomes. Each small flower in the 
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inflorescence has a stem (pedicel) 1-3 mm long (Dillon & Muñoz-Schick 1993) 

(Figure 4.1D). 

 

Fruiting occurs in infructescences with berry-like (Oliver 1930), oval fruit that are 

4-10 mm long, ca. 5 mm in diameter and ripen a few at a time during winter 

(June-August) (Dillon & Muñoz-Schick 1993; Sullivan et al. 1995; Burrows 1999) 

(Figure 4.1C). The thin, oily, tawny to blackish casing contains a single seed ca. 4 

mm long and ca. 3 mm wide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Griselinia lucida often establishes terrestrial roots from the canopy to the forest 

floor when it is growing directly on host bark or in association with a small 

number of other epiphytic species (Figure 4.3 & Figure 4.4). However, plants that 

establish within large, diverse epiphyte communities may source resources from 

canopy detritus with no need for terrestrial connections. When growing on a tree 

fern, G. lucida roots become intimately incorporated into the fibrous trunk of its 

host.  

A B 

C D 

Figure 4.1: Selected key features of Griselinia lucida. A: Young leaves showing reddish-purple 

petiole and leaf margin and sheath-like petiole base (photo courtesy of Barry O‟Brien), B: Glossy 

leaf with asymmetrical base, C: Unripe fruit on infructescence, D: staminate inflorescence showing 

trichomes, penduncles and pedicels. 
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Rooted plants connect to terrestrial soil during with multiple roots of around three 

millimetres in diameter that descend the host trunk at a rate of approximately 1.2 

m per year (Dawson 1966; Dawson 1986). Young roots have smooth, white tips 

that anchor into crevices and under bark flakes by means of dense short hairs that 

start behind the tip (Figure 4.3A). These hairs persist until cork formation begins, 

at which time the root becomes free hanging (Dawson 1966). Once the root 

reaches the ground it enlarges evenly and develops longitudinally grooved bark 

(Oliver 1930; Dawson 1966) (Figure 4.4). Mature roots can become trunk-like 

with diameters up to 110 cm that often girdle the host using multiple lateral roots 

(Dawson 1966; Duguid 1990) (Figure 4.3B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 

Figure 4.2: Morphological features of Griselinia lucida. Illustration adapted from Cheeseman 

(1914), 1: asymmetrical lamina and sheath-like petiole base, 2: pistillate flower, 3: pistillate 

inflorescence, 4: staminate flower, 5: staminate inflorescence, 6: seed, 7: infructescence. 
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4.2 Anatomy 

Leaf cross sections show that the tissue of G. lucida is markedly differentiated 

(Figure 4.5). Water retention appears to be an important function with a thick 

cuticle covering the small, rhomboidal, upper epidermal cells and an adjacent 

thick layer of hypodermis, or water cells (Oliver 1930; Dawson 1966; Philipson 

1967). Beneath the hypodermis is a layer of oblong palisade cells perpendicular to 

the cuticle. The lower third of the lamina is composed of spongy mesophyll with 

sclerencymatous idioblasts and many air spaces sitting parallel to the surface 

(Oliver 1930). The lower epidermis has a thick cuticle that arches over stomata to 

form stomatal chambers (Oliver 1930; Dawson 1966). In a comparison with its 

terrestrial congener; G. littoralis, G. lucida has thicker layers of cuticle, epidermis 

and hypodermis cells and a thinner layer of palisade (Bryan 2011: chapter three). 

 

Philipson (1967) summarised a range of anatomical features of G. lucida 

including its five-lacunar nodes, and research on wood anatomy by Adams (1949) 

and Li & Chao (1954), reporting the following features: solitary vessels or vessel 

groups of two to four running parallel and adjacent to one another with oblique 

scalariform perforations and an average of 28 bars per perforation plate; rounded, 

oval or spindle-shaped inter-vascular pits; diffuse parenchyma adjacent to vessels; 

bordered fibre pits; and thick fibre walls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

Figure 4.3: A: Young Griselinia lucida roots with white tips descending a host tree, B: Lateral 

roots girdling a host tree (example shown in blue). 
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100 μm 

Figure 4.4: Mature Griselinia lucida roots with longitudinally grooved 

bark. 

Figure 4.5: Hand section of Griselinia lucida leaf at midrib. Letters 

refer to measurements of cell types in Table 4.1. 
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Dawson (1966) explains the anatomy of G. lucida roots to account for the grooved 

pattern in the root bark. Young roots have 8-14 primary xylem around a wide pith. 

Mature roots have lignified pith, primary rays leading out from the xylem and 

secondary xylem with scattered vessels. Secondary phloem layers develop with 

thin walled tissues, persistent fibres, and eventually cork cambia in each 

parenchymatous layer that has ceased to function. The bark grooves are formed in 

mature roots when growing vascular tissues split the bark along the primary rays. 

There is low cambial activity while the root is growing towards the ground 

(Dawson 1966).  

 

4.3 Taxonomy and relationships 

Griselinia lucida is one of only two New Zealand members of Griseliniaceae, 

which has family links in South America (Dillon & Muñoz-Schick 1993). The 

genus name Griselinia was first published in 1775 by J.R. Forster and J.G.A. 

Forster after their first choice of Scopolia was unavailable (Dillon & Muñoz-

Schick 1993).  

 

Familial placement of Griselinia was debated for over two hundred years; the 

following summarises the history of this genus, as presented by Dillon & Muñoz-

Schick, (1993). Griselinia has been placed in Polygamia-Dioecia (Forster & 

Forster 1775), Pentandria trigynia (Gmelin 1791; Schultes 1820; Sprengel 1825; 

Dietrich 1839), Euphorbiaceae (Sprengel 1817; Agardh 1823), Juglandaceae 

Table 4.1: Approximate thicknesses of different Griselinia lucida cell types. Letters refer to Figure 

4.5. 

Cell type μm 

Upper cuticle 12.5 

Upper epidermis (UE) 18.75 

Upper hypodermis (UH) 162.5 

Palisade cells (PA) 37.5 

Upper bundle sheath cells 50 

Xylem (X) 137.5 

Phloem (PH) 50 

Lower bundle sheath cells (LB) 87.5 

Lower hypodermis (LH) 200 

Lower epidermis (LE) 18.75 

Lower cuticle 12.5 

Overall thickness at midrib 787.5 
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(Kunth 1892), Euphorbiaceae (Reichenbach 1837), Araliaceae (Endlicher 1850), 

Cornaceae-Aucubeae (Hooker 1852), and Cornaceae (Cronquist, 1981; Thorne, 

1968). Philipson (1967) questioned the placement in Cornaceae and suggested in 

1977 that it be part of the group Unitegminae. Takhtajan (1980) placed Griselinia 

in the monotypic family Griseliniaceae which was later supported by Thorne 

(1992), Dillon & Muńoz-Schick (1993), and Chandler & Plunkett (2004). 

 

Ordinal placement has also been complicated with classifications allying 

Griselinia with either Cornales or Apiales because physiological and biochemical 

features are similar to those in Cornales but floral vasculature and wood anatomy 

is similar to the Apiales (Chandler & Plunkett 2004). Studies by Plunkett et al. 

(1996; 1997) and Plunkett & Lowry (2001) strengthened the argument for 

affinities with Apiales but as part of an out-group or “Apialean alliance” with 

Aralidium, Melanophylla, Pennantia and Torricellia.  

 

Therefore, the current taxonomy of the species Griselinia lucida is in the small 

monotypic family Griseliniaceae in the order Apiales, as published by Chandler & 

Plunkett (2004) and Plunkett et al. (2004). Griselinia is suggested to have 

Paleotropical origins (Dillon & Muńoz-Schick 1993) and the first appearance of 

both pollen and leaf fossils for this genus are in the Miocene (Mildenhall 1980; 

Pole 2008). 

 

In New Zealand, the genus Griselinia contains G. lucida and G. littoralis; in Chile 

there is G. jodinifolia, G. carlomunozii; while G. scandens, G. racemosa and G. 

ruscifolia grow in both Chile and Argentina, and G. ruscifolia also occurs in 

south-eastern Brazil. The New Zealand species grow up to 15 metres tall while the 

South-American species seldom exceed two metres in height (Dillon & Muñoz-

Schick 1993). G. jodinifolia is cultivated by some nurseries in New Zealand. G. 

littoralis primarily differs from G. lucida by its longer petioles and predominantly 

terrestrial habitat but it also grows epiphytically (Cockayne 1910) in high altitude, 

wet forests such as the cloud forests of Mount Taranaki (Clarkson 1986).  

 

4.4 Nomenclature 

Griselinia lucida was first described in 1786 by J.G.A. Forster in Florulæ 

Insularum Australium Prodromus (75) from a type specimen in Queen Charlotte 
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Sound, that is stored in the herbarium of the Royal Botanic Gardens, Kew, U.K. 

(Allan 1961). 

 

The name Griselinia was chosen for this genus in honour of Francesco Griselini 

(1717 - 1783), a naturalist of Venice (Dillon & Muñoz-Schick 1993) and was first 

proposed by J. R. Forster and J. G. A. Forster in Characteres Generum Plantarum 

in 1775 (Dillon & Muñoz-Schick 1993). The specific epithet lucida stems from 

the word lucidus, meaning shining (Eagle 2006); in reference to its glossy leaves.  

 

The Māori names for this plant are puka, akapuka, akakōpuka, and pukatea 

(Landcare Research 2011c). The use of “puka” refers to broad leaves (Laing & 

Blackwell 1907) and “aka” refers to the vine of any climbing plant (Williams 

1971); in combination, these words describe a vine with broad leaves. The 

common English name for G. lucida is shining broadleaf (e.g. Matthews 1979). 

 

A variety of Griselinia lucida; Griselinia lucida var. marcophylla was described 

by Hooker in his Handbook of New Zealand Flora (1864, p105) from specimens 

collected by A. Cunningham in the Bay of Islands and Sinclair in Auckland: “very 

robust. Leaves almost orbicular, almost cordate at the base (perhaps only young 

shoots of G. lucida)” (Allan 1961). This variety is also noted by Kirk (1869) as 

“merely a state of the species to which it is referred” that is “usually found 

growing on pohutukawa and other littoral trees”.  

 

4.5 Reproductive Biology 

As noted in Morphology, G. lucida is dioecious. The small flowers of pistillate 

inflorescences lack petals (Dillon & Muñoz-Schick 1993) (Figure 4.2) and have 

unilocular ovaries, three short styles, sepals ca. 2 mm long and 0.2 mm wide, 

dorsal traces, and ventrals that run up the ovary wall to supply the styles 

(Philipson 1967). Staminate flowers are reflexed at antheis, have a campanulate 

hypanthum, and are quick to fall off. They have five yellow to greenish petals 1.2-

1.5 mm long, five sepals ca. 0.4 mm long that are opposite the five stamens of 

0.5-0.6 mm in length (Dillon & Muñoz-Schick 1993). 

 

There are no documented observations of pollen dispersal mechnisms but given 

the size of the flowers, wind or insect pollination is most likely. Pollen grains are 



 

95 

 

ellipsoidal, aperturate and striated with a complete tectum. They are flattened at 

the poles and have a very indistinct pore (Dillon & Muñoz-Schick 1993).  

 

After fertilisation the flower ovules develop into berry-like fruit with one seed per 

fruit. Seeds are 3.85±0.2 mm long, 2.9±0.2 mm wide and weigh ca. 0.0085 g 

(Burrows 1999). The seed is adapted to dispersal by birds such as kereru 

(Hemiphaga novaeseelandiae), bellbirds (Anthornis melanura), tui 

(Prosthemadera novaeseelandiae), whiteheads (Mohoua albicilla), pied tits 

(Petroica macrocephala), and silvereyes (Zosterops lateralis), as it will not 

germinate until the flesh is removed (McEwen 1978; Moeed & Fitzgerald 1982; 

Fitzgerald & Fitzgerald 1983; Burrows 1999). Burrows (1999) found that optimal 

germination is achieved under maximum daylight and moist conditions because 

the seeds are very sensitive to drying out.  

 

4.6 Geographic distribution 

Griselinia lucida is endemic to New Zealand, most commonly occurring as an 

epiphyte in North Island forests and as both an epiphyte and rupestral in a limited 

area of the South Island (Cockayne, 1906; Wardle, 1964; Dawson, 1966; 1986; 

Burrows, 1999). It is also common as a terrestrial shrub on volcanic offshore 

rocky islands such as Rangitoto, Hen, and Little Barrier (Dawson 1966; Wright 

1978; Julian 1992) (Figure 4.6 & Figure 4.7).  

 

The geographic distribution in Figure 4.6 is based on an extensive collation of G. 

lucida records and shows that this species is concentrated on the west coast of 

New Zealand with relatively low abundances on the east coast of both islands. It 

penetrates further inland in the North Island because of the less mountainous 

terrain and warmer temperatures. Figure 4.7 shows the observed and predicted 

distribution based on presence and absence data from the New Zealand Forest 

Service Ecosurvey plots in the National Vegetation Survey Database (Landcare 

Research 2011a). The associated Derived Biodiversity Information database 

(Landcare Research 2011a) indicates that the probability of G. lucida naturally 

occurring is highest with a mean annual temperature of 14-16 °C, vapour pressure 

deficits of less than 0.5 kPa, mean solar radiation of around 13 MJ/day/m
2
 and a 

ratio of mean annual rainfall to potential evapotranspiration of 3.9-4.5. The most 
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significant correlate for explaining variation in G. lucida distribution is mean 

annual temperature (Landcare Research 2011a). This observed and predicted 

distribution (Figure 4.7) is consistent with the collated distribution of G. lucida 

(Figure 4.6) which shows that highest abundances in the warmer areas of New 

Zealand that have moderate solar radiation and moderate-high rainfall and 

humidity (low vapour pressure deficit). 

Figure 4.6: Geographic distribution of Griselinia lucida from Bryan (2011) (CB), Auckland 

Museum herbarium (AK), University of Otago herbarium (OTA), Museum of New Zealand - Te 

Papa Tongarewa herbarium (WELT), National Forestry herbarium (NZFRI), New Zealand 

Vegetation Survey Databank (NVS), Clarkson & Clarkson (1991) and Whaley et al. (2001) 

(PNA survey). 
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4.7 Environmental requirements and limitations 

Griselinia lucida, like many hemiepiphyte species, has variable establishment 

modes (Knightbridge & Ogden 1998). It primarily grows epiphytically in the 

canopy of old growth lowland forests with high rainfall (Oliver 1930; Burrows 

1999) but also in coastal cliff and rock habitats (Figure 4.8) (Oliver 1930; 

Figure 4.7: Observed and predicted geographic distribution of Griselinia lucida. A: Observed 

distribution of G. lucida with predicted natural occurrence based on presence and absence. B: 

Reliability of predictions in A; low reliability is related to a lack of survey data and a lack of forest 

cover. Figures courtesy of Landcare Research Derived Biodiversity Information (2011a) database. 
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Cockayne 1958; Wardle 1991; Burrows 1999). Epiphytic habitats are often 

described as severe because of high insolation, vapour pressure deficits, and wind 

speeds; as well as fluctuating water and nutrient supplies, and poor physical 

stability (Matelson et al. 1993; Holbrook & Putz 1996a; Benzing 1990). These 

rigorous conditions are also present in the terrestrial and rupestral habitats of G. 

lucida. This species is uncommon in small forest patches that have been affected 

by fragmentation and anthropogenic disturbance (Bryan 2011: chapter two). This 

absence is suggested to be due to the warmer and drier canopy microclimates in 

these small patches; especially if they are in a matrix of urban landuse. In support 

of this hypothesis, the results of a nine month monitoring period showed that 

temperatures in urban forests were in the upper range of those recorded in 

nonurban and coastal habitats while vapour pressure deficits (VPD) were highest 

in urban forests (Bryan 2011: chapter two; Clarkson 2011) (Table 4.2). 

 

Table 4.2: Range of mean temperatures and VPD in coastal, urban and nonurban epiphyte habitats. 

Habitat type Mean temperature (°C) Mean VPD (kPa) 

Coastal (n=1) 12.5 0.13 

Small urban forest (n=3) 11.8-12.3 0.19-0.23 

Large nonurban forest (n=2) 10.5-11.4 0.11-0.12 

 

Corresponding to its open habitats, G. lucida has a requirement for high levels of 

insolation and rarely survives forest floor conditions if it is dislodged from the 

canopy. Plants growing in coastal habitats, including G. lucida, are generally 

tolerant of wind and salt spray (Cockayne 1958), but can be damaged by “salt 

scorching” in very strong coastal winds (Gillham 1960). G. lucida is sensitive to 

frost and cold temperatures with a leaf freezing resistance of 
-
7°C (Wardle 1991; 

Burrows 1999). In the Waikato region, it commonly grows in trees on upper 

hillslopes and ridge tops but is not present in basins where temperature inversions 

prevail. G. lucida is widely considered to be able to withstand drought (e.g. 

Ogden 1976) and a desiccation tolerance experiment on young G. lucida plants 

(Bryan 2011: chapter three) showed that this species endures water stress through 

reduced stomatal and photosynthetic activity and increased cell wall elasticity. 

This desiccation postponement facilitates fast recovering when its water supply is 

restored. However, in contrast to expectations, G. lucida does not exhibit a 

significantly greater ability to endure water stress than its terrestrial congener G. 

littoralis. 
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It is speculated that G. lucida only extends large roots to terrestrial soil if the 

resources of its habitat become inadequate for further growth. This hypothesis is 

supported by water-use efficiency measurements that were not significantly 

different between plants with and without terrestrial roots; as determined by a 
13

C 

discrimination of in situ G. lucida (Bryan 2011: chapter three). Terrestrial roots 

can often be seen when G. lucida occurs in small canopy communities or, as 

shown in Figure 4.8, when it is on rock outcrops adjacent to the mainland. If the 

terrestrial connection does not form, G. lucida relies on regular rainfall, mist, and 

fog for moisture (Oliver 1930; Burrows 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.8: Large Griselinia lucida individual shown from above and beneath growing on a 

limestone outcrop in Raglan harbour, Waikato. White arrows show a large root that extends 

under the rock stack to the soil of the mainland. 
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4.8 Plant communities and associations 

As mentioned above, Griselinia lucida occurs primarily in epiphytic habitats; 96 % 

of 54 plants recorded in Waikato and Taranaki regions (C.L. Bryan, unpublished 

data); but it also grows terrestrially along coastlines and on islands (Oliver 1930; 

Cockayne 1958; Wardle 1991; Burrows 1999). The following provides 

information about the associated plant communities in each of these habitats. 

 

In an epiphytic habitat, G. lucida generally requires a source of “canopy soil” for 

successful germination and to support its early growth (Oliver 1930). Accordingly, 

it is commonly found growing amongst other epiphyte species; especially the nest 

species Collospermum hastatum and Astelia solandri which have long linear 

leaves that efficiently trap detritus and water (Burns & Dawson, 2005). These 

communities frequently occur on large, well-established host trees in relatively 

undisturbed forests. Large hosts are correlated to diverse and abundant epiphyte 

communities primarily because they provide a large surface area for epiphytes to 

perch on, good access to light and moisture, and a long time for species to 

accumulate (Knightbridge & Ogden 1998; Hofstede et al. 2001; Benzing 2004; 

Cummings et al. 2006; Flores-Palacios & Garcia-Franco 2006; Laube & Zotz 

2006). Comparison of host tree size (diameter) with G. lucida abundance shows 

that large host trees are important for the population abundance of this species 

(Figure 4.9).  
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Figure 4.9: Percentage of trees in seven size classes hosting Griselinia lucida (n=399). 
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Epiphytic G. lucida was found to be most frequently associated with nest 

epiphytes (C. hastatum and A. solandri), and the ferns Microsorum pustulatum 

and Pyrrosia eleagnifolia (C.L. Bryan, unpublished data) (Table 4.3). G. lucida 

was found with conspecific individuals on less than six percent of occasions (C.L. 

Bryan, unpublished data). This may reflect the specialised and scarce nature of the 

niche that this species occupies and the associated intraspecific competition for 

habitat and resources that limits the number of plants occurring on each host tree.  

 

Table 4.3: The epiphyte and vine species associated with (occurring on the same host tree) 

Griselinia lucida and the frequency of occurrence (n=54). Species that occurred in less than two 

percent of records were primarily accidental epiphytes and were excluded from this table. 

Associated species Occurrence with G. lucida (%) 

Collospermum hastatum 80 

Microsorum pustulatum 56 

Astelia solandri 43 

Pyrrosia eleagnifolia 43 

Metrosideros fulgens 39 

Asplenium flaccidum 39 

Asplenium polyodon 39 

Earina mucronata 39 

Ripogonum scandens 35 

Blechnum filiforme 33 

Microsorum scandens 20 

Metrosideros diffusa 19 

Freycinetia banksii 17 

Earina autumnalis 15 

Tmesipteris elongata 15 

Metrosideros perforata 13 

Pittosporum cornifolium 9 

Winika cunninghamii 7 

Asplenium oblongifolium 7 

Hymenophyllum sanguinolentum 7 

Huperzia varia 7 

Brachyglottis kirkii 6 

Griselinia lucida 6 

Lygodium articulatum 6 
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Epiphytic G. lucida grows on a range of native and non-native tree species with 

an evident preference for large branches and wide-branch angles. In the Waikato 

and Taranaki regions of the North Island, the most frequent host trees for G. 

lucida are pukatea (Laurelia novae-zelandiae) and tawa (Beilschmiedia tawa) 

(C.L. Bryan, unpublished data; n=54) (Table 4.4). These host species often 

support diverse and abundant epiphytic assemblages but on the occasions where G. 

lucida does not grow in such communities it is often directly rooted in the thick 

stringy bark of trees like totara (Podocarpus totara) or the fibrous root mass of 

tree ferns. G. lucida has also been recorded growing on exotic trees such as Pinus 

radiata and Abies sp. (Burrows 1994; 1996). 

 

Table 4.4: Frequency of tree species hosting Griselinia lucida (n=54). 

Host species % 

Laurelia novae-zelandiae 25 

Beilschmiedia tawa 22 

Knightia excelsa 10 

Litsea calicaris 8 

Dysoxylum spectabile 6 

Alectryon excelsus 4 

Dacrydium cupressinum 4 

Melicytus ramiflorus 4 

Podocarpus totara 4 

Tree fern spp. 4 

Nestegis spp. 2 

Phyllocladus trichomanoides 2 

Prumnopitys ferruginea 2 

Sequoia sp. 2 

Vitex lucens 2 

 

Griselinia lucida is not a parasite or a strangler (see Todzia 1986) but it does 

affect the long term health and survivability of its host tree. A large epiphytic G. 

lucida can grow to significant weight and cause limb damage or even death to its 

host if it outgrows the host‟s capacity for support. This epiphyte also intercepts 

sunlight, atmospheric nutrients and moisture that would have otherwise benefited 

the host. However, host trees may also benefit from the presence of G. lucida and 

its associated epiphyte communities, as international research has found host 
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species in both tropical and temperate forests that can access the resources of an 

epiphyte community through adventitious roots from the branches (Nadkarni 

1981). This phenomenom creates an important link between hosts and epiphytes 

but has not yet been investigated in New Zealand forests. 

 

The rupestral substrates that G. lucida inhabits include volcanic basalt on offshore 

islands such as Rangitoto. A survey of vegetation communities on Rangitoto 

Island (B.D. Clarkson, University of Waikato, unpublished data) showed that 

patches dominated by both G. lucida and pohutukawa (Metrosideros excelsa) 

frequently supported species that are commonly found as epiphytes in forest 

ecosystems elsewhere such as Hymenophyllum spp., Microsorum pustulatum, 

Pyrrosia eleagnifolia, and Asplenium oblongifolium (Table 4.5). 

 

Table 4.5: Species associated with Griselinia lucida in vegetation communities dominated by 

either Metrosideros excelsa (M) or G. lucida (G) and the frequency (%) of their occurrence in 

measured plots on Rangitoto Island (n=10). Data from B.D. Clarkson, UoW, unpublished data. 

Associated species M % G % 

Metrosideros excelsa 100 - 

Astelia banksii 80 60 

Myrsine australis 80 60 

Coprosma robusta 60 60 

Hymenophyllum spp. 60 60 

Leucopogon fasciculatus 60 60 

Microsorum pustulatum 60 60 

Pyrrosia eleagnifolia 60 60 

Asplenium oblongifolium 60 40 

Cyathodes juniperina 60 40 

Brachyglottis kirkii 60 20 

Trichomanes reniforme 40 20 

Asplenium flabellifolium 40 - 

Ctenopteris heterophylla 40 - 

Huperzia varia 40 - 

Asplenium flaccidum 40 - 

Coprosma lucida 20 - 

Earina mucronata 20 - 

Geniostoma rupestre 20 - 

Olearia furfuracea 20  - 
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As no systematic survey of plant communities containing G. lucida has been 

undertaken in New Zealand, further examples from published and unpublished 

sources are provided in the following section. They are presented from north to 

south in two degree latitudinal divisions to illustrate the country-wide pattern of 

plant communities and associations. 

 

34-36° S 

In forests of the North Cape, G. lucida grows epiphytically along with Asplenium 

flaccidum, A. oblongifolium, A. polyodon, Hymenophyllum demissum, H. 

dilatatum, H. flabellatum, H. flexuosum, H. rarum, H. revolutum, H. 

sanguinolentum, Phymatodes diversifolium, P. scandens, Rumohra adiantiformis, 

Tmesipteris elongata, T. reniforme, T. venosum, Calystegia marginata, C. 

tuguriorum, Cassytha paniculata, Clematis paniculata, Freycinetia banksii, 

Muehlenbeckia australis, M. complexa, Parsonisa capsularis, P. heterophylla, 

Passiflora tetrandra, Ripogonum scandens, Rubus australis, R. cissoides, 

Ichthyostomum pygmaeum, Drymoanthus adversus, Earina mucronata, Earina 

autumnalis, Winika cunninghamii, Astelia solandri, Collospermum hastatum, 

Pittosporum cornifolium, and Pyrrosia eleagnifolia (Gardner & Bartlett 1980).  

 

36-38° S 

In scoria fields of the Auckland volcanoes, G. lucida grows abundantly in 

association with Litsea calicaris, Brachyglottis repanda, Alectryon excelsus, 

Pseudopanax lessonii, Collospermum hastatum, Peperomia urvilleana, Astelia 

banksii, Cheilanthes humilis, C. distans, Pellaea falcata, P. rotundifolia, 

Asplenium flabellifolium, Anarthropteris lanceolata, Hymenophyllum flexuosum 

and Trichomanes endlicherianum (Esler 1991). On limestone rock outcrops in 

Raglan harbour, G. lucida grows alongside Pittosporum cornifolium, Astelia 

banksii, and Collospermum hastatum (F.M. Clarkson, University of Waikato, 

unpublished data). 

 

38-40° S 

Griselinia lucida is found epiphytically in forest on the summit of Mount 

Ngongotaha and adjacent hills, in association with Pittosporum cornifolium, and 

Astelia solandri. Prior to the Tarawera eruption (1886), these three species also 

grew on pohutukawa trees on the shores of Lake Tarawera (Kirk 1872). In semi-
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coastal forest of Mahia, G. lucida is a prominent epiphyte that grows alongside 

Freycinetia banksii, Metrosideros colensoi, M. diffusa and Ripogonum scandens 

(Whaley et al. 2001). At the Mangaotaki Bluffs and in the wider Waitomo district 

G. lucida has been recorded growing on limestone outcrops. Common associates 

include Astelia solandri, Collospermum hastatum, Hebe stricta, Coprosma 

robusta, Phormium cookianum, and Pittosporum huttonianum (B.D. Clarkson, 

University of Waikato, unpublished data). In the Awakino Gorge G. lucida occurs 

as an epiphyte on pukatea and tawa as well as a rupestral on sandstone and 

siltstone cliffs. Cliff associates include Phormium cookianum, Coprosma robusta, 

Coriaria arborea, Leptospermum scoparium, Buddleja davidii, Machaerina 

sinclairii, Elatostema rugosum, and Freycinetia banksii (B.D. Clarkson, 

University of Waikato, unpublished data). In coastal forest of northern Taranaki, 

G. lucida is associated with Metrosideros spp., Melicytus ramiflorus, Melicope 

ternata, Dicksonia squarrosa, Macropiper excelsum, Geniostoma rupestre var. 

ligustrifolium, Corynocarpus laevigatus, Fuchsia excorticata, Dysoxylum 

spectabile, Brachyglottis repanda, Ripogonum scandens, and Coprosma spp. 

(Wilmshurst et al. 2004). The semi-coastal forest of the Kaitake Range exhibits a 

prominent population of epiphytic G. lucida in association with Collospermum 

hastatum, Freycinetia banksii, Astelia solandri, Blechnum filiforme, Earina 

mucronata, Tmesipteris elongata, Asplenium oblongifolium, A. polyodon, 

Metrosideros fulgens, Microsorum scandens, Pyrrosia eleagnifolia, and 

Cardiomanes reniforme (Clarkson 1985). 

 

40-42° S 

Epiphytic G. lucida grows in association with Ripogonum scandens, Freycinetia 

banksii, Rubus cissoides, Collospermum hastatum, and Astelia solandri in 

northern Horowhenua forests (Duguid 1990). At Pukerua bay near Wellington, 

scattered G. lucida occur at the foot of coastal greywacke bluffs in association 

with Corynocarpus laevigatus and Olearia paniculata (Towns & Elliot 1996). 

The Marlborough Sounds region hosts G. lucida, Astelia solandri, Phormium 

colensoi, Arthropodium cirratum, Coprosma repens, Entelea arborescens, 

Corynocarpus laevigatus, and Hebe speciosa, on coastal rocks and cliffs 

(Cockayne 1906; Cockayne 1958). In the Edgecombe Point Scenic Reserve, also 

in Marlborough, G. lucida grows epiphytically in association with Freycinetia 

banksii, Ripogonum scandens, Metrosideros spp., and Asplenium oblongifolium; 
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and as a rupestral on greywacke and schist with Olearia paniculata, Kunzea 

ericoides, Ozothamnus leptophyllus, and Cortaderia turbaria (Walls 1984). G. 

lucida can also be found on rocky outcrops of Pepin Island, alongside 

Drymoanthus adversus, Peperomia urvilleana, Parietaria debilis and Dysoxylum 

spectabile (McLintock 2001). 

 

42-44° S 

Griselinia lucida grows terrestrially in coastal forest near Kaikoura, alongside 

Freycinetia banksii, Melicope ternata, Lophomyrtus bullata, Metrosideros 

colensoi, M. perforata, Nestegis cunninghamii, and Rhopalostylis sapida (Wardle 

1961). In the Napenape reserve of northern Canterbury, G. lucida grows on 

limestone substrate along with Dodonea viscosa, G. littoralis, Macropiper 

excelsum, Myrsine australis, Olearia paniculata, Coprosma robusta, Hebe 

salicifolia, and Myoporum laetum (Department of Conservation 2002). On the 

opposite coast, in the Westland National Park, G. lucida occurs epiphytically in 

warm sites in association with Earina autumnalis, E. mucronata, Winika 

cunninghamii, Asplenium polyodon, A. flaccidum, Ichthyostomum pygmaeum, 

Pyrrosia eleagnifolia, and Luzuriaga parviflora (Wardle 1979). In both 

Canterbury and Westland, there is a notable overlap of G. lucida and G. littoralis 

distributions (Wardle 1977; Department of Conservation 2002). 

 

46-48° S 

Griselinia lucida has been reported in Southland (New Zealand Biodiversity 

Recording Network 2011) but these records are unsupported by herbarium 

vouchers and are doubtful (B. Rance, Department of Conservation, pers. comm. 

2011). Accordingly these records have not been included on the distribution map 

(Figure 4.6). 

 

4.9 Chemistry 

Griselinoside, an iridoid glucoside, is produced by Griselinia lucida (Jensen & 

Nielsen 1980). Iridoid glucosides are glycosides in which the bound sugar is 

glucose (Crellin et al. 1990). Glycosides have deterrent properties for herbivores 

but may attract specialist insects (Lüttge 2010). This is supported by many 

observations of insect herbivory on G. lucida and very few of mammalian 
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browsing (see Other biotic and abiotic roles). G. lucida also produces the fatty 

acid petroselinic acid but lacks proanthocyanidins and ellagic acid; features which 

have been useful in taxanomic classification (Bagci 2007). 

 

4.1 Cytology 

The chromosome number of Griselinia lucida is n=18 (Hair & Beuzenberg 1959; 

Federov 1969; Dillon & Muñoz-Schick 1993). 

 

4.2 Other biotic and abiotic roles 

Biotic resources and abiotic processes 

Epiphytes such as G. lucida contribute to species richness and play a substantial 

role in the processes and interactions that make an ecosystem function 

(Cummings et al. 2006). G. lucida and its associated epiphytic communities 

provide habitat, nectar, water, fruits and nesting materials for invertebrates and 

birds (Nadkarni 1989; Benzing 1990; Gentry 1991; Nadkarni 1992; Affeld 2008; 

Cruz-Angón et al. 2009). Affeld (2008) found 397 invertebrate species in a survey 

of 120 epiphytic assemblages in forests of the west coast of the South Island, 

while O‟Donnell & Dilks (1994) found that up to nine percent of observed 

feeding by birds in South Westland was on epiphytes. Epiphytes can also 

constitute a large proportion of photosynthetically active material (Hofstede et al. 

2001) and contribute to abiotic processes such as water fluxes and nutrient cycling 

(Gentry 1991; Holscher et al. 2004). However, because research on the role of 

epiphytes in ecosystems is limited, especially in New Zealand (Zotz 2005; Affeld 

2008), the extent of their biotic and abiotic interactions is likely to currently be 

unrealised.  

 

Predation 

The North Island kokako browses on G. lucida leaves and buds (Powlesland 1987) 

but insects appear to cause more frequent damage (Figure 4.10) as they are more 

abundant than the kokako. Insects that have been reported in association with this 

species include the mite Tropacarus bakeri (Collyer 1966), the Australasian green 

shield bug Glaucias amyoti (Martin 2010a), members of Hemiptera, Coleoptera, 

Blattodea, and Araneae orders (Michel et al. 2008), the exotic leaf miner 
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Phyllonorycter messaniella (Brockerhoff et al. 2010), and the native leaf miner 

Peristoreus discoideus; which only attacks Griselinia species (Kuschel 1971).  

 

The moth larvae of Apoctena spatiosa browse only on Griselinia (Dugdale 1990), 

while the trunk and branches of G. lucida can be damaged by the burrowing and 

grazing of the puriri moth Aenetus virescens (Kirk 1872; Martin 2010b). Also, 

seed predation by larvae of the native moth Heterocrossa gonosemana has been 

documented in two cases; one with a minimal effect (6 % of the sample) (Sullivan 

et al. 1995), and the other with “a moderate number in each panicle damaged” 

(Burrows 1999). Possums (Trichosurus vulpecula) do not prefer G. lucida; 

possibly due to natural deterrents (see Chemistry, above) (Julian 1992). No 

primary literature was found with mention of browsing by goats (Capra hircus) or 

deer (Cervus spp.). 

 

 

Mycorrhizae  

Endotrophic mycorrhizas were reported by (Baylis 1959) in the congener of G. 

lucida; Griselinia littoralis, which was found to lead to higher phosphorus and 

lower nitrogen levels than that of non-mycorrhizal plants. 

 

Figure 4.10: Leaf of epiphytic Griselinia lucida showing insect herbivory. Scale is in centimetres. 
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4.3 Human uses 

Historically, Māori used the tough wood of G. lucida for making cartridge holders 

(Best 1907), and the inner bark has been suggested to have soothing 

characteristics, similar to those of G. littoralis, for skin rashes and eruptions 

(Stark 1979). G. lucida is popular for cultivation in gardens, often alongside G. 

littoralis; Cockayne (1910) described G. lucida as “a most handsome shrub for the 

open border”. 

 

4.4 Conservation and restoration 

Griselinia lucida should be considered in both conservation and restoration 

projects because it is a part of New Zealand‟s considerable diversity and 

abundance of epiphytes (Zotz 2005; Affeld 2008), that contribute to the biotic and 

abiotic processes of functional ecosystems (Burns & Dawson 2005; Bryan 2011: 

chapter one).  

 

The lowland and coastal habitat of G. lucida has been significantly reduced and 

transformed, and while the species is still well represented in public conservation 

land, national parks and scenic reserves, the small, disturbed forest patches that 

are scattered throughout the country generally do not support epiphytic G. lucida 

populations. This absence is likely due to the young second-growth nature of 

these forests and their relatively high temperatures and low humidity. These 

disturbed conditions inhibit the development of epiphytic communities and 

canopy soil (Bryan 2011: chapter two). Forest restoration within, and revegetation 

between these small patches will improve the microclimates for all epiphytes and 

aid the natural recovery of G. lucida populations, however, direct reintroductions 

may be needed to accelerate the return of G. lucida in isolated forest remnants 

(sensu Cummings et al. 2006).  

 

Currently, Griselinia lucida has been recommended and used in terrestrial 

restoration plantings (e.g. Gay 1999; Auckland Regional Council 2004; Blaschke 

et al. 2009) but there are no documented records of restoring epiphytic 

populations of this shrub species. Further research and experimentation is required 

to establish efficient reintroduction techniques for G. lucida (e.g. Burns et al. 

2009). The most suitable trial forests are those that are undergoing ecological 
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restoration and have existing nest epiphyte populations (Bryan 2011: chapter five). 

Examples of such sites in Hamilton include Hammond Bush and Claudelands 

Bush. 

 

Griselinia lucida has the potential to be used as a bioindicator (see Barthlott et al. 

2001) because it generally grows as a part of epiphyte communities that occur in 

old growth forests with low levels of disturbance. Therefore, the presence of G. 

lucida in a forest indicates environmental suitability for a range of epiphyte and 

vine species. Also, the successful reintroduction of G. lucida would indicate that 

populations of associated species could also be restored. Setting targets and 

monitoring progress of G. lucida reintroductions would be crucial for 

understanding how to successfully return this species to appropriate forest 

ecosystems (sensu Lake 2001; Cummings et al. 2006), and could lead to the 

widespread inclusion of G. lucida and other epiphytes in ecological restoration. 

 

4.5 Conclusions 

The epiphytic status of Griselinia lucida has been discussed since 1930 when 

Oliver classified it as a typical epiphyte, i.e. a species which is habitually 

epiphytic. The rupestral and terrestrial populations of the South Island mean that 

this species does not meet the obligate classification of Benzing (2004); “every 

member of a population of an “obligate” epiphyte roots on bark”, or Ibisch (1996, 

in Zotz 2005); “> 95 % of all individuals of a species in a particular region are 

growing epiphytically”. Most recently Burns (2010) has provided a null model to 

test whether epiphytes are obligate, facultative or accidental and demonstrated that 

G. lucida meets the definition of obligate at Otari-Wilton‟s bush in Wellington. 

On the basis of regional and national scale analyses (Bryan 2011), G. lucida can 

be classified as an obligate because (1) it most frequently occurs as an epiphyte, 

(2) the rupestral and terrestrial environments that it inhabits have harsh conditions 

similar to that of its canopy habitat (Dawson 1986), and (3) it does not meet the 

criteria of facultative species that commonly occur on both the forest floor and in 

the canopy (Benzing 2004; Burns 2010). 

 

To conclude, Griselinia lucida is a conspicuous member of New Zealand‟s 

endemic flora that frequently grows as a hemiepiphyte in old growth lowland 

forests and as a terrestrial or rupestral shrub in coastal and rocky environments. G. 
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lucida establishes in the canopy soil of epiphytic communities and often accesses 

the resources of the forest floor through large, grooved roots that descend the 

trunk of its host tree. Under water stress, this species exhibits a desiccation 

postponement strategy through reductions of stomatal conductance and highly 

elastic cell walls. G. lucida is an important component of ecosystems as it 

provides resources for forest fauna and flora and contributes to abiotic processes. 

For these reasons, it is recommended that G. lucida is included in the future 

ecological restoration of degraded ecosystems. 
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5 Chapter Five: Synthesis 

 

5.1 Discussion 

This research has enhanced our understanding of the ecology of New Zealand‟s 

vascular epiphytes and provided important information for the inclusion of 

epiphytes in forest restoration. The case study on the water relations and 

desiccation tolerance of Griselinia lucida provides specific details about the 

requirements and limitations of this shrub epiphyte that support and extend the 

recommendations from the ecological study. 

 

When compared to nonurban Waikato and Taranaki forests, urban Waikato (i.e. 

Hamilton City) forests have relatively depauperate vascular epiphyte and vine 

populations. Hamilton forests are predominantly comprised of early and mid 

arrival species, and the average number of species per host tree is less than one. 

Because epiphytes and vines contribute to biodiversity, these forests are 

consequently expected to have reduced function, resilience, and ecosystem 

services. The underlying reason for the low species diversity and abundance in 

Hamilton City is the fragmented and disturbed nature of this urban habitat. 

 

Diverse epiphyte and vine populations are associated with a range of biotic and 

abiotic factors, many of which are altered or even lost when forests are 

fragmented by anthropogenic development. Through monitoring of canopy 

microclimates, this study showed that urban Waikato forests have higher 

temperatures and vapour pressure deficits than nonurban Waikato forests. It is 

speculated that these conditions are inhibiting the accumulation of epiphyte and 

vines species and thus restricting habitat suitability for late arrival species such as 

Griselinia lucida, Brachyglottis kirkii, and Winika cunninghamii.  

 

This study has also highlighted the importance of host tree characteristics for 

epiphyte establishment and survival. Host size, bark type, and architecture were 

associated with the diversity of epiphyte populations. The highest species counts 

were recorded on large host trees with non-peeling bark and wide branch angles. 

These characteristics are frequently absent in the variable assemblages of host 

trees in Hamilton City; further reducing the suitability of urban epiphyte habitat. It 
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is also speculated that large dispersal distances between urban and nonurban 

Waikato forests is restricting the arrival of seed into Hamilton City.  

 

The microclimate differences between urban and nonurban Waikato forests were 

supported by the finding that Griselinia lucida, a late arrival shrub epiphyte, is 

relatively sensitive to dehydration. Under three levels of stress, the water relations 

of G. lucida indicate that it employs a desiccation postponement strategy through 

the reduction of stomatal conductance and photosynthesis. This species also 

exhibits high cell elasticity that has been shown in other species to provide 

tolerance of the early stages of drought through the preferential loss of water from 

nonessential cells, such as the hypodermis. These physiological mechanisms 

evidently allow G. lucida to postpone desiccation and thus tissue dehydration, 

then recovery rapidly when water becomes available. However, despite this ability, 

G. lucida is absent from urban Waikato forests; indicating that the microclimate is 

too severe. 

 

A review of published and unpublished information on Griselinia lucida found 

that, along with its lowland epiphytic habitat, it also commonly grows in open 

rocky and coastal environments. This habitat range has similar environmental 

conditions to epiphyte habitat; such as irregular water supply, limited substrate, 

high exposure to insolation and wind, relatively warm temperatures, and a lack of 

frost. These commonalities indicate that the ability to postpone desiccation under 

water stress allows G. lucida to grow in a range of environments with intermittent 

water supplies. Microclimate monitoring in large forests and coastal environments 

indicates that, although rigorous, these habitats still have higher mean humidity 

than urban forest patches (chapter four). It is speculated that through drought-

hardening, mature G. lucida plants would exhibit an even greater ability to 

postpone desiccation than the seedlings used in the desiccation experiment of this 

study (chapter two). Desiccation postponement is therefore likely to have been 

important for the establishment of Griselinia lucida populations throughout 

lowland New Zealand (chapter four). 

 

5.2 Recommendations for restoration ecology 

After studying the epiphytes of pine-oak forests in Mexico, Wolf (2005) stated 

that “more insight in the response of epiphytes to anthropogenic disturbance is 
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particularly needed to facilitate the incorporation of the epiphytic component in 

forest management.” The research presented in chapters two, three, and four has 

addressed this need in the North Island of New Zealand through an investigation 

into the effects of anthropogenic disturbance on epiphyte populations of urban 

Waikato, an assessment of the general requirements of vascular species local to 

the Waikato region, and the development of the following recommendations for 

the incorporation and management of epiphyte species in ecological forest 

restoration. 

 

As explained previously, many epiphyte and vines species are absent from urban 

forest patches (chapter one). The following recommendations are therefore aimed 

at small forests but will also be applicable to restoration in larger forests remnants.  

 

5.2.1 Trials  

The inclusion of epiphyte and vine species in ecological restoration will require 

species reintroductions through the relocation of juvenile or mature plants, or the 

introduction of seed into suitable substrate. Before practical recommendations for 

these reintroductions can be made, trials need to be conducted to identify best 

practise methodology.  

 

Each epiphyte and vine species will have different requirements for successful 

establishment. Previous experiments provide some methodology and a good 

starting point for further investigations. In New Zealand, Burns et al. (2009) had 

reintroduction success with Metrosideros robusta, using large volumes of 

sphagnum moss under wire mesh on the southern aspect of native host trees. Yam 

et al. (2010) have had good survival rates of native orchid species in Singapore by 

raising seedlings on “fern bark” then nailing this substrate to a host tree. 

Reintroduction trials should be conducted in forest patches that are already 

undergoing ecological restoration and have some existing epiphyte populations. 

Potential forests in the Waikato region are Hammond Bush and Claudelands Bush. 

In the case of forest restoration where host species are planted and epiphytes are 

completely absent, generalist species should be introduced as soon as canopy 

closure has been achieved (Cummings et al. 2006), so as to begin the facilitation 

and species accumulation processes as soon as possible. Waiwhakareke Natural 
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Heritage Park in Hamilton City will be a suitable forest restoration site to trial 

epiphyte introductions from scratch. 

 

Initially, epiphytes and vines could be sourced from tree falls in diverse forests. 

This should be followed by investigations into ecosourcing seed for ex situ 

propagation and possibly even inclusion in nursery stock. 

 

5.2.2 Practical recommendations 

Once best practise reintroduction techniques have been developed for the 

attachment of epiphytes to hosts, the following recommendations will be useful 

for undertaking a reintroduction program. Where possible, epiphytes should be 

planted near, or in, existing epiphyte assemblages because they indicate suitable 

conditions (Yam et al. 2010). As with all aspects of ecological restoration, setting 

targets and monitoring progress is essential for the long term viability of the 

project (Society for Ecological Restoration International Science & Policy 

Working Group 2004). 

 

Microclimate 

The microclimate of a forest is likely to be the most important factor in 

determining the success or failure of epiphyte reintroductions. The key aspect of 

microclimate suitability is relative humidity (e.g. Yam et al. 2010). Along with 

temperature and wind speed, relative humidity is an important factor in the rate of 

water loss from plants (Stuntz et al. 2002). Suitable humidity for diverse and 

abundant epiphyte communities in lowland forests can be indicated by mean 

vapour pressure deficits less than 0.15 kPa (chapter two). These conditions are 

found in forests that have relatively large edge:area ratios; from the measurements 

in chapter two it is speculated that a ratio of over 100 may be required to provide 

suitable conditions. Nearby water bodies are also likely to increase relative 

humidity. Planting near or in existing epiphyte communities will increase 

survivability because they create a buffered microclimate (Freiberg 2001; Stuntz 

et al. 2002). In forests that have low edge:area ratios and high vapour pressure 

deficits, reintroduction efforts should be focussed on colonising, generalist species 

that have a greater tolerance for harsh conditions; examples include Pyrrosia 

eleagnifolia, Microsorum species, and Earina mucronata (chapter two). 
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Host selection 

Choosing an appropriate host tree will increase survivability of reintroduced 

species. The first host characteristic to consider is size; with the goal of restoring 

large, diverse epiphytic communities, hosts over 50 cm in diameter that reach the 

canopy should be targeted because they provide a greater source of light and water, 

and a larger surface area to inhabit (see chapter two). Secondly, the bark type of a 

host tree should be considered (Yam et al. 2010) because the texture, degree of 

peeling, water-storage capacity, and the presence or absence of alleochemicals all 

influence epiphyte survival. From this research, it is recommended that fibrous 

and smooth bark types are targeted (chapter two). Finally, the host architecture is 

relevant for many epiphytes and vines; host species such as titoki with large 

branch angles and wide limbs are good hosts for many epiphytes, including large 

nest species (chapter two). 

 

Epiphyte or vine species 

The selection of epiphyte species for reintroduction should be based on the 

condition of the forest and any existing epiphyte and vine populations. If very few 

species are present in the target forest, the microclimate is likely to be relatively 

harsh and thus, early arrival, generalist species are appropriate (chapter two). 

However, if the goal is to enhance an existing epiphyte community, later arrival 

species that require more specialist habitat with higher humidity may be 

appropriate. The differentiation between these types of epiphytes and vines is 

important because the survival and growth response of a reintroduced species will 

depend on the availability of habitat or niches that suit its ecological and 

physiological requirements (Nöske et al. 2008). If the species is a generalist, it has 

a wider range of niches and will thus be easier to reintroduce, while more 

specialist species that arrival late in the process of epiphyte accumulation, such as 

Griselinia lucida, need particular conditions to survive and successfully reproduce 

(Alvarenga et al. 2009). Chapter two provides relevant classification of lowland 

epiphytes species.  
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Education and awareness  

Once practical recommendations for epiphyte reintroductions are developed they 

need to be disseminated to the wide range of restoration practitioners across New 

Zealand. This could include government and council staff, community group 

members, and private landowners. Workshops and newsletter features would also 

be a useful method to share information and get people involved. It is crucial that 

this link between restoration ecology research and the practise of ecological 

restoration is made in order to ensure the best outcomes for restored ecosystems 

(Cabin et al. 2010). In the future, it will also be important to celebrate 

reintroduction successes and share information about the unique nature of this 

plant guild in a way that educates and engages people; especially those who live 

near urban forest patches (chapter one).  

 

5.2.3 Goals and conclusions  

The ultimate goal of these ecological restoration recommendations is to increase 

awareness of New Zealand‟s unique epiphyte and vine species and provide the 

first steps towards including them in restoration projects. Epiphytic communities 

and the habitats that they occupy are complex and dynamic. Although we cannot 

hope to fully restore systems through plant reintroductions, we can aim to 

establish diverse populations from which resilient communities can develop. 
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Appendices 

Appendix one: family, genera and species counts in Waikato forests 

 

Number of families occurring in Waikato forests 

Families (28) Total Nonurban Urban 

Apocynaceae 1 1 0 

Araliaceae 1 0 1 

Aspleniaceae 3 3 3 

Asteliaceae 4 4 1 

Blechnaceae 1 1 1 

Convolvulaceae 1 0 1 

Ericaceae 1 1 1 

Griseliniaceae 1 1 0 

Hymenophyllaceae 1 1 0 

Laxmanniaceae 1 1 0 

Loganiaceae 1 1 1 

Myrsinaceae 1 0 1 

Myrtaceae 4 4 3 

Oleaceae 2 0 2 

Orchidaceae 5 5 4 

Pandanaceae 1 1 1 

Passifloraceae 1 1 1 

Piperaceae 1 1 1 

Pittosporaceae 1 1 0 

Polygonaceae 1 0 1 

Polypodiaceae 3 3 3 

Psilotaceae 1 1 1 

Ranunculaceae 1 1 0 

Ripogonaceae 1 1 1 

Rosaceae 1 0 1 

Rubiaceae 2 2 1 

Schizaeaceae 1 1 0 

Violaceae 1 1 0 

Total 44 37 30 

 

Number of genera occurring in Waikato forests 

Genera (34) Total Nonurban Urban 

Asplenium 3 3 3 

Astelia 2 2 1 

Blechnum 1 1 1 

Clematis 1 1 1 

Collospermum 2 2 2 

Convolvulus 1 1 0 

Coprosma 2 2 1 

Cordyline  1 0 1 

Drymoanthus 1 1 0 



 

133 

 

Earina 2 2 1 

Freycinetia 1 1 1 

Geniostoma 1 1 1 

Griselinia 1 1 1 

Hedera 1 1 0 

Hymenophyllum 1 1 0 

Ichthyostomum 1 1 0 

Jasminum 1 0 1 

Leucopogon 1 1 0 

Ligustrum 1 0 1 

Lygodium 1 1 0 

Macropiper 1 1 0 

Melicytus 1 1 0 

Metrosideros 4 4 3 

Microsorum 2 2 2 

Muehlenbeckia 1 1 1 

Myrsine 1 1 1 

Parsonsia 1 1 0 

Passiflora 1 1 1 

Pittosporum 1 1 0 

Pyrrosia 1 1 1 

Ripogonum 1 1 1 

Rubus 1 0 1 

Tmesipteris 1 1 1 

Winika 1 1 1 

Total 44 40 29 

 

Number of species occurring in Waikato forests 

Species (44) Total Nonurban Urban 

Asplenium flaccidum 116 92 24 

Asplenium oblongifolium 9 5 4 

Asplenium polyodon 54 41 13 

Astelia banksii 1 1 0 

Astelia solandri 70 66 4 

Blechnum filiforme 87 73 14 

Clematis paniculata 1 1 0 

Collospermum hastatum 82 77 5 

Collospermum microspermum 8 7 1 

Convolvulus sp. 2 0 2 

Coprosma grandifolia 1 1 0 

Coprosma robusta 2 0 2 

Cordyline banksii 1 1 0 

Drymoanthus adversus 6 5 1 

Earina autumnalis 28 28 0 

Earina mucronata 74 72 2 

Freycinetia banksii 33 22 11 

Geniostoma ligustrifolium 2 1 1 
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Griselinia lucida 18 18 0 

Hedera helix 9 0 9 

Hymenophyllum sanguinolentum 32 32 0 

Ichthyostomum pygmaeum 10 9 1 

Jasminum polyanthum 1 0 1 

Leucopogon fasciculatus 3 3 0 

Ligustrum sinense 1 0 1 

Lygodium articulatum 13 13 0 

Macropiper excelsum 2 2 0 

Melicytus micranthus 1 1 0 

Metrosideros albiflora 1 1 0 

Metrosideros diffusa 54 50 4 

Metrosideros fulgens 94 93 1 

Metrosideros perforata 59 52 7 

Microsorum pustulatum 112 76 36 

Microsorum scadens 88 70 18 

Muehlenbeckia australis 12 0 12 

Myrsine australis 1 0 1 

Parsonsia spp. 6 6 0 

Passiflora tetrandra 2 1 1 

Pittosporum cornifolium 3 3 0 

Pyrrosia eleagnifolia 244 153 91 

Ripogonum scandens 78 70 8 

Rubus fruticosus 1 0 1 

Tmesipteris elongata 18 14 4 

Winika cunninghamii 20 19 1 

Total 1460 1179 281 

 

Species life form and growth form in Waikato forests 

Species  Life form Growth form 

Asplenium flaccidum holo pendant 

Asplenium oblongifolium holo pendant 

Asplenium polyodon holo pendant 

Astelia banksii holo nest 

Astelia solandri holo nest 

Blechnum filiforme herb. vine - 

Clematis paniculata liana - 

Collospermum hastatum holo nest 

Collospermum microspermum holo nest 

Convolvulus sp. liana - 

Coprosma grandifolia accidental - 

Coprosma robusta accidental - 

Cordyline banksii accidental - 

Drymoanthus adversus holo mat 

Earina autumnalis holo pendant 

Earina mucronata holo pendant 

Freycinetia banksii liana - 
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Geniostoma ligustrifolium accidental - 

Griselinia lucida hemi shrub 

Hedera helix liana - 

Hymenophyllum sanguinolentum holo mat 

Ichthyostomum pygmaeum holo mat 

Jasminum polyanthum liana - 

Leucopogon fasciculatus accidental - 

Ligustrum sinense accidental - 

Lygodium articulatum holo pendant 

Macropiper excelsum accidental - 

Melicytus micranthus accidental - 

Metrosideros albiflora liana - 

Metrosideros diffusa liana - 

Metrosideros fulgens liana - 

Metrosideros perforata liana - 

Microsorum pustulatum herb. vine - 

Microsorum scadens herb. vine - 

Muehlenbeckia australis liana - 

Myrsine australis accidental - 

Parsonsia spp. liana - 

Passiflora tetrandra liana - 

Pittosporum cornifolium holo shrub 

Pyrrosia eleagnifolia holo mat 

Ripogonum scandens liana - 

Rubus fruticosus liana - 

Tmesipteris elongata holo pendant 

Winika cunninghamii holo pendant 

 

Appendix two: family, genera and species counts in Taranaki forests 

 

Number of families occurring in Taranaki forests 

Families (21) Total Nonurban Urban 

Apocynaceae 1 1 0 

Aspleniaceae 3 3 3 

Asteliaceae 4 3 4 

Asteraceae 1 1 0 

Blechnaceae 1 1 1 

Cyatheaceae 1 0 1 

Griseliniaceae 1 1 1 

Hymenophyllaceae 1 1 1 

Loganiaceae 1 0 1 

Lycopodiaceae 1 1 1 

Myrsinaceae 1 0 1 

Myrtaceae 3 3 3 

Oleandraceae 1 1 1 

Orchidaceae 4 2 3 

Pandanaceae 1 1 1 
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Passifloraceae 1 0 1 

Pittosporaceae 1 1 1 

Polypodiaceae 3 3 3 

Psilotaceae 1 1 0 

Ripogonaceae 1 1 1 

Violaceae 1 1 1 

Total 33 26 29 

 

Number of genera occurring in Taranaki forests 

Genera (25) Total Nonurban Urban 

Arthropteris  1 1 1 

Asplenium 3 3 3 

Astelia 2 1 2 

Blechnum 1 1 1 

Brachyglottis 1 1 0 

Collospermum 2 2 2 

Cyathea 1 0 1 

Drymoanthus  1 0 1 

Earina 2 2 1 

Freycinetia 1 1 1 

Geniostoma 1 0 1 

Griselinia 1 1 1 

Huperzia 1 1 1 

Hymenophyllum 1 1 1 

Ichthyostomum 1 0 1 

Melicytus 1 1 1 

Metrosideros 3 3 3 

Microsorum 2 2 2 

Myrsine 1 0 1 

Parsonsia 1 1 0 

Passiflora 1 0 1 

Pittosporum 1 1 1 

Pyrrosia 1 1 1 

Ripogonum 1 1 1 

Tmesipteris 1 1 0 

Total 33 26 29 

 

Number of species occurring in Taranaki forests 

Species (33) Total Nonurban Urban 

Arthropteris tenella 5 3 2 

Asplenium flaccidum 17 9 8 

Asplenium oblongifolium 10 5 5 

Asplenium polyodon 30 12 18 

Astelia banksii 1 0 1 

Astelia solandri 19 8 11 

Blechnum filiforme 44 19 25 

Brachyglottis kirkii 1 1 0 
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Collospermum hastatum 59 23 36 

Collospermum microspermum 16 7 9 

Cyathea spp. 1 0 1 

Drymoanthus adversus 2 0 2 

Earina autumnalis 2 2 0 

Earina mucronata 32 16 16 

Freycinetia banksii 16 4 12 

Geniostoma ligustrifolium 2 0 2 

Griselinia lucida 17 6 11 

Huperzia varia 4 1 3 

Hymenophyllum sanguinolentum 20 13 7 

Ichthyostomum pygmaeum 1 0 1 

Melicytus ramiflorus 2 1 1 

Metrosideros diffusa 4 2 2 

Metrosideros fulgens 33 10 23 

Metrosideros perforata 33 15 18 

Microsorum pustulatum 34 20 14 

Microsorum scandens 54 28 26 

Myrsine australis 1 0 1 

Parsonsia heterophylla 3 3 0 

Passiflora tetrandra 2 0 2 

Pittosporum cornifolium 2 1 1 

Pyrrosia eleagnifolia 49 21 28 

Ripogonum scandens 30 14 16 

Tmesipteris elongata 4 4 0 

Total 550 248 302 

 

Species life form and growth form in Taranaki forests 

Species Life form Growth form 

Arthropteris tenella herb. vine - 

Asplenium flaccidum holo pendant 

Asplenium oblongifolium holo pendant 

Asplenium polyodon holo pendant 

Astelia banksii holo nest 

Astelia solandri holo nest 

Blechnum filiforme herb. vine - 

Brachyglottis kirkii holo shrub 

Collospermum hastatum holo nest 

Collospermum microspermum holo nest 

Cyathea spp. accidental - 

Drymoanthus adversus holo mat 

Earina autumnalis holo pendant 

Earina mucronata holo pendant 

Freycinetia banksii liana - 

Geniostoma ligustrifolium accidental - 

Griselinia lucida hemi - 

Huperzia varia holo pendant 
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Hymenophyllum sanguinolentum holo mat 

Ichthyostomum pygmaeum holo mat 

Melicytus ramiflorus liana - 

Metrosideros diffusa liana - 

Metrosideros fulgens liana - 

Metrosideros perforata herb. vine - 

Microsorum pustulatum herb. vine - 

Microsorum scandens accidental - 

Myrsine australis accidental - 

Parsonsia heterophylla liana - 

Passiflora tetrandra liana - 

Pittosporum cornifolium holo shrub 

Pyrrosia eleagnifolia holo mat 

Ripogonum scandens liana - 

Tmesipteris elongata holo pendant 

 

 

Appendix three: temperature (°C) and vapour pressure deficit (kPa) records 

from interior (Int) and exterior (Ext) loggers at all sites for each season 

Autumn temperature (
o
C) for interior (Int) and exterior (Ext) loggers at all sites. Note: data set 

incomplete. 
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Winter temperature (
o
C) for interior (Int) and exterior (Ext) loggers at all sites. 

 

Spring temperature (
o
C) for interior (Int) and exterior (Ext) loggers at all sites. 
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Summer temperature (
o
C) for interior (Int) and exterior (Ext) loggers at all sites. Note: data set 

incomplete. 
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Autumn vapour pressure deficits (kPa) for interior (Int) and exterior (Ext) loggers at all sites. Note: 

data set incomplete. 
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Winter vapour pressure deficit (kPa) for interior (Int) and exterior (Ext) loggers at all sites. 

 

Spring vapour pressure deficit (kPa) for interior (Int) and exterior (Ext) loggers at all sites. 

 



 

142 

 

 

Summer vapour pressure deficit (kPa) for interior (Int) and exterior (Ext) loggers at all sites. Note: 

data set incomplete. 
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Appendix four: percent of trees in seven size classes that host each epiphyte 

or vines species 
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A: Microsorum scandens, B: Collospermum hastatum, C: Pyrrosia eleagnifolia, D: Asplenium 

flaccidum, D: Ripogonum scandens, F: Earina mucronata. 



 

144 

 

 

0%

20%

40%

60%

80%

100% H

0%

20%

40%

60%

80%

100% I

0%

20%

40%

60%

80%

100%
J

0%

20%

40%

60%

80%

100% K

0%

20%

40%

60%

80%

100% L

0%

20%

40%

60%

80%

100% G

G: Griselinia lucida, H: Asplenium polyodon, I: Microsorum pustulatum, J: Earina autumnalis, 

K: Blechnum filiforme, L: Freycinetia banksii 


