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Abstract

This paper presents an idiomatic construct for �-charts
which reflects the high-level specification construct of syn-
chronization between activities. This, amongst others, has
emerged as a common and useful idea during our use of
�-charts to design and specify commonly-occurring reac-
tive systems. The purpose of this example, apart from any
inherent interest in being able to use synchronization in a
specification, is to show how the very simple language of �-
charts can used as a basis for a more expressive language
built by definitional extension.

1. Introduction

Reactive systems are systems that can react to input from
the environment around them. Scholz [11] describes three
different types of computer systems—transformational, in-
teractive and reactive. Transformational systems have all
the input they require available at the beginning of execu-
tion, and produce an output once the execution terminates.
Interactive systems interact with their environment, but this
interaction is determined by the system, rather than the en-
vironment (via prompts or allowing access to menu items
at times when the system is ready to react to them). With
reactive systems, on the other hand, it is the environment
that determines the system-environment interaction (though
many systems classed as interactive can be modelled as re-
active, in fact).

�-Charts (“micro-charts”), described in [6], [8], [7], can
be used to provide an abstract model of reactive systems—
abstract because the models assume properties (such as in-
stantaneity in transitions) that are unlikely to be present in
implementations of the systems.

�-Charts themselves are descended from the Statecharts
of Harel [1], embodied in the STATEMATE tool [3], a ver-
sion of which has found its way into the UML notation [2].

Statecharts, however, are hard to give a simple semantics
to. Features such as inter-level transitions, implicit interac-

tions between ‘orthogonal’ charts and the interpretation via
shared variables are at the heart of these complications.

�-Charts avoid these complications, so forming a sim-
ple language which, nevertheless, is still expressive enough
to describe real systems. Apart from being easier to under-
stand and therefore use, the simplicity opens the door to a
compositional semantics and the goal of a logic for charts
becomes attainable.

Elsewhere (e.g. [9]) we have given a semantics for �-
charts via a translation to Z. This allows us to use tools like
Z/EVES [10] to prove properties of our �-chart-specified
systems (e.g. [7]). Future research concerns deriving, via
the connection with Z and its own logic and refinement rules
(e.g. [5]), proof rules and ultimately refinement rules at the
level of �-charts themselves, i.e. our aim is a logic of �-
charts.

This paper contributes to this by showing how a high-
level construct can be added to the chart language without
having to extend the semantics or, therefore, the logic.

It introduces �-charts in Section 2, discusses the con-
cepts of preemption and instantaneity and how they pertain
to the �-charts language in Section 3, looks at an example of
an idiomatic construct—i.e. a construct which can be built
from basic charts and which is a good idiom for designing
systems—in Section 5, and finally, in Section 6, we present
some conclusions.

2. The basics of �-charts

Here we give a short introduction to the syntax and se-
mantics of �-charts. However, anyone familiar with finite-
state machines will find them very familiar and easy to un-
derstand, the only significant extension being that of states
which are themselves charts.

Consider the upper chart in Figure 1. The chart’s name
Example appears in the top left-hand corner of the rect-
angle which delineates the chart. The double-walled oval
named A is an atomic state which is also the initial state of
Example. The rectangle B is another state of Example ex-
cept that this time B is a state which has extra structure: it
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Figure 1. A simple �-chart with decomposi-
tion
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Figure 2. A �-chart formed by composition

is itself a chart. The chart B’s initial state is D and its other
state is E.

Charts change states in steps and at each step, be-
cause of the presence of certain input signals, transitions
(denoted by arrows between states) happen if their
trigger expressions (appearing to the left of the slash in the
label for the transition and consisting of Boolean combina-
tions of signals) are satisfied (i.e. made true) by the input set
for the step. So, if the chart is in state A and the input set is
fag then Example will move to state B. It will, in this step,
also output the signal e, i.e. the expression appearing to the
right of the slash in the transition’s label.1

We call B a decomposed state, and note that a natural
hierarchy of charts, formed by the way decomposition allow
nesting of charts, can now occur.

Now consider the chart in Figure 2. Note that this is a

1The language of transition labels is more expressive than this in gen-
eral, but this simple sub-language suffices for this paper. In particular the
empty expression is read as true, i.e. the transition happens no matter what
the input set contains—including when it is empty. Also, we write con-
junction as ‘,’. Finally, when there is no output we omit the ‘/’.

composition of two charts:2 one is Example as above and
the other is Second, which has F as its initial state and an-
other atomic state G, connected to F by a transition which is
triggered by input f and gives output a. Note the set fag in
the box at the foot of this chart: this tells us that the signal
a is fed-back, as we shall see.

When two charts are composed they can each react to
the inputs in a step, as before, but they can also react to
any outputs that the other chart in the composition may pro-
duce. Since one fundamental property of �-charts is that
transitions happen instantaneously (more on this below) if
one chart produces an output which, as input to the other
chart, causes another transition then both transitions hap-
pen in the same step. As an example of this, imagine the
input to the chart in Figure 2 is ff g and that Example is
in A and Second is in F. Then, Second’s transition is trig-
gered because f is in the input, so it moves to G and a is
output. Now, because a is fed-back within this chart, and
because this has all happened instantaneously (‘has taken
no time’), Example’s transition labelled a=e will take place
since its trigger is available as an input due to feed-back, so
Example moves to B and the whole chart, in just one step,
outputs fa; eg in response to the input ff g.

3. Preemption and instantaneity

Because a chart can be in only one state3 only one tran-
sition can occur in each chart in a given step. We there-
fore need to fix what happens when more than one transition
is possible, i.e. when more than one transition is triggered,
which can arise in the presence of decomposed state.

For example, consider Figure 1 again, it is possible that
transitions are triggered in both Example and B in the same
step. This happens if Example is in the state B, B is in the
state D and the set of inputs to the chart is fc; bg. Two
transitions are triggered: one is the transition in the chart B,
from D to E, and the other is the transition in Example, from
B to A.

If this occurs, then by a property of �-charts called pre-
emption, the highest-level transition in the decomposition
hierarchy takes precedence. So, we find that due to the step
above Example is in the state A, with the chart B inactive.
However, both transitions are triggered, so the output for
this step is fd; gg. In a sense the transition in B does occur,
but the chart B becomes inactive immediately afterwards.
This property of preemption is used for the synchronized
transitions we discuss below.

2We have left B off here, but it is just as in Figure 1.
3We are dealing here with the case where no composition of charts is

involved.
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Figure 3. A chart where exactly one transition
happens

4. Ensuring exactly one transition

One other basic chart that we shall require for the exam-
ple we will introduce below is shown in Figure 3. In this
chart, in the absence of any input, exactly one of the tran-
sitions will happen, i.e. either the one in chart A or the one
in chart B, but not both and not neither. In this chart the
triggers on the transitions are negated, so the transition in A
happens only if a is not in the input, and similarly for the
transition in B.

What happens (when we interpret the semantics) in the
absence of any inputs is as follows. The transition in A is
triggered (since a is not in the input), which causes the out-
put b to be produced and fed back, which means that the
transition in B cannot happen. Alternatively, the transition
in B can be triggered if there are no inputs, which means
that a is output and fed back, blocking the transition in A
from happening. Furthermore, when the full formal seman-
tics is consulted we also see that it cannot be the case that
neither transition happens. So, exactly one of the transitions
will happen.

5. An idiom: Synchronized Transitions

Here we look at a construct which has turned out to be
useful when we used the charts on examples.

5.1 A vending machine problem

Consider the chart in Figure 4 (over the page). This is a
chart based on an event calculus example given in [12]. It
models a system consisting of a vending machine Vending
and customers Customer1 and Customer2. The vending
machine dispenses products which cost £2 and accepts a
single £2 coin. Having been fed the appropriate money, it
clunks internally and then dispenses the product for collec-

tion. The customer simply deposits a £2 coin and collects
the product.

Note that the signals l1 and l2 mean that exactly one cus-
tomer can move to their respective second state in a given
step, so that they are never both about to put in their coins
simultaneously.

Now imagine that the vending machine is in state V2 (in
response to a first customer, who is now in their state C12

having put in their coin) when another customer walks up
and puts in another coin. In the step in which the second
customer deposits the coin and so moves to their state C22,
the vending machine emits its clunk and moves to state V3.
The first customer remains in their state C12.

In the next step, the vending machine emits the product
(modelled by the signal collect) to which both customers
can react so, in the real system being modelled, the question
as to which customer gets the product arises. Of course,
only the first is entitled, so we have a problem with our
model. Synchronization will provide a solution.

5.2 Modelling synchronization

Using the properties of preemption and instantaneous
feedback mentioned above, we can produce a system that
can synchronize two transitions. The design ensures that
the two transitions can only occur together, in a single step.
It can never be the case that one of the two transitions oc-
curs without the other also occurring. A simple example of
this system is shown in figure 5 (over the page).

In both Synch1 and Synch2, the initial and final states are
simple atomic ones. It is in the states A2 and B2 that the
preemption and feedback occur.

If the chart Synch1 is in the state A1 and, receiving an
a as input, makes the transition to the state A2, the sub-
chart A2 becomes active, and begins in the state A2Loop.
The only transition A2Loop can subsequently undergo is
one that loops back to itself, whatever the input, emitting
a c1 signal as output. Similarly, once Synch2 reaches B2,
B2Loop becomes active, and begins to emit c2 signals.

So now imagine that at some time in the past a and b
have each been input (perhaps at different steps), so we
have Synch1 in A2, A2 in A2Loop, Synch2 in B2 and B2 in
B2Loop. In the next step, A2 undergoes the loop transition
and emits a c1. B2 also undergoes its loop transition and
emits a c2. Note that c1 and c2 are fed-back so at this instant
the input (due to feed-back) consists of fc1; c2g, which are
inputs that trigger the transitions from A2 to A3 and from
B2 to B3. By preemption, the A2-to-A3 and B2-to-B3 tran-
sitions take precedence over the loop transitions.

To summarize, in this single step, and instantaneously,
the transitions in A2Loop and B2Loop are triggered, emit-
ting c1 and c2, respectively, and this triggers the A2-to-A3
and B2-to-B3 transitions, so Sync1 moves to A3 and Sync2
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Figure 4. The vending machine example

Synch1

A3 A4a c1,c2 tick
A1

Synch2

b c1,c2 tick
B1 B3 B4

A2

B2

{c1,c2}

A2

A2Loop

/c1

B2

B2Loop

/c2

Figure 5. �-charts demonstrating a synchronized transition

moves to B3, while the charts A2 and B2 become inactive.

5.3 A better vending machine

We can now model our vending machine system again
and use synchronization to solve the contention problem we
had previously.

The strategy is to force customers to synchronize with
the vending machine when it is in V2. So, any customer not
synchronized with the machine on this will not pass beyond
C11 or C21 (depending on which customer we are dealing
with) and so will not be waiting to collect a bar when the
machine makes it available. Figure 6 (over the page) shows
the chart for this.

This solution relies on the model embodying the asym-

metry between SynchVending and the customers. For exam-
ple, it makes no sense in the intended model for all three
to synchronize together, i.e. it does not accord with the
intended behaviour for them to be treated symmetrically.
SynchVending has a different rôle from either customer.

Of course, in other situations we may wish to synchro-
nize three (or more) charts so we must be able to do so. We
have, so to speak, several dimensions along which synchro-
nization can take place: either charts synchronize with each
other in a symmetric fashion, or one chart plays the rôle of
a vendor of a resource and the others play the rôles of cus-
tomers for that resource, with the constraint that only one
customer at a time can be served successfully. We will see
this distinction being captured when we turn to devising a
notation for synchronization, which we do next.
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C11 /c2
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C20

two

/collect

SynchVending

V2V1

Customer1

Customer2

/clunk

{two, c1, c2, collect, l1, l2}

Figure 6. A better vending machine

Synch1

Synch2

SB2
b

A1
a SA2 tick

A4

B4
tick

B1

c

c

2

2

Figure 7. Notation for the simplest symmetric
case

5.4 Some notation

Having identified this idiom we now want to develop
some notation which makes it more convenient to use. The
idea here will be to view the notation as a definitional
equality—so whenever the notation is seen it can be re-
placed by a certain piece of �-chart notation which uses just
the basic language. Hence, any chart written in the extended
language can be reduced to one in the original language, so
no extra semantics is needed.

The simplest use of the synchronization idiom is the one
demonstrated in Figure 5 where we have just two charts
composed together in a symmetric fashion and synchro-
nized on one pair of transitions (the ones labelled c1; c2

in that chart). This can clearly be generalized to as many
charts as we wish.

In designing some notation for this we need to consider
what information needs to be preserved in order that the
extended notation can be replaced by exactly the right frag-
ment of chart in the original, basic notation. The informa-
tion we need for this simplest case is what the signals are
that each non-atomic state emits (these are states A2 and B2
in this chart), which in this case are the signals c1 and c2.
Once we have that we can replace the states A2 and A3 by
a new sort of state—a synchronizing state—which we call
SA2 in Figure 7, and similarly for B2 and B3.

Note that since the signals c1 and c2 are used only in the
synchronization process the synchronization state needs to
mention just their common suffix. We also add a number
which shows how many charts are symmetrically synchro-
nized: this is just for convenience when it comes to replac-
ing such a state by its definition, and can equally well be
calculated by counting-up the number of synchronization
states which synchronize on the signal concerned. Finally,
we omit the synchronizing signal c from the feed back box
since such a signal is always understood to be fed back.

Now, when we look at the chart we understand that syn-
chronization states with the same signal work together to
give the desired behaviour.

So, whenever we see a chart like the one in Figure 7 we
can calculate its meaning by replacing the new construct
with the old construct that this example shows. Clearly, af-
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c
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-l1/l2 /two collect

{two, collect, l1, l2}

Figure 8. An asymmetric synchronizing composition

ter some experience, we will understand the meaning of the
new construct well enough to write and read its meaning
directly without having to construct the basic chart.

More thought has to go into the more complicated con-
structs like the one we have been dealing with in the vending
machine. This is because we are dealing with three charts
composed together and, as mentioned in the previous sec-
tion, there are more degrees of freedom concerning the way
in which they interact to synchronize.

With three charts the most straightforward possibility is
for all three charts to synchronize symmetrically, and this
is handled by generalizing the case by having a synchro-
nization state in each chart which mentions all three syn-
chronization signals (rather than just the two for our case
above). This generalizes in the obvious way when we have
n charts all synchronizing, as we shall see.

In our example (recall Figure 6) either Customer1 or
Customer2 can synchronize with SynchVending, so this is
not so simple a case because of the asymmetry between the
vendor and the customers. To differentiate this case from
the symmetric one we introduce another sort of synchro-
nization state which denotes a customer rather than a ven-
dor. Now, the vendor state synchronizes on either of the
customer signals and the chart is now as given in Figure 8.

We can summarize all the above discussion by giving
definitions of general cases.

In Figure 9 (over the page) we show how the ith occur-

rence of n symmetric synchronizing states is defined.
In Figure 10 (over the page) we deal with the definition

of the asymmetric case, which shows how the vendor and
its n � 1 customers are defined.

6. Conclusions

This paper set out to do two things: to give an example
of incorporating an idiom into the language of �-charts by
definition and, more importantly since it has wide applica-
bility and consequences, to argue for the design model of a
simple language as a basis or kernel in which useful idioms
can be defined.

So, in this paper we have shown how a commonly recur-
ring and useful construct, that of synchronization between
subsystems, can be introduced to the basic language of �-
charts via definition.

In our work of designing charts for various systems we
have identified further useful idioms—one concerns mod-
elling a distributed storage mechanism where storage (or
variables) can be shared across composed charts, and an-
other concerns timers and delays which also turn out to be
quite commonly required in designing reactive systems.

In each of these cases we are extending the language
purely by definitional equality, which means that no new
semantic constructs are needed to extend the language with
the given idiom and, consequently, that all the intuitions
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n

is defined to be
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Figure 9. General definition for the ith symmetric synchronizing state
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N1 /c1 s3/s4s1/s2 c1,c2

s1i/s2i s3i/s4iNi

c
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N
s1/s2 s3/s4

The vendor

c

is defined to be

and the customer

is defined to be

for each of the customers with i= 2,...,n

Figure 10. General definition for the vendor and the ith customer for asymmetric synchronizing states
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about charts need not be modified when considering the ex-
tended language.

Further, any proof rules that we will develop for the basic
language will induce derived rules about the new construct
in a straightforward way.

One desirable goal in all this is to show what mech-
anisms that appear in, say, UML Statecharts, can be de-
fined in the much simpler and so formally more tractable
�-charts.

Of course, other features of Statecharts are ruled-out
from being merely definitional extension of �-charts be-
cause they are semantically problematic, e.g. as mentioned
before (and as pointed out by Scholz) the inter-level tran-
sitions fall into this category. However, rather than seeing
this as a shortcoming of �-charts we see it as a criticism
of Statecharts—after all, the possibility of giving a simple,
compositional semantics to a language is a touchstone of its
quality.

Finally, and for all the reasons given above, this tech-
nique of building a small, simple language and then extend-
ing it by definition is one that we have used in the past to
good effect (e.g. [4]) and we commend it as a design tech-
nique.
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