Abstract—We describe the construction of a model of the electrode-electrolyte interface and surrounding electrolyte in the case of a platinum-electrode array intended for spinal-cord stimulation (SCS) application. We show that a finite, two-dimensional, resistor array provides a satisfactory model of the bulk electrolyte, and we identify the complexity required of that resistor array. The electrode-electrolyte interface is modelled in a fashion suitable for commonly-available, compact simulators using a nonlinear extension of the model of Franks et al. [4] that incorporates diodes and a memristor. The electrode-electrolyte interface model accounts for the nonlinear current-overpotential characteristic and diffusion-limiting effects. We characterise a commercial, implantable, electrode array, fit the model to it, and show that the model successfully predicts subtle operational characteristics.

Index Terms—Electrical stimulation, Bioelectric phenomena, Biophysics, Bioimpedance, Biomedical electrodes, Biomedical measurements, Implantable biomedical devices

I. INTRODUCTION

THE impedance presented by an electrode in electrolyte is important to the operation of biological implants and a subject of considerable interest in the literature. Merrill et al. give a comprehensive review of the chemistry and characteristics in [1] with the aim of establishing safe limits for therapeutic use in humans. However, the interest is not limited to matters of safety. A large impedance can increase power demand and shorten implant battery life. The reactive nature of the impedance causes pulse tails that cause stimulus-artefacts. [2] Operation outside the linear or “small-signal” range can give rise to obscuring signal artefacts, present on sensing electrodes, that cannot readily be removed by blanking and subtraction. [3]

Franks et al. have presented a model of the electrode-electrolyte interface that is valid for small variations of the potential drop across the interface. [4] Such variations in the half-cell voltage are referred to as the overpotential. The model consists of a small spreading resistance in series with the parallel combination of two elements. The first of these elements is a so-called Constant Phase Element (C.P.E. or CPE), otherwise known as a fractional-pole capacitor. [5] It represents the charge-transfer contribution of ionic species in the Helmholtz layer adjacent to the metallic surface of the electrode. The second parallel element is approximated as a resistor. In the model of [4] this resistor represents the Faradaic reactions that take place at the electrode interface. The approximation is valid only for overpotentials in the millivolt range, and for short durations. Electronics Engineers refer to models that contain such approximations as “small-signal models”. They are extremely useful for simplifying circuit calculations, but are not valid for larger excursions.

From an electrochemical standpoint, Brummer & Turner have examined the platinum electrode to suggest safe charge transfer limits, that is limits within which charge transfer involves reversible surface processes and does not cause evolution of gas through electrolysis. [6], [7] They relate the amount of charge transferred per unit of Platinum electrode area to the reactions that occur, and identify the point at which electrolysis can be expected to onset. It is possible to interpret the results in [7] as suggesting that reversible Faradaic surface processes contribute to the CPE characteristic rather than the Faradaic component that is a small-signal, dynamic resistance in [4]. The model in this manuscript does not depend upon knowing which of these might be correct, but the authors lean towards the view that the reversible Faradaic surface processes contribute to the Faradaic branch. Brummer & Turner also note that results are less clear when the electrolyte contains Chlorine salts, as in the case of biological saline.

From a physical standpoint Cantrell et al. present a model of the electrode-electrolyte interface whose characteristics are obtained by a detailed finite-element analysis implemented in COMSOL. [8] A stated motivation is to “increase the success for recording and stimulating targeted neural structures”, consistent with this manuscript. Intriguingly [8] adopts an approach where the CPE is modelled with level-dependent parameters, after Richardot & McAdams. [9] This is intriguing because we have not found it necessary to incorporate any level-dependence in the CPE in the model presented here. The statement in [9] to the effect that “the detailed physical understanding of this impedance is still lacking” appears to remain true. In this manuscript we will attribute all nonlinear effects to the Faradaic branch of our model, and we tentatively attribute these nonlinearities to a particular reaction. These attributions seem appealing, but even if they are wrong the validity of the model is not affected.

In neuromodulation for Spinal Cord Stimulation (SCS) relatively large currents flow through the implanted electrodes. This is necessary to recruit neurones in the spinal cord, as the electrode array is normally placed in the epidural space, outside the dura, and several millimetres may separate the electrode array and the target neurones. This manuscript proposes a medium-signal electrode model that incorporates the reversible nonlinear processes that occur when the overpotential is no
II. BULK ELECTROLYTE MODEL

In this manuscript a model will be fitted to a commercial SCS electrode array in 1/10 phosphate-buffered saline (PBS). The selected array is an Octrode from St Jude Medical. [11] This electrode array consists of a cylindrical assembly approximately 1mm in diameter with alternating conducting and insulating spacer bands. The 8 conducting electrodes are platinum cylindrical sections spaced 7mm apart, each 3mm long and having a geometrical area of approximately 10 square mm and an electrical area of approximately 14 square mm, owing to surface roughness. Inter-electrode capacitance is in the region of a few tens of picofarads for adjacent electrodes, varying with the details of the connection electronics. PBS is a buffer solution commonly used in biological research. [12] Ten-percent concentration PBS, or “1/10 PBS”, was used as it is a reasonable approximation to the combination of cerebrospinal fluid, bone, nervous tissue, etc., in which SCS arrays normally operate in vivo, and is repeatable.

Figure 1 depicts a section of the electrode array and a set of resistors to represent the electrolyte. We propose to model the bulk electrolyte as a 2-dimensional array of resistors, owing to the rotational symmetry. Consider the cylindrical array to be surrounded by a series of annular zones. Each zone extends from a radius \(r_i \) to a larger radius \(r_{i+1} \), starting at the boundary of the electrode. The resistance values can be estimated by finding the radial and longitudinal resistances of annular sections. A radial resistor associated with the electrolyte surrounding an electrode section will take on the value determined by computing the resistance between the inner and outer cylindrical walls of the annular cylinder of electrolyte. Similarly for radial resistors corresponding to insulating sections. These electrode and spacer radial resistances will differ if the electrodes and insulators are of unequal length, as in our case. The longitudinal resistors take the value found for the resistance between the upper and lower annular surfaces of the notional sections of radii \(r_i \) and \(r_{i+1} \) and whose height is half the sum of the heights of an electrode and an insulating segment. Taking a series of annular rings whose radial thickness doubles with each step outward, \(r_{i+1}/r_i = 2 \). The resistivity, \(\rho \), of 1/10 PBS is about 11620\(\Omega \cdot \text{mm} \), \(l_e = 3 \text{mm} \), \(l_s = 4 \text{mm} \). Some algebra proves that

\[
R_{eri} = \frac{\rho}{2\pi l_e} \ln \left(\frac{r_{i+1}}{r_i} \right) \approx 427\Omega \tag{1}
\]

\[
R_{sri} = \frac{\rho}{2\pi l_s} \ln \left(\frac{r_{i+1}}{r_i} \right) \approx 321\Omega \tag{2}
\]

and

\[
R_l = \frac{l_e + l_s}{2} / \left[\pi \left(r_{i+1}^2 - r_i^2 \right) \right] = \frac{\rho}{2\pi} \frac{l_e + l_s}{r_{i+1}^2 - r_i^2} \tag{3}
\]

where \(R_{eri} \) is the resistance corresponding to the \(i^{th} \) layer surrounding an electrode in the radial direction, \(R_{sri} \) is the resistance corresponding to the \(i^{th} \) layer surrounding an insulating spacer in the radial direction, \(R_l \) is the longitudinal resistance between the centrelines of an electrode and a spacer, \(l_e \) is the longitudinal length of an electrode, and \(l_s \) is the longitudinal length of an insulating spacer. Note that all the radial resistors will have the same values, while the longitudinal resistors will reduce in value by a factor of four for each step outward.\(^1\) The commencing value for our dimensions is 1100\(\Omega \), descending to 275\(\Omega \), 69\(\Omega \), etc. After some number of meshes, the network is terminated in a star network representing the saline bath “at infinity”.

Figure 2 depicts the topology proposed to model the bulk electrolyte in which the electrode resides. The mesh of resistors model the electrolyte, taking on values in accordance with the calculations above. Previous models of the bulk electrolyte have represented it with a single-layer ladder network. [3]

We suggest two experiments to provide data against which predictions of the model can be tested. Each consists of driving one electrode of the array with a current and using a second electrode for the return current. The voltage dropped across the (potentially nonlinear) interface region is not known. However, voltages measured between pairs of the six other electrodes can be used. If a suitably high-impedance voltage measurement instrument is used, the ac voltage between the metal electrodes may be assumed to be equal to the ac voltage between points in the electrolyte immediately adjacent to the electrodes; this is the case because a negligible ac voltage will be dropped across the interface branch. It is possible to measure the voltage between pairs of electrodes, other than the two carrying the stimulus current, and obtain the transresistance. If the current is fed into electrode 1 and returned through electrode 8, the five voltages \(V_{ij} \) for \(2 \leq i, j \leq 7 \) and \(i \neq j \) yield five transresistances of the form \(R_{ij} = V_{ij}/I_1 \). Similarly, if the current is fed into electrode 1 and returned through electrode 2, the five transresistances

\(^1\)The factor of 4 reduction with each step is a consequence of our choice to consider annular sections whose radial dimensions double each step outward. Other choices are possible. Note that our choice leads to a resistor array having constant radial but geometrically varying longitudinal resistances.
$R_{1,2}^{i,j} = V_{1,2}^{i,j}/I_1$ for $3 \leq i,j \leq 8$ and $i \neq j$ are obtained. These 10 values have been measured for our electrode array in 1/10 PBS. The measurements were carried out using a TPS2014B oscilloscope with 10MΩ input resistance and 20pF input capacitance at a current of 3mA peak and at a frequency of 10Hz to make capacitances negligible. Current and voltage signals remained undistorted and in phase for all measurements, confirming that the saline produces resistive impedances. The measured data are plotted in figure 3. The figure also presents values simulated using the calculated resistance parameter values presented above, and after the three resistance values are manually trimmed to improve the fit. The agreement is remarkably good for the directly-calculated values, suggesting that the approach is sound. The fit can be slightly improved, presumably compensating for errors arising from the discrete nature of the approximation. Experiments suggest that a mesh 5 layers deep and with 3 layers on each edge is more than sufficiently detailed: Increasing these has no impact on the numerical results, decreasing them had no significant impact on simulation speed.

It is worth noting that SPICE calculates the voltages across all the branches in the network representing the saline. Related through the geometrical model, this is equivalent to knowing the field in the fluid surrounding the electrode, should that information be of importance.

III. THE ELECTRODE-ELECTROLYTE INTERFACE

As noted above, two mechanisms occur to facilitate current flow across an electrode-electrolyte interface. One mechanism is a ‘displacement’ current flow in the so-called Helmholtz layer, a double-layer of charge. The displacement current corresponds to the time-derivative of electric displacement field term in Maxwell’s current equation. This capacitor-like phenomenon is often modelled as a pure electrical capacitance, often called the ‘double layer capacitance’. [4], [10] More accurately it is described as a Constant Phase Element or more rigorously as a fractional-pole element. [5]

The second mechanism is associated with movement of charged species in the electrolyte and exchange of charge across the boundary between electrode and electrolyte. This is termed a ‘Faradaic’ current. When very small it can be modelled as a simple resistor. [4] The task now is to translate these descriptions into an electrical equivalent circuit that can be entered into compact simulators.

A. The Displacement Part

Fractional-pole capacitors are not supported in time-domain compact circuit simulators such as the ubiquitous SPICE, since a non-integral power of the complex frequency variable s corresponds to an infinite sum of exponentials in the time
Fig. 4. Infinite-RC-series model of a constant-phase element, after [19]. The counter \(r \) ranges such that the time constant \(\tau \) of the first and last branch span the required bandwidth. The parameter \(k \) is chosen to set the “density” of branches which is related to the accuracy of the approximation.

domain.\(^3\) A number of methods of representation have been investigated, as their importance in both pure electronic and biological systems was recognised many decades ago.\(^{18}\) Although not particularly efficient either to enter or compute, this work will use a lumped-RC approximation, suitable for direct implementation in compact circuit simulators, attributed to Morrison.\(^{19}\) Each constant-phase element (CPE) is replaced with a set of series-RC branches in parallel. The circuit appears in figure 4. The number of branches is theoretically infinite, but given a required phase tolerance and a finite frequency range over which the approximation must hold, Morrison has done the very considerable amount of “tedious algebra” to provide equations that yield the number of branches and the values of the resistor and capacitor in each branch. These equations are readily evaluated in a script that produces a subcircuit suitable for inclusion in a circuit simulator.

From [19] we introduce two pairs of equations,

\[
|Y'_0| \approx \left(\frac{\omega RC}{R}\right)^{\frac{\pi}{2m}} y_0
\]

where \(|Y'_0| \) is the magnitude of the approximation \(Y'_0 \) to the CPE admittance \(Y_0 \). \(R \) and \(C \) are the values of resistance and capacitance in the equivalent circuit of figure 4, \(\omega \) is the radian angular frequency as usual, \(1 < m < \infty \) is a parameter reflecting the value of the constant phase of the element, and

\[
y_0 = \frac{\pi}{m \ln k} \sec \frac{1}{2} \left(1 - \frac{2}{m} \right)
\]

where \(k > 1 \) is a parameter controlling the multiplicity or “density” of branches with respect to frequency, in the equivalent circuit; also from [19] comes

\[
\angle Y'_0 \approx \frac{\pi}{2m} - \theta_p \sin \left[2\pi \ln \frac{\omega RC}{m \ln k} \right] - \frac{1}{2} \pi \left(1 - \frac{2}{m} \right)
\]

\[
\angle Y'_p = \theta_p \sin \left[2\pi \ln \frac{k}{m \ln k} \right] - \frac{1}{2} \pi \left(1 - \frac{2}{m} \right).
\]

In dealing with these equations, note that \(y_0 \) given by (5) and \(\theta_p \) given by (7) are purely functions of \(m, k \), and natural constants. Equation (4) provides the magnitude of the admittance of the CPE with a scaling factor provided by equation (5), while equation (6) provides the phase of the CPE including a periodic error governed by equation (7).

The problem of modelling the displacement component now reduces to finding values of \(m, k, R, C \), and the multiplicity of branches in the equivalent circuit in order to generate a lumped subcircuit to approximate the CPE in an electrode model over a specified frequency range. Measurements of impedance phase angle and impedance magnitude as a function of frequency constitute the measured data by means of which the fitting may be executed.

Looking at (6) the first term provides the substantive relationship between the constant phase and the parameter \(m \) so that one may determine \(m \) using

\[
m = \frac{\pi}{2 \theta_{CP}E}
\]

where \(\theta_{CP}E \) is the constant phase value determined from measurement. Thence equations (6) and (7) above provide a means to relate a required phase accuracy of the approximation to the multiplicity factor \(k \). Rather than trying to relate phase accuracy to simulation accuracy, it proves easier simply to make \(k \) sufficiently close to 1 that simulation results do not change; in other words we will simply reduce \(k \) “far enough” towards 1. Given values for \(m \) and \(k \), a measure of \(|Y'_0| \) at a frequency \(\omega = \omega_0 \) permits determination of one pair of values for \(R \) and \(C \) using equation (4). Finally the number of branches is determined given the bandwidth over which the network is expected to operate by suitable truncation of the infinite series of RC pairs. In the case of SCS this is typically 10–10,000 Hz or less, often 40–2,000 Hz.

\[\text{B. The Faradaic Part}\]

The best available theory for the Faradaic current across the boundary describes it by the more general form of the Butler-Volmer equation, sometimes called the current-overpotential equation: [1]

\[
i_{\text{net}} = i_0 \left\{ \frac{[O]_0}{[O]_\infty} e^{-\alpha_n f\eta} - \frac{[R]_0}{[R]_\infty} e^{(1-\alpha_n) f\eta} \right\}
\]

where \(i_{\text{net}} \) is the net Faradaic current across the interface, \(i_0 \) is the exchange current density, \([O]_0\) and \([R]_0\) are respectively the concentrations of the species at the interface, \(f \eta \) is the overpotential, and \(\alpha_n \) is a constant.

\[\text{Morrison’s parameter } k \text{ should not be confused with Boltzmann’s constant } k \text{ that appears in the discussion of Faradaic effects.}\]
the concentrations of oxidising species and reducing species at the electrode surface \((x = 0)\) as functions of time, \([O]_{\infty}\) and \([R]_{\infty}\) are the bulk concentrations of oxidising species and reducing species in the electrolyte, \(\alpha_c \approx \frac{1}{2}\) is the cathodic transfer coefficient, \(n\) is as usual the number of moles of electrons per mole of reactant oxidised, \(f = \frac{F}{RT}\) where \(F \approx 96,485\) C/mol is Faraday’s constant, \(R \approx 8.314\) J/mol/K is the gas constant, \(T\) is the absolute temperature, and \(\eta\) is the overpotential. It should be noted that this equation is associated with a single given oxidation reaction. Several candidates are identified in [1], and in general there might be multiple similar terms of the form of the right-side of (9) if multiple species are involved simultaneously.

It has been observed before that there is a resemblance between each exponential term of this equation and the diode equation: [10]

\[
i_D = I_S \left(\frac{V_D}{e^{\frac{V_D}{nFTR}} - 1} \right) \approx I_S e^{\frac{V_D}{nFTR}}
\]

where \(i_D\) is the diode current, \(V_D\) is the voltage drop across the diode junction, \(I_S\) is the saturation current, \(n_I \approx 1\) is the ideality factor\(^3\), and \(V_T = \frac{kT}{q}\) where \(k \approx 1.38 \times 10^{-23}\) is Boltzmann’s constant, \(T\) is the absolute temperature, and \(q \approx 1.60 \times 10^{-19}\) is the charge on the electron. Since the charge of a mole of electrons, \(qN_A\), is Faraday’s constant, \(F\), and the gas constant, \(R\), is the product of Avogadro’s number and Boltzmann’s constant, \(N_Ak\),

\[
\frac{F}{R} = \frac{q}{k}
\]

and it becomes straightforward to break out each term in equation (9) in the form of the diode equation. The saturation current is replaced by the concentration terms multiplied by the exchange current density, so that

\[
I_{S_0} \sim I_0 \left(\frac{[O]_{(0, t)}}{[O]_{\infty}} \right)
\]

and

\[
I_{S_R} \sim I_0 \left(\frac{[R]_{(0, t)}}{[R]_{\infty}} \right)
\]

where the sub-scripts \(O\) and \(R\) refer to the oxidation and reduction parts of the equation.

Now we may rewrite equation (9) as

\[
i_{\text{net}} = I_{S_0} e^{\frac{n}{nFTR}} - I_{S_R} e^{\frac{n}{nFTR}}
\]

where the ideality constants \(n_O = \frac{1}{nFTR}\) and \(n_R = \frac{1}{nFTR}\), and \(\eta\) has its sign changed on one half to allow for the reverse orientation of the second diode. This equation corresponds to a circuit consisting of a pair of back-to-back diodes. Close to equilibrium, where the concentrations of species at the electrode surface equal those in the bulk electrolyte \(I_{S_R} = I_{S_O} = i_0\).

As eloquently explained by Merrill et al., the concentration of species at the electrode surface will decline as the net transferred charge increases. [1] This will have the effect of reducing the current conducted in response to the amount of charge transferred. This characteristic—variation of conductance with the sum of charge conducted—is that of a memristor. [13] We now postulate an extension of the linear model, drawn in figure 5. \(R_S\) is the ohmic spreading resistance and is expected to be in the order of \(R_{cell}\). The CPE represents the double layer as in the model of Franks et al., to be discussed in more detail below. The Faradaic pathway comprises the two diodes with their associated memristors. Note that this model ignores the dc contribution of the half-cell potential, \(\Delta \phi\), as this is of no interest in our situation. [1]

One complication arises, in that the accumulated charge associated with the two memristors is “shared”. The shared memristor charge can be understood by considering the chemistry at work. Suppose for example we consider one of the possible reversible reactions that can occur with Pt electrodes, that of hydrogen atom plating (refer [1], equations 1.4 and 1.6).\(^4\) Then using this as an example, the plating reaction is:

\[
Pt + H^+ + e^- \longleftrightarrow Pt-H
\]

As the reaction goes to the right \(H^+\) is consumed, and Pt—H produced, and vice versa. The concentrations \([O]_{(0, t)}\) and \([R]_{(0, t)}\) are constrained for \(t\) small, such that one rises as the other falls, since their sum is fixed. In other words, the model must track the charge transferred through the pair of branches representing the Faradaic contribution, and adjust the diode conduction accordingly.

As elements with a dependence upon accumulated charge are not natively supported in any contemporary circuit simulators, the memristor-diode branches will be modelled using current-controlled current sources. Figure 6 depicts the sub-circuit that implements the macromodel. The capacitor \(C_M\) accumulates the charge transferred through both branches, and is the memory of the memristors. Since \(Q = CV\), the voltage \(V_M\) becomes the control variable for the memristor.

\(^3\)The usual symbol for the ideality factor in equation (10) is simply \(n\), but in order to avoid confusion with the ratio of moles of electrons to moles of reactant in equation (9) the symbol \(n_I\) will be used herein.

\(^4\)There is some dispute as to what reactions give rise to the measured data, presented below, and to which we fit this model. For the purpose of this manuscript the exact reaction is of no interest, since some reaction is responsible for the observed data, and the model is fitted to those particular data. However, from an electrochemical standpoint it is desirable to identify the reaction. This may be addressed in future work.
characteristic with $V_M = 0$ at equilibrium. The two halves of equation (14) are implemented using

$$I_{SO} = i_0(1 - V_M) \quad (16)$$

and

$$I_{SR} = i_0(1 + V_M) \quad (17)$$

with V_M ranging $-1 \leq V_M \leq +1$ where the extrema ± 1 represent the complete depletion of oxidizing and reducing species at the electrode surface. The capacitor C_M is then the scaling factor selected to fit the model to the physical dimensions, species concentrations, etc. The parallel resistor R_M introduces a time constant for the diffusion of species towards equilibrium.

C. Model Fitting

The aim in this section is to describe a sequence of measurements and calculations that lead to a set of model parameters and that are readily automated or repeated. Measurements for frequencies above 5Hz have been made with an HP4192A vector impedance meter. At lower frequencies a Tektronix TPS2014B oscilloscope and an Agilent 33220A arbitrary function generator were used. All instruments were controlled via an E5810A GPIB interface with software written in C, Python, AWK, etc.

1) Displacement Branch Parameters: Consider the measurements presented in figure 7. The impedance plotted was calculated by measuring the current injected into electrode 2 and returned via electrode 7, and dividing that into the voltage measured between electrode 7 and electrode 6. We used 2 and 7 to avoid end effects. The voltage on electrode 6 will be close to the voltage at the solution side of electrode 7, but results in an impedance that is increased by a small resistance contributed by the saline, represented by the resistor grid previously determined.

For small currents and adequately large frequencies, virtually all current through an electrode is carried by the CPE branch because its impedance is relatively low and the voltage across the CPE is small enough for the Faradaic branch to hardly conduct at all. We expect the value greater than R_S to be found for higher frequencies, where $X_{CPE} \rightarrow 0$. The characteristics of the CPE will dominate for lower frequencies as $X_{CPE} \gg R_S$. It is observed that $R_S \leq 950\Omega$ from the asymptotic behaviour above 1 kHz. The exact value of R_S is found by comparison of simulated values with measured values for frequencies above 1 kHz, by adjusting the value fed into a SPICE simulation until the results agree. For our electrode $R_S = 504\Omega$. As expected, the value is slightly larger than R_{err}.

At frequencies below 1Hz, X_{CPE} dominates and R_S can be ignored. Unfortunately, in order for the signal to remain small enough for the Faradaic contribution to be negligible, the stimulus current must be kept quite small and noise affects measurement accuracy, so there is a tradeoff. We used increasing time-domain averaging and Fourier processing to recover data as frequency dropped. The phase data in the plot becomes uncertain faster than the magnitude, and it is wiser to extract the CPE angle from the slope of the magnitude-frequency plot in the region where this describes a straight line on log-log scales, $0.01 \leq f \leq 1\text{Hz}$, where $\omega = 2\pi f$. So

$$\theta_{CPE} = \frac{\pi \Delta \log(Z)}{2 \Delta \log(f)} \approx 60^\circ \quad (18)$$

Using (8)

$$m = \frac{\Delta \log(f)}{\Delta \log(Z)} \approx 1.50 \quad (19)$$

and from (5)

$$y_0 \approx \frac{\pi}{1.50 \ln k} \quad (20)$$

At this point a value is guessed for k. We have used $k = 1.2$. Phase deviation was only visible for values above $k \approx 1.8$, but the computational cost of the lower value was negligible.
Next, equation (4) leads to a relationship between R and C. One of these may be chosen arbitrarily and the other is found using a $|Y_0|$ value on the line of best fit to the region where θ_{CPE} dominates. This leads to the infinite sequence of values as depicted in figure 4. The series is then truncated by incorporating only the RC pairs whose time constants fall within or close to the bandwidth to be covered by the model. For operational simulations we will use the range $10 \leq f \leq 10,000$Hz, but for purposes of comparison with measured values used to fit the model this range is extended to $0.001 \leq f \leq 100,000$Hz, again because it is computationally easy to do so.

2) Faradaic Branch Parameters: The Faradaic model requires values for three parameters, i_0, C_M, and R_M.

Figure 8 plots current against voltage across electrodes 2 and 7 with a triangle-wave stimulus. A triangle wave stimulus is used because it has a constant derivative and allows the contributions of the displacement and Faradaic branches to be separated easily. The observed hysteresis curve consists of an exponential component added to a linear component. The linear component can be thought of as a parallelogram-wave-shaped current that flows in the CPE, and is manifest by itself in the straight-line section of the trace, before the diodes turn on. The exponential current characteristic results from the diodes turning on, one in each of the two electrode interfaces in each opposite-polarity half of the triangular cycle. The simulated data plotted in the figure have the memristor functions disabled in order to allow the i_0 parameter to be fitted first. A value of $i_0 \approx 500$µA for an $n = 1$ process, such as hydrogen plating, produces the best agreement at the first onset of the exponential characteristic.

Next we turn to figure 9 that plots current and charge conducted against time in response to a similar ramp voltage stimulus. The onset of diode conduction is visible as before—the difference between the electrode current and the dashed straight-line extrapolation of its linear part—up to a point beyond which the current starts to fall. The fall is a response to the depletion of the species being reduced in one electrode and oxidised in the other. At this point it is tempting to determine a value for C_M off the charge axis of the plot, but it turns out for 1/10 PBS that so low a frequency is required to reveal the Faradaic current above the displacement current that diffusion processes compete in the measurement, and values of C_M and R_M must be selected together. It is clear that a good starting value for C_M will be in the order of a few hundred µF, and R_M will be in the order required to conduct 100µA for a potential of 1V, or about 10kΩ. Manual optimisation is all that is required to achieve reasonable agreement between measurement and simulation as shown in figure 10. The final values are $R_M \approx 15$kΩ and $C_M \approx 200$µF.

It is worth noting that the memristor’s effect is highly dependent upon the physical supply of species. This is starkly demonstrated by comparison of the still-fluid measurement with a parallel measurement taken while the saline bath is mixed, shown as the scattered-point trace in figure 9. Pragmatically, this dependence upon activity in the fluid makes any effort to accurately fit this part of the model something of a waste of effort. It is also interesting to note the up-turn of the current-voltage characteristic visible in measured data traces in figures 9 and 10. We attribute this to the onset of another diffusion-choked diode characteristic. We have chosen not to pursue this as it should never come into play in normal operation of SCS systems, and our model concentrates upon the medium-signal regime. However, there would seem to be no reason in principle why further diode-memristor branches should not be included in the model to address reactions that commence at higher interface voltages. Typical model
Fig. 10. Measured and simulated Faradaic current conducted through an electrode pair in still PBS subjected to a ramp voltage stimulus. Measured data, marked with triangle symbols, was obtained by subtracting the parallelogram-wave current obtained from a straight-line extrapolation of low-voltage (CPE) current from total current, as introduced in figure 9.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{ei}</td>
<td>430</td>
<td>Ω</td>
</tr>
<tr>
<td>R_{eri}</td>
<td>320</td>
<td>Ω</td>
</tr>
<tr>
<td>R_{li}</td>
<td>1100</td>
<td>Ω</td>
</tr>
<tr>
<td>R_{S}</td>
<td>504</td>
<td>Ω</td>
</tr>
<tr>
<td>mesh depth</td>
<td>5</td>
<td># layers</td>
</tr>
<tr>
<td>edge depth</td>
<td>3</td>
<td># layers</td>
</tr>
<tr>
<td>m</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>$\omega/</td>
<td>Z</td>
<td>$</td>
</tr>
<tr>
<td>i_0</td>
<td>500×10^{-12}</td>
<td>Amperes</td>
</tr>
<tr>
<td>C_M</td>
<td>200×10^{-6}</td>
<td>Farads</td>
</tr>
<tr>
<td>R_M</td>
<td>15,000</td>
<td>Ω</td>
</tr>
</tbody>
</table>

TABLE I
MODEL PARAMETER VALUES.

parameters for our implantable electrode array are summarised in table I.

IV. MODEL VERIFICATION

The most rigorous test of a model is to predict measurements quite separate from those used to fit the parameters. Figure 11 shows measurements and simulations with a 4mA biphasic pulse of 400µs per phase, typical of SCS therapy, delivering about 12µC/cm² through the electrode. The pulse was applied to electrode 2 of an Octrode with electrode 7 grounded. There is remarkable agreement between simulated and measured data, especially with respect to the long tail following the stimulus—the so-called stimulus artefact [3]—shown as an inset in the figure.

At the other extreme of subtlety, figure 12 presents the plot of dc current that is induced when a well-matched biphasic pulse of 6mA peak amplitude is applied to electrodes in 1/10 PBS. The measurements are made by means of a 100kΩ resistor in parallel with a 100µF capacitor, both in series with the generator. This measurement is remarkable in that it shows the model is able to predict nanoampere rectified currents that arise as a result of characteristics of the electrode when the system is subjected to several-volt, microsecond-duration, milliampere-sized, current pulses with 100Hz pulse repetition frequency (PRF). This represents prediction of charge flows over several decades of dynamic range. We consider this to be a significant indicator of the value of the model, allowing confirmation that a stimulus regime will remain within patient safety limits before it is physically tested or indeed before any prospective hardware has been constructed.
V. CONCLUSION

We present a nonlinear model for an electrode in saline electrolyte that is suitable for use in the common electrical simulator. We have fitted that model to an electrode intended for human implantation. We verify the accuracy of the model by prediction of characteristics different from those used to fit the model, and using waveforms whose magnitude and impulsive nature are very different from the small, slow, regular stimulus signals used for the original parameter extraction. We consider this to be a very rigorous proof of the model’s applicability. The verification signals are representative of signals present in pain relief application of Spinal Cord Stimulation. This model can provide insight into the operation of the electronics in implanted systems that is not available by any other means.

REFERENCES

Jonathan Scott (M’80–SM’99) is the Foundation Professor in Electronic Engineering at the University of Waikato in Hamilton, New Zealand. From 1998 to 2006 he was with the Hewlett-Packard, now Agilent Technologies, Microwave Technology Center in Santa Rosa, where he was responsible for advanced measurement systems. In 1997 and 1998 he was Chief Engineer at RF Technology in Sydney. He was with The University of Sydney in the Department of Electrical Engineering prior to 1997. He is a Professorial Fellow of Macquarie University. Professor Scott has authored over 100 refereed publications and holds a number of patents.

Peter Single is the Principal Systems Engineer in the Implant Systems group of National Information and Communications Technology Australia. He graduated with an Electrical Engineering (Hons) degree from The University of Sydney in 1978. He was in IC designer for National Semiconductor in Sunnyvale from 1980 to 1984, and Austek Microsystems Pty Ltd in Adelaide from 1985 to 1990. He was a systems engineer at Cochlear Pty Ltd from 1991 to 2002. From 2002 to 2006 he worked for G2 Microsystems Pty Ltd (Sydney).