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ABSTRACT 

A survey of the distribution and dispersal of aquatic macro invertebrates was carried 

out in the Waitomo caves catchment, located South of Hamilton, New Zealand. Eight 

sites were selected along the Waitomo stream. The sites represented a longitudinal 

gradient that flowed from the native forested, headwaters to pasture, then into native 

forest remnants, before flowing into pasture and onto the glowworm caves at the 

bottom of the catchment. It was found that both the benthic and drift fauna underwent 

a change in community composition along the length of the catchment. Initially, the 

diversity decreased and invertebrate abundance increased as the stream flowed from 

forest to pasture. There was also a change in community composition from 'sensitive' 

taxa e.g. Plecoptera and Archichauliodes diversus to more 'enrichment' tolerant eg 

chironomids and Austrosimulium sp. However the biota of the stream was 'restored' 

upon the stream flowing into a forest remnant, the Aranui reserve. There was also a 

seasonal reduction in drift of invertebrates from the Waitomo stream over winter. 

Additionally significant differences were found for many drift taxa between forest 

and pasture sites. Suggestions as to future research topics and recommendation for 

restoration of the catchment streams and biota were made. 
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1. Introduction 

1.1 Thesis Introduction 

The Glowworm Arachnocampa luminosa (Skuse) is found throughout New Zealand 

in damp, sheltered and shaded places in bush and caves. The larvae form of the 

glowworm is predaceous and lives in a mucus tube or galley from which they hang 

vertical "fishing lines" made from silk and sticky mucus. Glowworms use 

bioluminescence to attract flying insects, which are captured on these fishing lines 

and hauled up and eaten by the larvae (Broadley 1998). 

Research at Waitomo has focused on the glowworms, due to their value as a tourisln 

resource. This research has centred primarily on the ecology of the glowworms and 

their diet. For example, Pugsley (1980) established that the food supply is a major 

factor controlling the overall distribution of the glowworms. The diet of the 

glowworm larvae has been previously determined to consist of chironomids with 

some tipulids, mayflies and caddisflies (Pugsley 1980). The emergence from the 

grotto benthos has been found to be the main food source for the glowworms, 

however no evidence of chironomid egg laying has been found, indicating that the 

source of this food supply is elsewhere in the catchment (Pugsley 1980). In order to 

maintain a cave glowworm population the streams must transport aquatic insects into 

the cave from outside. The main transportation method for larvae and exuviae to enter 

the cave is via drift, thus the nature and distribution of the upstream fauna is of 

relevance to the glowworm population (Pugsley 1980, Oxenham 1985). However, 

very little is known about food source pathways to glowworms in cave systems, 



Chapter 1 Introduction 

specifically, which sections of the streams in the catchment contribute which 

invertebrates and how do these invertebrates disperse throughout the catchment. 

Accordingly, the purpose of this study was to determine the distribution and dispersal 

pathways of benthic and aerial aquatic insects along the Waitomo stream from the 

headwaters to the glowworm cave to resolve any seasonal changes in availability of 

glowworm food. Specifically I examined three aspects of the aquatic invertebrate 

fauna: 1) their distribution in benthic habitats; 2) the composition of the drift; and 3) 

the emergence of adult insects. Additionally a small-scale intensive study above and 

within the glowworm cave was carried out to elucidate the source pathways to the 

glowworms. 

This thesis consists of 7 chapters. The remainder of chapter 1 introduces some of the 

aspects of dispersal techniques of aquatic macro invertebrates (eg drift) as well as the 

effects of landuse activities on macro invertebrates distribution and abundance. 

Chapter 2 provides a general description of the Waitomo Caves catchment and its 

landuse, and then details the sites used for this study. Chapter 3 presents the results of 

physical and chemical parameters measured during this study. Chapter 4 provides the 

benthic distribution of aquatic invertebrates along the Waitomo stream. Chapter 5 

contains the dispersal by drift and upstream migration of aquatic invertebrates and 

relates to the dispersal of potential food supplies to the glowworms. Chapter 6 covers 

the emergence and aerial trapping of adult aquatic insects. Chapter 7 contains 

conclusions based on my findings and a discussion of possible effects of the Waitomo 

2 



Chapter 1 Introduction 

Catchment Control Scheme and recommendations for monitoring. It also contains a 

summary of future research needs in the Waitomo catchment. 

1.2 Dispersal of aquatic macroinvertebrates 

Dispersal, or the movement of individuals from one area to another, is an activity 

exhibited by most species and is of ecological significance (Smock 1996; Rawer-Jost 

et at 1999). In streams, both active and passive dispersal movements are common 

among benthic macro invertebrates in response to a number of factors. The continuous 

flow of water that helps define a lotic environment provides a convenient and 

energetically efficient mechanism for downstream dispersal, known as 'drift', but it 

can force unwanted displacement of individuals to downstream areas and make 

upstream dispersal or 'migration' difficult. Overland dispersal also occurs, primarily 

by the flight of adult insects that emerge from the streams. Dispersal of aquatic 

macro invertebrates also is a key process in the recolonisation of disturbed areas of 

streams, such as stream scoured and denuded by spates (Smock 1996). 

1.2.1 Drift of Aquatic Invertebrates 

Invertebrate drift is the downstream transport of organisms in running waters, it is 

one of the most intriguing phenomenon in stream ecosystem functioning (Waters 

1972). With this steady displacement of animals downstream in the drift, the 

headwaters would become totally devoid of fauna without upstream migration to 

compensate (Lock and Williams 1981). The upstream movement of invertebrates in 

running waters was been frequently observed. Unlike drift, upstream movements are 

always active. Upstream movement has been shown to exhibit a species-specific 

3 
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seasonal as well as diel periodicity (Soderstrom 1987). However studies of the 

upstream migrations has found they fail to offset the losses caused by drift (Lock and 

Williams 1981). 

It has been proposed that adult insects have a tendency to fly upstream to oviposit and 

thereby maintain population size. However, in the absence of density dependence the 

replenishment from downstream must exactly match the depletion. Hershey et al 

1993 suggested that depletion need only be slight to shift the entire population 

downstream as depletion would accumulate through successive generations. It is 

equally true that if upstream flight is greater than drift then the population will 

accumulate upstream. It is very unlikely that these conditions will be meet in a 

natural environment as lotic systems are subject to random perturbations such as 

flooding (Anholt 1995). 

Anholt (1995) describes the action of density dependence as the as the best way to 

explain the long-term persistence of stream invertebrate populations such to drift 

losses. Differential reproductive success of invertebrates that undertake upstream 

migration could explain it evolution and maintenance. The upstream biased dispersal 

would be favoured by natural selection when the upstream areas are relatively 

depauperate due to drift. The lower initial population size would mean more 

resources per capita available and result in higher growth and survival rates for 

offspring of individuals that oviposit into upstream reaches. Offspring of individuals 

that Inigrate upstream also tend to have lower mortality rates as they are less likely to 

begin life in an unsuitable habitat or die by drifting out of the habitable section of the 

4 
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stream (as they have further to go). Thus, all other parameters being equal, 

individuals with upstream biased dispersal are favoured because of higher birth rates 

and lower death rates (Anholt 1995). 

1.2.2 Emergence of adult insects 

Emergence is measured by collecting insects as they leave the aquatic juvenile stages 

and enter the terrestrial or the aerial adult stage by installing a trap over a defined area 

of the water surface (Statzner and Resh 1993). Once adult aquatic insects emerge 

from the stream they live in the nearby riparian zone where they may select 

streamside vegetation to complete metamorphosis, to rest while awaiting the proper 

swamming time, to feed in order to produce eggs, or to mate. The provision of 

suitable habitat for adult insects, both in quantity and quality is a important 

consideration as the adult life stage can be crucial in regulating the aquatic larvae 

population and adults can play an important role in terrestrial food webs (Collier and 

Smith 1998). 

Statzner and Resh (1993) analysed data from over 1 million specimens of stremTI 

insects collected in mergence traps at 18 sites, for over 32 trap-collection years and 

concluded that, a significant relationship does exist between annual emergence 

biomass and annual benthic secondary production. 

5 
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1.3 Landuse Activity and Invertebrate Distribution and Dispersal 

Streams are the products of their catchments (Hynes 1975). Climate, geology, relief, 

vegetation and land use are thought to be primary factors in determining composition 

and abundance of invertebrate assemblages in New Zealand streams (Biggs et al 

1990; Harding et al 1997). It is unlikely that climate, geology and relief will alter 

significantly on a short term scale in Waitomo, thus changes in vegetation and land 

use are vital factors in the composition and abundance of the glowworms food 

supply. 

Land use effects the physical, chemical and biological aspects of streams. Studies in 

New Zealand have demonstrated the effects of differing land use on stream 

hydrology, water chemistry, light and temperature regimes, energy sources and 

aquatic biota (Scarsbrook and Halliday 1999). Currently in New Zealand, rural 

landuses are perceived to be the primary cause of degradation of rivers (Storey and 

Cowley 1997). Studies in New Zealand and Australia comparing the effects of 

different landuse practises have found consistent reductions in taxonomic riclmess in 

streams draining arable land compared with streams in less developed catc1unents, 

and the replacement of enrichment-sensitive taxa with more tolerant taxa (Rogg and 

Norris 1991; Harding and Winterboum 1995; Quinn et aI1997). 

Despite widespread catchment development, significant areas of native vegetation 

remain in many parts of New Zealand and these areas provide streams that can act as 

local reference sites when studying land use impacts (Quinn and Cooper 1997). 

6 



Chapter 1 Introduction 

These studies and others have assessed the differences between catchments under 

different land use conditions, rather than the effects associated with land-use change 

within a catchment. While these studies have highlighted the effects of pastoral land 

use on stream ecosystems, resource managers (e.g. regional councils) and resource 

users (e.g. farmers) require information on the means of mitigating the adverse effects 

of pastoral land use (Scarsbrook and Halliday 1999). 

7 



2. Study Site: 

Wait011l0 Caves Catchm.ent 

2.1 Study Area 

The Waitomo caves are situated 10 kilometres South West of Otorohanga and 80 

kilometres South of Hamilton (Figure 2.1). All sampling for this study was 

undertaken in the catchment of the Waitomo caves. 

Hamilton 

Otorohanga 

Te Kuiti 

o 50 km 

Figure 2.1 Map showing location ofWaitomo, New Zealand. 



Chapter 2: Study Site Waitomo Cave Catchment 

2.1.1 Waitomo Caves catchment 

New Zealand is a geologically young landscape with high weathering rates, mostly 

from sedimentary rock (Mosley 1992) and the Waitomo catchment is no exception. 

The Waitomo catchment is characterised by very steep hill slopes. The areas pattern 

of variable weather systems, combined with the strong orographic influences of the 

steep King Country hills, results in a rainfall pattern that is marked by intense local 

instability and short duration high intensity falls (Hawke 1982). 

The characteristics of the soils of the Waitomo are generally a function of the tephra 

layers, which mantle the topography. Resultant soils contain very slippy amorphous 

clays, which allow free drainage while retaining high moisture content. Soils 

developed from tephra deposits are considered unsuitable for roading and heavy 

buildings as they have a low critical limit of stability under pressure, the results of 

such failure are evident in the numerous slips which occur along the roads of the 

Waitomo district (Hawke 1982). The sediment from these slips finds it way into the 

streams of the catchment (Pugsley 1980). 

The native vegetation of the district is dominated by podocarp forest. The major 

species are Rimu Dacrydium cupressium, Tawa Beilschmiedia tawa, Kahikitea 

Podocarpus dacrydiodes and Totara Po do carpus to tara. The understorey is 

dominated by suppplejack Rhipogonum scandus and bush lawyer Rubus cissoides 

with frequent occurances ofparataniwha Elatostema rugosum (Hawke 1982). 

9 
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Clearing of the catchment began at the turn of the twentieth century, with the large 

rimu, kahikatea and totara being logged for timber. Next came clearance of the land 

with the establishment of exotic grassland (Environment Waikato 1997). In New 

Zealand farming country often forest clearance has been incomplete, with a scattering 

of small forest fragments left standing (Quinn and Cooper 1997; Storey and Cowley 

1997). This was the case in Waitomo where small portions of the basin, notably those 

with steep slopes or a complex landscape of depressions remaining uncleared. 

However the grazing of feral goats has modified the understorey and ultimately the 

composition of these sections. Approximately 10% of the Waitomo catchment 

remains under the modified natural vegetation, generally having been declared scenic 

reserves (Hawke 1982). Pasture landuse takes up 78% of the catchment (Environment 

Waikato 1997). 

As a consequence of the steep slopes, soil, rainfall patterns and land use patterns, the 

valley floor, the Waitomo stream and the world renown Glowworm Grotto have all 

accumulated over three metres of sediment since 1889 (New Zealand Speleological 

Society Inc. 1974). Following roadworks in 1975 up to 100cm of sediment was 

deposited as a result of floods and the remaining life of the glowworm grotto was 

estimated at less than fifty years (Pugsley 1980). Such erosion and sedimentation has 

the potential to detrimentally effect the water quality, including the cave systems, and 

lead to loss of productive potential from the land (Environment Waikato 1997). 

It was with this background that the Waitomo Catchment Control Scheme (WCCS) 

was initiated in 1984 (Fig 2.2). The scheme covers the physical watershed of the 

10 
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Upper Waitomo stream catchment, an area of 5000 hectares. The Upper Waitomo 

stream flows through the Waitomo caves before heading north and entering the 

Waipa river at Otorohanga (Environment Waikato 1997). The primary objective of 

the scheme is to protect the water quality in the Waitomo catchment, and to 

encourage appropriate and sustainable land management practises. 

Scheme components consist of: 

• Fencing and stock retirement of waterways, tomos and erosion prone land. 

• Planting of tree species for erosion control. 

• Provision of stock crossings and alternative water supplies. 

• Minor engineering works ( sedimentation dams) 

The present day statistics about the catchment control scheme can be seen in table 2.1 

While a catchment map showing the spatial layout of these features is found in figure 

2.2 

Table 2.1 Waitomo Catchment Control Scheme Facts (from Environment Waikato 1999). 

Properties involved 14 

Replacement value of Scheme $600000 

Fences 55km 

Protected indigenous bush 624ha 

Protected/production forestry 350ha 

Sediment dams 3 

Water supplies 3 

11 
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Figure 2.2 Map of the Waitomo Catchment Control Scheme 
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The Waitomo catchment does not have intensive dairy farming and so a high use of 

fertiliser in the catchment is not expected, so nutrient addition will not be as great as 

in intensively farmed areas like lowland Waikato. Sediment conversely is a greater 

issue. 

2.1.2 Site Selection 

Sites were selected for this study based on a number of criteria, shown in table 2.2. 

Table 2.2 Site Selection Criteria. 

Distribution along length of catchment 

Sites immediately above and below main tourist cave 

Pasture and Forest sites 

Site access -

Sites physically similar ie riffles 

2.1.3 Site Descriptions 

Eight sites were selected from within the Waitomo Caves catchment (Figure 2.3) and 

sampled over a period of eleven months from February 1999 to December 1999. All 

13 
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sites except site 4 are located on the Waitomo stream. Numerous small first and 

second order streams drain into the Waitomo stream along the length studied. This is 

in part due to the highly dendritic nature of karst drainage patterns (Hawke 1982). 

Table 2.3 Study Site Details 

Site Site Map reference Site name 

Number NZMS 260 

Stream in headwaters - originating 1 R16886230 "headwaters" 

in forest 

Stream in headwaters pasture 2 S16907244 "pasture" 

Stream junction right 2na
" 3 S16920243 "aranui 

Stream junction left 1 Sl 4 S16921243 "blackwater" 

Stream in pasture 5 S16932249 "valley" 

Upstream of Glowworm cave 6 S16942248 "submergence" 

Glowworm caves. 7 816943248 "glowworm 

grotto" 

Downstream of Glowworm cave 8 816944249? "emergence" 

Site 1: Headwaters. This site is located on the Haggis farm, in an area of native bush 

although it is patchy in places with grass growing. The stream emerges from under 

ground approximately 50m upstream of this site. 

14 
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Site 2: Pasture. This site was fenced off from stock during the present study in the 

spring. Prior to this time stock could enter the waterway to drink with detrimental 

effects on the stream. The site was used as occasional crossing, drinking spot. 

Site 3: Aranui. Aranui reserve contains mature native bush with the vegetation types 

being described in section 2.1.1. The stream flows through over 1 kilometre of 

reserve before reaching site 3. 

Site 4: Blackwater. The site is located 20m downstream of an emergence of the 

Okahua stream. The Okahua stream flows into the Waitomo downstream of this site. 

Commercial "blackwater" tubing occurs along the stream inside the cave. 

Site 5: Valley. This site is located in pasture The stream channel at this section of the 

stream has steep banks and pronounced channelisation, while the surrounding 

paddocks are very flat and used for haymaking. 

Site 6: Submergence. The site is immediately upstream of glowworm cave and it 

vegetation is a mixture of native bush and grass. This vegetation does provide some 

shade and inputs of allothonous material to the stream. 

Site 7: Glowworm grotto. Located within the tourist cave, water velocity is slow 

leading to sediment deposition. After floods sediment has to be washed from the jetty 

to resume tourist operations (Pers. Obs.). The glowworm cave is the best known of 

the tourist caves at Waitomo. The cave takes the Waitomo stream through a low 

limestone ridge that forms a barrier across the Waitomo valley. 

Site 8: Emergence. This site is located immediately downstream of the glowworm 

cave. On one side of the stream is verged by mown grass and then a carpark, while 

the other side has blackberry and then long grass. 

15 
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Initial sampling was carried out at the end of December 1998. Sampling was carried 

out along the length of the catchment for a further 11 months. 

16 
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Plate 2.3 Site 3, representative forest site. 

Plate 2.4 Site 5, flood conditions. Taken approximately 24 hours after plate 
2.3 

18 



3. Physical and Chemical Variables 

3.1 Methods 

3.1.1 Substrate composition 

Visual estimates of substrate composition (0/0) were made using the following particle 

size scale (From Jowett and Richardson 1990): 

Sand (0.06-2 mm nominal diameter) 

Fine gravel (2-10 mm) 

Gravel (10-64 mm) 

Cobble (64-256mm) 

Boulder (>256mm) 

Bedrock (solid rock surfaces) 

3.1.2 Channel Width and Depth 

Measurements of the channel width were made at three cross-sections perpendicular 

to the channel direction in each 20 m length. Channel width was measured by tape 

measure from the point of maximum rate of change in stream-bank slope (i.e., the 

point at which the stream bank was most strongly convex). Channel depth was 

measured at each of the three transects, from the stream bed up to the transept line, 

with this value representing the depth of water until bank overflow. The width of the 

stream channel was measured at all sites. The wetted stream width and channel depth 

was also measured at all eight sites. 
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3.1.3 Stream Temperature 

Three spot measurements were taken for Temperature each month at all eight sites. 

These measurements were initially taken with a YSI 6000 probe. However this probe 

was found to be faulty during the year and a YSI 30 and YSI 55 were used for the 

remainder of the sampling. Initially it was planned to take spot measurements of 

percent dissolved oxygen and conductivity, however the early measurelnents made 

with the YSI 6000 probe proved to wildly inaccurate, so this was discontinued. 

3.1.4 Continuous Environmental Data 

Environmental data from an Environment Waikato monitoring station in the Aranui 

reserve was analysed for seasonal trends and extreme events. The site (NZMS 260 

S 16 939249) is approximately 100m downstream of the confluence of the Waitomo 

stream and Okahua stream. Sites 3 and 4 are 20m up each respective stream from the 

confluence. The data set covers the period from January 1993 to July 1999, with 

automatic monthly samples being taken. Data for percentage dissolved oxygen, 

turbidity and stream temperature was analysed. 
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3.2 Results 

3.2.1 Substrate Composition 

The results of the substrate analysis are found in table 3.1 

Table 3.1 Substrate composition of all 8 sites. 

Sand Fine gravel Gravel Cobble Boulder Bedrock 

Site (0.06-2 mm) (2-10 mm) (10-64 mm) (64-256mm) (>256mm) (solid rock surfaces) 

1 5 10 5 10 30 

2 30 20 20 30 

3 5 10 10 15 20 

4 10 10 

5 100 - - - -

6 100 - - - -

7 100 - - - -

8 30 10 60 

Site 1 in the forested headwaters, substrate was comprised of mainly bedrock and 

cobbles. Sites 5,6,7 were totally dominated by a fine sand silty substrate. This is the 

result of the high levels of suspended solids deposition in the stream. Sites 3 and 4 in 

Aranui reserve had a very similar substrate to that of the headwaters. Site 2 in pasture 

had a lot of sand and silt but also cobbles, which provide a more diverse habitat for 

aquatic life. Site 2 could be considered an intermediate in between the other pasture 

sites and the forest sites but closer in composition to the pasture. Boulders dominated 

site 8, this seems unusual given the composition immediately upstream of this site 
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Chapter 3: Chemical and Physical Variables 

was completely sand/silt dominated. Additionally the valley floor, which this site is 

in, has been in filled by over three metres of sediment since 1889. The boulders at 

this site are the remnants of an engineering proj ect designed to slow the stream flow 

and reduce sedimentation. The result was increased sedimentation due to reduced 

stream flow and consequently most of the boulders were removed (New Zealand 

Speleological Society Inc. 1974). 

3.2.2 Channel Width and Depth 

Table 3.2 Wetted channel width and depth and channel width and depth for all sites. 

Site Channel Channel Depth (m) Wetted Width (m) Depth (m) 

Width (m) 

1 6.5 1.2 5.35 0.3 

2 7.00 4.00 4.15 0.6 

3 9.00 3.00 5.45 0.4 

4 - ~ 4.05 0.35 

5 9.00 5.00 2.90 1.10 

6 6.00 3.00 4.50 1.0 

7 - ~ - 3.00-4.00 

8 6.50 3.40 4.50 0.50 

During the winter months and the flow at site 4 increases, the stream fills an adjacent 

dry streambed, thus complicating the hydrology. Site 7 is inside the cave, the stream 

flow slows and a mini 'lake' forms, known as the "glowworm grotto". 
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3.2.3 Stream Temperature 

The temporal pattern of temperature at all sites was found to follow a seasonal 

pattern, with lowest temperatures in winter and increase in spring through to the 

highest temperatures in summer (fig 3.1) 
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Fig 3.1 Temporal temperature pattern for all sites. 

Temperature variation throughout the study period was highest in December (3. 8°C) 

and lowest in June (O.2°C). The maximum temperature recorded was at site 2 in 

March (18.6°C), while the minimum was recorded at site 6 in July (9.6°C). 

The spatial pattern of stream temperature for the study is shown in figure 3.2 
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Fig 3.2 Spatial trends in temperature 

Within site variation in temperature over the study period was found to be greatest at 

site 2 (8°C). The least variation within a site over the study was site 1 (3.2°C). This 

lack of variation is likely to be due to the length of time the water spends 

underground before emerging. 

3.2.4 Continuous Environmental data 

Over the six and a half years of years of sampling (n=79) the average stream 

temperature was 13.9 °c, while the average %DO (percent dissolve oxygen) was 

102.9%. The average turbidity measured was 256 NTUs, however this figure is 

skewed by several large values. The temperature range was 9.7-18.1 °c, with the 

minimum of 9.7°C occurring in July 1997. The maximum, 18.1°C was recorded in 

February 1997, January 1999 and February 1999. The minimum %DO was recorded 

in November 1998 (92%), one month after the maximum turbidity reading (421 

NTUs October 1998). The maximum percent dissolved oxygen was also correlated 

with turbidity, with both occurring in February 1994 (126.5 %DO, 1.2 NTUs). 
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3.3 Discussion 

3.3.1 Substrate composition 

Site 8 is very different in substrate composition from all the other sites, with the 

substrate being primarily boulders and sand. This difference is likely to due to 

anthropogenic disturbances, as rocky rubble was dumped just below the stream 

emergence. The substrate at Sites 5,6 and 7 completely sandy, this is not surprising as 

they are located in a low gradient area and therefore experience deposition of 

sediment. It is this area of the catchment that has accumulated over 3m of sediment in 

the period 1889 to 1974 (New Zealand Speleological Society Inc. 1974). Pool areas 

are sediment deposition areas due to their slower flow; therefore they may be more 

sensitive and quicker to respond to sediment addition than riffles (Hogg and Norris 

1991). 

3.3.2 Temperature trends 

Over the summer months there was a general trend for increases in temperatures from 

site 1 to site 2, as the stream flows from underground and forest to pasture. The 

temperature then decreases at site 3 in forest before increasing again as it flows onto 

pasture at site 5 and a further increase to site 6. Once in the cave at site 7 there was a 

very slight decrease and further decrease at the emergence from underground at site 

8. Site 4 is not included in this analysis as it is a separate stream, however its 

temperature was consistently similar to that of site 3. 
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3.3.3. Suspended sediment effects 

The extreme suspended solid events in the Waitomo catchment are likely to be 

detrimentally effecting the biota of the streams. Hogg and Norris (1991) 

demonstrated a negative effect of runoff from land clearance and development, on 

benthic macro invertebrate numbers and species richness in pool areas of a river. They 

concluded that the deposition of fine inorganic sediment following storm events, and 

the resulting change in composition of the substratum, was the major cause of low 

numbers of invertebrates. Following the cessation of incoming sediment and the 

subsequent flushing of fine deposited sediment from the substratum during high flow 

events, recovery of benthic invertebrates in pool and shifting sands areas should be 

rapid. Suspended sediments create a threat to aquatic environments only when they 

are present over extended periods in unusually large amounts, thereby changing the 

character of the habitat CRogg and Norris 1991). 
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4. Distribution of Benthic Invertebrates 27 

4.1 Benthic Sampling Methods 

Freshwater macro invertebrates are ubiquitous, they are found in even the most 

environmentally extreme lotic environments. By convention, the term 

'macroinvertebrate' refers to invertebrate fauna retained by a 500/--Lm net. However, 

the early stages of many macro invertebrate species pass through this mesh size. 

Because these early stages are important to the understanding of ecological 

relationships, there has been a trend to use finer mesh (e.g. 125 to 250/--Lm) (Hauer and 

Resh 1996). It was for these reasons that I used 250/--Lm mesh in the collection of drift 

and benthic samples. The number of samples collected were based upon the number 

of replicates required, in order to estimate benthic density with a desired degree of 

precision and risk of en or. A pilot test was canied out in December 1998 to 

determine this. 

For this study, a light collapsible O.9m2 Surber sampler was constructed (see plate 

4.1). The light construction of this Surber sampler made it easier to handle when in 

use and especially in transport by foot to the sites. The Surber sampler net was 

fabricated so that sample containers could be screwed on to it whilst sampling was 

taking place. A sample container lid with its top cut out was fastened onto the end of 

the net. This enabled the containers to be screwed on while the sampler was in use 

and then after all the detritus and organisms were washed down, easily removed. 
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According to the sampling design, benthic sampling was to been done on 4 occasions, 

however due to flooding this was not achieved. Analysis of samples was completed 

on two dates, April and December. On each sampling occasion, 5 samples were taken 

within a ten-metre reach, at sites 1 ,2,3,4,5 and 8. Site 6 and 7 were not sampled as they 

were consistently too deep. The order of sampling and the actual sampling positions 

were determined by the use of random numbers. Labels were added to the samples 

and they were preserved immediately with 5% formalin. Prior to analysis the samples 

were rinsed with water in a small hand held dip net with 250 !J.IIl netting. 

Plate 4.1 Surber Sampler Aparatus. 
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4.1.1 Statistical analysis 

Variances of drift and benthic invertebrates increased with the mean with all taxa 

indicating the need for data transformation before statistical analysis could be 

performed. Data was transformed using log transformation. 

4.2 Results 

During April and December 1999, a total of 12,701 macroinvertebrates were 

collected from five replicate Surber samples (0.9m2
). A total number of 60 benthic 

samples were collected from sites 1,2,3,4,5 
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:;:; 

[J Diptera 'iii 
0 80% 

• Coleoptera Co 
E 60% [J Plecotera 0 
U 
CII 40% [J Ephemeroptera 
CI ca • Trichoptera - 20% r::: 
CII [J Gastropda U ' .. 0% CII 

11. 
1 

Fig 4.1 Percentage composition of the main taxonomic groups to the total benthic deosity(number. m­
') at all sites. 

The six most numerically abundant orders in the benthos were: Gastropoda (3 I %), 
Trichoptera (28.4%), Ephemeroptera (11.5%), Diptera (10.4%), Plecoptera, and 
Coleoptera (0.9%). 

Spatial trends III benthic invertebrates are shown III figures 4.2-4.7 
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The Chironomids and Austrosimulium sp. were found to be most abundant in the 

benthos at the downstream and pasture sites, 2,5,8 (fig4.2 and fig4.4). Potamopyrgus 

antipodarum was numerically dominant at the pasture and downstream sites (fig 4.7). 

While Trichoptera was most abundant in the benthos of Aranui reserve at site 

3(fig4.6). Total invertebrate densities were highest at the pasture sites 2 and 5 and 

downstream at site 8 (fig4.3). This is shows a general trend for increasing invertebrate 

density from the headwaters (site 1 ) to the pastures site 2, Next is a reduction in 

numbers to site 4 and then another increase to pasture site 5. 

Archichauliodes diversus was only found in the benthos at the three forest sites, as 

was the mayfly, Coloburiscus humeralis and the Tipulid, Aphrophila neozelandica. 

4.3 Discussion 

Mayflies, stoneflies and caddisflies dominated the forested sections of the stream, 

while Potamopyrgus antipodarum, austrosimulium sp. and chironomids dominated 

the pasture and downstream sites. This change in community composition occurred 

along the length of the catchment and involved a deterioration and restoration of 

invertebrates associated with better water quality. Additionally there were several 

taxa that only occurred within the forested sites, indicating a greater species diversity 

within these regions. 

Environment Waikato has been monitoring the stremTI since 1990 and during this 

time there has been a significant reduction in suspended sediment (Environment 
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Waikato 1999). As sediment input to stream has a major effect on the biota, this will 

have had an effect on the composition of the benthic macroinvertebrates of Waitomo. 

In conjunction with increasing riparian zones, this could lead to a restoration of 

aquatic biota that is found in the headwaters. Pugsley (1980) suggested that on basis 

of evidence of past sediment deposition, that the streambed consisted of fine 

sediments even before the felling of indigenous forest in the early 1900's. Therefore, 

even before pasture conversion, chironomids and oligochaetes dominated the 

macroinvertebrates of the stream. The present study's results indicate that this is 

unlikely as the forested sites community composition is dominated by caddisflies, 

mayflies and stoneflies rather than chironomids and oligochaetes. 

Attempts to restore streams previously degraded have led to renewed interest in the 

process by which invertebrates colonise such systems. Rapid recolonisation has often 

been expected, but some streams still have an improvished insect fauna years after 

improvements are implemented. The reason for this may lie with the methods of 

recolonisation. Where remnant populations occur in the same catchment, colonisation 

may be fast through larval drift, upstream migration and local oviposition. However, 

if colonisation requires overland flight by egg-bearing females from neighbouring 

catchment, recovery may be much slower (Peterson et al 1999). This study has shown 

that remnant populations of "undisturbed" invertebrates occur in the headwaters and 

forested sections of the Waitomo stream, it is from here that potential repopulation of 

newly restored stream sections can occur. 
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5. Dispersal by Drift and Upstream 
Migration 

5.1 Introduction 

5.1.1 Drift of Aquatic Invertebrates 

One of the most studied aspects of drift is its diel periodicity. Numerous studies have 

shown that drift displays distinct circadian patterns with maximum drift occurring at 

night (fig 5.1). Many macro invertebrates display a peak in drift soon after nightfall as 

the light intensity falls, while others are crepuscular, displaying both dusk and dawn 

drift peaks (Elliott 1969; Williams 1981; Brewin and Ormerod 1994;Kiffney et al 

1997). 
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FIG 5.1. Typical macro invertebrate diel drift pattern. (redrawn from Smock 1996). 
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These diel cycles in invertebrate densities must be taken into account in research 

designs and sampling protocols in order to identify and interpret correctly results of 

studies (Donahue and Schindler 1998). 

While the choice of sampling method is dependent upon the question( s) being 

addressed, several aspects of drift sampling enhance its value as a complementary 

tool to benthic sampling. Firstly, while drift samplers are biased towards collection of 

organisms that enter the water column and don't provide a quantitative estimate of the 

benthic invertebrates per area of stream bottom, they do represent an integrated 

sample of invertebrates from a variety of habitats. However drift sampling alone may 

not provide information representative of some systems (e.g. those characterised by 

oligochaetes, molluscs and heavy cased Trichoptera) it can serve as an effective 

complimentary tool to direct sampling. Secondly, drift samples are fairly 'clean', with 

invertebrates not being mixed with substrate from the stream bottom. Thirdly, drift 

sampling is non-destructive, as it does not disturb the bottom substrate (Pringle and 

Ramirez 1998). Additionally variation between drift samples is smaller than between 

benthic samples (Matthaei et aI1998). 

Drift samplings potential value in assessing species composition and monitoring 

water quality has been illustrated in studies of larval Chironomidae (e.g. Wilson and 

Bright 1973; Wilson and McGill 1977; McGill et aI1979). 

The understanding of benthic communities in stream is complicated by the fact that 

sampling techniques do not always indicate actual community composition and 
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structure. Most techniques are insect based and sample only streambed substrate, for 

eg Surber and Hess samplers. Techniques to assess stream communities in less direct 

ways have not been widely used, for e.g. while drift samplers have often been 

employed to study insect behaviour (Waters 1972), only a few studies have used this 

method to assess benthic community composition (Pringle and Ramirez 1998). 

5.1.2 Upstream Migration of invertebrates 

The upstream movements and migration of benthic macro invertebrates are also an 

important component of running water systems. Upstream migration is movement 

against the stream flow and therefore clearly non-random (Rawer-Jost et al 1999). 

Benthic invertebrates have been found to migrate over considerable distances 

(Rawer-Jost et aI1999). 

5.2 Methods 

5.2.1 Drift sampling 

For the drift sampling, a sampler was constructed with an opening of O.3m by O.2m2 

(plate 5.1). Two pieces of tubular aluminium were attached to each side of the frame, 

allowing the nets to be placed in the stream with the use of metal stakes. The net was 

made of250 !lm mesh and was O.8m long, funnelling down from the frame to a point. 

The apex of the net was left open for the attachment of sampling vessels, this was 

achieved by attaching the lid of a container with a hole cut in the top. This enabled 
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the sample containers to be screwed onto the net for sampling and then removed with 

the sample. 

Sampling was carried out once a month at all sites except 7, for a twelve-hour period 

starting approximately 112 hour before dusk. Sample duration was chosen as the 

sample unit rather than sample volume as per Culp and Srimgeour (1994). This 

choice was made based on the fact it is easier to standardise sample duration under 

field conditions. Although some variation occurred in sampling volume among 

replicate nets, this was reduced by sampling areas with a uniform current. 

Three nets were used at each site to provide three replicate samples. Site 7 inside the 

glowworm cave was not sampled as the water was too deep for the deployment of 

this type of drift net. The net was anchored to the substrate with two electric fence 

standards with the foot removed, except at sites where the substrate did not allow this, 

at these sites the nets were attached to concrete anchor with a rope cradle (plate 5.2). 

The nets were placed approximately 20m off the stream bed. When the net was 

emptied, it was lifted out of the stream and all organisms and debris was washed 

down into the sample bottle by splashing the net with stream water. Sample labels 

were added and the invertebrates preserved in 5% formalin before transportation back 

to the laboratory. In the laboratory, samples were washed through a 250l-lm dip net 

and then identified. For data transformation see section 4.2.1. 
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Plate 5.1 Drift Sampler Aparatus 

Plate 5.2 Drift Sampler in Use 
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5.2.2.Migration 

Drift and upstream movement of benthic macro invertebrates were measured using a 

combination drift-upstream movement sampler (plate 5.3) (Hobbs and Butler 1981). 

However it was constructed out of sheet metal instead of plywood. The drift opening 

was O.3m by O.2m
2

, the same as the other drift nets used. While the two migration 

entrances were 0.15m by O.3m2 each. The nets used were 250Jlm mesh with the same 

vessel attachment as the drift and Surber sampler. 250Jlm mesh was also used on the 

front of the trap to stop organisms entering the sample from the drift. This sampler 

was utilised for a 12-hour period at sites 6 and 8 every month commencing in March, 

once the sampler was constructed. The upstream migration was sampled in an attempt 

to determine whether any invertebrate migration is occurring into the glowworm cave 

from downstream, or occurring upstream from site 6. 

5.2.3 Water velocity 

Water velocity was measured at the start of the sampling period for both drift and 

migration using a Marsh McBimey flow meter. Measuring the velocity of the water 

that flows through a known space (drift and migration samplers) over a known time 

(12 hour sampling period) means the invertebrates trapped can be calculated as a 

number per metre square of water. This was discontinued after the meter developed a 

fault, however the initial measurements were used to determine if any clogging of the 

nets was occurring and causing back eddies in the entrance to the nets. There were no 

significant differences between the before and after measurements. However this was 
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under low flow conditions and there was no measurements of the velocity during peak 

flow and increased suspended solids. 

Plate 5.3 Hobbs and Butler (1981) Combination upstream migration/drift sampler, 

with lid kmoved to show internal design. 

5.3 Results 

5.3.1 Drift 

A total of 13,005 individual organisms were collected from the drift at the 7 drift sites 

from February to December 1999. June, August and September sampling could not be 

completed due to flooding. 
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Figure 5.2 Percentage composition of the invertebrate orders in the total drift. 

Diptera was the most numerically dominant order within the drift, contributing 37.4% 

of the total drift observed (Figure 5.2). This was followed by Trichoptera (27.9%), 

Gastropoda (17.8%), Ephemeroptera (12.3%), Plecoptera (2%), and Coleoptera 

(2.6%). The Diptera was comprised of two main groups, the blackfly Austrosimulium 

sp. and Chironomid spp. The Gastropoda was almost entirely comprised of the 

hydrobiid snail Potamopyrgus antipodarum. 

The spatial trends in drift abundance of Invertebrates were calculated for the entire 

study period from February 1999 to December 1999, excluding 3 flood interrupted 

sampling events. 
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Chironomid species were found to occur in their highest abundance in pasture at site 

5 and downstream sites 6 and 8 (figure 5.3). Relatively lower numbers were found at 

the upstream sites including the pasture site 2. The algal piercing Oxyethira a/biceps 

was found to be most abundant the three downstream sites especially the pasture site 

5 (figure 5.4). While total Trichoptera numbers in the drift were highest at site 3 in 

the Aranui reserve, the effect of the Oxyethira a/biceps can be seen as an increase in 

numbers at sites 6 and 8 (figure 5.5). Potamopyrgus antipodarum followed a similar 

trend of increasing at the downstream sites (figure 5.6). The low numbers of 

Potamopyrgus antipodarum at site 1 increased downstream to the pasture site 2 and 

then decreased again at site 3. The spatial abundance of Plecoptera (figure 5.7) in the 

drift showed a gradual trend of decreasing from the headwaters, to the bottom of the 

catchment. Austrosimulium sp. were by far were found in their greatest numbers in 

the drift at the three downstream sites of 5,6 and 8 (figure 5.8). This increase in 

numbers from the upstream sites is likely due to landuse change. Ephemeroptera 

increased from the headwaters site 1 to the pasture site 2 (figure 5.9). This is a similar 

trend to the benthos. Then they decreased in drift abundance along the longitudinal 

gradient to the bottom of the catchment. 

Sites 1 and 3 were combined to indicate the composition of the forested sites (n= 39) 

and compared with the composition of the pasture sites 2 and 5 (n=36) (Figure 5.3) 
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Figure 5.11 Mean percentage contributions of the main invertebrate orders to the total aquatic drift 

between native forest (sites 1 and 3) and pasture sites (sites 2 and 5) 

It was found that Diptera increased in composition of the drift at the pasture sites 

from that found at the native forest sites, as did the Gastropoda (figure 5.11). While 

Trichoptera, Ephemeroptera, Plecoptera, and Coleoptera decreased. This is similar to 

the pattern observed in the benthic samples and other New Zealand land use studies 

(Harding and Winterbourn 1995; Scott et a11994; Quinn and Hickey 1990). 
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One way ANNOVA were performed on the log transformed data to indicate 

differences in drift between different land uses (table 5.1). 

Table 5.1 Effects of land use on invertebrate drift. n.s., not significant;*P<O.05.pasture n =36, forest 

n=39 

Taxa Forest to pasture effect on 

invertebrate drift P 

Potamopyrgus antipodarum Increase * 

Trichoptera Decrease * 

Ephemeroptera Decrease n.s. 

Plecoptera Decrease n.s. 

Coleoptera Decrease * 

Chironomids Increase * 

Austrosimulium sp. Increase * 

Total Invertebrates Increase * 

There was a significant difference (p<O.05) between native forest and pasture sites for 

total drift abundance. 
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Fig 5.12 Temporal abundance of all drift invertebrates sampled. 

The total drift abundance was highest over the summer months and then decreased 

through winter before experiencing an increase in spring. 

5.3.2 Upstream Migration 

A total of 28 migration samples were taken over the study period, samples were not 

obtained from June, August, or September, as the stream was flooded at these times. 

The samples from May at site 6 were invalidated as the trap was tipped on its side. A 

total of 357 upstream migration individuals were obtained. A total of 168 individuals 

were obtained from site 6, while 189 individuals were obtained from site 8. The 

composition of the sites was compared and found to similar (Figure 5.13). 
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Fig 5.13 Composition of the main groups of upstream migration 

cEphemeroptera 

• hydrobiosidae 

o helicopsyche 

o Potamopyrgus 

• Austrosimulium 

C Chironomidae 

Potamopyrgus was most the most numerically dominant group, contributing 53% of 

the upstream migration observed. 1bis was followed by chironomidae (24%), then 

Austrosimulium sp.l2%, and then Trichoptera 8% 

Temporal patterns in upstream migration are shown in figure x 
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Figure 5.14 Temporal pattern of invertebrate upstream migration. 

The largest numbers of migration occurred in April with another peak in December, 

1999. The lowest numbers of upstream migration were recorded during July. 
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While the migration! drift sampler supplies 2 upstream migration samples for every 

drift sample, the design of the sampler is such that the drift opening is twice that of 

the migration opening. In other words a single drift sample is equivalent to 2 

migration samples. The replacement of invertebrates by upstream migration was 

calculated to be 54.4% 

5.4 Discussion 

Variation in estimates of drift density for stream invertebrates is composed of 

temporal and spatial factors. For example, temporal changes in the densities of most 

species occur throughout a diel cycle, among seasons or with catastrophic changes in 

discharge. Spatial components include, the variation due to the placement of the 

sampler across the stream and vertically within the water column, as well as 

variations due to site (Culp et aI1994). 

The drift results showed a "restoration" of species that would be expected if the 

physical-chemical parameters are "restored" by entering the native forest, for eg an 

increase in stoneflies. The results also indicate that invertebrate drift would be a key 

element in restoration of biota following landuse changes like the control scheme. 

The dispersal by drift at the down stream sites of 6 and 8 while not in pasture 

reflected that of site 5 but to a slightly lesser degree, for e.g. chironomid species and 

the caddisfly, Oxyethira alhiceps and the Austrosimulium species. Kerby (1995) 

found that the presence of chironomid and simuliid larvae in the drift may have been 

a direct response to hunger, as indicated by the higher proportion of individuals with 
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empty or partially empty gust compared with those remaining in the benthos. It has 

also been found that some taxa of stream invertebrates responded to artificial UVB 

radiation by entering the drift. Insects that inhabit the tops or sides of rock surfaces 

e.g. mayflies, caddisflies and blackflies were more vulnerable to UVB than insects 

that inhabit areas not usually exposed e.g. stoneflies (Kiffney et af 1997). In the 

summer of 1998 at Lauder, Central Otago, New Zealand, peak erythemal UV was 

about 12% more than 10 years ago when measurements began. Larger increases were 

seen for DNA-damaging and plant damaging UV, whereas UV-A radiation, which is 

not affected by ozone, showed no change (McKenzie et a/1999). The stream in the 

pasture sites is likely to be exposed to more UV radiation than forested sites due to 

the lack of riparian shading. There are very few drivers of land use change that 

operate over very short time scales or narrow spatial scale, with the almost 

instantaneous reduction in stream shade from forest clearance as one exception 

(Quinn and Cooper 1997). 

Townsend and Hildrew (1976) noted that certain species are intrinsically highly 

mobile and colonise new substrate quickly, whereas others are highly mobile only 

because of their susceptibility to flow perturbations. 

There was a decrease in the numbers of invertebrate drift over the winter months. 

Samples were not taken in flood events due to the magnitude of these events and so it 

is not known if drift increased during these events. Chironomidae were found to be 

most susceptible to changes in flow by Winterbottom et al (1997). It is hard to 

elucidate the trend more than this, due to flood events that potentially increase the 
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drift were impossible to sample. Rosenberg and Wiens (1975) reported increased drift 

when the sediment load of a small river was artificially added to. Pugsley (1980) 

noted that this effect would tend to increase the drift in the Waitomo stream during 

floods, when the sediment load increases dramatically. 

Recolonisation studies have shown that normal carrying capacity can be replenished 

by drift alone in as little as 10 to 14 days, in some instances (Waters 1964), however 

four weeks seems to be the average (Williams 1981). Townsend and Hildrew (1976) 

found that drift was responsible for 82% of the colonisation of denuded areas of 

streambed in Broadstone Stream, whereas Williams and Hynes (1976) found that 

42% of colonisation was due to drift in a Canadian stream. 

The glowworm life cycle is not well synchronised, however the overall trend is one of 

greatest numbers hatching over 2-3 months of spring and early summer (Pugsley 

1980). The food supply fluctuated on a broad seasonal basis, however there was a 

marked increase in spring. Pugsley considered an increase in spring could provide the 

impetus for the pupation of fifth instar larvae (Pugsley 1980). 

Storey and Cowley 1997 found that, existing forest remnants around streams can act 

as effective refuges for aquatic invertebrates by altering habitat characteristics of a 

stream over short distances. Such refuges may be able to prevent the loss of aquatic 

species, and may act as sources of invertebrates for colonisation of other restored 

stream sections (Storey and Cowley 1997). Drift is a vital link between these source 

areas and the glowworms. 
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Upstream migration was found to be much less than downstream drift, similar trends 

have been found in other studies e.g. Elliott (1971). In the same study it was shown 

that most of the invertebrates moved upstream near the banks (Elliott 1971), in this 

study, the sampler was positioned midstream as it was unable to be settled properly 

near the edges. In part this may be due to the fact that the upstream migration sampler 

was put in place and removed on each sampling occasion. It would have been better 

to leave the sampler in situ and just attach the nets for sampling on each occasion. 

However this was not possible due to the possibility of human disturbances. 

The high numbers of upstream migrating Potamopyrgus antipodarum is likely to a 

compensation mechanism as they do not posses a flying adult form to offset the 

downstream displacement caused by drift. The greater a species tendency to drift, the 

more important is the development of a compensation upstream migration (Lock and 

Williams 1981). 
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6. Aerial and Emergence Sampling 

6.1 Introduction 

The purpose of the aerial entrance net was to measure the number of insects entering 

the cave as adults. These adults would have emerged from diverse sources such as the 

Waitomo stream, swamp or bush. However this aspect of the study was not 

attempting to determine the sources of these flying insects, rather, it aimed to 

determine if the food supply to the glowworms was entering the cave via the air. 

6.2 Methods 

6.2.1 Emergence 

Emergence nets were constructed for this study (see plate 6.1). Other options were 

considered, Pugsley (1980) used light traps inside the glowworm cave, with the 

intention of providing continuous quantitative emergence data, but due to possible 

detrimental effects on the glowworms this was discontinued. The emergence nets 

were floated on the surface of the water on polystyrene, attached to the bottom frame 

of the net. The traps had a 0.5 m square base and were constructed out PVC pipe. 

These nets were used at all eight sites for a period of 14 days. This period was 

determined by a pilot study as long enough to obtain a reasonable number of 

individuals. 
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The emergence nets -proved prone to damage from both natural and anthropogenic 

origins. Flood events were the main problem. the nets themselves were often 

undamaged but the sample containers dislodged. Also increases in water velocity and 

height led to the traps being tipped upside down and beached. Sampling was carried 

out from February until June 1999. when sampling was abandoned due to loss of 

traps. 

6.2.2 Aerial entrance trap 

53 



Chapter 6: Aerial and Emergence Sampling 

Pugsley (1980) attempted to trap the insects flying into the glowworm cave from the 

upstream or submergence entrance. However it was found that the insects were 

setting on the fabric and not entering the funnel shaped section of his trap. The aerial 

entrance trap used in this study (see plate 6.2) was designed with this problem in 

mind. The front of the net was rectangular in shape, with dimensions of 1m high by 

2m wide. From this rectangle there were essentially two, The inner one had a 280mm 

opening to allow the insects into it. The second, outer net tapered to a point 2.3m 

back, where a collecting vessel was attached. This lid of this vessel was cut out and 

screwed onto the net, an inverted funnel was also attached. This meant that the vessel 

could be unscrewed from the net to collect any insects caught. The aim was for the 

insects to be funnelled through the larger aperture near the front. It would not matter 

if they didn't fly to the collection vessel at the back as any insects settling on the 

material would be captured when the large entrance was closed in the morning prior 

to removal. 

6.2.3 Intensive sampling - Food Pathways 

At the stream submergence the large aerial entrance net was set up (see section 6.2.2). 

Twenty "Rentokil" flypapers or 'sticky strips' were suspended from a string near the 

upstream entrance to the glowworm cave, or submergence (plate 6.2 and 6.3). 

Rentokil Ltd., Felcourt, East Grinstead, West Sussex RH19 2JY. Tel(01342) 833022. 

Ten floating emergence traps (see section 6.2.1) were placed in the glowworm cave. 

These traps were situated by the viewing platform in the demonstration chamber. This 
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area was chosen as it was out of the immediate view of the public but also by a large 

population of glowworms. Twenty sticky traps were suspended on string and hung 

from the viewing platform. All traps were left in place for ten days. 
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Plate 6.2 Aerial entrance trap and sticky traps out side submergence entrance. Photo Kate Banbury. 

Plate 6.3 Sticky traps hanging outside the entrance to the glowworm cave/submergence. 

Photo Kate Banbury. 
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6.3 Results 

6.3.1 Emergence 

Emergence sampling was carried out at all eight sites for the months of February, 

March, April and May, before flooding in June caused a halt in sampling. It was 

planned to start sampling again in spring however the damage to traps meant this was 

not achieved. The sampling period (14 days) to meant it was too likely that the 

replacement traps (borrowed from another study) would be damaged. In the 4 

sampling occasions only 2 individuals were trapped at site 7 in the glowworm cave. 

They were both chironomids and were captured in February. Other sites had very low 

numbers of capture as well. As the numbers were so low (in many cases only one 

representative of each taxa) the results were not analysed statistically. 

Sites 1,3,4 had caddisflies, chironomids and occasionally mayflies. Sites 5,6,and 8 

captured chironomids, Austrosimulium sp. Additionally site 5 had the largest 

emergence of a single species, 5 individual Oxyethira albiceps in March. Site 2 in 

pasture had chironomids, Austrosimulium sp and mayfly emergence. This again 

reinforces the benthic and drift results that site 2 is intermediate between pasture and 

forest 

6.3.2 Aerial entrance trap 

Due to the lateness in construction of the aerial entrance trap it was first trialed in 

July, 1999 and used right through to December 1999. However it was not successful 

in catching any flying insects. 
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6.3.3 Intensive method 

During the 10 day intensive study period a total of 725 individual insects were 

captured on the sticky traps at the entrance to the cave, compared with 34 individuals 

inside the cave. This indicates over that 21 times as many insects were flying around 

the cave entrance as inside. 

The ten emergence traps inside the glowworm cave only captured one individual, this 

was a chironomid and it was found dead on top of the sample container. Therefore it 

is not known if it emerged from the stream or flew into the cave. The aerial entrance 

trap did not catch any insects during the intensive study period. 

6.4 Discussion 

6.4.1 Emergence 

Low numbers of emerged aquatic invertebrates were captured during sampling, 

especially inside the glowworm cave. As a comparison, Pugsley (1980) used two 

floating emergence traps in the Glowworm grotto but met with little success. 

Oxenham (1985) also used two emergence traps on three occasions, for a period of 24 

hours. After only capturing one chironomid, emergence sampling was abandoned. 

It was found that the ethanol used in the sampling containers was gone after the 

sampling period. This leakage was caused by the ethanol dissolving the original 
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sealant. Selleys wet seal - co-polymer sealant was used to overcome this problem. 

The loss of the ethanol was not the problem per se, as samples were recovered in 

'dry' conditions. However in the absence of ethanol, spiders entered the containers 

and set up home where they had a ready supply of invertebrates. It was impossible to 

estimate the effect they had on invertebrate capture numbers. 

A reduction in channel width in streams converted to pasture will lead to a reduced 

water width and therefore the habitat useable by aquatic organisms. To compensate 

for the reduced width, Davies-Colley (1997) predicted a corresponding increase in 

average stream depth. This will have negative ecological implications, in particular, 

sites for emergence of adult stream insects (eg emergent cobbles, boulders and woody 

debris) may be more frequently inundated (Davis-Colley 1997). 

6.4.2 Aerial entrance trap 

This trap did not catch any flying insect during the study 

6.4.3 Intensive method 

There were significantly more insects trapped on the sticky traps at the entrance to the 

cave than inside it. Pugsley (1980) believed that most of the midges the glowworms 

ate were coming from the grotto benthos itself. However this result indicates that 

there is a more potential food outside the glowworm cave, than within 
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It must be remembered that terrestrial invertebrates do provide a food supply to 

glowworms especially in areas like the Aranui reserve (Broadley 1998) and the 

presence of terrestrial invertebrates could account for some of the large variation in 

numbers between in the inside and outside sticky traps. 

Pugsley (1980) considered it unlikely that insects would fly to the demonstration 

chamber from outside. This means that the invertebrates trapped by the viewing 

platform are likely to have emerged from the stream benthos. However the lack of 

insects in the emergence nets does not back this up. One possible explanation for this 

is the patchiness of benthic fauna in the cave (Pugsley 1980). 

In the monthly emergence sampling that was carried out, on every occasion, every 

site had more emergence than the viewing platform. So the extremely low numbers of 

emergence from the demonstration platform area has been shown on 5 separate 

sampling periods. Yet there is a healthy population of glowworms at this site. 

Additionally the presence of flying invertebrates is nuiher backed up by the results 

from the sticky traps at the platform. Thus 

Despite the lower numbers of adult invertebrates found at the viewing platform, this 

site has sufficient invertebrates to supply the large number of glowworm larvae found 

here. Indeed glowworms appear to be able to go long periods without food, Broadley 

(1998) found that they survived on little or no food for 78 days. 

Glowworms have been found to inhabit areas where aerial access by adult insects is 

not possible. The New Cave Chamber is sumped (filled to the roof with water) and 
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accessed only via diving (Pugsley 1980). This means that glowworms living in these 

caverns are supplied by insects that emerge out of the stream within the cavern, rather 

than adults flying in. Drift must play an important part in this system as Pugsley 

(1980) found no evidence of invertebrates laying eggs with the cave. 
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7. Summary and Recommendations 

7.1 Summary 

In conclusion, the use of benthic, drift and emergence sampling techniques provided 

important and often complementary information on stream invertebrate communities 

along alongitudinal gradient extending from the headwaters to the Glowworm cave in 

the Waitomo catclunent. The importance of this study relates to the food supply that 

adult aquatic invertebrates potentially provide for the Waitomo glowworms and the 

distribution and dispersal of these organisms along the length of a karst catchment. 

The benthic, drift and emergence results all indicate a decrease in water quality as the 

stream flows from the headwaters to pasture, however the 'restoration' of the aquatic 

biota within the Aranui reserve indicates a potential source habitat for the restoration 

of lower reaches of the stream. It also indicates some of the possible results. 

There were several taxa that only occurred within the benthic samples of the forested 

sites, for example: the dobsonfly, Archichauliodes diversus , the mayfly, 

Coloburiscus humeralis and the Tipulid, Aphrophila neozelandica. 

From the forested headwaters site 1 to site 2 as the stream moved to pasture, there is a 

decrease in water quality as indicated by the taxa present. This is reversed upon 

entering the forested region of the Aranui reserve. Next an even larger reduction in 

invertebrate diversity and an increase in the abundance of invertebrates occurs as the 

stream flows into pasture once again. 
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Site 2 is almost an intermediate between the quality of sites 1 and 5 but tends more 

towards pasture. 

That lotic communities respond to changing environmental conditions along the 

longitudinal gradient of a river system is a fundamental paradigm of stream ecology 

(Vannote et al 1980). A fundamental assumption of stream pollution studies is that 

the downstream reaches are influenced by upstream disturbances, but have the 

capacity to recover by processing materials. Therefore when degraded streams 

draining pasture catchments enter remnants of native forest they might be expected to 

experience a gradual shift in their physical, chemical and biological characteristics 

towards those of an undisturbed forest stream (Storey and Cowley 1997). However 

Stark 1985 cautioned that invertebrate communities can change in a downstream 

direction, independently of catchment inputs, in such a way as to resemble 

degradation, and sampling design is important since there is an inverse correlation 

between land development and altitude. The present study did find a general trend of 

decreasing water quality and community composition but also localised "restoration" 

from upstream to downstream sites. 

One of the most effective ways of protecting rivers and streams is through the 

provision of riparian forest margins (Storey and Cowley 1997). Benefits to the stream 

and downstream waters include, provision of shade, increased food in the form of leaf 

litter, woody debris to increase habitat diversity, and improved water quality, with 

reduced sediment, nutrient, and faecal bacterial concentrations and increased diversity 
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of flora and fauna in the otherwise mono culture landscape (Collier et a11995; Vought 

et al1995; Parkyn and Winterboum 1997; Storey and Cowley 1997). 

However as a caveat to stream restoration efforts, Davies-Colley (1997) observed that 

stream restoration might increase sediment yields for a period of years to decades as 

the stream channel attempts to restabilise forest morphology. However in Waitomo, 

the sediment loads carried by the streams are already high, but potential 

reafforestation of the stream surrounds could lead to an increase in this sediment with 

corresponding detrimental effects on the stream biota. 

As prior to human habitation (c AD) most of New Zealands land area was covered in 

native forest (Collier et al 1995). This suggests that to restore in-stream conditions 

towards a more "natural" sate, reforestation of riparian zones is required (Scarsbrook 

and Halliday 1999). Although there will be changes in community composition with 

restoration of water quality and reafforestation, it must be remembered that this is a 

return towards the natural state under which the glowworms previously lived. 

Riparian vegetation will lead to increased terrestrial invertebrates within the 

catchment, providing the glowworms with more potential food and suppling the 

emergent aquatic invertebrates with increased habitat (Collier and Smith 1998). 

Glowworms in bush attract both greater numbers and species of invertebrates than 

glowworms in caves (Broadley 1998). This may be due to the increased diversity of 

aquatic invertebrates found within the benthos, drift and emerging from the stream 

flowing through the bush. Thus it is likely that under the reafforestation of riparian 
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zones, there will be an increase in the diversity and numbers of potential food for the 

glowworms. Pugsley 1980 considered that the bigger midges, mayflies, and tipulids 

although not so abundant, would provide a good food source for the late instars 

because of their comparative bulk. This could lead to a possible 5th instar for the 

glowworm larvae. With revegetation of the catclunent and riparian strips changing 

the community composition of the stream, there is likely to a trend towards larger 

species like mayflies, caddisflies and stoneflies. This poses the question of food 

values of different invertebrates to the glowworms, how many chironomids equate to 

one mayfly? This is a possible future field of research in the ecology ofWaitomo and 

the food supply to the glowworms. 

7.2 Future research 

Research into the food requirements for complete glowworm development. 

Additionally, researching the total food available to the glowworms, in conjunction 

with the food values of different species would provide value information. This 

research could be tied in the ongoing monitoring of the food supply. 

Further study into aquatic invertebrate drift during flood events especially into cave 

could be tied in with luonitoring of the food supply. Suspended sediment is 

potentially the biggest threat to the water quality, life of the glowworm cave and the 

aquatic biota within the catchment, thus monitoring of suspended solids is vital. Hogg 

and Norris (1991) noted that high concentrations of suspended solids were 

determined during storm events that were not detected by regular two-monthly 

sampling. Therefore if any suspended solids monitoring is to be carried to provide a 
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baseline for indicate that change is occurring, it should be continuous during the flood 

events. 

7.3 Recommendations 

The Waitomo catchment is located in a high rainfall area where sound management 

practises are needed to achieve stability of land and alleviate runoff and 

sedimentation effects. A combination of riparian plant species that provide detrital 

inputs to the stream system over an extended period would mean different leaf 

composition rates. The heterogeneity of this supply is likely to be a better strategy for 

maintaining food resources for aquatic detritivores, faunal diversity and productivity 

(Parkyn and Winterboum 1997). At present 99% of the plantings are Pinus radiata 

and it is unknown what effect this will have on invertebrate community composition. 

In Waitomo, the area between Aranui reserve and the glowworm cave is very 

important, as the findings of this study indicate that the drift into the glowworm cave 

comes from this area. Riparian zones along the stream would provide a corridor of 

native forest from Aranui reserve to the glowworm cave. 

Planting of native trees around the glowworm cave will increase the terrestrial 

invertebrate input to the ecosystem, additionally, it will provide more habitat for 

emergent stream insect to complete their life cycle. There is a possibility of some 

species drifting into an area and emerging with no habitat for the adult stage. If this 

occurs the life cycle can not be completed and the area in question will remain 

dependent on the drift from up stream. 
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The invertebrates of the Waitomo stream live there permanently, thus integrating the 

effects of geology, vegetation and climate in space and time, they can potentially 

provide an additional and accurate index of water quality. Furthermore in this case 

the invertebrates are the main food source of the glowworms, so sampling them will 

provide information on water quality and the state of the food supply. Thus biological 

monitoring is recommended in the Waitomo catchment to assess any land use effects 

including the catclnnent control on the stream. 

Catchment manipulations are aimed at improving stream health, while still allowing 

an acceptable flow of land based goods and services. Continued monitoring and 

research of the effects of these catchment manipulations will provide important 

information on predictions of large scale ecosystem change and provide a crucial 

feedback loop for adaptive catchment management (Quinn and Cooper 1997). 
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