
0018-9162/99/$10.00 © 1999 IEEE74 Computer

A
s the capabilities of distributed digital
libraries increase, managing organizational
and software complexity becomes a key
issue. How can collections and indexes be
updated without impacting queries cur-

rently in progress? When users can communicate with
the system in different natural languages, how can
software cope with the display of various versions of
text? With multimedia collections, how can a uni-
form, extensible software framework accommodate
different kinds of search engines required to search
various media types? How can the system handle sev-
eral user-interface clients for the same collections?
How do these clients learn about new collections cre-
ated in different physical locations?

We have developed a software structure that suc-
cessfully manages this complexity in our own digital
library. It dynamically handles additions of new col-
lections in different locations without requiring a cen-
tralized list. Its novel, flexible macro language manages
interfaces to many collections in many languages, and
the structure allows development of experimental user
interfaces. It accommodates radically different search
engines within a uniform structure and communica-
tion protocol. The architecture has met our goal of
minimizing maintenance while allowing our digital
library to easily expand its offerings.

THE NEW ZEALAND DIGITAL LIBRARY
The New Zealand Digital Library (http://www.

nzdl.org) currently offers about 20 collections, vary-
ing in size from a few documents up to 10 million doc-
uments and several gigabytes of text. These collections

• use different browsing and indexing structures;
• are accessible by computers in different locations;
• support interaction in a variety of languages; and
• contain text, graphics, and audio components.

Some, such as our music collection, require special
retrieval engines for nontextual information.

Many collections are updated automatically every
few days, but a few—such as the Oxford Text
Archive—rarely change. Most collections are created
from electronic source texts, but some—notably the
Historic New Zealand Newspaper Collection—
require scanning and the use of optical character recog-
nition (OCR) to capture the source material. Some
collections and their contents are well structured and
lend themselves well to browsing, but many have lit-
tle or no easily discernable structure.

Multiple languages
The library’s documents are written in many differ-

ent languages, including English, French, German,
Arabic, Maori, Portuguese, and Swahili. Many col-
lections contain several languages, as do some docu-
ments. For example, the Historic New Zealand
Newspaper Collection, illustrated in Figure 1, is bilin-
gual, with parallel Maori and English articles.

The library also provides interfaces to the collections
in several languages. For example, the Computer
Science Technical Reports collection has English,
French, German, and Maori interfaces. The Arabic
interface to the Arabic Library, shown in Figure 2,
requires storage and search mechanisms that can han-
dle non-ASCII alphabets. Because the code that pro-
duces Web pages is divorced from text strings appearing
on them, new languages can be added by merely trans-
lating all phrases and menu terms used in the interface.

To accommodate blind users (with speech synthe-
sizers) and partially sighted users (with large-font dis-
plays), we provide text-only versions of the interface
for each language. For this, we follow standard guide-
lines for Web-page accessibility.1

Multiple media
Some collections contain more than just text. For

example, the Local Oral History Collection includes
recorded interviews and photographs that illustrate
them. Users query summary transcripts. Figure 3
shows results for a query about VE Day.

Managing Complexity
in a Distributed
Digital Library
With multiple collections, languages, and media, digital libraries are
becoming more difficult to maintain and develop. Researchers at New
Zealand’s University of Waikato have developed a software architecture
that deals with this complexity.

Ian H. Witten
Rodger J.
McNab
Steve Jones
Mark
Apperley
David
Bainbridge
Sally Jo
Cunningham
University of
Waikato

Co
ve

r
Fe

at
ur

e

.

The Music Library demonstrates a technically more
significant multimedia capability. Users can sing or
hum a tune, then upload their audio file to find a
match in a tune database. Figure 4 shows the results
when a user sings the first eight notes of “Auld Lang
Syne.” The transcribed input appears at the top left,
and titles of similar items, ranked according to how
closely they match the query, appear below. Any of
the tunes may be selected for audio replay or visual
display, as shown on the right.

The Music Library database includes nearly 10,000
folk tunes from North America, Ireland, Britain,
Germany, and China. Users can search the entire data-
base or limit their searches to individual countries.
The Music Library is a good example of how the dig-
ital library’s single unifying architecture can encom-
pass radically different search regimes.

SYSTEM DESIGN
Our design is based on collections—sets of like doc-

uments.2 These documents come in a variety of for-
mats: plain ASCII, PostScript, PDF, HTML, SGML,
and Microsoft Word for textual documents; Refer,
BibTex, and USMarc for bibliographic information;
and various formats for graphics and sound.

Collections invariably undergo a building process to
make them suitable for search, retrieval, and display.
This often involves converting the documents to a dif-
ferent format and identifying subparts that require their
own indexes. Among the current collections are indexes
for complete documents, individual pages, paragraphs,
articles, abstracts, authors, titles, subjects, publication

details, references, and motions in meetings.
Collections are rebuilt when new documents are

added to them. To avoid disrupting active users, rebuild-

February 1999 75

Figure 1. Searching
the Historic New
Zealand Newspapers
Collection. The col-
lection is bilingual;
all articles are
retrieved in Maori
and English.

Figure 2. Arabic interface for the Arabic Library.

.

76 Computer

ing takes place in a separate file directory, and when it
is complete, the directory is moved in one fell swoop to
the live file area. The query engine automatically man-
ages the transition to the new version. Current users
experience only a brief delay while the query process
reinitializes. References on a query results page, how-
ever, may become incorrect after the update occurs. To
resolve this, we could simply warn users, but our plan
is to instead use persistent document identifiers.

Normally, several collections operate on the same
server machine—by convention in one directory—and
each server machine runs its own copy of the collec-
tion server software. Collections are active objects,
receiving and processing messages, such as search
requests and document display requests. Therefore,
they can be instructed to look for other collections in
their own directory—which avoids a high-maintenance
centralized list. Adding a new collection merely
involves inserting it into a directory with an already
known collection.

Whenever a user-interface client starts up (and peri-
odically while it is running), it messages collections on
all machines, requesting information on other collec-
tions in their directories. When a collection is added,
all interface clients will eventually realize it. This auto-
matic notification process greatly simplifies the process
of adding new collections.

Managing complexity
Managing the complexity of multiple collections,

multiple languages, and multiple interface options pre-
sents a significant challenge. For example, document

items that have not yet been translated to other lan-
guages need to default to English. Non-ASCII languages
like Arabic and Chinese need special text positioning
and justification. Text-only pages require a structure
different from corresponding text-and-graphics pages.
Page headers and footers must allow some collections
to override them. Directory names and URLs should
be referenced symbolically, facilitating the system’s con-
figuration to different environments.

For easily maintained, easily augmented, and con-
sistent interfaces to collections, commonality must be
abstracted out and represented in just one place. We
design Web pages, then, with a model based on struc-
ture, content, and reusable items:

• The structure allows different versions of the con-
tent. For example, a page might contain some
sort of heading, a main information section, and
a footer with navigation aids. The heading in turn
might have its own structure, with masthead and
navigation aids at the top and an advertisement
underneath.

• The content comprises the principal information
elements of the page—text, graphics, sound clips,
and video—separated from the page structure in
separate resources. Many content items are lan-
guage-specific, and all resources pertaining to a
particular language are collected together for easy
maintenance.

• Reusable items include pathnames of certain
directories and frequently used icons. Isolating
these items renders Web pages more portable.

Figure 3. Results of a
query about VE Day
from the Local Oral
History Collection.
The small gray panel
controls audio play-
back of a sound bite
or relevant section
from a participant’s
interview.

.

We meet these requirements using a flexible, spe-
cially designed macro language. While standard macro
languages are often used to maintain large collections
of Web pages,3 such languages only support different
page versions through the conditional inclusion of
text. This quickly becomes cumbersome as the num-
ber of options increases.

Our macro language, however, allows many variants
of the same macro, each with different parameter val-
ues. Our three basic parameters are collection name,
text-and-graphics or text-only format, and language.
At expansion time, the macro processor searches the
database for a variant matching all three parameter val-
ues for the generated page’s environment. If it does not
find an exact match, it uses the closest match based on
each parameter’s priority. For example, if a user seeks
a German text-and-graphics format, but the database
contains only English and German text-only versions,
the processor calls up the German text-only version.

Macros also support essential maintenance operations.
Each week an automatic process will scan the macro,
locate those that have been flagged as needing transla-
tions, and mail the material to appropriate translators.

Facilitating searches
Because collections run on different computers, our

system is distributed, but searching is not distributed:
Each collection handles its own searches. Cross-col-
lection searching would be relatively easy for collec-
tions on the same server, but searching across servers
would involve a more difficult distributed search
process (which is addressed to an extent by some
information retrieval systems4). Our goal, however,
has not been to advance the state of the art in infor-

mation retrieval, but to provide a flexible structure
that can accommodate the latest advances.

While searches in some multimedia collections can
be done on textual descriptions of the media objects,
different media types generally require different search
mechanisms. Presently the system includes two search
and retrieval methods—one for text and the other for
music. Our uniform architecture accommodates them
and their vastly different document types. This struc-
ture is flexible, allowing us to incorporate other
retrieval mechanisms in the future—for example, one
for accessing an image collection through content-
based queries.5

For text, we use MG, a full-text retrieval system that
efficiently stores text and its index in compressed form.6

MG typically compresses text to about 25 percent of its
original size and compresses indexes to about 7 percent
of the original text’s size—making the total storage
requirement about one-third of the original text’s size.

For music, we use MR, a novel scheme for search-
ing musical melodies.7 MR matches sung (or hummed)
input to a database of tunes, with various user options:

• Restricting attention to subsets of the database
• Choosing one of two matching algorithms
• Matching anywhere within a tune or to begin-

nings only
• Matching using musical intervals or coarser up-

down-same pitch differential contour
• Ignoring or taking into account note duration,

transcribing using fixed tuning, or trying to adapt
to overall drift in the user’s intonation

• Specifying minimum rest and note lengths
• Specifying music speed

February 1999 77

Figure 4. Using the
Music Library to find
“Auld Lang Syne.”

.

78 Computer

Many of these options are needed because users dif-
fer in their musical ability and in the accuracy with
which they remember tunes.

The process of building a collection is heavily
dependent on the mechanisms used to search it
because so much of the building involves creating an
indexing structure. Consequently, for each collection
there is a builder process, which performs the offline
activity of creating the index and other supporting
structures, and a corresponding collection server
process, which manages user interaction.

To accommodate different index structures, often
with widely differing needs, the builder and server
processes use a flexible, object-oriented program struc-
ture. Object classes with all the basic features needed for
building, document retrieval, and searching are defined,

but the functionality they provide is selectively over-
ridden by defining subclasses for particular search and
retrieval systems. These defining subclasses are them-
selves finally overridden by collection-specific subclasses
that accomplish any task peculiar to a collection.

Improving interfaces
Internet search engines and online public-access

library catalogs commonly provide textual query lan-
guages like Z39.58,8 but such interfaces present prob-
lems for casual users, such as the need to learn the
syntax of the language. Using various implementation
platforms, we are developing several highly interac-
tive, graphical, and direct manipulation interfaces to
the library.

Figure 5a shows one example, a Java applet that
provides a graphical language for Boolean querying
and updates itself immediately as the query is modi-
fied. Figure 5b shows another, a Tcl/Tk application
for visualizing clusters of documents resulting from a
sequence of queries. A communication protocol
defines how user-interface software communicates
with collections through network connections estab-
lished with collection servers.2 These interfaces have
been developed without modifying the collection
server software and without close code integration
between the user interface and the server.

Collection servers recognize three message types:

• Requests for general information, such as details
of available collections

• Requests for document information, such as sum-
maries or the full text of documents

• Requests for documents matching specified
search criteria

User interface clients do not necessarily operate on
any collection’s host machine, and our Java imple-
mentations are independent of platform. We have
developed an application programmer’s interface to a
software library that contains routines to form and
send requests to collections and manage the resulting
responses. This makes it easy to integrate new inter-
faces, without any impact on collection servers. Both
the standard Web interface and our experimental
interfaces exploit the protocol, and different interfaces
can coexist without any difficulty.

Dynamic query interfaces—in which displayed doc-
ument-result sets change immediately whenever query
parameters change—form the focus of our user inter-
face research. Here, operations must be executed
quickly on locally cached document information. The
protocol allows close control over when information
is sent from the collection server to the cache and how
much is transferred. For example, in bibliographic col-
lections, items such as author, title, and keywords can
be retrieved individually for single documents. Only

Figure 5. Two experi-
mental interfaces to
the New Zealand Dig-
ital Library. (a) A
Java applet provides
a graphical language
for Boolean querying.
(b) A Tcl/Tk applica-
tion visualizes clus-
ters of documents
that are the result of a
sequence of queries.

(a)

(b)

.

the information that is desired is retrieved over the
network. This improves response time, minimizes the
size of the local data store, and allows information to
be displayed incrementally as it arrives. Users can con-
tinue interacting while information is still arriving.

O ur system successfully manages organizational
and software complexity in a large, fully opera-
tional, and widely used digital library system. Our

fundamental goal has been to minimize the effort
required to keep the system operational and yet con-
tinue to expand its offerings. We can now easily build
new collections with distinctive features and indexes—
adding them at any time, on any existing server, while
the system is running. We can accommodate new lan-
guages by translating phrases and images used in the
interface and incorporating them into the collection
server software. We can easily incorporate multiple
media and initiate nonstandard search engines for them.
We can apply new, highly interactive interfaces, imple-
mented on the client side and using a variety of support
technologies. The structure we have developed makes it
easy to keep a digital library working and growing. ❖

Acknowledgments
We gratefully acknowledge the help of Carl Gutwin,

who developed one of the experimental user inter-
faces. Many thanks are also due to Stefan Boddie, Te
Taka Keegan, Craig Nevill-Manning, and Lloyd
Smith, who contributed to this work in various ways.

References
1. Unified Web Site Accessibility Guidelines, http://www.

w3.org/WAI/GL (current Dec. 2, 1998).
2. R.J. McNab, I.H. Witten, and S.J. Boddie, “A Distributed

Digital Library Architecture Incorporating Different Index
Styles,” Proc. Advances in Digital Libraries ’98, IEEE CS
Press, Los Alamitos, Calif., 1998, pp. 36-45.

3. A. Peel, HTML Macros: Easing the Construction and
Maintenance of Web Texts, Tech. Report 4-96, Univ. of
Kent, Canterbury, England, 1996.

4. O. de Kretser et al., “Methodologies for Distributed
Information Retrieval,” Proc. Int’l Conf. Distributed
Computing Systems, IEEE CS Press, Los Alamitos, Calif.,
1998, pp.66-73.

5. J.R. Smith and S.-F. Chang, “VisualSEEK: A Fully Automated
Content-Based Image Query System,” Proc. ACM Multi-
media Conf., ACM Press, New York, 1996, pp.87-98.

6. I.H. Witten, A. Moffat, and T.C. Bell, Managing Giga-
bytes: Compressing and Indexing Documents and
Images, Van Nostrand Reinhold, New York, 1994.

7. R.J. McNab et al., “Toward the Digital Music Library:
Tune Retrieval from Acoustic Input,” Proc. Digital
Libraries ’96, ACM Press, New York, 1996, pp. 11-18.

8. NISO, Z39.58: Common Command Language for

Online Interactive Information Retrieval, ANSI/NISO,
Bethesda, Md., 1995.

Ian H. Witten is a professor of computer science at
the University of Waikato in Hamilton, New Zealand.
He directs the New Zealand Digital Library research
project. His research interests include information
retrieval, machine learning, text compression, and
programming by demonstration. He received an MA
in mathematics from Cambridge University, England;
an MSc in computer science from the University of
Calgary, Canada; and a PhD in electrical engineering
from Essex University, England. He is a member of
the IEEE, and a fellow of the ACM and of the Royal
Society of New Zealand.

Rodger J. McNab is a research programmer for the New
Zealand Digital Library. His research interests include
the architecture of digital libraries, indexing, and digi-
tal music libraries. He received a BCMS and an MCMS
in computer science from the University of Waikato.

Steve Jones is a lecturer in computer science at the
University of Waikato. His research interests include
digital libraries, World Wide Web navigation, and
computer-supported collaborative work, particularly
collaborative writing and information retrieval. He
received his PhD in computer science at the Univer-
sity of Stirling, Scotland.

Mark Apperley is a professor of computer science and
chair of the Computer Science Department at the Uni-
versity of Waikato. His research focuses on human-
computer interaction, and his publications address
topics ranging from dialogue design notations to inter-
action devices and computer-supported collaborative
work. Apperley is a fellow of the New Zealand Com-
puter Society and a member of the IEEE Computer
Society and of the ACM.

David Bainbridge is a lecturer in computer science at
the University of Waikato. His research interests are
computer music and digital libraries. He received a
BEng in engineering at the University of Edinburgh
and a PhD in optical music recognition at the Uni-
versity of Canterbury, New Zealand.

Sally Jo Cunningham is a senior lecturer at the Uni-
versity of Waikato. Her research interests include dig-
ital libraries, machine learning, and computing
education. She earned a PhD in computer science,
with minors in Asian history and library science, from
Louisiana State University.

Contact Witten, McNab, Jones, Apperley, Bainbridge,
and Cunningham at {ihw, rjmcnab, s.jones, m.apper-
ley, d.bainbridge, s.cunningham}@cs.waikato.ac.nz.

February 1999 79

.

