Allocation, stress tolerance and carbon transport in plants: How does phloem physiology affect plant ecology?

Running title: Phloem ecophysiology

Jessica A. Savage¹, Michael J. Clearwater², Dustin F. Haines³, Tamir Klein⁴, Maurizio Mencuccini⁵,⁶, Sanna Sevanto⁷, Robert Turgeon⁸ and Cankui Zhang⁹

¹Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA
²School of Science, University of Waikato, Hamilton 3240, New Zealand
³Department of Environmental Conservation, University of Massachusetts, 160 Holdworth Way, Amherst, MA 01003, USA
⁴Institute of Botany, University of Basel, Schoenbeinstrasse 6, 4056 Basel, Switzerland
⁵School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, EH9 3JN Edinburgh, UK
⁶ICREA at CREAF, Campus de UAB, Cerdanyola del Valles, Barcelona, 08023, Spain
⁷Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
⁸Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
⁹Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA

Corresponding author:
Jessica A. Savage
jsavage@fas.harvard.edu
1300 Centre Street
Boston, MA 02131
SUMMARY STATEMENT

This review highlights the important but understudied role of phloem physiology in mediating how plants interact with their biotic and abiotic environment and shaping larger ecological patterns. We focus on three critical areas of current research: interactions between the xylem and phloem, carbon fluxes both in plants and at the ecosystem-scale, and interactions between plants and their biotic environment. The goal of this review is to draw attention to the critical role of carbon transport in plant physiological ecology and outline many of the questions that remain to be answered about this critical part of the plant vascular system.
ABSTRACT

Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems, and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment.

Keyword Index: phloem transport, growth, defense, drought, xylem transport, reproduction, rhizosphere, carbon cycle
INTRODUCTION

Carbon fixed by plants serves as the basis of all life in terrestrial habitats, but there are still many questions that remain about how plants invest carbon during their lifetimes (Körner, 2003, Sala et al., 2012) and how carbon allocation affects many ecological processes ranging from community assembly to carbon cycling (Grime, 2006, Migliavacca et al., 2011). The majority of carbon used by vascular plants is not used where it is fixed but is transported to other metabolically active areas. This transport occurs in the phloem, a part of the vascular system that moves carbohydrates from photosynthetic and storage tissue (sources) to areas of active growth and metabolism (sinks). Because carbon transport is influenced by source and sink activity, it can integrate changes that occur throughout the plant, potentially influencing everything from growth and allocation to defense and reproduction (Fig. 1). The phloem’s role in shaping many ecological processes has intrigued scientists for decades, but proving a direct connection between phloem physiology and plant ecology remains challenging.

Carbon transport occurs in a series of stacked cells, sieve elements, that in angiosperms form long continuous conduits called sieve tubes (for details on cell ultrastructure, see Froelich et al., 2011). Unlike transport cells in the xylem, sieve elements are under positive pressure and have intact cellular membranes (for recent reviews on phloem physiology, see De Schepper et al., 2013 and van Bel, 2003). In the phloem, there are other cell types including parenchyma and fibers, and of particular importance are the companion cells in angiosperms which are often responsible for loading sugar into the phloem and for helping maintain metabolic function of neighboring sieve tube elements (van Bel & Knoblauch, 2000). Carbohydrates enter the phloem using one or a combination of passive and active loading mechanisms (see later section on PHLOEM LOADING), which require
different sugar concentration gradients in the mesophyll and vary in the amount of symplastic continuity that exists between the vascular and ground tissue.

It is currently believed that phloem transport is driven by a pressure differential between the source and sink generated by local osmotic gradients in each tissue. This idea was first proposed by Ernst Münch (1930) and is the most widely accepted mechanism for phloem transport (for further discussion, see Knoblauch & Peters, 2010). This mechanism allows for transport to occur in multiple directions but also means that changes in the source and sink tissue, including those triggered by the biotic and abiotic environment (reviewed by Lemoine et al., 2013) such as drought (Sevanto, 2014), may alter phloem transport. The downstream effects of these changes can influence the movement of carbohydrates (Savage et al., 2013) and phloem-mobile informational signals and secondary compounds (for reviews on molecular trafficking, see Turgeon & Wolf 2009 and Lucas et al. 2013). These effects place the phloem in a central position for mediating plant-environment interactions and suggest that phloem structure could have important implications for a variety of processes from growth to reproduction (Fig. 1, Petit & Crivellaro, 2014, Savage et al., 2015, Woodruff, 2014).

In this review, we describe research that provides a foundation for future work considering phloem physiology in an ecological and evolutionary context. We focus on three broader topics: carbon-water interactions, carbon fluxes in plants and ecosystems, and biotic interactions. For each of these topics, we provide discrete examples of how a phloem-focused line of inquiry could or already has enriched the field of physiological ecology. The aim of this review is to demonstrate the breadth of research influenced by phloem physiology and how research on this critical part of the vascular system can enhance our understanding of plant ecology and ecosystem function.
CARBON-WATER INTERACTIONS

Many types of environmental stress including drought and freezing temperatures can jeopardize the integrity of the water transport system. Because the ability of plants to survive these conditions is influenced by aspects of xylem structure and function (Davis et al., 1999, Ewers, 1985, Hacke & Sperry, 2001, Hacke et al., 2001), research on this part of the vascular system has become central to the discipline of physiological ecology (e.g., Ackerly, 2004, Jacobsen et al., 2007, Zanne et al., 2014). However, in all plants the xylem and the phloem occur in close proximity, and there is increasing evidence that a tight hydraulic connection (Bull et al., 1972, Minchin & Lacointe, 2005, Ohya et al., 2008, Sevanto et al., 2011, van Bel, 1978) supports their transport processes (Knoblauch & Peters, 2010, van Bel, 1990, Zwieniecki et al., 2004). Considering this fact, xylem-phloem interactions could significantly impact the nature of hydraulic stress and have large implications for plant function, growth and reproduction.

What happens to phloem transport when xylem water potential changes?

Experiments and modeling studies have revealed that most of the time the xylem acts as a water source for the phloem (Hölttä et al., 2006, Windt et al., 2006), but in certain situations, e.g. close to strong sinks (Sevanto et al., 2003), or during drought (Sevanto et al., 2005, Zweifel et al., 2000), phloem tissue including sieve tubes, parenchyma, and fibers may act as an additional water resource for the xylem (Fig. 2). Even if the volume of the phloem is a fraction of the volume of the xylem, it can contribute significantly to the transpiration stream because of its higher elasticity. From simultaneous measurements of phloem and xylem diameter variations, it can be estimated that in a tree with a stem diameter of ~15cm, phloem contributes roughly 0.35 dl of water per every meter of tree height (values taken from...
Acer rubrum, L., in Sevanto et al., 2011), which, in a 10 m tree can contribute to about 6% of its total daily water loss (Sevanto et al., 2008).

From the point of view of phloem transport, a tight hydraulic connection with the xylem is beneficial in allowing for easy access to water, but it has a trade-off: xylem water potential may influence phloem transport (Hölttä et al., 2009, Hölttä et al., 2006, Sala et al., 2010). Water exchange between the xylem and the phloem can be described as flow in a porous medium, where the flow rate depends on the water potential gradient and the hydraulic conductivity between the tissues (Hölttä et al., 2006, Sevanto et al., 2011). As a result, hydraulic conductivity determines the magnitude of flow rates obtained with a certain pressure gradient and how fast xylem water potential changes propagate to the phloem tissue. Because measuring hydraulic conductivity between the xylem and the phloem is very challenging, only an order of magnitude estimate exists (Salleo et al., 2004, Sevanto et al., 2011, Wan et al., 2004). To our knowledge, the estimated conductivity is high enough that at any timescale relevant to the whole plant, the phloem conduits are in hydraulic equilibrium with the surrounding apoplast (Thompson & Holbrook, 2003) as well as with the xylem (Daudet et al., 2005, Hölttä et al., 2006, see also Hölttä et al., 2009), which has clear benefits to plants. Hydraulic equilibrium between the xylem and the phloem, for example, prevents rapid variations in plant water potential from causing changes in phloem turgor and unduly disturbing transport under most conditions (Thompson & Holbrook, 2003).

The influence of xylem water potential on phloem transport has recently emerged in connection with drought mortality studies of trees (Fig. 2, see McDowell & Sevanto, 2010, Sala et al., 2010, Sevanto, 2014). As described above, the lower the xylem tension (less negative the water potential), the easier it is for the phloem to obtain the water needed for transport. Therefore, theoretically, phloem transport should be easiest at night or during wet seasons (Hölttä et al., 2009, Hölttä et al., 2006). The high solute concentrations needed for
osmotic adjustment during high xylem water tension, if built up with soluble sugars, may increase the viscosity of phloem sap and potentially block phloem transport (Hölttä et al., 2009, Hölttä et al., 2006). Such a blockage could have consequences for plant survival (McDowell & Sevanto, 2010, Sala et al., 2010). However, if the conduits are hydraulically connected to the surrounding tissues and water in the apoplast, any change in osmotic concentration inside a conduit is immediately compensated for by inflow of water balancing the viscosity increase. The little empirical evidence we have on phloem responses to drought suggests that phloem turgor will collapse well before things get too “sticky” in relatively isohydric plants (Sevanto, 2014). This collapse may lead to a temporary increase in water available for the xylem, but ultimately promotes hydraulic failure. This way even well-watered plants that cannot maintain phloem turgor because of depleted carbohydrate reserves can show symptoms of hydraulic failure (O'Brien et al., 2014, Sevanto, 2014).

The hydraulic connection between the xylem and phloem also necessitates that the structure of both tissues be balanced so that water supply and carbon transport needs match. This has implications for the relative thicknesses of xylem and phloem tissues and relative diameters of conduits (Hölttä et al., 2009, Jyske & Hölttä, 2015) in relation to photosynthetic capacity and stomatal control (Nikinmaa et al., 2013). Phloem transport capacity depends on xylem water potential, which is linked with xylem water transport capacity (conduit number and size). Therefore, large structural investments in the xylem that improve its transport capacity reduce the need to invest in phloem structure (Hölttä et al., 2009). This implies that plants with wide xylem conduits or plants that keep their xylem water potential relatively constant (isohydric plants) may function with less phloem than plants that have low xylem conductivity or regularly experience low xylem water potentials (anisohydric plants) (Sevanto unpublished data).
Despite increasingly sophisticated models, greater computing power and an improved biophysical understanding of the processes governing coupled xylem-phloem transport in plants, empirical evidence of how plant stature and growth conditions are related to phloem transport remains limited (see next section on CARBON FLUXES IN PLANTS AND ECOSYSTEMS). More anatomical and physiological data are needed to better understand the complex interactions that occur between the xylem and phloem from the source to the sink and to truly reveal the consequences of this interaction for plant ecology and evolution.

How are flowers and fruit hydrated?

Because reproductive organs often serve as strong carbon sinks, xylem and phloem interactions can significantly impact water and solute movement into and out of developing flowers and fruit. Ernst Münch (1930) hypothesized that the phloem in the pedicel supplies both the water and solute requirements of growing buds and fruit, with transpiration considered negligible and excess water returned to the plant via the xylem (Fig. 3). However, calculations of phloem water flows based on dry weight growth and respiration rates suggest the potential rate of supply is limited, unless either the phloem sap is very dilute, risking loss of turgor (Chapotin et al., 2003), or there are large alternative sinks for carbon, such as accelerated respiration, catabolism of carbohydrates (Tarpley & Sassenrath, 2006), or copious nectar production (Chapotin et al., 2003, De la Barrera & Nobel, 2004). For these reasons phloem-only hydration of flowers must be energetically demanding compared to xylem supply, suggesting that the adaptive benefit of having flowers that are “hydraulically isolated” from daily and seasonal fluctuations in the xylem may be high (Feild et al., 2009, Galen, 2005).
Whilst direct measurement of phloem flow is difficult, the relative contributions of the phloem and xylem to floral development have been inferred from water potential gradients. In the small number of species examined the water potential of the perianth is often higher than the subtending stem, indicating that water cannot be flowing towards the flower in the xylem (Chapotin et al., 2003, Lin, 1997, Trolinder et al., 1993). More recently it was proposed that dual phloem / xylem hydration is an ancestral trait, whilst exclusive phloem supply is a more advanced characteristic of the eudicots, selected for as the angiosperms diversified and colonized less mesic habitats (Feild et al., 2009). In reality the concept of a dichotomy between phloem-only and xylem plus phloem hydration is probably overly simplistic (Roddy et al., 2013). The number of taxa for which flower water relations have been examined is very low, and there have been no direct observations that separate phloem and xylem flows in pedicels or within floral organs (Windt et al., 2009). We expect that continued investigation will reveal a range of variation in the mechanism of floral hydration.

Compared to flowers, the role of the phloem in fruit development is better understood. Generally, both the phloem and xylem contribute to early development, but phloem supply becomes more important during ripening (Matthews & Shackel, 2005) because of reduced hydraulic conductance in the xylem (Choat et al., 2009, Mazzeo et al., 2013) and lower apoplastic water potential gradients (Bondada et al., 2005). This transition is typically accompanied by reduced growth and declining fruit surface conductance and transpiration rates (Clearwater et al., 2012, Greer & Rogiers, 2009), lowering the demand for xylem water. Across species there may be a correlation between fruit surface conductance, the balance between phloem and xylem supply, and tolerance of water stress. For example, phloem only supply occurs throughout development of fruits of the desert plant *Opuntia* Mill. (Nobel et al., 1994, Nobel & De la Barrera, 2000) and *Gossypium* L. (Trolinder et al., 1993, van Iersel...
et al., 1994, Wullschleger & Oosterhuis, 1990), the warm climate crop cotton. However, there have been no broad comparisons of fruit transpiration rates and vascular functioning.

Another possibility is that the xylem acts to buffer any imbalances between transpiration, growth and more constant inward flows of phloem water (Fig. 3; Choat et al., 2009). Continuously circulating or temporally oscillating flows have been measured for several species including kiwifruit, *Actinidia chinensis* Planch. (Clearwater et al., 2012, Clearwater et al., 2009, Higuchi & Sakuratani, 2005, Windt et al., 2009, Yamamoto, 1983). In this species, models show the amount of inward flow in the xylem decreases with decreasing assumed phloem sap concentration, but within the likely range of phloem concentrations there is always a requirement for some inward xylem flow. For xylem flow to always be zero or outward, as a ‘phloem-only’ paradigm suggests, the modelled phloem concentration must be set below known physiological concentrations, and loss of phloem turgor is predicted. The same problem has been raised for phloem-only floral hydration (Chapotin et al., 2003). However, it is possible that variation in the overall contribution of the phloem to fruit development is correlated with interspecific differences in phloem sap concentration. For example, in fruits of *Opuntia*, phloem-only supply is supported by dilute phloem sap (Nobel et al., 1994, Nobel & De la Barrera, 2000).

Another factor that contributes to changes in fruit hydration during development is phloem unloading between sieve elements and sink tissues. The transition to phloem-only supply at veraison in grape is accompanied by a change in unloading mechanism, from symplastic (via plasmodesmata), to one that includes an apoplastic step (Zhang et al., 2006). These two unloading types lead to differences in solute accumulation in the apoplasm (Patrick, 1997), which may affect sink water status, the flow of water in the xylem, and the composition of any xylem sap that returns to the plant (Matthews & Shackel, 2005). The transition to apoplastic unloading occurs primarily in sinks that accumulate high
concentrations of osmotically active solutes such as ripening grapes and tomatoes (Lalonde et al., 2003, Patrick, 1997) but has also been observed in some tissues of developing flowers (Werner et al., 2011). However, more research is needed to understand whether the form of sugar unloaded in the fruit (e.g. sucrose, sugar alcohols and raffinose, which are tied to different loading strategies) has important implications for fruit development.

By combining our knowledge of flowers and fruit, a model emerges of highly regulated changes in phloem and xylem functioning, coordinated with each stage of reproductive development. The phloem contribution to hydration is expected to increase with decreasing phloem sap concentration, organ transpiration and fresh weight growth, and with increasing carbon requirements for nectar or storage. However, more research is need to determine the extent that the balance between the two vascular tissues differs between species, environments and functional groups, and whether hydraulic isolation in reproductive organs is favored in warmer and drier environments, or in taxa that accumulate high levels of osmotically active solutes in their petals or ovaries. Just as changes in xylem functioning have had a major role in the evolution of terrestrial plants (Boyce et al., 2009, Sperry, 2003), the properties of the phloem may have constrained angiosperm reproductive evolution in ways that we have only just begun to understand.

CARBON FLUXES IN PLANTS AND ECOSYSTEMS

Models of carbon allocation in trees and carbon cycling in ecosystems require information about the rate and size of carbon fluxes that occur in plants. Although several ecosystem (e.g., Duursma & Medlyn, 2012, Friend, 1995, Mackay et al., 2012, Ogée et al., 2003) and global scale vegetation models (e.g., Bonan et al., 2014, Hickler et al., 2006, Xu et al., 2012) consider the xylem on a mechanistic basis and model the entire soil-plant-
atmosphere continuum, these same models rely on empirical carbon-transfer or partitioning schemes to understand carbon fluxes. A more mechanistic understanding of how canopy photosynthesis and transpiration fluxes are coupled to water and carbon use (including plant and soil respiration and phloem transport) and the factors that control changes in carbon allocation within plants would make it easier to model the rates of ecosystem carbon and water exchange and examine how sensitive surface fluxes will be to environmental forcing (McDowell et al., 2013, Migliavacca et al., 2011).

What assumptions are made about phloem transport in tree carbon budgets?

An annual carbon budget for a tree was first calculated, with limited compartment partitioning, by Tranquillini (1979) and by Ågren et al. (1980) using a mass balance approach. Although this type of analysis does not explicitly deal with the phloem, its estimates of carbon flux are based on assumptions about phloem transport. A realistic tree carbon balance needs to account for the dynamic nature of phloem transport and move beyond a simple ‘black box’ understanding of carbon flux (‘black box’ versus new carbon allocation model, Fig. 4). Here we highlight two critical aspects of phloem transport that have important implications for whole plant carbon balances: the variety of carbon sources that exist in the plant and the possibility of flow in multiple directions (not exclusively from the leaves to the roots).

Carbon supply via photosynthesis is sensitive to multiple factors such as light, temperature, and tissue hydration, and hence the availability of fresh assimilates for various plant processes is often interrupted. Carbon reserves, mainly in the form of nonstructural carbohydrates (NSC), have been long recognized as a major tool used by plants to bridge carbon supply interruptions (Hoch et al., 2003, Richards & Caldwell, 1985, Schnyder, 1993).
For example, deciduous trees in temperate forests shed their leaves before the dormant season, during which carbon reserves are the sole source for a ‘baseline’ maintenance respiration. The role of NSC as a carbon source further increases toward spring, when new growth takes place before leaves are fully expanded and active. Similarly, tree species in Mediterranean and semi-arid forests are compelled to close their stomata during a long dry season, and hence must rely on NSC as a carbon source (Hoch et al., 2003, Schadel et al., 2009).

A comprehensive and validated carbon allocation partitioning that considers NSC as a potential carbon source was recently calculated for mature pines (Pinus halepensis Miller) growing in a semi-arid forest (Klein & Hoch, 2015). In those trees, the seasonal dynamics in the whole-tree starch content were dominated by large fluctuations in the stem and root starch pools. More than half of each of these pools was degraded and consumed during the transition from wet to dry season, indicating the important role of starch as a carbon source for plant activities outside leaves. When expressing the NSC as pool sizes, and accounting for the total foliage biomass compared to that of the woody compartments (above- and belowground), it becomes clear that non-leaf tissues play a major role in post-photosynthetic carbon supply. These results reinforce that fact that carbon loading into the phloem can take place at multiple sites along the transport pathway, depending on the availability of mobile carbon in adjacent cells.

Tree carbon balances also need to consider that the direction of phloem transport can change depending on source and sink activity. This can be seen in the aforementioned study on pines, where Klein and Hoch (2015) demonstrated that there were two relocation flows: carbon transport from roots to the stem, and from the stem to the leaves (Fig. 4). These flows were relatively minor in size (ca. 5% of the maximum wet season transport flux), and restricted to the drought months of July and August. The potential carbon relocation to the
leaves in July correlated with a minimum in the foliage starch pool, while the stem starch pool was also close to its lowest level. This stem to foliage relocation suggests some low threshold level at which local starch hydrolysis stops and carbon must be imported into leaves, in agreement with Hoch (2005). Root to stem relocation might suggest that carbon transport within the tree is governed by sink activities rather than supply level, as discussed in earlier studies (Farrar & Jones, 2000).

Despite growing interest in understanding patterns of carbon allocation within plants, relatively few studies have attempted to make a direct connection between carbon allocation and phloem transport (but see Nikinmaa et al., 2013, Schiestl-Aalto et al., 2015, Woodruff & Meinzer, 2011). However, our view of carbon allocation might change as we learn more about phloem physiology, the significant role of NSC as an intrinsic carbon source, the major role of respiration among the different carbon sinks, the possibility of bidirectional carbon flows, and the existence of other carbon transport systems, e.g. via the ray and axial parenchyma or the xylem (Améglio et al., 2002, Sauter, 1982, Schill et al., 1996). Future experiments considering the dynamic nature of phloem transport will allow us to better understand to what extent relocation flows can change (e.g. increase under environmental stress), whether such carbon management changes offer any advantage to tree fitness and drought resistance, and the implications of carbon storage to forest ecology, biomass production and ecosystem function.

How do tall trees transport carbon?

Many aspects of ecosystem function, plant growth and productivity are influenced by plant size including carbon storage, canopy transpiration and plant water usage (e.g., Falster et al., 2011, Feldpausch et al., 2012, McDowell et al., 2011). As a plant grows, it can gain
better access to water and light by increasing the footprint of its canopy and root system, but it also has to invest more resources in structural and supportive tissues. At the same time, it experiences more negative water potentials, lower hydraulic conductivity and lower stomatal conductance in its canopy. These and other observations have led to many hypotheses about what limits plant height from hydraulics to the growth of non-photosynthetic tissue (e.g., Givnish, 1995, Givnish et al., 2014, King, 1991, Ryan et al., 2006, Ryan & Yoder, 1997) and to research on the impact of plant height on vascular transport (e.g., McCulloh et al., 2003, Mencuccini, 2002, West et al., 1999). However, until recently, most of the research concerning height-related constraints on transport has focused on the xylem despite the important implications of plant height on both parts of the vascular system.

Earlier modelling by Tyree et al. (1974) concluded that transport in sieve tubes as long as 50m was possible in angiosperms, provided that sieve tube conductivity increased relative to values in shorter tubes and that sap velocity decreased closer to the sink, as a result of sucrose unloading and consumption along the transport path. The main effect of increasing sieve tube conductivity in longer tubes (i.e., taller trees) was to decrease the pressure and concentration gradients required to sustain vertical flow, which in turn required relatively high sucrose concentration. More recently, Thompson & Holbrook (2003) relaxed several assumptions of earlier models and coupled phloem transport to changes in water potential of the surrounding tissue. They showed that under many conditions, water potential equilibrium between xylem and phloem was satisfied, and carbon transport could occur from sources to sinks in an osmotically regulated fashion (see section on CARBON-WATER INTERACTIONS). However, in this model, the behavior of the sieve tube is strongly dependent on tube radius and length, such that in a very long tube (tens of meters) significant declines in phloem turgor are predicted to occur, potentially impairing carbohydrate transfer in tall trees (Thompson 2006).
How do plants cope with the challenge of long-distance transport in the phloem? The system modelled by Thompson and Holbrook (2003) is that of a single untapered and unbranched tube with sieve plates and a semi-permeable membrane. However, similar to the situation for the xylem (e.g., Tyree & Ewers, 1991), the conductivity of a single pipe is only one of a number of factors affecting the efficiency of hydraulic transport at the organismal scale. While we still do not have a clear understanding of the relative contribution of all the possible components, one can speculate that many factors influence carbon transfer efficiency and reduce resistance along the transport pathway. Some of these factors include the progressive widening of sieve element diameters, the lengthening of the sieve elements which will increase the mean distance between sieve plates, the decrease in conduit frequency and density, and the decrease in phloem area relative to xylem area towards the base of the plant (e.g., Hölttä et al., 2009, Jyske & Hölttä, 2015, Mencuccini et al., 2011, Petit & Crivellaro, 2014, Woodruff, 2014). Additionally, the ratio of total phloem conducting area to the leaf area of the plant will affect whole-plant sugar loading and plant water potential (Hölttä et al., 2009, Mencuccini et al., 2011).

The effects of gravity on axial phloem transport and on the scaling of phloem anatomy with plant size have generally not been considered carefully in tall plants despite the analytical solutions that exist for both xylem and phloem transport (Jensen et al., 2011, McCulloh & Sperry, 2005, West et al., 1999) and the more complex simulation models of allometric scaling developed based on optimality principles (e.g., reviewed in Mencuccini et al., 2011). Gravity can impact phloem transport in two very different ways, i.e., a) by affecting turgor at the top of tall plants (and therefore the realized cell size as a consequence of the effects of turgor on cell growth) and b) as an additional force that affects the movement of a solution along a vertical axis. Effect a) impacts the scaling of both xylem and phloem
conductance as a consequence of parallel changes in apical cell diameters. Effect b) hinders the upward pull in the xylem and phloem but helps transport of carbon towards the roots.

While much progress has been made in elucidating mechanisms of phloem loading and unloading, questions about the physical organization of this vertical superhighway, and the significance of plant height for phloem transport, have not been explored thoroughly. We still lack a sound understanding of how environmental factors affect these anatomical and morphological traits, how this set of characters relates and trades off against other sets of plant traits, and how these strategies combine and vary across evolutionary lineages to affect carbon transfer at the ecosystem scale.

How does phloem physiology influence the rate of carbon transfer to the soil?

Plant carbon use has large scale implications for ecosystem function because of the role that plants serve in carbon sequestration (Barford et al., 2001), their role in food webs (Elser et al., 2000) and their influence on belowground respiration through root metabolism, interactions with soil microbiota and production of litter (Fig. 1, Cornwell et al., 2008, Högberg et al., 2001, Jones et al., 2009). Plants transfer carbon belowground by two pathways, i.e., via the detritus formed by leaf and root litter and by mass transport in the phloem (see next section on BIOTIC INTERACTIONS). The detritus feeds heterotrophic organisms (predominantly fungi and bacteria) and is therefore primarily responsible for the dynamics of carbon stocks present in soils and litter layers (e.g. Malhi et al., 1999). Typically, the timescale for the production of this detritus is in the order of years to decades. Conversely, carbon transfer by the plant phloem, which is primarily employed to sustain root growth, carbohydrate storage and ‘autotrophic’ respiration belowground, occurs over shorter
time scales (cf., Högberg & Read, 2006, Janssens et al., 2001) and may change more rapidly in response to environmental conditions.

Continuous measurements of soil CO$_2$ efflux and vertical soil CO$_2$ profiles, coupled with measurements of canopy photosynthesis by eddy covariance, have allowed the exploration of the diel and seasonal dynamics of the links between carbohydrate production and consumption by (autotrophic and heterotrophic) respiration in the field (reviewed by Vargas et al., 2011b). For example, Vargas et al. (2010) showed that the timing of soil CO$_2$ production was temporally coherent with changes in soil temperature and photosynthetically active radiation (PAR, used as an indicator of photosynthesis). In a second study, they found a significant temporal synchrony between canopy photosynthesis and soil CO$_2$ efflux at a one day time scale or longer, suggesting that these two fluxes were closely coupled and that there is very fast transmission of information about the state of the canopy to the root-soil system (Vargas et al., 2011a). This evidence suggests that phloem transfer of carbohydrates belowground is directly linked to canopy photosynthesis, and it is sufficiently fast that diurnal and seasonal changes in weather conditions which impact ecosystem-scale photosynthesis are quickly perceived as changes in ecosystem respiration, thereby creating a feedback with the carbon balance of the site.

Another approach used to determine the significance of phloem transfer to carbon cycling has been to curtail this transfer directly, either by root trenching (cf., Hanson et al., 2000), phloem girdling (cf., Andersen et al., 2005, Bhupinderpal-Singh et al., 2003, Binkley et al., 2006, Högberg et al., 2001, Scott-Denton et al., 2006, Subke et al., 2004) or transient bark chilling (Johnson et al., 2002). However, most of the information on the variables controlling the transfer of carbohydrates belowground at seasonal to multi-year time scales has been obtained using isotopic techniques (for reviews, see Kayler et al., 2010, Kuzyakov & Gavrichkova, 2010, Mencuccini & Hölttä, 2010a, Mencuccini & Hölttä, 2010b). These
approaches have been advanced considerably by the use of new technologies such as fast-
response laser absorption spectrometry or cavity ring-down spectroscopy. Using the latter
approach, Dannoura et al. (2011) found differences among species in their isotopically-
determined velocities, which were found to depend on the mean air temperature for the 24
hours following labelling. In general, isotopic studies have found lags of around one to five
days or longer for the times taken by the isotope peaks to appear as either stem or soil CO₂
efflux, with the lag dependent on plant height following a power law relationship
(Mencuccini & Hölttä, 2010b). The shape of this relationship is consistent with the
occurrence of a reasonably constant phloem turgor gradient across species spanning 50m of
height range, with a positive scaling of mean phloem specific conductivity with plant height
(see second subsection in CARBON FLUXES IN PLANTS AND ECOSYSTEMS). This
means that both the transport rate of the phloem and the architecture of trees could have
important implications for carbon cycling.

At longer time scales (seasonal to multi-annual), the task of determining the
ecological significance of phloem transport is made easier by recognizing that a different set
of constraints can be imposed on the problem. In general, the rate of carbohydrate flux must
be equivalent to canopy photosynthetic flux, the net of the fluxes going into and coming out
of intermediate storage pools and sinks present along the transport pathway (see previous
subsection). This inventory approach can also be extended to incorporate the carbon fluxes to
the soil. Giardina & Ryan (2002) devised a simple mass balance approach based on a water
tub analogy to work out the total belowground carbon allocation (TBCA) from measurements
of aboveground fluxes of detritus, changes in pool sizes belowground and gaseous (CO₂) and
liquid (dissolved inorganic and organic carbon) losses by the soil. Using this method over
typical intervals of one to several years, one arrives at reasonable estimates of phloem fluxes
belowground. This approach is useful for comparisons carried out at yearly to decadal time
scales to investigate responses to ecological processes such as nutrient availability, inter-plant competition or stand development. One significant finding of this and similar studies is that TBCA can be a large fraction of gross photosynthesis (up to 60%) and that it can change dramatically as a function of tree size and stand development (Giardina & Ryan, 2002, Zerva et al., 2005). For example, Giardina et al. (2014) looked at a vertical elevation gradient in a tropical montane wet forest and found that stands at lower elevations (higher mean temperatures) circulated carbon belowground faster, both as aboveground detritus and as TBCA via phloem transfer.

Accurate models of belowground carbon transfer rely on a clear mechanistic understanding of the extent that phloem transport dominates carbon flux into the soil and how coupled carbon transport is to changes in environmental conditions. However, at larger spatio-temporal scales, some of the processes and trade-offs that relate to the short-term dynamics of phloem loading, transport and unloading lose their relevance, while others continue to maintain their significance. A more thorough understanding of phloem physiological ecology will help identify which traits should be explored in more detail to evaluate their long-term ecosystem-scale significance.

BIOTIC INTERACTIONS

Where and when plants allocate carbon to different organs can influence their interactions with other organisms (e.g., Elzinga et al., 2007, Tiffin, 2000) but the role of carbon transport in mediating biotic interactions involves more than structural investment. Many carbon-rich compounds from nectar to secondary compounds help plants attract beneficial and deter detrimental organisms (Bekaert et al., 2012, De la Barrera & Nobel, 2004, Gershenzon, 1994, Pichersky & Gershenzon, 2002). Some of these compounds are
transported in the phloem while others are made from nutrients or their production is regulated by signals delivered by this vascular tissue (Heil & Ton, 2008, Turgeon & Wolf, 2009). In fact, approximately 40% of the net carbon fixed by plants is transported in the phloem to roots (Jones et al., 2009) where a large portion is exuded into the soil and supports many soil organisms (Hartmann et al., 2009). In this section, we discuss how the phloem influences plant interactions with a few important components of their biotic environment: pests, pathogens, and soil microorganisms.

How does phloem physiology shape plant-pest interactions?

Plants live under a continuous threat from insects, herbivores and pathogens, and have evolved mechanisms to minimize the negative impact of these organisms, including the development of physical and chemical defenses (Futuyma & Agrawal, 2009). Because these defenses require energy and resources for their production, maintenance and in the case of some compounds their transport (Bekaert et al., 2012, Gershenzon, 1994), many researchers have proposed that investing in defense can come at the expense of other types of growth (Bazzaz, 1987, Coley et al., 1985, Herms & Mattson, 1992). This “cost” is the basis of multiple plant defense theories that are used to explain the diversification of secondary metabolites and the relationship between fitness, defense and resource availability (for review, see Stamp, 2003). However, when defense is considered in the context of phloem transport (Fig. 1), the situation becomes more complicated because of constraints that vascular architecture and source-sink relationships place on plant defense responses (Arnold et al., 2004, Honkanen et al., 1999, Jones et al., 1993, Larson & Whitham, 1991, Orians, 2005, Schultz et al., 2013).
The phloem is responsible for transporting many secondary metabolites, including alkaloids, flavonoids and glucosinolates, along with resources and informational signals required for the biosynthesis of these and other defense compounds (for reviews, see Heil & Ton, 2008, Turgeon & Wolf, 2009). In the case of constitutive defenses, those which are not activated by wounding or infection, the phloem primarily serves as a transport system for establishing pools of secondary metabolites. However, in the case of inducible defenses, source-sink relationships can determine the intensity and location of a defense response (for reviews see Orians, 2005, Schultz et al., 2013). Wounded and infected tissues often receive an influx of carbon from the phloem, a response that appears stimulated by enzymatic breakdown of sugars (Arnold & Schultz, 2002, Berger et al., 2007, Rosenkranz et al., 2001, Zhang et al., 1996) and/or changes in sucrose transporter activity (Meyer et al., 2004). This response can be triggered by herbivory, infection and plant defense elicitors, including jasmonic acid (Arnold & Schultz, 2002, Walters & McRoberts, 2006), and is linked with the production of phenolics in leaves, including condensed tannins (Arnold et al., 2004, Ferrieri et al., 2012). Because the induction of these defenses is tied to phloem transport, young leaves that are active sinks accumulate higher levels of phenolics than adjacent sources leaves (Appel et al., 2012, Arnold et al., 2004), and root herbivory can induce a defense response in both above- and belowground sinks (Kaplan et al., 2008).

Plants employ many strategies to resist pests in addition to chemical defenses, some of which are tied to whole-plant shifts in resource allocation (Tiffin, 2000). For example, many species exhibit compensatory growth in response to herbivory, i.e. faster growth, higher rates of photosynthesis in unattacked leaves and/or dormant meristem activation (Lebon et al., 2014, McNaughton, 1983, Nowak & Caldwell, 1984). Research also suggests that some plants may increase carbon and nitrogen transport into their roots in response to aboveground herbivory, a process often referred to as “sequestering” or “bunkering” that relies directly on
phloem transport (Babst et al., 2005, Gómez et al., 2010, Holland et al., 1996, Schwachtje et al., 2006). This response could be advantageous if stored resources aid in re-foliation and resprouting (Orians et al., 2011). Considering the challenges that exist in comparing different defense and tolerance strategies, it is not surprising that there is debate about whether changes in carbon allocation are always adaptive (Tiffin, 2000). Regardless of this point, research on growth responses to herbivory demonstrates the extent that source and sink relationships in plants can be altered by pests.

The majority of pests that attack plants do not directly interact with the phloem but there are three important exceptions: phloem-feeders (e.g. aphids, leafhoppers and whiteflies), parasitic plants (e.g. Cuscuta, L.) and phloem-mobile pathogens. Central to the success of phloem feeders is their ability to insert their stylets into living sieve elements without triggering a wound response in the penetrated cell. Some have argued that this is a result of calcium binding proteins in their watery saliva (Will et al., 2009, Will & van Bel, 2006) but the evidence for this is still under debate (Knoblauch et al., 2014). Once these insects have established a connection with their host, they begin to consume phloem sap and can readily transfer phloem-mobile diseases. Diseases can also be transferred by parasitic plants that establish symplastic connections with their host’s phloem (Birschwilks et al., 2006). Because phloem-feeders and parasitic plants create phloem sinks (Peel & Ho, 1970), their access to resources is influenced by vascular connectivity and the presence of other pest- and plant-based sinks. For example, Larson and Whitham (1991, 1997) showed that that galling aphids are less successful at establishing near flowers, which are strong carbon sinks, and on plants with a lower source-to-sink ratio (e.g. lower ratio of stem volume to buds).

There is also evidence that adjacent galls can either have negative or positive effects on each other depending on the carbon requirements of each structure and their arrangement on a leaf (Heard & Buchanan, 1998, Inbar et al., 1995).
There is growing evidence that plant community assembly and larger patterns of diversity are impacted by herbivores and pathogens (Connell, 1971, Fine et al., 2004, Janzen, 1970, Webb et al., 2006). However, the literature on plant-pest interactions and defense trade-offs is full of conflicting observations, both in terms of where carbon moves in response to wounding and whether there are “costs” associated with different defense responses. Critical to sorting out these discrepancies is research examining source-sink relationships and vascular architecture, which will help us understand the costs to and constraints of different defense strategies (Appel et al., 2012, Kaplan & Denno, 2007, Schultz et al., 2013). This type of research will inform our understanding of plant defense and the role of phloem physiology in mediating different aspects of plant-pest interactions.

What is the phloem’s role in rhizosphere interactions?

Belowground ecological processes are critical to all stages of the lives of plants. Many of these processes, including root interactions with soils and soil biota, are controlled or influenced by photosynthates transported to root tissues. When analyzed in terms of carbon products, rhizodeposition, the releasing of organic compounds by roots into the soil, may account for 30–90% of root carbon allocation (Nguyen, 2003, Whipps, 1990). This occurs by different mechanisms, such as releasing mucilage, exudates, secretions and border cells, through cell death (senescence), and by direct carbon flow to mycorrhizal and bacterial mutualists (Jones et al., 2009). Rhizodeposition also elicits changes in soil organic matter decomposition, an effect known as rhizosphere priming, which is highly influential in soil carbon dynamics and affects the supply of nutrients to plants (Dijkstra et al., 2013) along with stimulating growth in the rhizosphere (Meier et al., 2012). With such large quantities of carbon being allocated to plant roots and the strong links that exist between plant phenology,
changes in carbon allocation and soil respiration (Cardon et al., 2002, Davidson & Holbrook, 2009), the role of phloem in root carbon dynamics cannot be understated (Fig. 1).

The rhizosphere is inhabited by large populations of bacteria and fungi that form a broad array of associations with plants, from mutualistic to pathogenic. These organisms typically rely on plants for carbon and other resources which they access using different methods. For example, some organisms directly modify plant phloem, including rhizobacteria that produce hormones such as auxins and cytokinins (Costacurta & Vanderleyden, 1995), which are critical in controlling root vascular patterning, or enzymes that decrease ethylene production leading to higher fluxes of nutrients and carbon to the roots (Jiang et al., 2012). In contrast, nematodes cause the formation of new cells (feeding cells) adjacent to phloem, and which are highly vascularized subsequent to formation (Absmanner et al., 2013). In the case of cyst nematodes, these feeding cells are symplastically connected to adjacent sieve elements and companion cells by plasmodesmata (Absmanner et al., 2013, Bartlem et al., 2013).

A wide range of interactions also occur between mutualistic bacteria and mycorrhizal fungi, and their plant hosts. These symbiotes rely on plants for carbohydrates and protection and, in exchange, they enhance plant nutrient acquisition or, in the case of nitrogen-fixing bacteria (rhizobia), provide biologically available nitrogen to the host. With mycorrhizal associations, the fungi do not access carbon by directly tapping into the phloem; instead the hyphae either extend into cortical cells or are confined to the root epidermis, as observed in arbuscular mycorrhizae and ectomycorrhizal and ericoid hyphae, respectively (Peterson & Massicotte, 2004). While there has been significant research into how plants modify their cells and membranes to accommodate and exchange resources with hyphae, it remains unclear if the fungi modify plant vasculature and phloem unloading.
In the case of rhizobia, carbon is transferred to the symbiotes from the phloem through transfer cells and companion cells in the nodule that symplastically connect sieve elements to infected tissues (Joshi et al., 1993, Peiter & Schubert, 2003). Because the phloem helps hydrate nodules, it has been hypothesized that changes in phloem turgor may impact nodule gas permeability, and thus provide a mechanism for plants to limit resource delivery to rhizobia during periods of drought (Walsh, 1990, Walsh, 1995). Other work suggests that feedback mechanisms may lower nodule activity when water limits nitrogen export (Serraj et al., 1999) or that phloem-mobile signals regulate these processes (Parsons et al., 1993, Sulieman & Schulze, 2010, Sulieman & Tran, 2013) but the exact nature of these feedbacks remains unresolved.

Soil microbes and organisms interact with plants both directly by modifying phloem structure and function, as described above, and also indirectly through other organisms that rely on the same hosts. For example, rhizobacteria can influence phloem-feeding insect performance on the same plant (Shavit et al., 2013), and phloem feeding insects can attract rhizobacteria to plant roots (Lee et al., 2013). Recent work also demonstrates that soil microbes and symbiotes like rhizobia can influence organisms aboveground by reducing extrafloral nectary production (Godschalx et al., 2014). Connections like these demonstrate that the phloem could have a role in facilitating communication and resource competition between above- and belowground organisms (Griffiths et al., 2007).

The phloem mediates bi-directional interactions between soil biota and plants: soil organisms impact carbon allocation by changing plant vascular structure and acting as sinks, and plant rhizodeposition exhibits a large degree of control over rhizosphere microbial populations. Both of these processes can have downstream effects on food webs (Way, 1963) and carbon cycling (see previous section on CARBON FLUXES IN PLANTS AND ECOSYSTEMS). Despite the importance of phloem in these and other belowground
processes, fundamental knowledge gaps in areas such as signaling and the control of apoplastic versus symplastic flow in plant-organism symbioses will keep the mechanisms behind these processes in a black box until their secrets are revealed.

PHLOEM LOADING, A CASE STUDY: WHAT PHYSIOLOGISTS CAN LEARN BY THINKING ABOUT ECOLOGY

In this review, we have discussed the importance of considering phloem transport when studying plant physiological ecology, but research on phloem physiology can also benefit from examining differences in plant function in the context of evolution. This type of research can help us consider the costs and benefits of different physiological strategies, a point that is well demonstrated by recent work considering the ecological implications of phloem loading type in angiosperms.

In the source tissue, carbon is loaded into the phloem by one or a combination of three mechanisms (Fig. 5). In passive loading, sucrose migrates symplastically from mesophyll cells to sieve tubes down a concentration gradient (Reidel et al., 2009, Rennie & Turgeon, 2009, Turgeon & Medville, 1998, Zhang et al., 2014). A less common symplastic mechanism involves synthesis of raffinose and stachyose in specialized companion cells (intermediary cells) and is termed polymer trapping because it “traps” sugar in the phloem on the basis of molecular size (Dölger et al., 2014, Zhang et al., 2014). The third mechanism, apoplastic loading, was the first to be discovered (Geiger et al., 1971) and is the most common strategy in crop plants. Apoplastic loading involves efflux of sucrose into the cell wall space and subsequent active uptake into the phloem by symport with protons (Braun et al., 2014).

It is currently believed that gymnosperms load passively (Liesche et al., 2011) and that passive phloem loading is ancestral in angiosperms (Turgeon et al., 2001). Passive
loading is, with few exceptions, used primarily by trees (Rennie & Turgeon, 2009) and active loading is more common in herbs and a restricted number of woody species. Recent work suggests that trees may not require an active loading step because they often maintain high concentrations of leaf sugars to offset low whole-plant hydraulic conductance in the xylem (Fu et al., 2011). The elevated sugar content in the leaves apparently provides enough foliar sucrose to drive phloem transport by Münch pressure flow and removes the need for thermodynamically active loading. It has also been suggested that loading strategies are correlated with climate (Gamalei, 1989) but this appears to be due to the virtual absence of trees, and therefore passive loading, in very cold climates, not a direct effect of temperature on loading (Davidson et al., 2011).

Given the almost complete absence of passive loading in herbs and the fact that active loading is an evolutionarily derived trait, what are the advantages of active loading? It is difficult to argue that energy must be expended in the loading step to drive long-distance transport efficiently since many trees, with much longer transport distances than herbs, seem to do without it (Turgeon, 2010b). Even so, high solute concentration in the phloem, and the elevated hydrostatic pressure it generates, could be advantageous for other reasons, including coordinated regulation of loading and unloading at distant sites (Fisher, 2000, Patrick, 2013), wound healing (Knoblauch & Mullendore, 2012), discouraging phloem feeders, which cannot tolerate high osmotic potentials (Turgeon, 2010a) and optimizing viscosity for transport (Jensen et al., 2013). Another advantage is that active loading allows the plant to reduce overall sucrose levels in leaves and still generate the phloem pressure needed to drive long-distance transport (Turgeon, 2010b). Reducing sucrose inventory frees up carbohydrates, which are needed to foster growth of new leaves. Following the compound interest law, the more efficiently new leaves are produced, the faster the overall relative growth rate of the plant. As a result, it is possible that phloem loading explains part of the variation observed in
the leaf economic spectrum and has larger implications for plant growth strategies and species distributions (Reich, 2014, Wright et al., 2004).

Although this could help explain the widespread adoption by active loading in herbs, it does not explain why some species accomplish this by polymer trapping while others load through the apoplast. One explanation for the evolution of polymer trapping could be that it allows other important compound(s) besides sucrose to enter the phloem symplastically. For example, in certain families that load by polymer trapping, iridoid glycosides, anti-microbial and anti-herbivore compounds are phloem mobile and are approximately the same molecular size as sucrose (Gowan et al., 1995, Lohaus & Schwerdtfeger, 2014, Turgeon & Medville, 2004, Voitsekhovskaja et al., 2009).

The concept of symplastic loading in general has been criticized on the grounds that a continuous plasmodesmatal pathway would allow ions and small molecules to enter the phloem from the mesophyll non-selectively (Lucas et al., 2013). However, selectivity is not as fundamental a property of phloem transport as is often assumed. Sieve tubes transport a wide range of ions and compounds in concentrations similar to those of other plant cells (Winter et al., 1992). Indeed, ions and small molecules continuously leak into the sieve tubes through the plasmodesmata that connect companion cells to their adjacent sieve tubes. Another limitation imposed by polymer trapping and passive loading, is that up-regulation of loading capacity requires the placement of additional plasmodesmata, which does not occur in mature leaves, thus restricting the response to increased light availability (Amiard et al., 2005). Instead, these plants acclimate to high light by growing new leaves with higher vein densities.

Understanding the adaptive advantages and disadvantages conferred by different loading mechanisms will shed light on the complex role phloem transport plays in growth, and plant responses to the biotic and abiotic environment. Because of the impact of loading
type on both the osmotic potential of leaf mesophyll cells and the form of sugar transported in the phloem, it could also have important implications for other aspects of plant physiology ranging from leaf hydraulics to fruit development (see earlier section on CARBON-WATER INTERACTIONS) that have yet to be explored. Further research testing the hypotheses laid out in this section will help us better understand the complex evolutionary processes that have shaped the diversification of phloem loading and other aspects of phloem physiology.

CONCLUSIONS AND FUTURE DIRECTIONS

As the primary delivery system for carbon inside the plant, the phloem serves a critical role in mediating shifts in carbon allocation and growth that influence how plants interact with the environment and how they impact local food webs and carbon cycling (Fig. 1). However, this is only one of the many ways that phloem physiology influences plant ecology. Because of its tight hydraulic connection with the xylem, the phloem can influence drought tolerance and reproduction in ways we are only starting to understand. However, despite the often central role the phloem plays in many plant-environment interactions, there is limited research considering its role in plant physiological ecology.

In this review, we highlight research that integrates phloem physiology and plant ecology by focusing on carbon-water interactions, carbon fluxes in plants and ecosystems, and biotic interactions. The material presented is by no means comprehensive and there are many other ecologically important aspects of plant physiology that could be influenced by the phloem including phenological changes that occur in response to phloem-mobile signals (Haywood et al., 2005, Turck et al., 2008, Turnbull, 2011), production of isoprene and other organic volatile compounds (Kerстиens & Possell, 2001, Logan et al., 2000), and the transport of nitrogen and amino acids (Tegeder, 2014). However, the goal of this review is not to
address all of the pertinent literature but to draw attention to the critical nature of research that lies at the interface between phloem physiology and ecology. Going forward, it is crucial that we increase our understanding of phloem function and develop a robust framework for considering the ecological and evolutionary implications of phloem physiology. To achieve these goals, there are four critical areas of research that we believe need to be pursued in the future.

(1) *Trade-offs in the phloem* – A central pursuit of physiological ecology is to understand the costs and benefits of different physiological strategies and determine how trade-offs impact plant performance. Unfortunately, many of the trade-offs that influence phloem structure and function are poorly understood. For example, a high level of symplastic continuity in the leaf is considered advantageous because it would minimize the need to actively transport secondary compounds and informational signals across membranes. However, as pointed out earlier, many species use active loading mechanisms (Turgeon, 2010b). Is there a trade-off between fast growth strategies associated with active loading and efficient long-distance communication? Within a flower, there is variation in how symplastically connected individual organs are with the phloem (Werner *et al.*, 2011). Are there costs and benefits of these differences? Research aimed at answering these questions and clarifying the relationship between phloem structure and function will help advance our understanding of different physiological strategies and thus provide a more robust framework for thinking about phloem evolution.

(2) *Xylem-phloem coupling* – There is a large body of work linking plant hydraulics and xylem function to species distributions and investigating the ecological implications of xylem form and function (e.g. Hacke & Sperry, 2001, Jacobsen *et al.*, 2007, Preston *et al.*, 2006).
Less attention has been paid to phloem but the structural and physiological connections that exist between these two tissues, some of which may be governed by critical trade-offs, suggest it could be equally influential in defining plant-environment relationships. Interactions between the xylem and phloem are especially important in sink tissue (e.g. flowers and fruit) where high osmotic gradients can alter the water balance of these two tissues (e.g. backflow in the xylem). Further investigation focusing on the interaction between the two vascular systems is likely to yield novel insights into the integration of plant functional properties and their significance for plant ecology by providing a unique perspective on plant structure and function that is not found if the two systems are studied separately.

(3) Environmental plasticity – Climate change and increasing levels of CO$_2$ appear to have a significant effect on the growth and survival of many species (Nemani et al., 2003) but little research has tried to investigate the impact of these conditions on phloem transport or vascular architecture. Considering that phloem integrates changes that happen in both source and sink tissue, could changes in the phloem partially explain shifts in carbon allocation that are observed in CO$_2$ addition experiments? Do plants with different loading types exhibit altered responses to elevated CO$_2$? How do seasonal changes in the phloem impact plant phenology and broader sets of traits that impact species distributions? Research on these and related questions will allow us to better understand phloem plasticity and how it might impact plant carbon allocation and stress tolerance.

(4) Ecosystem-scale significance of phloem transport – Do physiological properties of phloem transport have importance at higher levels of organization, especially in relation to ecosystem-scale fluxes of carbohydrates and plant-soil interactions? Some authors (Kayler et
al., 2010, Kuzyakov & Gavrichkova, 2010) have proposed that phloem transport may be a bottleneck in the link between photosynthesis and belowground respiratory fluxes and that the observed ecosystem-scale relationships between photosynthesis and respiration are mediated by phloem-dependent traits. To what degree does the mass flux of sucrose in the phloem vary as a function of time of day, environmental conditions and seasonality? Can the changes in phloem physiology alter carbon supply and demand at the whole-organismal scale? These questions have implications for understanding and predicting the controls not only of autotrophic plants but also of the heterotrophic organisms that depend on this flux.

The phloem serves as part of an integrative vascular network that allows plants, as modular organisms, to respond on a larger scale to their environment through processes that we are only beginning to understand (Knoblauch & Oparka, 2012, Turgeon, 2010a, van Bel, 2003). One of the main challenges for physiologists going forward is to develop methods that will allow us to better characterize the phloem and facilitate the collection of data on a larger variety of species. Although this has been a major limiting factor in the field of phloem physiology in the past, there have been many promising advances in recent years (Cayla et al., 2015, Knoblauch et al., 2014, Mullendore et al., 2010, Savage et al., 2013, Windt, 2007). With continued work in this area, we can open new opportunities to examine the evolution of phloem anatomy and consider phloem in a more rigorous ecological and evolutionary framework.
ACKNOWLEDGEMENTS

We acknowledge two anonymous reviewers, G. Hoch (University of Basel) and N. M. Holbrook (Harvard University) for providing thoughtful comments and feedback on the manuscript and T. Arnold (Dickinson College) for his involvement in the symposium that led to this review. Funding was provided by the Katharine H. Putnam Fellowship in Plant Science at the Arnold Arboretum (Savage); MBIE C06X0706, University of Waikato and Plant and Food Research (Clearwater); Plant Fellows (Klein) - an international Postdoc Fellowship Program in Plant Sciences of the Zürich-Basel Plant Science Center; NERC NE/I017749/1 (Mencuccini); Los Alamos National Laboratory LDRD-ER program (Sevanto) and the National Science Foundation - Integrative Organismal Systems Grant, No. 1354718 (Turgeon). Research was co-funded by the National Science Foundation - Integrative Organismal Systems Grant, No. 1021779 (Holbrook) and the EU FP7 Marie Curie actions and the Swiss National Fund project FORCARB (31003A_14753/1) allocated to the Basel Plant Ecology (Körner).
REFERENCES

This article is protected by copyright. All rights reserved.

Figure 1. Transport of water and carbon into and out of the phloem. Water and carbon fluxes are noted in blue and orange, respectively and separated based on where they occur (e.g. within the plant, and above- and belowground). Dashed arrows are fluxes that occur outside the plant but originate from resources transported in the phloem.
Figure 2. A schematic presentation of water and carbohydrate fluxes between a source leaf and a sink in the stem or roots. Fluxes of water and carbohydrate are represented by blue and orange arrows, respectively, and the length of the arrow indicates the size of the flux. Open arrows are gaseous fluxes. Inside the vascular tissue, darker shades of blue indicate more negative xylem water potentials, and dark shades of orange indicate higher phloem solute concentrations. During non-drought conditions the phloem pulls water from the xylem to support carbohydrate transport. At sinks, carbohydrates are extracted from the transport stream and water returns to the xylem. During drought, increasing solute concentrations are needed in the phloem to prevent excessive water loss to the xylem and allow for phloem turgor maintenance.
Figure 3. Measured and modelled time course of sap flow in pedicels of kiwifruit over 24 hours, 65 days after anthesis. A positive flow indicates flow from plant to fruit. A. Total flow (the sum of xylem and phloem flows) measured using sap flow gauges (Clearwater et al., 2013) and predicted using a biophysical model of fruit development (Hall et al., 2013; Hall, unpublished). B. Model predicted total flow partitioned into component phloem and xylem flows, with mean phloem sap concentration assumed to be at the low ($C_p = 0.1$; sugar mass fraction) or high ($C_p = 0.3$) end of likely in-vivo concentrations (Jensen et al., 2013). Xylem flows oscillate between inward and outward flow, and with decreased C_p the magnitude and duration of xylem outflow increases. Model parameters for (B) were adjusted so that total flow matched predicted flow shown in (A).
Figure 4. Carbon fluxes in a tree depicted by a simple ‘black box model’ and one with partitioning among internal carbon pools and their individual fluxes. Partitioned model shows changes that occur between the growing season and non-growing season in terms of the direction of phloem transport and predominant sources and sinks in the system. This model is based on data presented in Klein and Hoch (2015). Gaseous fluxes are noted by open arrows. Non-structural carbohydrates in the form of sugars and starch found in the leaves, trunk and roots are noted as NSC.
Figure 5. Passive (A), polymer trap (B) and apoplastic (C) phloem loading mechanisms. In A, sucrose (pink) passes through plasmodesmata (arrows) from mesophyll cells (M) to bundle sheath cells (BS) and into companion cells (CC) and sieve elements (SE) down its concentration gradient. In B, sucrose is converted to raffinose and stachyose (blue) in intermediary cells (IC). In C, sucrose is loaded into CC and/or SE by sucrose-H⁺ co-transporters (blue star). Plasmodesmata at the BS-CC interface in apoplastic loaders are present but may be too narrow for sucrose passage.