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As the adoption of Software Defined Networks (SDNs) grows, the security of SDN still has several unaddressed limitations. A
key network security research area is in the study of malware propagation across the SDN-enabled networks. To analyze the
spreading processes of network malware (e.g., viruses) in SDN, we propose a dynamic model with a time-varying community
network, inspired by research models on the spread of epidemics in complex networks across communities. We assume subnets
of the network as communities and links that are dense in subnets but sparse between subnets. Using numerical simulation and
theoretical analysis, we find that the efficiency of network malware propagation in this model depends on the mobility rate 𝑞 of the
nodes between subnets. We also find that there exists a mobility rate threshold 𝑞𝑐. The network malware will spread in the SDN
when the mobility rate 𝑞 > 𝑞𝑐. Themalware will survive when 𝑞 > 𝑞𝑐 and perish when 𝑞 < 𝑞𝑐. The results showed that our model is
effective, and the results may help to decide the SDN control strategy to defend against network malware and provide a theoretical
basis to reduce and prevent network security incidents.

1. Introduction

With separate control and data planes for computer network-
ing [1], Software Defined Networks (SDNs) are considered
by many to be a promising network platform as it empowers
programmability and flexible configuration—paving the way
for more powerful network control and traffic data analysis.
However, the SDN architecture also introduces complexity
and increased risks to network security. With the continuous
development of SDN security applications, we need to antic-
ipate issues that might arise throughout the implementation
of SDN-based security applications.

At their core, SDN computer networks are complex sys-
tems [2].The research content of computer networks includes
network topology, network traffic characteristics, and the
influence of the network behavior on the whole network.The
spread and prevention of network malware are key technolo-
gies studied in SDN and have been one of the most prolific
fields in complex network dynamics research. Through our
research, we found that some characteristics of computer

network virus propagation are similar to real world epidemic
spread.

Compared to past computer network architectures
(where it is not easy to control the whole network from the
global level), SDNs are considered by many to be a promising
network platform as it empowers programmability and
flexible configuration—enabling powerful network control
and traffic data analysis. As such, the study of the transition
probability for malware within SDN makes not just an
interesting endeavor but also an important research area
considering upcoming trends in computer networking.
Hence, in this research, we present a simple network model
with a time-varying community network and investigate
network malware spreading processes within this model. In
terms of scope, this paper does not consider the source and
the specific types of the malware.

The remainder of the paper is organized as follows.
Section 2 discusses the background and related work. In Sec-
tion 3, a model with a time-varying community network of
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malware propagation in SDN is proposed. Then, in Sec-
tion 4, we implement a numerical simulation to evaluate the
influences of the mobility rate on the dynamic behavior of
SDN, and the theoretical analysis of this model is performed.
In Section 5, the possible applications of our research are
presented. Finally, we conclude and offer prospective areas for
future research in Section 6.

2. Background and Related Work

2.1. Industry Trends. This research paves the way for practical
implementations using SDN as a platform for malware
propagation control. In the industry, Google has already
deployed SDN for data center backbone traffic. Major com-
mercial switch vendors including Cisco, IBM, HP, Dell, and
Juniper Networks have announced intent to support or have
already launched switching products that support SDN. We
see a lot of potential in applying our research into similar
environments.

Themarket research company IDC predicts that the mar-
ket for SDN applications will reach $37 billion by 2016 [3]. It
is also realistic to expect malware (e.g., network viruses, Bot-
nets) to continue to be a threat for future SDN deployments.
Specifically, we witness a recent surge inmalware (e.g., Mirai)
specifically designed for launching Distributed Denial-of-
Service (DDOS) attacks to network-connected assets. To
assure Internet security, effective detection malwares are
indispensable. Our research addresses these issues directly.

2.2. Research Trends and Gaps. Research on the network
security of SDN raised concern in recent years. Most prior
studies have looked at the development and analysis of SDN
security applications [4]. However, few solutions provide an
effective defense mechanism against the threat of attacks in
SDNs because all types of open applications make the end-
hosts and switches the target of attacks, which is a threat to the
entire network [5]. In all types of security incidents, network
malware usually spreads quickly and has a strong influence
on availability, making network malware the most important
issue to resolve in Internet security.

The control plane of SDN will have direct control over
the data plane elements [6]. Network administrators of SDNs
often use programmable soft switches to provide network vir-
tualization.Modifying routing rules in traditional networks is
difficult but easier in SDNs, which will help address problems
in traditional networks and is advantageous to adjust the
route strategy of the entire network.The logical centralization
of network intelligence presents exciting challenges and
opportunities to enhance security in such networks, includ-
ing new ways to prevent, detect, and react to threats, as well
as innovative security services and applications that are built
upon SDN capabilities.Malicious code detection and preven-
tion under the new architecture need further study [7–14].

At its core, the spread of networkmalware on the Internet
is a dynamic complex network challenge. In complex network
dynamics, if the network evolution speed is slower than
the information transmission speed, it can be approximately
regarded as a static network. This assumption is set up in

many cases, such as computer malware spreading on the
Internet. Therefore, we consider that the community struc-
tures in complex networkmodels have considerable influence
on the spreading of network malware in SDN.

In recent years, many studies have indicated that time-
varying networks play an important role in the investigation
of the network malware spreading that occurs in complex
networks [15]. In computer networks, we can assume subnets
as “communities” and “links” that are dense in a subnet but
sparse between subnets. Network malware spreading is rapid
in the subnets but slow between subnets. Because different
subnets are disparate, it is impossible for individuals to
propagate malware to different subnets at the same time even
if these individuals have connections with many different
subnets in a static network. Thus, there are no links among
subnets at each time step in a time-varying network, but indi-
viduals can move among subnets because of the centralized
control of SDN [16].

Toutonji and Yoo proposed a model Passive Worm
Dynamic Quarantine (PWDQ) to enable network malware
detection and protection [17]. When a node is listed as a
suspicious node, the PWDQ model departs from previous
models in that infected nodes will be recovered either by
passive benign worms or by quarantine measures. Computer
simulations show that this method may decrease the number
of infectious nodes and reduce the speed of networkmalware
propagation.

Omote and Shimoyama found a method for preventing
the spread of network malware [18]. An estimating unit
calculates the expected number of infected nodes when the
malware transmits a predeterminednumber of packets, based
on the infectivity calculated by the infectivity calculating unit.

Bradley et al. [19] and other studies have shown that the
network topology has an impact on networkmalware spread-
ing: the closer to the “center” of the network the malware is,
the faster the malware spreads and the higher the probability
of repeated infection is.

Gourdin et al. found that the effect of network malware
spreading in a telecommunication network [20], where a
certain curing strategy is deployed, can be captured by
epidemicmodels. In theirmodel, the probability of each node
being infected depends on the curing and infection rate of its
neighbors.

Tang and Li investigated malware spread in Wireless
Sensor Networks (WSNs) through Susceptible-Infective (SI)
epidemic models [21] and proposed two adaptive network
protection schemes for securing WSNs against malware
attacks.

Abaid et al. [22] proposed elastically partitioning network
traffic to enable distributing detection load across a range of
detectors and making a centralized SDN controller, which
allows for network-wide threat correlation as well as quick
control of malicious flows.

Ichiro et al. mentioned that, in security incident response,
the isolation of network virus-infected nodes and investi-
gation of the damage situation of network virus activity
are needed [23]. They proposed a method to isolate virus-
infected nodes while avoiding being detected by malware by
changing network quickly and partially using SDN.
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Hosseini et al. [24, 25] proposed a dynamic model of
malware propagation in scale-free networks (SFNs) based on
a rumor spreading model. The model considers the impact
of software diversity to halt the outbreak of malware in
networks. Their research stated that the simulation results
demonstrate that the model is more effective than other
existingmodels ofmalware propagation, in terms of reducing
the density of infected node.

These research efforts provide several new approaches for
studying network malware spreading and prevention in the
SDN environment. In terms of our approach, we believe that
since an SDN controller canmanage and quarantine nodes in
the entries network, when new network malware breaks out
in a subnet, this controller may change the flow table strategy
according to network status and prevent the spreading of the
malware to other subnets. As such, we designed a network
malware propagation model of SDN to effectively defend
against the spreading of network malware.

3. Modeling Network Malware Spreading in
an SDN Environment

As the spread of network malware in SDN is similar to the
spread of diseases, we can use similar models to study the
spread of network malware. This type of model has two
assumptions: (1) the state of a network node at any moment 𝑡
is limited; the states include “susceptible”; “infected”; “recov-
ery”; “isolation”. We can choose different sets of states
according to the characteristics of the network malware and
modeling purposes. (2) The infected nodes have a certain
probability of infecting other nodes in the network.

Our mathematical model of computer malware spread
is mostly based on the Susceptible-Infected-Recovery (SIR)
model or the simple Susceptible-Infected-Susceptible (SIS)
model [26]. To simplify our research, we adopted the SIS
model, where each node belongs to one of two states: sus-
ceptible or infected [27, 28]. Mathematical analysis on such a
model has revealed the importance of topology for propaga-
tion dynamics. Particularly, we found that the time-varying
community network model is suitable for networks with
small numbers of susceptible nodes, and we assumed that the
network evolves more slowly than the diffusion process.

3.1. Model Assumptions. Different nodes belong to different
subnets in a computer network. In our study, we use logical
subnets to classify the community network; networkmalware
spreads more quickly within the subnet and spreads slowly
between different subnets. To simplify the complex model,
we assume that the network malware cannot spread between
different subnets in normal conditions. Because the SDNmay
change its routing strategy, when one infected node moves
from one subnet to another logical subnet, it probably makes
the network malware spread between subnets.

To study the effects of network malware spreading when
an infected node changes from one subnet to another in SDN,
we establish some simple model assumptions.

(1) Consider a total population of𝑁 nodes in the model,
which means that no new nodes enter or leave the system at
any time.

(2) In the model, nodes only have two possible states:
susceptible (𝑆) and infected (𝐼). A node must be in one of the
two states, and an infected node cannot be infected again.We
define the initial infected nodes as 𝑋(0) = 𝐼0.

(3)Thenetworkmalware cannot spread between different
subnets in normal conditions, which means that there are no
infection paths between different subnets.

Assume that each susceptible neighbor of an infected
node has a probability 𝜆 of being infected and a susceptible
node has 𝑘inf infected neighbors at time 𝑇 in the model. At
𝑇 + 1 step, this susceptible node will become infected with
probability 1− (1−𝜆)𝑘inf . At the same time, the infected node
may become susceptible at rate 𝜇 through network malware
killing and patching.

3.2.Model withTime-VaryingCommunityNetwork. Although
various studies have shown that a computer network is a
“scale-free” network, to simplify the model, we begin our
analysis with the simple time-varying community network.

Based on the model assumption, we construct a time-
varying community network with network malware spread-
ing.

(1)Consider a total population of𝑁 nodes that is divided
into𝑚 subnets with random 𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑚) nodes in each
subnet, and let them satisfy

𝑚

∑
𝑖=1

𝑛𝑖 = 𝑁. (1)

(2) For each subnet i, we use probability 𝑝𝑖 to add a link
between each two nodes and let them satisfy

𝑚

∑
𝑖=1

𝑝𝑖 ⋅ 12𝑛𝑖 (𝑛𝑖 − 1) =
𝑁 ⋅ ⟨𝑘⟩

2 . (2)

In addition, ⟨𝑘⟩ is the average degree of the entire network.
(3) When an infected node jumps from one subnet into

another subnet, it will spread the network malware. We
assume that every node 𝑗 (𝑗 = 1, 2, . . . , 𝑁) has probability
q to jump to another subnet, which is chosen randomly. In
order to simulate malware spreading caused by node jump,
we add links between different subnet with probability q.
During each time step, break all of the links between different
subnet connected at last time step.Then connect nodes in the
different subnet with probability q again.Themost important
value is a threshold 𝜆𝑐. The network malware spreads and
becomes infected for 𝜆 > 𝜆𝑐 and perishes for 𝜆 < 𝜆𝑐. In
this model, we have a network malware threshold 𝜆𝑐. The
networkmalware spreads and becomes infectedwhen𝜆 > 𝜆𝑐.
From the theory of probability [29], we have 𝜆𝑐 = 𝜇/⟨𝑘⟩ in
the time-varying community network model. For a specific
community 𝑖, when the mobility rate 𝑞 = 0, its network
malware subthreshold is defined as

𝜆𝑖𝑐 = 𝜇
⟨𝑘𝑖⟩ = 𝜇

𝑝𝑖 (𝑛𝑖 − 1) . (3)
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The network malware in the specific community 𝑖 will
survive when 𝜆 > 𝜆𝑖𝑐 and die for 𝜆 < 𝜆𝑖𝑐.We assume that there
is only one seed at the beginning, which means 𝑋(0) = 1.
The networkmalware will spreadwithin the subnet where the
seed is chosen and will not affect other subnets.

Because of the regular changes in the routing strategy
in SDN, network nodes including mobile devices, network
devices, and hosts can be redirected, which means that the
node mobility rate between subnets satisfies 𝑞 > 0. When
𝜆 > 𝜆𝑖𝑐 (𝑖 = 1, 2, ..., 𝑚), even if there is only one seed at the
beginning, the network malware may spread into all of the
subnets. We discover that the time of the network malware
outbreak in the subnets is dependent on the mobility rate
𝑞. When 𝜆 < 𝜆𝑖𝑐 (𝑖 = 1, 2, ..., 𝑛; 𝑛 < 𝑚), a mobility rate
threshold 𝑞𝑐 is considered. The network malware in subnet
is 𝑖 where 𝜆 < 𝜆𝑖𝑐 can survive when 𝑞 > 𝑞𝑐 because of the
jump of infected nodes.

4. Simulation and Evaluation

To simulate the network malware spreading, we use a similar
experimental environment. To be brief we set 𝑚 = 2 and
analyze the network malware spreading in two cases. At the
beginning, there is only one infected node,𝑋(0) = 1, and we
set 𝑁 = 3000, 𝑛1 = 1200, 𝑛2 = 1800, ⟨𝑘⟩ = 20, 𝑝1 = 0.0069,
and 𝑝2 = 0.0155. These parameters satisfy (1) and (2).

(A) 𝜆 > 𝜆𝑖𝑐 (𝑖 = 1, 2). Let us set 𝜇 = 0.1. We can obtain 𝜆1𝑐 =0.0121 and 𝜆2𝑐 = 0.0036 from (3). We set 𝜆 = 0.02 > 𝜆𝑖𝑐 (𝑖 =1, 2).
In the simulation, we chose an infected node in the first

subnet randomly, and the other nodes in the two subnets
were susceptible. We simulate the step with mobility rate
𝑞 = 0.000001 to 0.00001 between the subnets, and the result
is shown in Figure 1.The curve with black asterisks represents
the density of infected nodes in the first subnet as a function
of time with mobility rate 𝑞 = 0.00001 and the other curves
represent the evolution of infected nodes in the second subnet
with different mobility rates from 0.00001 to 0.000001.

As can be observed from the diagram, the network
malware first broke out in the first subnet and then propa-
gated into the second subnet. The time of network malware
outbreak in the second subnet decreased with the increase in
the mobility rate 𝑞.

We have not plotted the curve of the other mobility rate
in the first subnet because the network malware spreading
in the first subnet has less of a relationship with 𝑞. The
values of mobility rate 𝑞 applied above were chosen based
on experiment and by experience. A deep understanding of
the detailed time evolution of networkmalware spreading is a
prerequisite to finding optimal strategies to prevent network
malware outbreaks. Thus, we analyzed it in detail.

From the simulation, we knew that when 𝜆 > 𝜆2𝑐, the
network malware would have an outbreak in the second
subnet only if there was one node that was infected by the
nodes and had moved from the first subnet.

At each time step, the number of infected nodes thatmove
from the first subnet can be calculated as 𝑛1𝑞𝜌1(𝑡), where 𝜌1(𝑡)

20 40 60 800 100
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Figure 1: Density of infected nodes 𝜌(𝑡) in two subnets with
different mobility rates 𝑞. The symbol (1) denotes the first subnet,
and the symbol (2) denotes the second subnet.

represents the density of the infected nodes in the first subnet
at time t, q is the mobility rate between subnets, and 𝑛1 is the
total number of nodes of the first subnet.

In the time-varying network model, small world model,
and scale-free model, these theories are based on mean
field theory. According to mean field theory, 𝜌1(𝑡) satisfies
equation ̇𝜌1(𝑡) = −𝜇𝜌1(𝑡) + 𝜆⟨𝑘1⟩𝜌1(𝑡)(1 − 𝜌1(𝑡)).

In this equation, 𝜌1(𝑡) represents the density of the
infected nodes in the first subnet and each infected node
will become susceptible at rate 𝜇. 𝜆 is the probability that
each susceptible node linked by an infected node will be
infected. On the right side of the equation, −𝜇𝜌1(𝑡) shows the
reduced number of infected nodes, (1 − 𝜌1(𝑡)) is the density
of susceptible nodes, and ⟨𝑘1⟩𝜌1(𝑡) presents the number
of infected nodes around a susceptible node. According to
the multiplication rule, 𝜆⟨𝑘1⟩𝜌1(𝑡)(1 − 𝜌1(𝑡)) presents the
increased number of infected nodes in the entire network.
The simplified formula is

𝜌1 (𝑡) = 𝑎/𝑏
1 + 𝑐𝑒−𝑎𝑡 , (4)

where 𝑎 = 𝜆⟨𝑘1⟩ − 𝜇, 𝑏 = 𝜆⟨𝑘1⟩, and

𝑐 = 𝑎 − 𝜌1 (0) 𝑏
𝜌1 (0) 𝑏 . (5)

𝜌1(0) shows the density of infected nodes at time 𝑡 = 0,
and, in this simple example, we obtain 𝜌1(0) = 1/𝑛1. At time
step 𝑡, there are 𝑛1𝜌1(𝑡) infected nodes in the first subnet.
According tomodel, the nodes between subnets connect with
probability 𝑞. So, in the second subnet, there are 𝑛1𝜌1(𝑡)𝑛2𝑞
nodes connected with the infected nodes in the first subnet,
which have a probability 𝜆 of being infected. So, at each time
step 𝑡, the probability of the node in the second subnet being
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infected is 𝑛1𝜌1(𝑡)𝑛2𝑞𝜆. Supposing that the probability of the
node in the second subnet being infected at 𝑡𝑐 time step is
100%, we can write the formula as

∫
𝑡𝑐

0
𝑛1𝜌1 (𝑡) 𝑛2𝑞𝜆 𝑑𝑡 = 1. (6)

Then, we can obtain

𝑡𝑐 =
ln (𝑒ln(1+𝑐)+𝑏/(𝜆𝑛1𝑛2𝑞) − 𝑐)

𝑎 . (7)

We can obtain the outbreak time of the network malware
in the second subnet by

𝑇𝑐 = 𝑡𝑐 + 𝑡0 =
ln (𝑒ln(1+𝑐)+𝑏/(𝜆𝑛1𝑛2𝑞) − 𝑐)

𝑎 + ln 𝑐
𝑎 . (8)

In this formula, 𝑡0 = ln 𝑐/𝑎 is the time for the number
of infected nodes in the second subnet to increase from one
to half of the stabilized value. To check the above theoretical
analysis, we simulate experiments to obtain test data. We
make numerical experiments and determine 𝑇𝑐 by checking
the number of infected nodes of the second subnet, which
reaches half of the stabilized value at time step 𝑇𝑐. We build
the time-varying networkwith the same parameters as shown
in Figure 1 and set 𝜆 = 0.02 and 𝜆 = 0.08. We simulate
the experiment many times and take the average result of
several experiments. When we change the mobility rate 𝑞
from 0.000001 to 0.00001, we obtain two curves, as shown in
Figure 2.The circles and asterisks denote the results from two
different 𝜆 values by experiment, and the two lines represent
the results calculated from (8), where 𝜆 = 0.02 and 𝜆 = 0.08.
As we can see, the numerical simulations and theoretical
conclusion are consistent.

(B) 𝜆2𝑐 < 𝜆 < 𝜆1𝑐. Through our analysis, we know that the
network malware will perish in the first subnet, where the
mobility rate 𝑞 is too low. However, if the mobility rate is
high enough, the network malware may also spread into the
second subnet.

In the experiments, we select 𝜆 = 0.008 and use the same
values of the other parameters of the time-varying network,
as in Figure 1. The value conforms to 𝜆2𝑐 < 𝜆 < 𝜆1𝑐, and we
use the initial value of infected nodes 𝑋(0) = 100, which
is selected randomly from the first subnet. We get the values
𝜌1(0) = 𝑋(0)/𝑛1 = 0.083, 𝜌2(0) = 0, and 𝜌(0) = 𝑋(0)/𝑁 =
0.033, where 𝜌1(0), 𝜌2(0), and 𝜌(0) represent the density of
infected nodes in the first subnet, second subnet, and entire
network, respectively.

Figures 3(a) and 3(b) show the evolution function curve
of 𝜌(𝑡) in two subnets with the mobility rates 𝑞 = 0.0001
and 𝑞 = 0.00001. The black asterisks represent the density
of infected nodes in the first subnet as a function of time, and
the red circles represent the evolution of infected nodes in
the second subnet. As indicated in Figure 3(a), the network
malware broke out at 𝑡 = 70 approximately for 𝑞 = 0.0001 in
the second subnet. However, for 𝑞 = 0.00001, the number of
infected nodes was reduced to zero slowly in the first subnet

Theoretical curve

×10−5
0.2 0.4 0.6 0.8 1 1.20

q

20

30

40

50

60

70

80

T
c
(q
)

𝜆 = 0.02

𝜆 = 0.08

Figure 2:Thenetworkmalware outbreak time𝑇𝑐 versus themobility
rate 𝑞. The symbols represent the results of numerical simulations,
and the lines represent the results of theory.

and the networkmalware did not break out at all in the second
subnet, as shown in Figure 3(b).

We theoretically analyze how the mobility rate influences
the spreading of network malware. Because 𝜆 < 𝜆1𝑐, there
must be a time step 𝑡1 when the network malware will perish
when 𝑡 = 𝑡1 in the first subnet. The network malware can
spread in the second subnet only if the infected nodes can
move into the second subnet and at least one susceptible node
in the second subnet is infected before 𝑡 = 𝑡1. According to
(4), we know that when 𝑎 < 0, 𝜌1(𝑡) is reduced gradually to
close to zero. We use 𝜌1(𝑡1) = 0.0001 as a small number and
solve (4) to obtain 𝑡1:

𝑡1 = ln ((10000𝑎 − 𝑏) /𝑏𝑐)
−𝑎 . (9)

From (7) and (9) and considering 𝑡1 = 𝑡 when 𝑞 = 𝑞𝑐, we
define 𝑐 as in (5) and obtain

𝑞𝑐 = 𝑏
𝑛1𝑛2 (ln (𝑏𝑐/ (10000𝑎 − 𝑏) + 𝑐) − ln (1 + 𝑐)) . (10)

To simulate the process better, we repeated the exper-
iments several times and set 𝑋(0) = 100 to 200 and set
𝜆 = 0.004 to 0.01, and then the mobility rate 𝑞 is gradually
increased from 0. When the mobility rate 𝑞 increases to
the threshold 𝑞𝑐, the network malware will break out in the
second subnet. For each set of 𝑋(0) and 𝜆, we conducted
the experiment 100 times and averaged the test data. As
shown in Figure 4, the circles and asterisks indicate the
experiment results for 𝑋(0) = 100 and 200, respectively. The
lines represent the theoretical value calculated from (10) and
show that, for a specific 𝜆, the mobility rate threshold 𝑞𝑐 is
approximately inversely proportional to 𝑋(0), which is the
initial number of infected nodes in the first subnet. However,
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Figure 3: Density of infected nodes 𝜌(𝑡) as a function of 𝑡 in two subnets with 𝜆 = 0.008. (a) 𝑞 = 0.0001. (b) 𝑞 = 0.00001.
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Figure 4: The mobility rate threshold 𝑞𝑐 versus the infection rate 𝜆
with different initial numbers of infected nodes.

for a specific 𝑋(0), 𝑞𝑐 rapidly decreases with the increase
in the infection rate 𝜆. For example, when 𝑋(0) = 100, 𝑞𝑐
decreases from 8.2 ∗ 10−5 to 1.2 × 10−5 as 𝜆 increases from
0.004 to 0.01. The numerical simulation results confirm the
theoretical formula in (10).

Some researchers [30, 31] have conducted studies on the
impact of community structure on SIS epidemic spreading
process and these research results provide us with a new
idea of studying time-varying community structure of the
field of network security. On the basis of the simulation

experiments, we proved the effectiveness of ourmodel to find
the propagation threshold of network community. This may
be helpful to evaluating the network malware outbreak time
in SDN.

5. Possible Applications

With SDN redefining the traditional networking business
model, customers can easily discover, learn, and get specific
network applications and download them to their own
environment. Conversely, malware will easily spread in the
whole network. Specifically, our research may be useful at
malware propagation and prevention within SDN in the
following ways.

Firstly, by the analysis we can get the mobility rate
threshold 𝑞𝑐 of the malware propagation and when there
are some new and large-scale malware outbreaks, through
some measures (such as firewall, access control), the respec-
tive national information security center (e.g., the national
Computer Emergency Response Team (CERT)) may provide
SDN-based network security for data centers and assets,
detectingmalware propagation and insider attacks at an early
stage.The security center can decide the SDN control strategy
to reduce the spread and the possibility of outbreak of the
malware.

Secondly, in the face of a highly globalized business
environment, many companies are eager to transform their
network architectures into ones which are easy to control and
adjust; SDN applications make this aspiration possible. Our
model can help the companies’ administrator(s) to modify
the network routing policy to reduce and prevent the spread
of the network malware.

Finally, a potential SDN-based “App” approach (recently
introduced by HP and Huawei) offers a platform for cus-
tomers to see real, high-value use cases of SDN that can
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benefit their organization. Customers can easily access and
deploy innovative solutions to solve real business problems
that legacy infrastructures cannot and gain the complete vis-
ibility and control only IP Address Management can provide.
When they get the information of emerging malware, they
can adjust their strategies to avoid their own resources by
malware propagation.

6. Conclusion and Perspectives

This research proposes a network model with time-varying
community structures in an SDN environment. A model was
designed to analyze network malware spreading and preven-
tion under SDN architecture. In our model, connections are
static within subnets and are dynamic between subnets. The
impact of the mobility rate 𝑞 on network malware spreading
is studied. It is found that when nodes infected with network
malware move from the source subnet to the target subnet,
the network malware would break out in the target subnet in
which there exists no infected node initially, and the outbreak
time decreases with increasing mobility rate.

We have also found that there exists a mobility rate
threshold 𝑞𝑐. The network malware breaks out when the
mobility rate is larger than the threshold value and dies when
the mobility rate is smaller than the threshold value in all of
the subnets.

The control plane of SDNs enables us to adjust the
management strategy of the entire network [32]. Our results
may be helpful in evaluating the network malware outbreak
time in a subnet that contacts other infected subnets from
a global perspective. We can now isolate suspected infected
nodes dynamically, control the mobility rate of subnets, and
modify the network routing policy to reduce and prevent the
spread of the network malware.

In terms of future work, we plan to analyze the network
malware spreading and protection in a scale-free network
model in an SDN environment because a scale-free network
is more similar to a computer network. Increasingly, we find
that emerging groups of researchers are starting to work on
similar research areas, showing the validity and urgency of
our work. Further improvements can bemade, as our study is
only beginning and its theoretical model is relatively simple;
effort to make our study align closer to real-life network
environments in large deployments is a critical direction.
From a theoretical analysis viewpoint, the degree of nodes
is different in scale-free networks, their mobility rate effects
on the spread of computer malware are also different, and
the mobility of center nodes will have more influence on the
spread of computer malware. We will study the network mal-
ware spreading and protection in a scale-free network model
and analyze the relationship between the node mobility rate
and spread of networkmalware in thismodel.Thismodel will
bemore complicated and ourworkwill beginwith simulation
experiments.
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