
Working Paper Series
ISSN 1177-777X

Improving our Fitnesse: From Concrete Executions to
Partial Specification

David Streader, Mark Utting, Rick Mugridge

Working Paper: 03/2011
April 7, 2011

c©David Streader, Mark Utting, Rick Mugridge
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

Improving our Fitnesse: From Concrete
Executions to Partial Specification

David Streader, Mark Utting,Rick Mugridge
Department of Computer Science,

University of Waikato, Hamilton, New Zealand
{dstr,marku}@cs.waikato.ac.nz

April 7, 2011

Abstract

Fitnesse and FIT [5] allow systems tests to be written by non-programmers us-
ing a Wiki or HTML style of input. However, there is little support for syntactic
and semantic checks as the tests are being designed. This paper describes a support
tool for designing table-based test cases that gives deep semantic analysis about a
set of test cases. It uses a variety of strategies such as pairwise analysis, boundary
value analysis and test case subsumption to suggest missing test cases and to gen-
eralise concrete tests into more abstract tests. The goal is to interactively improve
the quality of test suites during the test design phase.

1 Introduction
From requirements capture to test design, people think about the behavior of a system
both concretely (one test at a time) and abstractly (over an entire set of tests). Tool
support tends to be better at supporting the concrete view (a single test), rather than
analyzing the interrelationships and overall coverage of a set of tests. Yet gaining feed
back from sets of requirements/tests could help ensure their accuracy and improve their
quality. What we describe here is a system that provides semantic feed back that may
help in the construction of the requirements of a system or the construction of tests for a
system. It is intended to be one component of an interactive development environment
for designing Fitnesse/FIT ColumnFixture tests [5], which are HTML tables containing
several rows, with each row representing one independent test.

The designer inputs the details of concrete requirements/tests into an Input table,
one row per requirement/test, and in the background the system analyzes the input data
and offers suggestions in a separate Analysis table. The designer is able to promote a
suggestion from one row of the Analysis table to the Input table when ever they wish
to.

We have explored several algorithms for generating suggestions. Several of the
algorithms suggest additional test cases that seem to be missing from the input table.

1

We also provide facilities for pointing out redundant input cases or cases that contradict
each other. Other algorithms generate suggestions that try to abstract one or more of
the existing tests in the input table, in order to generalise some of the input table.

Section 2 introduces some example requirements, Section 3 briefly describes the
test design tool, Section 4 discusses algorithms for suggesting missing tests/requirements,
Section 5 discusses algorithms for abstracting concrete tests to give a higher-level view
of the tests, and Section 6 discusses our conclusions.

2 Example Selling Widgets for a profit
In this section we consider a simple example where the natural language description
of the system (tests) is given in Section 2.1. From this a table of concrete require-
ments/tests as described in Section 4.3 can be constructed.

2.1 Requirements and/or tests for Selling Widgets
The cost of our high tech Widgets is dominated by the research and development costs,
their manufacturing costs is relatively insignificant. The end-user cost of our Widgets
(including shipping) is specified informally as follows:

We sell widgets both locally and to two foreign countries. For local customers we
sell 10 or less widgets for $120 and thereafter $8 for each additional widget until the
cost is $4000 and we can send a van load. The van holds up to 550 widgets and we
make no extra charge for the widgets that fill the van. After filling one van we charge
$5 for each additional widget. For customers in country India that wish the widgets
to be air freighted the cost is $20 per widget. If customers chose sea freight then the
cost is $10000 per container of 1000 widgets, or part thereof. For customers in country
China that wish the widgets to be air freighted the cost is $16 per widget.

2.2 Gathering requirements/tests
We start with an unstructured collection of known concrete cases. What we need
is greater confidence in both the specification and the set of cases. In particular we
would like reassurance that the specification is consistent and, to some degree, com-
plete. Whether or not an enumerated set of cases completely cover all relevant points
of an informal specification can often only be decided by the human analyst.

3 Brief description of tool
This tool is designed to help us understand what might be useful when specifying an
operation via concrete examples of input and output.

Users input an Input Table containing several rows, where each row contains sev-
eral concrete input values for an operation and, in the final column, the output value for
the operation. The tool builds an Analysis Table consisting of rows that are consistent
with the input table. The user can add one of the suggested rows to their input table.

2

Country Num Shipping Cost
local 1 Air $100
local 11 Sea $128
local 495 Air $4000
local 550 Sea $4000
local 600 Air $4400
local 650 Air $4800
India 1 Air $20
India 2000 Sea $20000
India 550 Air $11000
India 1000 Air $20000
China 1 Air $16

Figure 1: Tabulated Specification

The input table is checked for self consistency and any line inconsistent with any earlier
line (appearing above in the table) is flagged as inconsistent and displayed in red.

Some suggestions may contain abstract values, such as ‘Any’ (any value of the
appropriate value in this column) or ‘ < 2’ (any value less than 2). These abstract
rows can be added to the Input Table if the user is confident that they correctly model
the desired behavior. Adding one row of the analysis table into the input table always
preserves the consistency of the input table, but adding multiple rows simultaneously
could break the consistency, because each suggestion is independent.

If one row is more abstract than another we say that the more concrete row can
be inferred from the more abstract. When the table is displayed, any row that can be
inferred from another row is shaded (green) and placed at the bottom of the table see
Fig 2.

Figure 2: Shaded rows infered from earlier rows

The tool also has an option for automatically filtering out all rows in the suggestion
table that are more concrete than another suggestion.
In Fig 3 the left hand image is a filtered output of seven rows where as the first 10
rows of the unfiltered output appear on the right. The first three rows of the unfiltered

3

Figure 3: Filtered and unfiltered Analysis

analysis table apper in the filtered table but the forth row dose not. This is because it
can be inferred from the third row.

4 Suggesting Missing Requirements/Tests
In this section we describe several algorithms we have used to suggest possible concrete
test cases that may be missing or worth adding to the input table. These are based on
common test design heuristics, such as pairwise coverage of inputs [1] and Modified
Condition/Decision Coverage analysis

4.1 Pairwise
The Pairwise algorithm builds the domain of input values for each input column then
in turn takes pairs of domains and builds the cartesian product of these domains. Then
for any pair of inputs that is not in the original table it suggests a row containing that
pair with all other input columns set to Any and the output left blank.

Figure 4: Pairwise suggestions

The result of promoting more than one suggestion from these Pairwise Analysis
Tables can result in an inconsistent Input Table.

In the example in Fig 4 row 11 (of 63) in the Analysis Table is the pair China and
Sea. This is saying that nothing has been specified for this case, which may indicate

4

an ommision in the specification in Section 2.1. To complete the informal specification
we add:

If customers in in China choose sea freight then the cost is $8000 per container of
1000 widgets, or part thereof.

Although these suggestions can prompt the analyst to consider new and potentially
interesting cases, they may be lost in a blizzard of uninteresting suggestions. How best
to filter or order the suggestions from the pairwise analysis is an open question and
may depend upon the user.

4.2 Modified Condition/Decision Coverage

Modified Condition/Decision Coverage (MC/DC), has been used to ensure that soft-
ware is tested adequately [2] and has been used for test suit reduction [4]. In our
simple requirement capture/test suit definition situation we apply this principle to give
feed back about potential gaps in the coverage of the requirements/tests.

The output from applying MC/DC analysis to the input table in Fig 4 can be see in
Fig 5.

Figure 5: MC/DC suggestions

The MC/DC output contains only 14 rows which compares favorably to the pair-
wise output of 63 rows. Row 10 in Fig 5 tells us that data for shipping 1000 Widgets
by sea appears for only one country .

4.3 Concrete requirements/tests

After considerable effort we construct a set of requirements/test castes that we believe
to be consistent and, in some sense, cover the important points.

5

Country Num Shipping Cost
local 1 Air $100
local 11 Air $108
local 495 Air $4000
local 550 Air $4000
local 600 Air $4250
local 650 Air $4500
India 1 Air $20
India 11 Air $220
India 550 Air $1100
India 1000 Air $20000
China 1 Air $16
China 11 Air $176
China 550 Air $880
China 1000 Air $16000

Country Num Shipping Cost
local 1 Sea $100
local 11 Sea $108
local 495 Sea $4000
local 550 Sea $4000
local 600 Sea $4250
local 650 Sea $4500
India 1 Sea $10000
India 1000 Sea $10000
India 2000 Sea $20000
India 3000 Sea $30000
India 500 Sea $10000
India 2100 Sea $20000
China 1 Sea $8000
China 1000 Sea $8000
China 2000 Sea $16000
China 3000 Sea $24000
China 500 Sea $8000
China 2100 Sea $16000

5 Analysis by abstraction

By allowing rows to contain non-concrete values such as Any or inequalities or ranges
of values, we can introduce an abstraction relationship between rows. Considering
input columns only, we define the semantics of a row to be the set of concrete test
cases that satisfy the requirements of the row. So the semantics of a concrete test
case is the singleton set containing that test case (just its input values). We define the
abstraction relation between rows to be the subset relation, which gives us a lattice
of row abstractions (though only some points in the lattice will be expressible using
the limited syntax that we allow in input rows). The top of the lattice is the row that
has Any in every column, the bottom of the lattice is the empty set, which represents
an inconsistent row, and all concrete test cases are positioned immediately above this
bottom element, since they are singleton sets. The Hasse diagram [3] in Fig 6 shows
how several example rows fit into the abstraction lattice.

The algorithms in this section make use of this abstraction lattice in various ways.

5.1 Independence

This algorithm views all inputs as being taken from an enumerated set. It takes an
input row and generalizes it by replacing one of the concrete values by Any. However,
it only does this if the resulting abstract test is consistent with every other row in the
current input table see Fig 7. The rationale for doing this is that the behaviour of the
underlying system under test, SUT, may be independent of that concrete value, because
it is determined by other values in that row.

6

Figure 6: Hasse diagram of the abstraction lattice, showing the abstraction relation
between four example rows.

Figure 7: Independence Anylisis

Adding any one of these rows to the input table results in a consistent table. In
our running example we know that the Cost for local delivery is indelendent on the
Shipping type. Hence we can promote lines ten and eleven from the Analysis Table.
This increased the coverage of the Input Table, shown in Fig 8 gives us increased
confidence that we have not omitted important detail.

Figure 8: Promoted abstract rows

7

But viewing the Input Table in Fig 8 we can see the need to make the first row
more abstract and that this is not on offer in the Analysis Table. This is because we
have made a mistake in either rows 1 or 4. This is easy to correct and for this simple
example may well have been spotted by an observant reader. This illustrates that the
construction of rows for both concrete examples and more abstract specifications can
catch mistakes early in the requirements capture or test design.

5.2 Boundary analysis

Boundary value analysis is a software testing heuristic that says that tests should in-
clude values on each side of a boundary where behaviour changes. This can be par-
ticularly useful as these boundaries are common locations for software faults and are
frequently used as test cases. The boundary points can be provided explicitly, by the
analyst defining the output values on either side of the boundary, or can be guessed at
by the tool assuming some interpolation rule. For example in Section 5.3 we assume
that the output value changes in a step wise fashion as an ordered input changes and in
Section Section 5.4 we assume a linear relationship between one of the input columns
and the output column.

5.3 Range Simplification

This algorithm first splits any ordered column into ranges cut by any number of values
input in the column. Then, for each column, it builds a subset ordering between the
ranges. For enumerated types like strings it just takes the domain and add the wild
card Any but for columns of ordered elements like Nat or Rational it builds the set
of all intervals from the domains. Finally, we build the Cartesian product of all ordered
domains keeping only those that are consistent with all rows in the Input Table.

Figure 9: Range simplification

We have applied range simplification to the new Input Table for our example and
to reduce the clutter in the resulting Analysis Table we have switched the filtering
on. But when we look at the results in Fig 9 we can see that the cost of one widget
is not the same as for two widgets and we again must have made a mistake on input.
Returning to the text specification we see that the cost of 1 to 10 widgets is $120 not

8

$100. Making these two corrections and applying the range simplification results in
the Analysis Table on the left of Fig 10.

Figure 10: Corrected input

Alas this is still not quite what we want, as the tool infers a boundary point of 1,
rather than the correct boundary of 10. This has exposed another inadequacy in our
set of input tests, which can can easily be corrected, either by adding a concrete row
to the Input table for the cost of sending 10 widgets, and then reapplying the range
simplification, or by promoting row 3 and editing it in the Input Table on the right of
Fig 10.

5.4 Linear Simplification

When the output Cost and one input Num are from an ordered domain like Nat or
Rational then they might be related via a simple linear equation Cost = a ∗ Num +
b. The Linear Simplification algorithm searches for three or more concrete instances
in a row that fit a linear equation. When it finds them it constructs an analysis row
containing the equation in the output Cost column and a range in the variable input
column Num, as shown in Fig 11.

Figure 11: Linear simplification

9

5.5 Abstract requirements/tests
If we combined all the above improvements and abstractions into one single table, we
would obtain the following table.

Country Num Shipping Cost
India Any Air Num× $20
India 1 <= 1000 Sea $10000
India 1001 < <= 2000 Sea $20000
India 2001 < <= 3000 Sea $30000
China Any Air Num× $16
China 1 <= 1000 Sea $8000
China 1001 < <= 2000 Sea $16000
China 2001 < <= 3000 Sea $24000
local 0 < <= 10 Any $120
local 10 < <= 495 Any $40 + (Num ∗ 8)
local 495 < <= 550 Any $4000
local 550 < Any $4000 + (Num− 500)× 5

The abstract requirements are much shorter than the concrete input table. This
makes it easier to see what has been covered and that there are no inconsistencies.

6 Conclusions
We have described a semantic analysis tool for Fitnesse ColumnFixture tables, or any
kind of test input that consists of multiple tuples of concrete input values. The tool can
detect inconsistencies in the table and suggest missing tests, based on various common
test design heuristics.

By extending the output notation (the Analysis Table) from considering only literal
inputs, to allowing more abstract inputs such as arbitrary values Any and ranges of
values <= 2, we can generate more abstract views of the input tests. That is, it
becomes possible to specify the output of a method/function over a potentially infinite
domain with only a small handful of statements. As we have shown, this allows a single
requirement/test to be defined in different ways and hence has the potential to highlight
errors early in the requirements/test design process.

6.1 Interesting Extensions
Improved filtering would be possible by making use of the type of each column. Ex-
tensions to what terms can be parsed could greatly expand what can be represented by
a single input row.

Analysing the content of multiple tables at once would also greatly increase the
expressive power of small sets of rows. For example a container is never empty and
contains 1000 or less widgets and, in addition, a new container is never started until
existing containers are full.

10

Container Num
Any 1 + 1000(Container − 1) <= <= 1000Container

Using this fact, Table, we can define a simple linear relation between the number of
containers and the cost of shipping by sea.

Country Shipping Container Cost
India Sea Any Container × $10000
China Sea Any Container × $8000

This results in a simpler specification with improved coverage.

References
[1] Jacek Czerwonka. Pairwise testing web site. http://pairwise.org, March

2011.

[2] A. Dupuy and N. Leveson. An empirical evaluation of the mc/dc coverage criterion
on the hete-2 satellite software. In Digital Avionics Systems Conferences, 2000.
Proceedings. DASC. The 19th, volume 1, pages 1B6/1 –1B6/7 vol.1, 2000.

[3] Ralph Freese. Automated lattice drawing. In Concept Lattices, number 2961 in
Lecture Notes in Computer Science, pages 589–590. Springer-Verlag, 2004.

[4] James A. Jones and Mary Jean Harrold. Test-suite reduction and prioritization for
modified condition/decision coverage. IEEE Transactions on Software Engineer-
ing, 29:195–209, 2003.

[5] Rick Mugridge and Ward Cunningham. Fit for Developing Software: Framework
for Integrated Tests. Prentice Hall, 2005.

11

