Batch-Incremental Learning for Mining Data Streams

Geoffrey Holmes
Department of Computer
Science
University of Waikato
Hamilton, New Zealand

geoff@cs.waikato.ac.nz

ABSTRACT

The data stream model for data mining places harsh restric-
tions on a learning algorithm. First, a model must be in-
duced incrementally. Second, processing time for instances
must keep up with their speed of arrival. Third, a model
may only use a constant amount of memory, and must be
ready for prediction at any point in time. We attempt to
overcome these restrictions by presenting a data stream clas-
sification algorithm where the data is split into a stream of
disjoint batches. Single batches of data can be processed
one after the other by any standard non-incremental learn-
ing algorithm. Our approach uses ensembles of decision
trees. These tree ensembles are iteratively merged into a
single interpretable model of constant maximal size. Using
benchmark datasets the algorithm is evaluated for accuracy
against state-of-the-art algorithms that make use of the en-
tire dataset.

Keywords

classification, option trees, ensemble methods, data streams

1. INTRODUCTION

The volume of data in real-world problems can overwhelm
popular machine learning algorithms. They do not scale well
with the number of instances and may require more mem-
ory than is available. With new data they must re-learn a
new model from scratch. Although incremental algorithms
have been explored in machine learning, the context for their
development was never one of having huge datasets (poten-
tially infinite) and limited memory.

Recently there has been a new focus on algorithms suitable
for huge datasets that learn from a single pass over the data,
are restricted in how much memory they can use, and can be
incrementally updated at a later point in time. Additionally,
they should be able to perform their data mining task at
any point in time. The data model for such an algorithm is
termed a data stream, and streams can be finite or infinite.

Richard Kirkby
Department of Computer
Science
University of Waikato
Hamilton, New Zealand

rkirkby@cs.waikato.ac.nz bernhard@cs.waikato.ac.nz

Bernhard Pfahringer
Department of Computer
Science
University of Waikato
Hamilton, New Zealand

Algorithms may request a single instance from the stream
or may request a buffer of them (sometimes called a chunk).

A finite stream flows from a large but finite data source. By
treating the problem as a data stream, the one-pass require-
ment means an algorithm will scale linearly with the size of
the data. This makes it faster at mining large datasets than
multi-pass approaches. The updatability requirement en-
sures that new training data can be incorporated efficiently
as it becomes available.

The infinite case, sometimes termed online, supposes an
endless source of data being continuously generated. Al-
gorithms designed to handle the infinite case are naturally
able to handle the finite case. However, this case has an
added real time restriction. The data must be processed
quickly enough to keep pace with the incoming flow. If the
algorithm is too slow the backlog will build up and even-
tually incoming data will be lost. The online case has the
potential for concept drift. If the underlying concept shifts
over time, the algorithm should be capable of adapting as
necessary.

There are two general approaches to building models incre-
mentally. Models can either be adapted on the basis of a
single instance or multiple instances. Examples of instance
incremental algorithms include Naive Bayes [12] and Ut-
goff’s ID5R [18] (improved in [19]). At this point it is help-
ful to make a further qualification to these approaches by
judging them on their memory usage. ID5R, belongs to the
class of algorithms that use unbounded memory (with the
requirement to store training data) whereas Naive Bayes
is an example of a bounded memory instance incremental
method. For multiple instance or batch incremental meth-
ods any standard machine learning algorithm can be used
but all methods will require unbounded memory, effectively
a bound will have to be placed on the number of batches.
The method outlined in this paper attempts batch incremen-
tal learning with bounded memory (on a possibly infinite
number of batches).

The underlying learning algorithm used in this paper is a
standard decision tree but the method differs significantly
from other attempts to scale decision trees to large datasets
[13, 16, 8, 9, 2]. Not all of these methods are single-pass.
Some require multiple passes due to problems such as deter-
mining the optimal split point values for numeric attributes.

Another approach to tackling data streams is to use ensem-
bles. This involves collecting a group of classifiers, each
trained on a small portion of the data, and collating their
votes to classify new examples. Examples of such an ap-
proach include [20, 17]. A nice feature of this technique
is that existing learning schemes can be used at the base
level, leaving the problem of handling the data stream to
the meta-level algorithm. Various methods of weighting and
pruning the ensemble can be explored to improve predictive
performance. Pruning is necessary to ensure that memory
restrictions are obeyed.

A drawback of the general ensemble technique is that the
model will contain multiple sub-models. Each of these mod-
els may be understandable on their own, but as a collective
their reasoning is less transparent.

The learning scheme presented in this paper is a variant
of the ensemble method, where the model maintained is
a single straightforward voting structure. The structure is
such that it can be merged with linear complexity whereas
straightforward merging of regular decision trees is a mul-
tiplicative process [14]. To restrict memory usage we intro-
duce a method of pruning the model, rather than its mem-
bers, that is simple and fast. The resulting algorithm can
be adjusted according to speed and memory requirements.
It has the potential to follow drifting concepts, although we
do not deal with concept drift here.

This paper is organised in the following way; in the next sec-
tion we outline our new approach for mining data streams.
In Section 3 we present the experimental results obtained
from our approach. Section 4 details related work and Sec-
tion 5 contains concluding remarks.

2. DESCRIPTION OF THE ALGORITHM
Popular decision trees, of the kind produced by algorithms
such as C4.5 [15] and CART [4], consist of a structure of
connected nodes, originating from a root node. Each node
may either contain a condition, in which case it splits the
data among its children, or a leaf (childless) node containing
a prediction value or the probability that an instance belongs
to one of the classes as a distribution. This structure has
set the benchmark for classification accuracy. Not only is
the tree accurate but it is transparent, a highly desirable
feature.

It is not surprising then that standard decision trees have be-
come popular in the streaming context. However, as Quin-
lan discovered when trying to merge standard decision trees,
the combination is multiplicative [14]. This would relegate
them to the class of batch incremental algorithms that use
unbounded memory. It is possible, however, to use an in-
termediate representation of the decision tree that permits
merging as a linear operation, and maintains transparency.

This representation and operation are described in the next
section. We show how decision trees can be transformed to
an order independent form, and to a set of rules for trans-
parency. Following this is a description of our pruning tech-
nique, and the overall algorithm for learning from a data
stream using chunks of data. All these subsections deal with
the need to keep memory consumption bounded.

outlook = overcast
(0.643, 0.357)

/ ’
yes
(1.000, 0.000)

no outlook = sunny
(0.250, 0.750) (0.667, 0.333)
/ \1
no yes
(0.333, 0.667) (1.000, 0.000)

Figure 1: A sample decision tree for the weather
dataset.

windy = true

(0.500, 0.500)

windy = e outlook = sumy

0643,0357

Figure 2: Transformed tree of Figure 1.

2.1 Flat representation

Decision trees, by their nature, are order-dependent. Each
node is considered in the order encountered while traversing
down the tree. A node is not considered unless its parents
have been evaluated first.

Here we present an order-independent graph representation,
which is made up of two connected layers. The top layer con-
sists of conditions; the bottom consists of prediction weights.
The structure is no longer a tree as a prediction node can
have multiple parents or no parents at all.

A standard decision tree can be transformed into this repre-
sentation. The following procedure is repeated for each node
in the tree: Collect the conditions leading to the node—add
any of these tests not already present to the top layer of the
graph. To the bottom layer add the prediction value, which
is the class distribution of the node minus the class distribu-
tion of its parent. Link the two layers, noting whether the
condition must be satisfied as true or false for the values to
apply.

Figure 2 shows the result of transforming the tree in Figure 1
to the flattened form.

There is a provision added to the graph construction to make
it as compact as possible—the set of tests linked to a pre-
diction node should be unique. In the case where a new
prediction value has the same test conditions as an existing
node in the graph, the prediction values are added together
rather than adding a new node to the graph. The ability

to do this is key to merging the graphs efficiently. Nodes
sharing identical preconditions will be merged independent
of the order of these preconditions in the original trees.

Performing classification with this structure is a matter of
summing all of the prediction nodes whose parent tests are
satisfied. The final prediction sum derived from this is iden-
tical to the sum that would have been obtained by the tree
making up the model.

2.2 Merging

The ability to merge several models into a single equivalent
model is a desirable property when dealing with ensembles.
The reasoning is that a single universal model is easier to
maintain and interpret than several disjoint ones. Things
can be further complicated if each member is individually
weighted. The smaller the merged model the better it will
be for this purpose.

Trees can be merged together by making use of the flat rep-
resentation. This is accomplished by using the procedure de-
scribed in the last section repeatedly, adding multiple trees
to the same model.

With a limited range of nominal labels available one can
see the savings to be made when common tests involving
nominal attributes are merged. The merging of numeric
tests is more troublesome.

While there is certainly overlap between numeric ranges,
there appears no obvious way of combining these tests with-
out throwing information away. The rule followed by the
merging algorithm used in this paper is to only merge nu-
meric tests if the split point is identical. As is often the case
with inducing trees from different sub-samples of the data,
this can result in multiple split points that differ ever so
slightly. Sophisticated merging of numeric attributes, how-
ever, is not addressed in this paper.

2.3 Rulerepresentation

Visually, the two-layer graph representation can be hard to
interpret. Typically there are many more prediction nodes
than test nodes, and the links between them form a dense
and complex web. To make the model easier for users to
follow, it can instead be represented as a set of voting rules.

Figure 3 shows Figure 2 transformed into a set of voting in-
structions. Each prediction node becomes a rule—the pre-
diction value is listed, along with the conditions required for
the value to apply. To make a prediction, the user adds up
values of the rules that hold true.

The naive approach to generating predictions by consulting
every rule can be costly as the model grows. There are
some ways to speed up classification that are not explored
in this paper. Firstly, the problem of testing and summing
over a large number of prediction nodes is one that is easily
parallelized—so a solution could be to share the task among
multiple processors. Secondly, the process can be optimized.
One method would be to start with the heaviest weights and
stop as soon as it is determined that the smaller weights
cannot change the result. Thirdly, we could find the most
frequent test, say “A == v”, then partition into three sets.

Start with (0.643, 0.357)
Add (0.357, -0.357) if outlook = overcast.
Add (-0.143, 0.143) if outlook! = overcast.

Add (-0.250, 0.250) if outlook! = owvercast and
windy = true.

Add (0.167, -0.167) if outlook! = overcast and
windy! = true.

Add (-0.333, 0.333) if outlook! = overcast and
windy! = true and outlook = sunny.

Add (0.333, -0.333) if outlook! = owvercast and

windy! = true and outlook! = sunny.
Sum is final voting distribution for classes (yes, no).

Figure 3: Voting rules derived from Figure 2. The
voting weights correspond to the labels in Figure 2.

Rules for which the test (A==v) is true (and false), and
rules that do not test A == v. Depending on the value of
A, we only need examine two of these sets of rules.

Conceptually, it helps to rank the rules by their absolute pre-
diction value. Those rules with larger weights have poten-
tially more influence on the outcome than smaller weighted
rules. It is this observation that suggests a simple pruning
technique.

2.4 Pruning

In general, one would expect a rule with a weight close to
zero to have little influence on a model’s classifications. The
only cases where these rules would make a difference is when
the decision is borderline—in which case a small value may
be enough to push over the classification boundary, or when
many of them combine to form a large overall difference.

It is in the fine details that a model is able to describe a
complex relation, and removing some of these details could
damage the model’s performance. However given a choice
between sacrificing the large details versus the small ones the
logical choice is to hold on to the seemingly most important
ones. By this reasoning, the pruning method in this paper
follows this simple philosophy: when running out of space,
the smallest weighted rules are the first to go.

Figure 4 justifies this concept. It shows an example of the
effect that pruning has on accuracy when three different re-
moval strategies are used. The strategy of removing the
largest weighted rules first demonstrates a sharp perfor-
mance decay, whereas removing the smallest weights first
has the least impact on accuracy. In fact, there are signifi-
cant stretches where removing the smallest nodes has little
impact on prediction error—it is apparent that the 1000 or
so smallest weights can be removed with virtually no per-
formance loss, as evidenced by the horizontal stretch at the
left hand side of the graph.

Also present in the graph is an example of removing nodes
in random order. The shape of this curve varies according
to the randomization. It is sensible to assume that on av-
erage the accuracy degradation of random removal will fall
somewhere between the two extremes of largest-first and
smallest-first, as is demonstrated.

-]
[}
2 =
2l VS S E——
2
= -
s} e
s]
17 + 4]
16 1
remove largest first
57, remove random order --------- 7
14 remove smallest first -

2000 1500 1000 500 0
number of prediction nodes

Figure 4: Effect removal order has on test set accu-
racy when pruning back a full model trained on the
adult dataset.

1. Initialize global model G
. Initialize chunk buffer to chunk size
3. While incoming data is available
3.1. Add next instance to chunk buffer
3.2. If chunk buffer is full
3.2.1. Learn a model M from chunk buffer
3.2.2. Merge model M with global model G
3.2.3. Clear chunk buffer
End if
End while

N

Figure 5: Chunking algorithm.

When merging a new model, the operation can be broken
down into the individual insertions of prediction values. To
keep the model memory usage in check, an upper limit on
the number of prediction nodes is set. Once this limit is
hit, and the insertion of a new prediction value requires the
creation of a new node, the prediction node with the smallest
magnitude is discarded to make space for the new node. In
this way, an upper bound on the memory requirements for
the model is maintained, while the most influential parts of
the model are preserved.

In the experiments reported below we will see that this
straightforward pruning strategy can degenerate, especially
for small global memory sizes. To counter this behaviour
we introduce the notion of a “bouncer” which is a simple
safeguard checking whether the merged and pruned model
actually performs better on the current batch than the ini-
tial model. If not, the initial model is retained. Figures 13
to 15 show the positive effect of using such a safeguard.

2.5 Chunking

Figure 5 outlines the algorithm for learning a model from a
data stream.

The first two steps prepare for the incoming data stream.
Step 3 is the loop that processes the stream. Step 3.2.1
employs the decision tree learning algorithm to induce a
decision tree from the most recent chunk of data. The next

step, 3.2.2, carries out a merging operation to update the
overall model. It is during this step that the global model
may be pruned to ensure it does not exceed the maximum
allowable size.

At any stage should we wish to perform a classification on
an unknown data instance, we can use the global model
resulting from the chunking algorithm.

3. EXPERIMENTS

The learning algorithm presented in this paper has two pa-
rameters that can be controlled—the chunk size and the
maximum number of prediction values allowed in the model.
The chunk size has an effect on the run-time complexity of
the algorithm. Under the real-time online constraint, for a
super-linear algorithm, one would set this parameter to en-
sure that learning time can keep pace with the data flow.
The second parameter puts a cap on the memory usage of
a model, and therefore also on the prediction time, at the
potential expense of accuracy.

Our experiments aim to observe the influence these param-
eters have on classification accuracy, learning speed, and
memory consumption against a finite data stream.

3.1 Datasets and Methodology

Our choice of datasets is rather limited for the following rea-
sons: the pruning strategy described in the previous chap-
ter is currently only applicable to two-class problems; we
want to have large enough datasets to be able to study the
effects of batch-incrementality; and we also want to com-
pare to learning from the full dataset at once. Therefore
datasets cannot be too large in this experimental evaluation.
Datasets are either from UCI [3] or synthetically generated.
To benchmark our method versus other methods, we use the
WEKA ! implementation of C4.5 to build a model over the
entire data.

The datasets are given in Table 1. The accuracy results
are based on an independent test set, the size of which is
listed in the table. Note that the train/test splits are not
the original ones supplied with the datasets—to ensure an
equally distributed sample we randomized the data before
splitting it up.

The synthF7 dataset was generated using the technique in [1]
using predicate function 7 with default parameters.

In order to measure the running time of the algorithms we
use the user time returned by the Unix time command. The
experiments were carried out on an AMD Athlon XP 1700+
with 512MB RAM.

3.2 Results

When examining model growth a common pattern emerges.
Figure 6 illustrates growth on the adult data, which is a
typical example of behaviour. Model growth is very close
to linear in the number of training examples processed. It
is slightly sub-linear thanks to the merging of nodes that
takes place, as is most evident when looking at the number

!The Waikato Environment for Knowledge Analysis, avail-
able at http://www.cs.wakato.ac.nz/ml

Test Numeric Nominal

Dataset Train
anonymous 32711
adult 38842
census-income 249285
synthF7 5000000

10000

10000

5000 0 293
6 8

50000 8 33
7 2

Table 1: Datasets used for the experiments.

20000

number of links —+—
number of prediction nodes ——x--

18000 |
number of test nodes -

16000
14000
12000

size

10000
8000 -
6000 - 1
4000 b
2000 d

0 . . .
0 5000 10000 15000 20000 25000 30000 35000 40000
number of training instances

Figure 6: Model growth on the adult dataset (chunk
size 8000).

of test nodes—this is where most replication occurs. So
without pruning the global model would grow unboundedly
for infinite data streams.

The growth curves on other datasets look very similar, the
one difference perhaps being that the growth of the number
of tests varies on the commonality of tests. Greater num-
bers of nominal attributes in the data improve the chance
for merging, whereas for numerical attributes splitpoints are
rareéy replicated thus reducing the opportunities for merg-
ing

The results tend to suggest that although merging of com-
mon nodes takes place, it is not very substantial, hence the
almost worst-case linear behaviour.

Assuming an infinite supply of data, it would be ideal to
use chunk sizes as large as possible. This would ensure that
the samples trained on are as representative as possible of
the underlying distribution. The two constraints on chunk
size are memory and complexity. The chunk size must be
small enough to fit into memory along with the memory
required to train the models. Larger chunk sizes also slow
the algorithm’s ability to process data.

In theory, one would assume that in determining chunk size
there is a minimum—where below this point insufficient data
is supplied to the learning algorithm to build models repre-
sentative of the overall problem, and above which fewer and
fewer gains are to be made. This would vary depending on

2With our policy of requiring identical splitpoints for a
merge, there are a theoretically infinite number of tests avail-
able for numeric attributes.

the dataset.

Automatic determination of the minimum for a given dataset
is a topic for further research. One possibility is to race sev-
eral candidates as in [7]. In this paper we only investigate
the effect on accuracy that a small number of different fixed
chunk sizes have.

Figures 7 through 9 show the effect on prediction accuracy
when the chunk size is varied on three datasets.

As expected, smaller chunk sizes lead to more erratic ac-
curacy, and larger chunks have smoother curves. This ef-
fect is partly exaggerated due to the larger-chunk graphs
being plotted with larger horizontal steps. It is clear that
choosing a chunk size too low can severely hurt learning
performance—the smallest chunk sizes are consistently the
worst performers.

We only explore this range of chunk sizes because we only
have so much data available, ramping up the chunk size too
high means the data is quickly exhausted without providing
an appreciation of trends over time.

Fixing the chunk size to 8000, we investigate the effect of
pruning on the accuracy of the model. In Figures 10 through
12 we restrict the number of prediction nodes allowed in the
model, using the pruning technique outlined in Section 2.4,
to study the effect it has on accuracy.

It is clear from these graphs that setting the memory re-
strictions too low can have a serious impact on the learning
capacity of the algorithm. At the lowest memory usage, the
error tends to drift upwards over time. It must be considered
that the kind of memory restrictions we are enforcing are
very severe—in the order of kilobytes for storing the mod-
els, where modern computing resources would effortlessly
allow many megabytes for model storage.

Additionally, after a certain number of batches have been
merged, performance can deteriorate to a point worse than
the performance of the very first batch. Currently we have
no satisfactory explanation for this phenomenon, but we as-
sume that is related to small disjuncts [10] whose respective
rules might be pushed out of the global model by strong rules
from later batches which are variants of strong rules already
present. This observation has triggered the introduction of
the pruning safeguard as described in the previous section.
Figures 13 to 15 show the effect this safeguard has on prun-
ing. Even though it does not always pinpoint the optimal
spot, it seems very successful in keeping the accuracy of es-
pecially very small models close to the optimum. Still, it
is only a first step, and there may be better ways of both
pruning and safeguarding.

error on test set

error on test set

error on test set

29.5

285
28
275
27
26.5
26
255
25

24.5

5000 10000 15000 20000 25000 30000 35000
number of training instances

Figure 7: Varying chunk size on anonymous.

17

16.5

16

155

15

145

14 |

135

13
0

5000 10000 15000 20000 25000 30000 35000 40000
number of training instances

Figure 8: Varying chunk size on adult.

7.5

Figure 9:

50000 100000 150000 200000 250000
number of training instances

Varying chunk size on census-income.

34 T

33 +
32 +

30
29

error on test set

27 r

26

24

0 5000 10000 15000 20000 25000 30000 35000
number of training instances

Figure 10: Varying maximum model size on anony-
mous.

19.5 ‘ ‘ ‘ ‘ ‘ 5
A
19 L 400 —— |
600 —x—
L 800 =
185 1900 —mt
18| 1200 --o-
2)
2 175+ «
17}
e
- 17t 1
o
S 165 1
@
16 | X 1
155 | T 1
x‘“\\ a
15 | oL 1
145 , , , , , L e ,

0 5000 10000 15000 20000 25000 30000 35000 40000
number of training instances

Figure 11: Varying maximum model size on adult.

5.6

54

52

51

error on test set

49

4.7
0 50000 100000 150000 200000 250000

number of training instances

Figure 12: Varying maximum model size on census-
income.

28.5

28

275

26.5

error on test set

255

25

s
1
By
©

24.5

0 5000 10000 15000 20000 25000 30000 35000
number of training instances

Figure 13: Varying maximum model size on anony-
mous plus safeguarding.

16.4 ‘
200 ——
16.2 e 400 -
S 600 ke
b T 800 o |
10 e m 1000 ---=--
F - : 1200 --o-- |
_ 158
Q S,
2 156 Y |
17} N
e
= 154 A
o \\ o
S 152+ u i
5
15 [a§ \\\ 4
14.8 | D |
14.6 | |
14.4 . ‘ w ‘ ‘ s

0 5000 10000 15000 20000 25000 30000 35000 40000
number of training instances

Figure 14: Varying maximum model size on adult
plus safeguarding.

55

54

53

52

51

error on test set

49

4.7
0 50000 100000 150000 200000 250000

number of training instances

Figure 15: Varying maximum model size on census-
income plus safeguarding.

Dataset C4.5 BIC BBIC

anonymous 24.60% 24.96% 24.92%
adult 13.36% 14.53% 15.33%
census-income 4.92% 4.78% 4.83%

Table 2: Error on test set.

Dataset C4.5 BIC BBIC
anonymous 611 1767 1000
adult 483 1315 800

census-income 2041 5405 3000

Table 3: Number of rules in model.

Table 2 compares the accuracy of our technique against
learning from all the data at once. The first column shows
the error obtained by training C4.5 on the entire training set.
The second column shows the error for a batch-incremental
learning (BIC) without any limit on the size of the final
model. The BBIC (bounded batch-incremental classifier)
column shows the error obtained using our chunking algo-
rithm using a chunk size of 8000, and a limit on the global
model size (as evident from Table 3), as well as the pruning
safeguard.

Table 3 shows the corresponding sizes of the models. The
size is measured by the number of rules contained in the
model, that is, the number of leaves in C4.5, and the num-
ber of prediction nodes for BIC and BBIC. The size of the
BIC models is significantly larger than the size of the C4.5
induced decision trees.

Table 2 contains some interesting results. First, C4.5 is only
significantly better on the adult dataset. Second, BBIC is
only performing significantly worse than BIC on one dataset,
which again is the adult dataset. In all other cases all algo-
rithms perform similarly. Significance was determined using
McNemar’s test [5], which is a reasonable test given prede-
fined large test sets. Summarizing we can claim that the
BBIC approach seems to be able to achieve accuracies com-
parable to standard approaches which need to keep all of
the training data in main memory.

To investigate the scalability of our algorithm we use syn-
thetically generated data. We use a chunk size of 8000 and
limit the size of the model to 5000 prediction values. Fig-
ures 16 and 17 show the training and testing times when
scaling from 1 to 5 million training instances. The testing
time is the time it took to classify a constant number of
instances after training to that point.

The figures show that training time scales linearly with the
size of the data, and that testing time is constant once the
model has reached its maximum size. Figure 18 shows the
sizes of the models by counting the number of links between
test nodes and prediction nodes. As the number of predic-
tion nodes is fixed to 5000 and as test nodes can be shared
between multiple rules, the number of links is probably the
best indicator for model size behaviour. Once again, as ex-
pected, this behaviour is more or less constant.

5500

5000 b
4500 b
4000 R
3500 b
3000 b
2500 b

time (seconds)

2000 b
1500 b
1000 b

500
0 1 2 3 4 5 6
number of training instances (miilions)

Figure 16: SynthF7 training times.

a
o

P
o (53]
T T
! !

ﬁ]

time (seconds)
= = N N w w
(53] o (6] o ol o (53}
— ——
P L

0 1 2 3 4 5 6
number of training instances (miilions)

o

Figure 17: SynthF7 testing times.

100000

80000 b

60000

T
!

size

40000

T
!

20000

T
!

0
0 1 2 3 4 5 6

number of training instances (miilions)

Figure 18: SynthF7 number of links.

4. RELATED WORK

Very large datasets have inspired several interesting systems,
mainly based on decision trees. Mehta et al. made one of
the first attempts to scale decision trees to large datasets
with SLIQ [13]. The idea was improved in SPRINT [16].

CLOUDS [2] introduced methods of approximating numeric
split points to improve efficiency. RainForest [9] is a frame-
work for further reducing the computation required, that
generalizes to all of these approaches. BOAT [8] reduces the
number of passes required by building from samples, and
correcting as necessary. All of these methods require mul-
tiple scans of the data, and are thus not suitable for data
streams.

Domingos and Hulten introduce VFDT [6], a method for
building decision trees from high speed data streams. They
use Hoeffding bounds to guarantee performance. The ap-
proach is improved by Jin and Agrawal in [11].

The approaches most closely related to this paper use ensem-
bles. Street and Kim propose SEA [17], in which models are
bagged over chunks of a data stream and weighted. Frank et
al. [7] boost subsequent models and prune those that fail to
improve performance. Chunk sizes are raced to determine
optimal size. In [20] Wang et al. explore weighted ensemble
classifiers on concept-drifting data streams. None of these
techniques maintain a single classification model, but a com-
mittee of distinct sub-models. Additionally, none of these
methods can guarantee that the generated model will stay
within a pre-specified constant maximum size.

5. CONCLUSIONS

We have presented an algorithm for mining data streams
using decision trees in a batch-incremental setting. The
method has two correlated parameters, chunk size and model
size. Experiments have been performed to observe the influ-
ence these parameters have on classification accuracy, learn-
ing times, and memory consumption.

These initial experiments have not determined optimal pa-
rameter settings, indeed these may well be dataset depen-
dent, but generally larger chunk sizes will give rise to better
classification performance, as will larger global model sizes.
Also, the pruning of small prediction nodes can maintain a
small model without too much loss in predictive accuracy.
The maximum memory allocation investigated in this pa-
per is under 4MB when processing five million instances, so
there is much scope for much greater memory utilisation.

Training time in the batch-incremental setup is linear in the
number of instances fulfilling the scalability requirements of
the data stream model. Merging the models of each batch
into one global model and the subsequent pruning of this
global model ensures constant memory requirements.

The presented algorithm therefore is a realistic solution to
the problem of mining data streams. Results from initial
experiments are very encouraging when compared to tradi-
tional methods that can view all instances at once.

There are many avenues for future work to improve the
method presented in this paper. Possible directions to ex-
plore include merging numeric attribute ranges to optimise
tests, developing more sophisticated pruning strategies, track-
ing concept drift, and dealing with multi-class problems.

6.
[1]

[2]

[3]

[4]

[7]

(8]

[9]

[10]

REFERENCES

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami.
Database mining: A performance perspective. In Nick
Cercone and Mas Tsuchiya, editors, Special Issue on
Learning and Discovery in Knowledge-Based
Databases, number 5(6), pages 914-925. Institute of
Electrical and Electronics Engineers, Washington,
U.S.A., 1993.

Khaled Alsabti, Sanjay Ranka, and Vineet Singh.
CLOUDS: A decision tree classifier for large datasets.
In Knowledge Discovery and Data Mining, pages 2-8,
1998.

C.L. Blake and C.J. Merz. UCI repository of machine
learning databases, 1998.

L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth and
Brooks, Monterey, CA, 1984.

T. Dietterich. Statistical tests for comparing
supervised classification learning algorithms, 1996.
Technical Report, Department of Computer Science,
Oregon State University, Corvallis, OR.

P. Domingos and G. Hulten. Mining high-speed data
streams. In Knowledge Discovery and Data Mining,
pages 71-80, 2000.

Eibe Frank, Geoffrey Holmes, Richard Kirkby, and
Mark Hall. Racing committees for large datasets. In
International Conference on Discovery Science, 2002.

Johannes Gehrke, Venkatesh Ganti, Raghu
Ramakrishnan, and Wei-Yin Loh. BOAT — optimistic
decision tree construction. In Proceedings of ACM
SIGMOD International Conference on Management of
Data (SIGMOD 1999), pages 169-180, 1999.

Johannes Gehrke, Raghu Ramakrishnan, and
Venkatesh Ganti. Rainforest - a framework for fast
decision tree construction of large datasets. Data
Mining and Knowledge Discovery, 4(2/3):127-162,
2000.

R.C. Holte, L.E. Acker, and B.W.W. Porter. Concept
learning and the problem of small disjuncts. In
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, 1989.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Ruoming Jin and Gagan Agrawal. Efficient decision
tree construction on streaming data. In 9th ACM
International Conference on Knowledge Discovery and
Data Mining (SIGKDD), 2003.

Pat Langley, Wayne Iba, and Kevin Thompson. An
analysis of bayesian classifiers. In National Conference
on Artificial Intelligence, pages 223-228, 1992.

Manish Mehta, Rakesh Agrawal, and Jorma Rissanen.
SLIQ: A fast scalable classifier for data mining. In
Eztending Database Technology, pages 18-32, 1996.

J. Quinlan. Miniboosting decision trees, 1999.
Submitted to JAIR, (available at
http://www.cse.unsw.edu.au/~quinlan/miniboost.ps).

R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Francisco, 1993.

John C. Shafer, Rakesh Agrawal, and Manish Mehta.
SPRINT: A scalable parallel classifier for data mining.
In T. M. Vijayaraman, Alejandro P. Buchmann,

C. Mohan, and Nandlal L. Sarda, editors, Proc. 22nd
Int. Conf. Very Large Databases, VLDB, pages
544-555. Morgan Kaufmann, 3-6 1996.

W. Nick Street and YongSeog Kim. A streaming
ensemble algorithm (sea) for large-scale classification.
In International Conference on Knowledge Discovery
and Data Mining (SIGKDD), 2001.

Paul E. Utgoff. Incremental induction of decision
trees. Machine Learning, 4:161-186, 1989.

Paul E. Utgoff. An improved algorithm for
incremental induction of decision trees. In
International Conference on Machine Learning, pages
318-325, 1994.

Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han.
Mining concept-drifting data streams using ensemble
classifiers. In 9th ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD),
2003.

