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Abstract

Fxisting clustering methods for the semi-parametric
mixture distribution perform well as the volume of data
increases. However, they all suffer from a serious draw-
back in finite-data situations: small outlying groups of
data points can be completely ignored in the clusters
that are produced, no matter how far away they lie from
the major clusters. This can result in unbounded loss
if the loss function is sensitive to the distance between
clusters.

This paper proposes a new distance-based clustering
method that overcomes the problem by avoiding global
constraints. Experimental results illustrate its superior-
ity to existing methods when small clusters are present
in finite data sets; they also suggest that it is more ac-
curate and stable than other methods even when there
are no small clusters.

1 Introduction

A common practical problem is to fit an underlying sta-
tistical distribution to a sample. In some applications,
this involves estimating the parameters of a single dis-
tribution function—e.g. the mean and variance of a nor-
mal distribution. In others, an appropriate mixture of
elementary distributions must be found—e.g. a set of
normal distributions, each with its own mean and vari-
ance. Among many kinds of mixture distribution, one
in particular is attracting increasing research attention
because it has many practical applications: the semi-
parametric mixture distribution.

A semi-parametric mizture distribution is one whose
cumulative distribution function (CDF) has the form

Folz) :/ F(z;6) dG(6), (1)
©

where # € ©, the parameter space, and ¢ € X, the
sample space. This gives the CDF of the mixture dis-
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tribution Fg(z) in terms of two more elementary dis-
tributions: the component distribution F(x;0), which s
given, and the miving distribution G(8), which is un-
known. The former has a single unknown parameter 7,
while the latter gives a CDF for 0. Tor example, F'(z:0)
might be the normal distribution with mean ¢ and unit
variance, where 6 is a random variable distributed ac-
cording to G(#).

The problem that we will address is the estimation of
G(0) from sampled data that are independent and identi-
cally distributed according to the unknown distribution
Fg(z). Once G(0) has been obtained, it is a straightfor-
ward matter to obtain the mixture distribution.

The CDF G(0) can be either continuous or discrete.
In the latter case, G(f) is composed of a number of
mass points, say, f1,...,0; with masses wy, ..., wy re-
spectively, satisfying Zle w; = 1. Then (1) can be
re-written as

k
Fo(z) = ZwiF(a:;Qi), (2)

each mass point providing a component, or cluster, in the
mixture with the corresponding weight. If the number
of components k is finite and known a priori, the mix-
ture distribution is called finite; otherwise it is treated
as countably infinite. The qualifier “countably” is nec-
essary to distinguish this case from the situation with
continuous G(#), which is also infinite.

We will focus on the estimation of arbitrary mix-
ing distributions, i.e., G(#) is any general probability
distribution—finite, countably infinite or continuous. A
few methods for tackling this problem can be found in
the literature. However, as we shall see, they all suffer
from a serious drawback in finite-data situations: small
outlying groups of data points can be completely ignored
in the clusters that are produced.

This phenomenon seems to have been overlooked, pre-
sumably for three reasons: small amounts of data may
be assumed to represent a small loss; a few data points



can easily be dismissed as outliers; and in the limit the
problem evaporates because most estimators possess the
which means that, al-

property of strong consistency
most surely, they converge weakly to any given G(6)
as the sample size approaches infinity. However, often
these reasons are inappropriate: the loss function may
e sensitive to the distance between clusters; the small
number of outlying data points may actually represent
small clusters; and any practical clustering situation will
necessarily involve finite data.

This paper proposes a new method, based on the idea
of local fitting, that successfully solves the problem. The
experimental results presented below illustrate its su-
periority to existing methods when small clusters are
present in finite data sets. Moreover, they also suggest
that it is more accurate and stable than other meth-
Existing
clustering methods for semi-parametric mixture distri-
butions are briefly reviewed in the next section. Section
3 identifies a common problem from which these current
methods suffer. Then we present the new solution, and
in Section 5 we describe experiments that illustrate the
problem that has been identified and show how the new
method overcomes it.

ods even when there are no small clusters.

2 Clustering methods

The general problem of inferring mixture models is
treated extensively and in considerable depth in books
by Titterington et al. (1985), McLachlan and Bas-
ford {1988) and Lindsay (1995). For semi-parametric
mixture distributions there are three basic approaches:
minimum distance, maximum likelihood, and Bayesian.
We briefly introduce the first approach, which is the one
adopted in the paper, review the other two to show why
they are not suitable for arbitrary mixtures, and then
return to the chosen approach and review the minimum
distance estirnators for arbitrary semi-parametric mix-
ture distributions that have been described in the liter-
ature.

The idea of the minimum distance method is to de-
fine some measure of the goodness of the clustering and
optimize this by suitable choice of a mixing distribution
G, (0) for a sample of size n. We generally want the
estimator to be strongly consistent as n — oo, in the
sense defined above, for arbitrary mixing distributions.
We also generally want to take advantage of the special
structure of semi-parametric mixtures to come up with
an efficient algorithmic solution.

The maximum likelihood approach maximizes the
likelihood {or equivalently the log-likelihood) of the data
by suitable choice of G,,(6). It can in fact be viewed as

a minimum distance method that uses the Kullback

Leibler distance (Titterington et al., 1985). This ap-
proach has been widely used for estimating finite mix-
tures, particularly when the number of clusters is fairly
small, and it is generally accepted that it 1s more accu-
rate than other methods. However, it has not been used
to estimate arbitrary semi-parametric mixtures, presuti-
ably because of its high computational cost. Its speed
drops dramatically as the number of parameters that
must be determined increases, which makes it computa-
tionally infeasible for arbitrary mixtures, since each data
point might represent a component of the final distribu-
tion with its own parameters.

Bayesian methods assume prior knowledge, often
given by some kind of heuristic, to determine a suitable
a priori probability density function. They are often
used to determine the number of components in the fi-
nal distribution—particularly when outliers are present.
Like the maximum likelihood approach they are com-
putationally expensive, for they use the same computa-
tional techniques.

We now review existing minimum distance estimators
for arbitrary semi-parametric mixture distributions. We
begin with some notation. Let zq,..., 2z, be a sample
chosen according to the mixture distribution, and sup-
pose (without loss of generality) that the sequence is
ordered so that z; < x5 < ... < z,. Let G,(0) be a
discrete estimator of the underlying mixing distribution
with a set of support points at {0,;;7 = 1,..., k,}. Each
0,; provides a component of the final clustering with
weight wy; > 0, where Z?;l wp; = 1. Given the sup-
port points, obtaining G,,(f) is equivalent to computing
the weight vector w, = (wn1,wna,..., wng, ). Denote
by Fg,(z) the estimated mixture CDF with respect to
G (0).

Two minimum distance estimators were proposed in

the late 1960s. Choi and Bulgren (1968) used
I 1
= o, (xi) = i/n] (3)
i=1

as the distance measure. Minimizing this quantity with
respect to (7, yields a strongly consistent estimator. A
slight improvement is obtained by using the Cramér-von
Mises statistic

LS [Fg(ei) — (= 1/2)/nl + 1/(20%), (1)
i=1

which essentially replaces i/n in (3) with (i — £)/n with-
out affecting the asymptotic result. As might be ex-

pected, this reduces the bias for small-sample cases, as



was demonstrated empirically by Macdonald (1971) in a
note on Choi and Bulgren’s paper.

At about the same time, Deely and Kruse (1968) used
thie sup-norm associated with the Kolmogorov-Smirnov
test. The minimization is over

sup {|Fa, () — (i — 1)/nl,|Fa, (=) —i/nl}, (5)

1<i<n

and this leads to a linear programming problem. Deely
and Kruse also established the strong consistency of their
estimator (+,,. Ten years later, this approach was ex-
tended by Blum and Susarla (1977) by using any se-
quence { f, } of functions which satisfies sup | f, — fa| — 0
a.s. as n — oo. Each f, can, for example, be obtained
by a kernel-based density estimator. Blum and Susarla
approximated the function f, by the overall mixture pdf
fc. , and established the strong consistency of the esti-
mator (¢, under weak conditions.

For reason of simplicity and generality, we will denote
the approximation between two mathematical entities of
the same type by =, which implies the minimization with
respect to an estimator of a distance measure between
the entities on either side. The types of entity involved
in this paper include vector, function and measure, and
we use the same symbol = for each.

In the worlk reviewed above, two kinds of estimator are
used: CDF-based (Choi and Bulgren, Macdonald, and
Deely and Kruse) and pdf-based (Blum and Susarla).
CDF-based estimators involve approximating an empir-
ical distribution with an estimated one Fg . We write
this as

I

i

i3

where F,, is the Kolmogorov empirical CDF—or indeed
any empirical CDF that converges to it. Pdf-based es-
timators involve the approximation between probability
density functions:

fGngfn: (7)

where fg. is the estimated mixture pdf and f, is the
empirical pdf described above.

The entities involved in (6} and (7) are functions.
When the approximation is computed, however, 1t is
computed between vectors that represent the functions.
These vectors contain the function values at a particular
set. of points, which we call “fitting points.” In the work
reviewed above, the fitting points are chosen to be the
data points themselves.

3 The problem of minority clus-
ters

Although they perform well asymptotically, all the min-
imum distance methods described above suffer from the
finite-sample problem discussed earlier: they can neglect
small groups of outlying data points no matter how far
they lie from the dominant data points. The underlying
reason is that the objective function to be minimized 1s
defined globally rather than locally. A global approach
means that the value of the estimated probability den-
sity function at a particular place will be influenced by
all data points, no matter how far away they are. This
can cause small groups of data points to be ignored even
if they are a long way from the dominant part of the
data sample. From a probabilistic point of view, how-
ever, there is no reason to subsume distant groups within
the major clusters just because they are relatively small.

The ultimate effect of suppressing distant minority
clusters depends on how the clustering is applied. If the
application’s loss function depends on the distance be-
tween clusters, the result may prove disastrous because
there is no limit to how far away these outlying groups
may be. One might argue that small groups of points can
easily be explained away as outliers, because the effect
will become less important as the number of data points
increases—and 1t will disappear in the limit of infinite
data. However, in a finite-data situation—and all practi-
cal applications necessarily involve finite data—the “out-
liers” may equally well represent small minority clusters.
Furthermore, outlying data points are not really treated
as outliers by these methods—whether or not they are
discarded is merely an artifact of the global fitting cal-
culation. When clustering, the final mixture distribu-
tion should take all data points into account—including
outlying clusters if any exist. If practical applications
demand that small outlying clusters are suppressed, this
should be done in a separate stage.

In distance-based clustering, each data point has a far-
reaching effect because of two global constraints. One is
the use of the cumulative distribution function; the other
is the normalization constraint Z?;l wp; = 1. These
constraints may sacrifice a small number of data points—
at any distance—for a better overall fit to the data as a
whole. Choi and Bulgren (1968), the Cramier-von Mises
statistic (Macdonald, 1971), and Deely and Kruse (1968)
all enforce both the CDF and the normalization con-
straints. Blum and Susarla (1977) drop the CDF, but
still enforce the normalization constraint. The result is
that these clustering methods are only appropriate for
finite mixtures without small clusters, where the risk of
suppressing clusters is low.



This paper addresses the general problem of arbitrary
mixtures. Of course, the minority cluster problem exists
for all types of mixture-—including finite mixtures. Even
here, the maximum likelihood and Bayesian approaches
do not solve the problem, because they both introduce
a global normalization constraint.

4 Solving the minority -cluster

problem

Now that the source of the problem has been identified,
the solution is clear, at least in principle: drop both
the approximation of CDFs, as Blum and Susarla (1977)
do, and the normalization constraint—mo matter how
seductive it may seem.

Let (Y, be a discrete function with masses {wn;} at
{6,;}. note that we do not require the w,; to sum to
one. Since the new method operates in terms of measures
rather than distribution functions, the notion of approx-
imation is altered to use intervals rather than points.
Using the formulation described in Section 2, we have

Pgln = P, (8)

where Fgr 1s the estimated measure and P, is the em-
pirical measure. The intervals over which the approxi-
mation takes place are called “fitting intervals.” Since
(8) is not subject to the normalization constraint, Gl is
not a CDF and Pg: is not a probability measure. How-
ever, G/, can be easily converted into a CDF estimator
by normalizing it after equation (8) has been solved.

To define the estimation procedure fully, we need to
determine (a) the set of support points, (b) the set of
fitting intervals, (c) the empirical measure, and (d) the
distance measure. Here we discuss these in an intuitive
manner; Wang and Witten (1999) show how to deter-
mine them in a way that guarantees a strongly consistent
estimator.

Support points. The support points are usually
suggested by the data points in the sample. For exam-
ple, if the component distribution F{z;8) is the normal
distribution with mean # and unit variance, each data
point can be taken as a support point. In fact, the sup-
port points are more accurately described as potential
support points, because their associated weights may be-
come zero after solving (8)—and, in practice, many often
do.

Fitting intervals. The fitting intervals are also sug-
gested by the data points. In the normal distribution
example, each data point z; can provide one interval,
such as [z, — 30,2, or two, such as [z; — 30, 2] and
[2;, ; + 3], or more. There is no problem if the fitting

intervals overlap. Their length should not be so large
that points can exert an influence on the clustering at
an unduly remote place, nor so small that the empirical
measure is inaccurate. The experiments reported below
use intervals of a few standard deviations around each
data point, and, as we will see, this works well.

Empirical measure. The empirical measure can be
the probability measure determined by the Kolmogorov
empirical CDF | or any measure that converges toit. The
fitting intervals discussed above can be open, closed, or
semi-open. This will affect the empirical measure if data
points are used as interval boundaries, although 1t does
not change the values of the estimated measure because
the corresponding distribution is continuous. In small-
sample situations, bias can be reduced by careful atten-
tion to this detail-—as Macdonald (1971) discusses with
respect to Chol and Bulgren’s (1968) method.

Distance measure. The choice of distance mea-
sure determines what kind of mathematical program-
ming problem must be solved. For example, a quadratic
distance will give rise to a least squares problem under
linear constraints, whereas the sup-norm gives rise to a
linear programming problem that can be solved using
the simplex method. These two measures have efficient
solutions that are globally optimal.

It is worth pointing out that abandoning the global
constraints associated with both CDFs and normaliza-
tion can brings with it a computational advantage. In
vector form, we write Pg: = Ag, wy, where wy 1s the
(unnormalized) weight vector and each element of the
matrix Ag: is the probability value of a component dis-
tribution over an fitting interval. Then, provided the
support points corresponding to w/, and w lie outside
each others’ sphere of influence as determined by the
component distributions F(z;8), the estimation proce-
dure becomes

- 0 w' P’
G, n ~ n
(5w ) CE)=(F) o

subject to w!, > 0 and w! > 0. This is the same as com-
bining the solutions of two sub-equations, Ajw;, = P
subject to w!, > 0, and Alw) = P/ subject to wj, > 0.
If the relevant support points continue to lie outside each
others’ sphere of influence, the sub-equations can be fur-
ther partitioned. This implies that when data points are
sufficiently far apart, the mixing distribution G can be
estimated by grouping data points in different regions.
Moreover, the solution in each region can be normalized
separately before they are combined, which yields a bet-
ter estimation of the mixing distribution.

If the normalization constraint Z?i] Wy = 1 1s Te-
tained when estimating the mixing distribution, the es-



timation procedure becomes
Pg, = P, (10}

where the estimator G, is a discrete CDF on ©. This
constraint is necessary for the left-hand side of (10) to
be a probability measure. Although he did not develop
au operational estimation scheme, Barbe (1998) sug-
gested exploiting the fact that the empirical probability
measure is approximated by the estimated probability
measure—but he retained the normalization constraint.
As noted above, relaxing the constraint has the effect of
loosening the throttling effect of large clusters on small
groups of outliers, and our experimental results show
that the resulting estimator suffers from the drawback
noted earlier.

Both estimators, 7, obtained from (10) and G}, from
(8), have been shown to be strongly consistent under
weak conditions similar to those used by others (Wang
& Witten, 1999). Of course, the weak convergence of
(" is in the sense of general functions, not CDFs. The
strong consistency of (7. immediately implies the strong
consistency of the CDF estimator obtained by normaliz-
ing (7.

5 Experimental validation

We have conducted experiments to illustrate the failure
of existing methods to detect small outlying clusters, and
the improvement achieved by the new scheme. The re-
sults also suggest that the new method is more accurate
and stable than the others.

When comparing clustering methods, it is not always
easy to evaluate the clusters obtained. To finesse this
problem we consider simple artificial situations in which
the proper outcome is clear. Some practical applica-
tions of clusters do provide objective evaluation func-
tions; however, these are beyond the scope of this paper.

The methods used are Choi and Bulgren (1968) (de-
noted crno1), Macdonald’s application of the Cramér-von
Mises statistic (CRAMER), the new method with the nor-
malization constraint (TEST), and the new method with-
out that constraint (NEW). In each case, equations in-
volving non-negativity and/or linear equality constraints
are solved as quadratic programming problems using the
elegant and efficient procedures NNLs and LSEI provided
by Lawson and Hanson (1974}. All four methods have
the sarne computational time complexity.

We set, the sample size n to 100 throughout the exper-
iments. The data points are artificially generated from
a mixture of two clusters: n) points from N (0, 1) and ns
points from N(100,1). The values of n, and ny are in
the ratios 99 : 1, 97: 3, 93:7, 80 : 20 and 50 : 50.

Every data point is taken as a potential support point
in all four methods: thus the number of potential com-
ponents in the clustering is 100. For TEST and NEW,
fitting intervals need to be determined. In the experi-
ments, each data point x; provides the two fitting inter-
vals [z; — 3, 2;] and [z;, z; + 3]. Any data point located
on the boundary of an interval is counted as half a point
when determining the empirical measure over that inter-
val.

These choices are admittedly crude, and further im-
provements in the accuracy and speed of TEST and NEW
are possible that take advantage of the flexibility pro-
vided by (10) and (8). For example, accuracy will
likely increase with more—and more carefully chosen—
support points and fitting intervals. The fact that it per-
forms well even with crudely chosen support points and
fitting intervals testifies to the robustness of the method.

Our primary interest in this experiment is the weights
of the clusters that are found. To cast the results
in terms of the underlying models, we use the cluster
weights to estimate values for ny and ny. Of course, the
results often do not contain exactly two clusters—but
because the underlying cluster centres, 0 and 100, are
well separated compared to their standard deviation of
1, it is highly unlikely that any data points from one
cluster will fall anywhere near the other. Thus we use
a threshold of 50 to divide the clusters into two groups:
those near 0 and those near 100. The final cluster weights
are normalized, and the weights for the first group are
summed to obtain an estimate 1 of ny, while those for
the second group are summed to give an estimate 1o of
g,

Table 1 shows results for each of the four methods.
Each cell represents one hundred separate experimen-
tal runs. Three figures are recorded. At the top is the
number of times the method failed to detect the smaller
cluster, that is, the number of times o = 0. In the mid-
dle are the average values for n; and ns. At the bottom
is the standard deviation of 7y and no (which are equal).
These three figures can be thought of as measures of re-
liability, accuracy and stability respectively.

The top figures in Table 1 show clearly that only NEW
is always reliable in the sense that it never fails to de-
tect the smaller cluster. The other methods fail mostly
when ny = 1; their failure rate gradually decreases as
ny grows. The center figures show that, under all condi-
tions, NEW gives a more accurate estimate of the correct
values of n; and ny than the other methods. As ex-
pected, CRAMER shows a noticeable improvement over
CcHOI, but it is very minor. The TEST method has lower
failure rates and produces estimates that are more accu-
rate and far more stable (indicated by the bottom fig-



ny =99 | ny =97 | ny =93 ny = 80 ny = b0
ny =1 e = 3 no =7 no = 20 no = 50
CHOI Failures 86 42 4 0 0
ny/no 99.9/0.1 | 99.2/0.8 | 95.8/4.2 | 82.0/18.0 | 50.6/49.4
SD(n,) 0.36 0.98 1.71 1.77 1.30
CrRAMER  Failures 80 31 1 0 0
i1/ 99.8/0.2 | 98.6/1.4 | 95.1/4.9 | 81.6/18.4 | 49.7/50.3
SD(n1) 0.50 1.13 1.89 1.80 1.31
TEST Failures 52 5 0 0 0
1y /no 99.8/0.2 | 98.2/1.8 | 94.1/5.9 | 80.8/19.2 | 50.1/49.9
SD(A41) 0.32 0.83 0.87 0.78 0.55
NEW Failures 0 0 0 0 0
711/ Ng 99.0/1.0 | 96.9/3.1 | 92.8/7.2 | 79.9/20.1 | 50.1/49.9
SD(ny) 0.01 0.16 0.19 0.34 0.41

Table 1: Experimental results for detecting small clusters

ures) than those for cHOT and CRAMER—presumably be-
cause it is less constrained. Of the four methods, NEW 1s
clearly and consistently the winner in terms of all three
measures: reliability, accuracy and stability.

The results of the NEwW method can be further im-
proved. If the decomposed form (9) is used instead of (8),
and the solutions of the sub-equations are normalized be-
fore combining them—which is feasible because the two
underlying clusters are so distant from each other—the
correct values are obtained for nq and 7ip in virtually
every trial.

6 Conclusions

We have identified a shortcoming of existing clustering
methods for arbitrary semi-parametric mixture distribu-
tions: they fail to detect very small clusters reliably.
This is a significant weakness when the minority clus-
ters are far from the dominant ones and the loss function
takes account of the distance of misclustered points.
We have described a new clustering method for arbi-
trary semi-parametric mixture distributions, and shown
experimentally that it overcomes the problem. Further-
more, the experiments suggest that the new estimator is
more accurate and more stable than existing ones.
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