
A comparison of system monitoring methods� passive network

monitoring and kernel instrumentation

A� W� Moore�� A� J� McGregory � J� W� Breenz

Abstract

This paper presents the comparison of two methods of

system monitoring� passive network monitoring and

kernel instrumentation� The comparison is made on

the basis of passive network monitoring being used

as a replacement for kernel instrumentation in some

situations� Despite the fact that the passive network

monitoring technique is shown to perform poorly as

a direct replacement for kernel instrumentation� this

paper indicates the areas where passive network mon�

itoring could be used to the greatest advantage and

presents methods by which the discrepancies between

results of the two techniques could be minimised�

� Introduction

The use of �le system monitoring in general� and
comprehensive kernel monitoring techniques in par�
ticular� have laid the critical groundwork for the de�
velopment and re�nement for many operating sys�
tems� Kernel instrumentation has the potential to
give an exact record of what occurred in the kernel
of a system and� as a result� is commonly used when
high precision is required�

It has been used� in studies such as Ousterhout et
al� ���	� Smith ��
	� Mummert and Satyanarayan�
an ���� �
	 and Baker et al� ��	� to record information
about an operating system and its �le systems� The
results and conclusions of these studies have then
been used for studies of topics such as cache issues

�Department of Robotics and Digital Tech�
nology� Monash University� Clayton� Victoria ����� Aus�
tralia �andrew	moore
rdt	monash	edu	au�	

yDepartment of Com�
puter Science� Waikato University� Private Bag ���
� Hamil�
ton� New Zealand �T	McGregor
cs	waikato	ac	nz�	

zDepartment of Robotics and Digital Tech�
nology� Monash University� Clayton� Victoria ����� Aus�
tralia �j	breen
rdt	monash	edu	au�	

and simulation models ���� �� 
� ��	� and in the de�
sign process of new systems ���� �
� ��� ��� ��	�

However� while there is a large variety of sys�
tems in common use� a similarly wide variety of com�
prehensive studies is not evident� which can be at�
tributed to the di�culties in performing such studies�
Comprehensive studies using kernel instrumentation
have a number of drawbacks� as seen in the following
list �adapted from Mogul et al� ���	��

� code which is to reside in the kernel is di�cult
to write and debug�

� kernel source�code is not always available�

� the kernel must be recompiled and the machine
rebooted each time an error is found�

� errors in the kernel code are likely to cause
system crashes�

� functionally�independent kernel modules may
have complex interactions over shared resour�
ces�

� kernel�code debugging cannot be done during
normal machine operation� speci�c develop�
ment time must be scheduled� resulting in in�
convenience for users sharing the system and
odd work hours for system programmers�

� commonly additional load is introduced onto
the monitored system�

� sophisticated debugging and monitoring facili�
ties such as those available for developing user�
level programs may not be available for kernel
code�

Kernel instrumentation for �le�system monitor�
ing takes the form of code inserted at the system�
call interface or at the internal interface between



system�call and �le�system operations� Such meth�
ods suggest an alternative technique for monitoring
a computer�s �le�system activities where the com�
munications channel between a machine and its disk
drives� and in particular between a diskless client
and its disk server� is passively monitored� Blaze
used this technique with his snooper�rpcspy soft�
ware ��	� passively monitoring tra�c between Net�
work File System �NFS� ���	 clients and servers� and
predicting the operations the clients performed to
cause those operations�

Full kernel instrumentation is used commonly in
system monitoring but� by de�nition� it involves the
modi�cation of the operating�system source�code for
the machine in question� Passive network monitoring
can be a preferred choice over kernel instrumenta�
tion for certain system�monitoring work� particularly
if the source�code is not available� Passive network
monitoring also has other advantages� including�

� results from the machines being monitored can
be collected independently of those machines�

� no modi�cations are required to the operation
of the monitored systems�

� the collection of data with passive network
monitoring does not impact on the machines
being monitored� and

� the ability exists to monitor multiple machines
simultaneously on a network�

This �nal point is important because distributed
systems are growing in popularity and a signi�cant
number of computers in common use are part of a
distributed system� if only through the distribution
and sharing of �les� Comprehensive studies of dis�
tributed systems in general and distributed �le sys�
tems in particular are relatively rare� The main rea�
son for this is that the complexity of collecting data
is greatly exacerbated by the need to collect it simul�
taneously from a large number of machines� Kernel
instrumentation would require modi�cation of any
number of di�erent computers with di�erent oper�
ating systems running on di�erent hardware� There
would also be the issues of the load imposed in the
actual collection of data on or from each client and
the immense task of post�processing the data from
the di�erent machines�

These disadvantages do not exist when using pas�
sive network monitoring of the data channel between

clients and a server� Data about all active clients can
be collected simultaneously and� if a distributed �le
systems such as NFS is in use� the data collected
from the network is independent of the operating
system or machine architecture ���� ��	�

� rpcspy�nfstrace

If rpcspy�nfstrace are to be used as a replacement
for kernel instrumentation� the technique must be
able to deliver to a researcher data similar to that
generated by the kernel instrumentation techniques�
rpcspy�nfstrace has two distinct components for
achieving this�

rpcspy interacts with the ethernet�interface facil�
ities of the monitoring machine and collects packets
traversing the network to which it is connected� The
packets are converted into the request or reply part
of an NFS Remote Procedure Call �RPC�� Each re�
quest and reply is then matched together� data of in�
terest are extracted and a transaction record is made
along with a time stamp of when the transaction was
completed�

The second component� nfstrace� uses an heu�
ristic based on the operation of NFS to make an
estimation of the duration of a �le�s open�close ses�
sion �the time between when a �le is �rst opened�
read from and�or written to and then closed� which
caused the NFS transactions recorded by rpcspy to
occur� nfstrace creates records of �le open�close
sessions it estimates have occurred �and� thus� to
have generated the NFS transactions seen�� This
estimation relies� in part� on consistency in NFS im�
plementations�

For example� for every open system call �indepen�
dent of whether the �le is to be read to and�or writ�
ten from or just accessed� an NFS getattr

transaction is generated� However� open�close ses�
sions to read or write data handle the actual data
in signi�cantly di�erent ways although it should be
noted that the write transaction case is easier to
handle because the cache does not have as dominant
e�ect on the write operations� As a result� much of
the special�case handling nfstrace must do applies
only to NFS read transactions�

rpcspy�nfstrace together generate an estima�
tion of the open�close sessions that a kernel instru�
mentation system could record directly� Figure �



NFS Filesystem

User Program

Local Filesystem

Network

kernel

instrumentation

System call stubs

Block Cache

RPC

XDR

IP

Device Driver

UDP/TCP

Operating System Kernel

network
monitoring

Figure �� The data �ow between a user program and
an NFS �le system� Instrumentation points for ker�
nel instrumentation �snooper� and network monitor�
ing �rpcspy� are indicated� This diagram compares
the di�erence in the information available to each
system� In particular� one instrumentation point�
snooper� is before the cache and the other� rpcspy�
is after the cache�

shows how the instrumentation points for each of the
two systems di�er in the components of the system
available to them and� thus� the information acces�
sible to them�

Kernel instrumentation is able to record events
such as the system calls occurring on the computer�
while passive network monitoring must interpret the
transactions between client and server to estimate
which system operations have occurred� rpcspy

�nfstrace results record what happened on the
server side of the client cache � the tra�c that oc�
curred between client and server�

� Previous work using rpcspy

�nfstrace

The rpcspy�nfstrace implementation by Blaze
has been used in several di�erent works to aid in the
development of new systems and as an aid to the
con�guration of existing systems� Anderson ��	 used
rpcspy�nfstrace to analyse client�server �le system
tra�c and made use of information about the tra�c
to better utilise local disks in the clients themselves�
Regularly�read� static� read�only �les were moved to
the local disk� on a partially automatic basis� tak�
ing into account each �le�s utilisation by a partic�

ular workstation� Blaze uses results collected using
rpcspy�nfstrace in a number of works to justify
the design of a wide area �le system ��� �	� Finally�
Dahlin et al� �
	 uses rpcspy and a partially�modi�ed
version of nfstrace to collect results used in a paper
to justify a particular �le system design ���	�

Each of these studies has been made with the as�
sumption that complications introduced by the re�
sults of rpcspy�nfstrace are negligible� This is
valid for studies based upon the tra�c between a
client and server which take into account the e�ects
of the client cache such as Dahlin et al� �
	� How�
ever� other studies can be at risk for assuming that
rpcspy�nfstrace is such a perfect replacement for
traditional techniques�

Blaze ��	 notes in his description of the rpcspy

software that the e�ects of packet loss should be
quanti�ed� Additionally� he notes in his description
of the rpcspy�nfstrace software that peculiarities
of the heuristics of nfstrace �and its original imple�
mentation� need to be evaluated more completely�

Previously� the use of rpcspy�nfstrace has
been without any hard data on the accuracy of the
implementation and only a passing appreciation of
areas where the implementation is inaccurate and
the reasons for those inaccuracies� The following sec�
tions present a comparison of two systems recording
data from the same source and then discuss the re�
sults�

� Systematic error in rpcspy

The rpcspy�nfstrace tools depend heavily on the
ability of the network interface of the machine on
which they are being run to capture all tra�c pass�
ing through the network� Packet�loss by the net�
work interface does not have a linear relationship
with network utilisation� The network interface will
not lose data when utilisation is low but data loss
will increase as utilisation increases to a point be�
yond which it will be unable to accept any further
increase in the data�transfer rate� The amount of
data it can process will �atten out no matter what
the utilisation beyond that point�

A study was performed to quantify the potential
data loss of rpcspy and to calibrate the network in�
terface rpcspy uses� To perform these tests satisfac�
torily� a network analyser capable of full�utilisation



measurements on Ethernet was required� A Hewlett
Packard Internet Advisor Model J����As was used
both to make measurements and to generate arti��
cial loads on the network� The packetfiltermech�
anism used was in a DECstation ���� running Ul�
trix ���a and the NIT mechanism used was in a Sol�
bourne SC���� �a machine compatible with the Sun
Sparcstation �� running a SunOS ����� compatible
operating system�

Tests of rpcspy� where the network was loaded
arti�cially� used the tra�c breakdown in Table �
which was based on an analysis of the network�s reg�
ular tra�c content collected over several ���hour pe�
riods�

The packetfilter facility of Ultrix o�ers some
con�guration options� In particular� the size of the
packet bu�er� where packets processed by packet

filter are placed for collection by the user process�
can be set� The NIT mechanism in SunOS does not
o�er this con�gurability� The default con�guration
and an optimum �largest con�gurable bu�er size� for
packetfilter in addition to the NIT mechanisms
are compared in Figure �� This �gure shows the
percentage of unprocessed Ethernet packets versus
Ethernet network utilisation� It is apparent that not
only are the characteristics of the NIT mechanism
poor beyond ��� utilisation but that the packet

filter mechanism did not demonstrate the same
level of loss until utilisation was close to ���� The
packetfilter mechanism showed no loss until over
��� utilisation� a stage by which NITmechanism loss
was close to ����

A signi�cant issue in rpcspy is the combination
of processing overhead on the client� which is im�
posed by the need of rpcspy to match RPC transac�
tions� and the packet�loss characteristics of the Eth�
ernet interface which rpcspy is using� Figure � shows
the number of NFS transactions versus Ethernet util�
isation� The Ethernet utilisation in these tests is al�
most purely NFS tra�c� By using NFS tra�c exclu�
sively we are able to establish the maximum number
of NFS transactions each rpcspy system is able to
process in a given time period� The Hewlett Packard
test equipment recorded the actual number of NFS
transactions that occurred over this time� For this
test the packetfilter was left in the default con�
�guration�

The test shows that each system has a maxi�
mum number of packets it can process� The NIT�

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

T
ot

al
 p

ac
ke

ts
 u

np
ro

ce
ss

ed
 (

%
)

Ethernet Utilization (%)

Packetfilter (default)
Packetfilter (optim.)

NIT

Figure �� A comparison of Ethernet utilisation ver�
sus packet loss for various workstation Ethernet in�
terfaces� packetfilter default and optim�um� are
two con�gurations of the Ethernet packet capture fa�
cility of the Digital DECstation� NIT is the Ethernet
capture facility in Sun Microsystem�s SunOS�

SunOS system is limited to processing about ���
NFS transactions per second� The default con�g�
uration packetfilter�Ultrix combination appears
to be limited to processing approximately ��� NFS
transactions per second� It is important to note
this was a stress�testing of rpcspy and that such
NFS loads were not a characteristic of the network
to which these machines were connected� From the
�gures in Table � we can see that ��� of the to�
tal Ethernet tra�c is from NFS� However� it would
not be true to say of this ��� that half the number
of NFS Ethernet packets is an approximate count
of complete NFS transactions� Such a simpli�ca�
tion would not allow for there being incomplete NFS
transactions �the loss of the request or reply in a
transaction�� nor would it allow for NFS transactions
that required more than one pair of network packets
�transactions where the data payload required two
or more Ethernet packets�� In each of these cases
rpcspy does not need as much processor time as if
it had had a complete NFS transaction� As a result�
the test network operating at ��� utilisation could
mean less than �� transactions per second in a mixed
load with a variety of NFS tra�c rather than the ���
transactions per second that the Figure � stress�test
indicates�

The exact cause of such data loss is not known
for certain but it could result from limitations in
the hardware of the network interface and�or in the



Protocol type Sub�protocol Types of packet Packet size �avg�� �
Internet Protocol �IP� �� UDP ���
 NFS ��� ����

���� ����
TCP ���� �all� 
� ����

�
� 
��
���� ���

Novell Netware �IPX� �� � � ��� �
�

��
 ����

Table �� A breakdown of the tra�c mixture used for testing rpcspy response to Ethernet utilisation

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18

N
F

S
 tr

an
sa

ct
io

ns
 r

ec
or

de
d 

pe
r 

se
co

nd

Ethernet utilization (%)

NFS transactions recorded versus ethernet utilization

packetfilter
NIT

Hardware Monitor

Figure �� The number of NFS transactions versus
Ethernet utilisation for the NIT and packetfilter

capture mechanisms� Results from a network anal�
yser recording no packet loss is also given�

software of the packet collection and �ltering mecha�
nism� This characteristic is unfortunate� It is during
the time when the network is busiest that utilisation
across a distributed �le system will potentially be
highest� Because there is potential for rpcspy based
tools to lose data about transactions at busy times�
studies such as �le sharing� a situation that would
be more likely to occur at busier times� would be
a�ected adversely�

Such drawbacks could be overcome by the use
of faster workstations with faster hardware network
interfaces� However� this may not be solved as easily
if the problem is due principally to poor software
implementation performance in either the network
packet capture mechanism �NIT�packetfilter� or
rpcspy�

While this characteristic loss does exist� it is sig�
ni�cant only above about ��� utilisation for the
packetfiltermechanism� Boggs et al� ��	 comment

that most Ethernet loads are well below ��� �and
are actually close to just �� of the network capacity�
and the network on which measurements were taken
supports this observation with a maximum load over
�� hours of no greater than �
� and an average util�
isation over �� hours of closer to �����

� Comparison

The following results present a comparison between
rpcspy�nfstrace and a kernel instrumentation
technique� In these results there has been an as�
sumption that rpcspy�nfstrace would be used as
a substitute for kernel instrumentation�

The kernel instrumentation this paper used is the
snooper package� It was implemented originally by
Siebenmann and Zhou ���	 for Ultrix version ����
Snooper is a set of kernel instrumentation routines
for recording information about a number of kernel
functions including logical �le operations� physical�
block operations� process execution and termination�
etc� The snooper package is based upon the package
of the same name described in Zhou et al� ���	 which�
in turn� shares its ancestry with the package used by
Ousterhout et al� ���	 to perform their study of the
UNIX ��� BSD �le system�

The results from each system were processed into
open�close sessions� i�e� sets of �le transactions boun�
ded by an open and a close system call� nfstrace

performs that function for rpcspy�nfstrace but ad�
ditional post�processing code was required for the
data produced by snooper

The comparisons of snooper and rpcspy�nfs�

trace have been done by using simultaneous traces
of a single machine over a ���hour period� The trace
of this machine was performed from ����� a�m� Mon�
day� ��th of December� �

�� until ����� a�m� the fol�



lowing day� The machine traced was a Digital DEC�
station ���� con�gured with ��Mbytes of memory�
running Ultrix ���a� This machine was con�gured
with a local disk for virtual memory swap activities�
The rpcspy trace was recorded to an additional local
disk so as not to perturb the results with extrane�
ous network activity� During the ���hour period� a
loss of ���� of total Ethernet tra�c was recorded�
Based on the graphs of packet loss versus utilization
��gure �� and upon the average Ethernet packet uti�
lization �table �� this gives an approximate loss of
���� of NFS transactions from the total recorded
trace�

The nfstrace post�processing tool uses a heu�
ristic which incorporates a timeout to determine how
long an open�close session will last� The value is user�
selectable but the default value of ��� seconds was
used throughout the analysis described herein�

��� Excluded data

All transactions associated with the reading of exe�
cutable �les recorded by either the snooper or rpc
spy systems were removed from the trace data before
processing� This was done to avoid problems associ�
ated with a shortcoming in the snooper instrumen�
tation� not the rpcspy�nfstrace system� Records
pertaining to the snooper trace �le itself were re�
moved from the output records during the processing
stage�

While the removal of all execution transactions
may seem to change the results presented� the re�
maining data still permit a satisfactory comparison
of the two monitoring systems� The amount of po�
tential comparison�error which would be introduced
due to the inclusion of incomplete execution records
by snooper was not justi�ed� Additionally� �le sys�
tem tra�c resulting from the loading of executable
�les was excluded from previous studies such as
Ousterhout et al� ���	 and Baker et al� ��	 due to sim�
ilar problems in the logging of executable �le tra�c�

��� System tra�c

The characteristics of the total �le�system communi�
cations tra�c are commonly�used measurements� In
the case of diskless workstations� the measurements
are important for insuring that the networks have
adequate transport capacity and that the servers of

diskless workstations have adequate service capacity�
In any sort of workstation such values de�ne the re�
quired capacity for disk interfaces� as well as being
used in cache and bus design ���� ��� ��� �� ��	�

A comparison of communications tra�c to and
from the �le system at the logical level and of the
communications tra�c at the rpcspy network level
are not strictly comparable because each set of mea�
surements was made on a di�erent side of the cache�
However� one of the objectives of nfstrace was to
estimate operations that occurred at the user level by
analysing the data communications tra�c between
client and server and the transactions used by the
client to ensure the contents of the cache are up
to date� As a result� while rpcspy�nfstrace can�
not generate information on exactly what data were
transferred between the user programs and the �le
system �including the NFS �le�system routines and
the block cache�� it can calculate the exact amount
of data transferred by the NFS �le system between
NFS client and server�

Table � gives a summary of results for the com�
parison period� It is apparent immediately that there
is a major di�erence in the value nfstrace estimates
for the total data transferred when compared with
snooper� They di�er by a factor of ���� From these
results it is equally apparent that over the course of
a long�term analysis ��� hours� the results for peak
values and write data are comparable for the two
systems�

Peak values display this characteristic because
they typically involve amounts of data that are too
large or too volatile to be suitable for long term stor�
age in the cache ���� �� �
	 � this characteristic is
independent of the particular load a machine is un�
der ��
	� As a result� the similarity between trans�
ferred data� particularly peak values� would remain
across any sample taken� In comparison� values for
the total quantity of data transferred over time is
not similar� The di�erence between snooper read
averages and nfstrace values is not surprising� The
client cache will eliminate successive NFS transac�
tions for reading data from the NFS server and� as
a result� nfstrace cannot record the data transfer
that occurred at the logical level�

Figure � shows plots of data transferred over time
as recorded by snooper and rpcspy�nfstrace�
Higher levels of data transfer� particularly signi��
cant writing activity� between � a�m� and �� a�m�



Particular interval snooper nfstrace

measurement length �bytes� �bytes�
Total data transferred 
��������� ���
������
Average data transferred �� seconds �����
 �����
Peak data transferred ��������� ����
����
Average data read ����
 ���
�
Peak data read ��������� ��
���
��
Average data written ����� ��
��
Peak data written ��������� ����
����
Average data transferred �� minutes �����

 �������
Peak data transferred �
���
���� ����������
Average data read ��
���� �����
�
Peak data read �������
�� ���������
Average data written �����
� �������
Peak data written 
�������� 
��

��
�

Table �� The total data transferred for the system� Peak and average values for �� second and �� minute
intervals are also given�

is due to the testing of image encoding algorithms
�by another researcher� on this machine requiring
the reading and writing of large image �les�

The graph of read�data shows an example of the
di�erence between data gained from snooper instru�
mentation and that available to nfstrace� Peri�
odic accesses by automatic jobs account for the reg�
ular communications tra�c logged during the �
���
to ����� period� Because this communications traf�
�c involves the regular execution of programs� com�
monly with little other �le�system activity� the cache
of the client holds all the necessary software and as�
sociated data �les� The result is that approximately
��� Kbytes of logical data are read each �� minutes
at the snooper level but rpcspy records negligible
read�activity between client and server over the same
period�

The reason nfstrace is not as accurate for rec�
ords of raw data transfer is because NFS transactions
do not contain signi�cant information about blocks
read from the cache of the client� The only speci�c
read data available to rpcspy about data transfers
that occur is when data are read by the client from
the server�s disks�

��� File system transactions

As with most unix systems� each �le system is used
typically for a particular purpose� For example� one
�le system contains the users� directories� another

�le system contains executable �les for the system�
etc� The DECstation analysed in this study did not
have any local �le systems� apart from that used to
store trace data locally� and a local� swap disk� Ta�
ble � lists the di�erent �le systems the client accessed
over the trace period and the tasks each �le system
served�

A breakdown of the type of data transferred to
and from each �le system can be used to assist in
making �le�system�con�guration decisions� Such de�
cisions can include which �le systems generate so
much server tra�c that it would be better for them
to be attached locally to the machine and how widely
a particular �le system is used� A breakdown of each
�le system�s communications tra�c is given in Ta�
ble ��

It is important to note that at the system�call
level� as recorded by snooper� there is a character�
istic breakdown of these transactions� Of particular
note is a very large percentage of operations asso�
ciated with the � partition� The large number of
transactions on this partition will have been poten�
tially compounded because the �tmp and �var�tmp

directories resided on the � �le systems� �tmp and
�var�tmp can potentially carry a large percentage of
operations because temporary �les are traditionally
created in this directory structure ���� ��	�

Table � shows a moderate similarity between the
results from the two monitoring methods� Notable
exceptions are tra�c involving the � partition and



0 Mbyte

2 Mbyte

4 Mbyte

6 Mbyte

8 Mbyte

10 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Read data transferred over day (10 minute samples)

snooper read
nfstrace read

0 Mbyte

2 Mbyte

4 Mbyte

6 Mbyte

8 Mbyte

10 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Write data transferred over day (10 minute samples)

snooper write
nfstrace write

Figure �� Read and Write transfers as recorded by kernel instrumentation �snooper� and network mon�
itoring �nfstrace�� A quiescent system from �
��� until ����� the machine is busy during the daylight
hours�

File System Function and Contents
� root �le system� also includes �var and �tmp� Top�level �le system

containing temporary directories and logging directories�
�usr contains standard software distribution� in addition to libraries and in�

clude �les for the current system�
�var�spool�mail contains each users� mail �le�
�usr�local contains locally installed software�
�usr� home directories for a group of users�
�packages contains commercial software packages and collections of project speci�c

data �in this case image data��

Table �� A breakdown of the �le systems of the study and their respective functions�



File System snooper rpcspy�nfstrace

total
� ���������
 ������� ��
������ �����
�

�usr ��
����
� �����
� ��������� ����
��
�var�spool�mail ���
���

 ������� ��������
 �������

�usr�local �������
� �����
� 
������ ����
��
�usr� �
�������� ������� ���������� ��
����

�packages ��������
 ��
���� ��
������ �����
�
read

� �������
�� ������� ��
������ �������
�usr ��
����
� ������� ��������� �������

�var�spool�mail ��
������ ����
�� ��������
 �������
�usr�local �������
� ������� 
������ �������

�usr� ���������� ������� ���

����� ��
����
�packages ��������
 ������� ��
������ �������

write
� ����
���� ������� ��������
 �����
�

�var�spool�mail ��
���� �����
� 
������ ����
��
�usr� ����

���� ������� ��������
� �
���
�

Table �� Total data� read data and write data transferred per �le system as measured by snooper and
rpcspy�nfstrace�

read�tra�c in general� While di�erences between
values for read between snooper measurements and
those of rpcspy can be explained as resulting from
the cache mechanism �ltering read requests between
client and server� the read tra�c for the � partition is
particularly pronounced� This di�erence is likely to
result from a high usage of system �les located in the
�etc directory being accessed� resulting in the corre�
sponding cache entries always being valid� Examples
of such �les include �etc�passwd� the list of users
able to use a system� �etc�hosts� a static table of
the systems known to this client and �etc�mount� a
�le listing the �le systems that should be mounted
on this client�

The notable di�erence in the recorded quantities
of read and write data for �usr� is a re�ection of
the volatile nature of �les on this �le system� In
particular� software for image encoding was being
developed and a cycle of

�� edit program

�� compile program

�� run program

existed� This development cycle� during stage �� re�
sulted in source�code �les being written to the NFS

server �and seen by rpcspy� but not necessarily read
from the NFS server� During stage �� in addition to
the source�code �les� libraries will be read only once
from the server and then may remain in the local
cache while being used repeatedly� Finally� during
stage �� while �le transactions relating to the load�
ing of the executable �le itself have been removed�
this program takes as input a raw image stream and
outputs an encoded image stream� On consecutive
runs the raw image stream could have remained in
local cache�

It should be noted that the ratio of read�to�write
tra�c already greatly favours the write�tra�c for
�usr� as measured with the snooper system but the
cache activities� �ltering tra�c� increase this ratio�

Signi�cant di�erences between the amount of
write tra�c recorded by each monitoring system
for both the �usr� and �var�spool�mail �le sys�
tems can be attributed to the block cache needing
to transfer data to and from the �le system in block�
sized pieces� The result of this is that a modi�cation
of one byte in a �le will result in the writing of a
whole block �
 Kbytes for these �le systems��

From this breakdown it is clear that� while activ�
ities on the � �le system are responsible for a large
percentage of logical �le tra�c� block caching seems



to reduce the quantity of data transferred by a fac�
tor of up to �� By comparison� the �usr� �le system
is responsible for a higher quantity of data transfer
and� in the development and balancing of �le sys�
tems� it would be important to establish whether
this is a transient condition or a regular trend for
communications tra�c for that particular �le sys�
tem�

��� System users

Table � presents several values related to the number
of active users on the system and the amount of traf�
�c generated by them� Such tabulations have been
made in a number of previous studies and are useful
in the estimation of the load a user may impose on
a system as well as the worst�case scenarios for this
load�

The di�erences in Table � for the number of users
are most likely the result of snooper recording the
real User ID �UID� associated with each logical op�
eration and rpcspy recording the e�ective User ID
associated each NFS transaction� This di�erence
comes about because programs such as inetd �the
internet service daemon� perform operations as one
user and spawn programs that will run as another
user� The result is that counts of active users made
through rpcspy�nfstrace usually di�er by a value
of one when compared with the active user count
from snooper�

Average�data�utilised per user indicates that
cache�hit rates are� once again� absorbing a substan�
tial quantity of communications that would have oc�
curred between each user and the �le system� It is
interesting to note that the maximum values recor�
ded by each system are almost identical� This is
most likely due to the transfer of large amounts of
data� causing the client�s cache to be quickly overrun
with new data� As a result� only a minimal amount
of data is cached during this time�

��� Files

As �les are the common unit of data accessed on
a �le system� information about the range of �les
accessed� as well as the working size of those �les�
enables developers to determine the necessary size
of �le caches� to establish common working�set sizes
and to quantify other related measurements�

As has been mentioned earlier� the di�erence in
the average �le size for the � �le system was pre�
dictable� This will principally be a result of a large
number of small� system�related �les not requiring
access from the NFS system� The di�erences in other
values will have resulted from the caching of� and re�
peated accesses to� active �les �even if these �les were
active for only a short period of time�� In this con�
text� an active �le is one which is accessed one or
more times�

Table � lists the number of di�erent �les recorded
at the snooper� rpcspy and nfstrace levels� At the
rpcspy level� this is a count of every �le that had a
read or write NFS operation performed on it� The
�ltering characteristic of the cache is obvious when
comparing the number of �les that had logical oper�
ations performed on them at the snooper level with
the number of �les for which data was read from or
written to at the rpcspy level� Larger di�erences for
the � �le system will have been as a result of accesses
to the large number of regularly�accessed system �les
located there� These �les would be accessed often
and be modi�ed infrequently and would� as a result�
have a long cache life�

The results in this table show an area where
the estimation method used by nfstrace can gen�
erate discrepancies� nfstrace must estimate tra�c
to and from �les that have not caused any rpcspy

read or write transactions� With the exception
of �var�spool�mail� nfstrace must estimate ad�
ditional operations for �les on each of the �ve �le
systems� nfstrace has estimated extraneous oper�
ations on �les of �usr� and underestimated these
operations for the other �le systems� in particular
the � �le system�

The rule base under which nfstrace operates
estimates operations on �les from a combination
of NFS read� write� setattr and getattr trans�
actions� The estimates of �les which did not in�
volve NFS read or write transactions would have
resulted from setattr or getattr operations� By
using getattr transactions alone� there is potential
for nfstrace to confuse getattr transactions caused
by such operations as getting a directory listing with
those transactions being used to validate the con�
tents of the client cache�

In comparison� the graph of Figure �� a normal�
ised cumulative distribution of the number of �les
of each size� shows that the estimation calculated by



interval length snooper rpcspy

Number of active users
Maximum �� minute � �
Average ��� ���
Maximum �� second � �
Average ��� ���

Total bytes transferred per active user
Maximum �� minute ������
�� ���������
Average ������� ��
�
��
Maximum �� second ��������� ����
����
Average ������ �
����

Table �� The maximum and average number of active users over given intervals and the total quantity of
data transferred per active user in those intervals�

File system snooper nfstrace

� �����
 ����

�
�usr ������� �
�����

�var�spool�mail ����

� �������
�usr�local ������ ������

�usr� ������ ������
�packages �������
� �������

Table �� A comparison of the average size for �les
accessed on each particular �le system�

nfstrace compares well with the results of snooper�
The two signi�cant di�erences between the results
of nfstrace and those of snooper which lead to
disparities in the graph are for the number of zero�
length �les and the number of �les which were ap�
proximately ��� bytes in length�

In the �rst case� nfstrace is not able to gener�
ate accurate estimations of accesses to various zero�
length �les and creates records of many more ac�
cesses than actually happened� This may most likely
be due to nfstrace being unable to di�erentiate be�
tween getattr transactions for directories and those
resulting from the opening of a zero�length �le� In
the second� related case� nfstrace has underesti�
mated the number of accesses to various �les which
were approximately ��� bytes in length� In addition
to the reasons above� it is possible that nfstrace

evaluates many of the ����byte �le accesses as being
zero�byte �les accesses because of the block cache
absorbing the small��le transactions�

Files with a short life�span can also present a
problem to nfstrace� This is because given a short

0

50

100

150

200

250

300

350

400

450

1 10 100 1K 10K 100K 1M

N
um

be
r 

of
 fi

le
s

Size of file (bytes)

Cumulative distribution of the number of files of each file size

snooper
nfstrace

Figure �� Cumulative distribution of number of dif�
ferent �les accessed versus �le size� From this graph
we can deduce the number of times di�erent �les less
than a given size have been accessed� For example
both techniques suggest that over ��� of the �les ac�
cessed are � kbytes in size or smaller� Note� the �le
size axis is logarithmic�

enough life�span between �le creation� the writing
and reading of data� and �le deletion� no NFS read

or write transactions may occur during the open�
close session� As a result nfstrace is not easily
able to record data transfer operations on �les with
a short life�span�

The following table� �� gives a breakdown of the
number of di�erent �les accessed by the system dur�
ing the measurement period� These values are con�
sistent with the hypothesis that nfstrace was un�
able to evaluate correctly the number of accesses to
zero length �les� The average �le size for � would



strongly con�rm this� although the �packages re�
sults run counter to this� This strong counter�exam�
ple could be due to the unusual nature of �les on
that particular �le system� We note also that nfst�
race results count one less �le for that �le system�
a single large �le would have modi�ed this average
considerably�

While there are notable di�erences in each of
Tables � and �� the results from them� in addi�
tion to those of Figure � show that nfstrace was
able to give results broadly comparable with those
of snooper�

��� File open	close sessions

The open�close session of a particular �le is a concept
around which a number of measurements are based�
A number of studies have used such measurements�
examples include �le sharing� �le utilisation and var�
ious cache studies ���� �� ��� ��� ��	�

Such open�close session measurements include the
length of time a particular �le is open� the amount
of data accessed in that time� the amount of data po�
tentially accessed �the size of the �le opened�� what
sort of open�close session was involved� whether the
�le was opened for read and�or write operations� etc�

The number of open�close sessions as well as a
breakdown of the relative types� are tabulated in
Table 
� The implementation of NFS under Ultrix
includes the synchronous writing of modi�ed data
blocks to the �le system at the close of a �le� This
means that nfstrace can potentially miss write op�
erations on �les that ultimately leave the �le with
zero length� for example some sort of temporary �le�

nfstrace will not be able to generate results for
reads on �les that occur in close succession �where
the cache contents are still valid�� Additionally�
nfstrace may not correctly interpret getattr NFS
transactions used to validate the cache� The result
is nfstrace will either miss some open�close sessions
altogether� incorrectly interpret NFS transactions as
not being an open�close session� or incorrectly con�
sider that the NFS transactions from two or more
separate open�close session are from the same open�
close session�

The larger number of writes recorded by nfst�

race will certainly include the read�write operations
snooper recorded� nfstrace is unable to detect
read�write sessions and would consider each of such

operations as a separate read and write session� Null
open�close sessions� where no data are transferred
and the �le is simply closed� would not be able to
be detected by nfstrace� Instead� nfstrace inter�
prets any �le open� if that were the only operation
on a particular �le� to be a reading of an unknown
amount of data from the client cache�

Because the borders between read and write op�
erations cannot be determined accurately� nfstrace
will tend to collect successive open�close sessions to�
gether� interpreting them as one� longer� open�close
session� As a result of this� the average duration of
the open�close sessions reported by nfstrace may
be higher than the durations reported by snooper�

Tables 
 and ��� record the open�close sessions
on a type of open�close operation per �le system ba�
sis� and by �le system per operation� Firstly� Ta�
ble 
 shows the full e�ect of the cache �ltering� com�
bined with nfstrace incorrectly interpreting infor�
mation available� causing open�close sessions to be
removed� This is especially the case for the � �le sys�
tem� The results for �var�spool�mail are a good
example of where nfstrace has misinterpreted the
NFS getattr transactions as open�close sessions be�
cause mail �les are often checked for new mail result�
ing in getattr transactions� By way of comparison�
a better result is given for the �packages �le sys�
tem� Files from this �le system are unlikely to be
able to be kept in cache for long periods� The result
is that nfstrace is able to give a better result for
open�close sessions because the NFS transactions for
this �le system were more complete�

Because the cache is removing the need for a large
number of the read operations to result in NFS trans�
actions� the read�write ratio is closer to unity for
the results of nfstrace than the results of snooper�
While this ratio is expected� even desirable� for the
measurements of data transferred� these values are
incorrect for open�close sessions resulting in higher
�gures for average data transferred per session and
incorrect information about the characteristics of the
sessions�

However� while the ratios of the various types of
open�close sessions produced by nfstrace are not
particularly close to those of recorded by snooper�
adding the �gures for null sessions to the read open�
close sessions improves the comparison for all �le sys�
tems except for ��

For Table ��� all write values are increased by



File System snooper rpcspy nfstrace

� ��� ����

� �
 ������� 

 �������
�usr �� ������� 
 ������� 
 ����
��

�var�spool�mail � ������� � ������� � �����
�
�usr�local �
 ����

� �� �����
� �
 ����
��

�usr� ��
 ������� ��
 ������� ��
 �������
�packages � ����
�� � ������� � �����
�

Total ��� �
� ��


Table �� A breakdown per �le�system of the total number of di�erent �les accessed during the trace period�
The values in parentheses are each count as a percentage of the total number of �les�

snooper nfstrace

read entries ���� �

���� ���
 ��
����
write entries ��� �����
� 
�� �����
�

read�write entries �� ������� � �
null entries ��� ����
�� � �

Total 
��� ����

Table 
� The count of open�close sessions each monitoring system interprets� Additionally� a breakdown
of these open�close sessions into read�only� write�only� read�write and null open�close sessions is shown� A
null session is where no data are read from or written to the �le �although the �le was opened�� Values in
parentheses are the percentage of the total number of �les each type represents�

File System session type snooper nfstrace

� read ���� �
����� 
�
 �������
write ��� ����

� ��� �����
�
read�write �� �����
� � �
null �

 ������� � �

�usr read ��� ������� �� ��������
null �� �����
� � �

�var�spool�mail read �
 ����
�� �� �
�����
write � ��
��
� � ��
����
null �� ������� � �

�usr�local read ��� �������� ��� ��������
�usr� read ��� ������� �
� ��
����

write �

 �����
� ��� ����

�
null �� ������� � �

�packages read 
 �������� 
 ��������

Table 
� A breakdown of the open�close sessions on each �le system by type of open�close session� Values
in parentheses are each type of operation as a percentage of the open�close sessions on that �le system�



nfstrace� particularly in the case of �usr�� This
error will partly be because nfstrace interprets the
creation of any �le and any subsequent writing to
that �le as two separate write events� Additionally�
nfstrace can incorrectly interpret multiple writes
to the same �le as consecutive open�close sessions�
Because nfstrace interprets an access to the �rst
byte of a �le as the start of a new open�close session�
nfstrace can interpret multiple writes into the same
location in a �le as multiple open�close sessions on
that �le� As an example� this situation can arise with
the vi editor� vi uses log �les that check�point the
edit operations as they occur on the �le� so vi can
be continually writing small changes to the log �le�
These collections of small writes will result in blocks
being written to the server and if there are a number
of writes made to the �rst block� the �rst block may
be written to the server several times� Each time the
�rst block is written nfstrace could potentially mis�
interpret the writing of data as separate open�close
sessions on the log �le� It is worth noting that the
actual number of extra sessions is quite small and�
in comparison with values for all open�close sessions�
will be overwhelmed by the quantity of other open�
close sessions �read sessions in particular�� However�
for open�close sessions writing to a �le� these extra
open�close sessions can be signi�cant�

Some of these problems are a result of the algo�
rithms used by nfstrace� While some assumptions
have been made by nfstrace so as to produce an
open�close session record� this particular situation
may be resolved with a more sophisticated nfstrace

algorithm�

The duration of an open�close session is impor�
tant in determining the amount of time a particular
�le is in use� This� in turn� is important in calcu�
lating the amount of time �les are shared between
users and� in a distributed �le system� between sys�
tems� Figure � shows that duration of open�close ses�
sions recorded by rpcspy will be longer than those
recorded by snooper� The longer open�close sessions
that cause the di�erences in average durations are
likely to be a result of transactions that are part
of separate open�close sessions being interpreted as
part of the same open�close session�

Additionally� the calculation of duration from
NFS tra�c means that lead and lag times �times in
which the �le is open but no operation occurs� will
be di�erent from the average length of the open�close
session� These situations are represented graphically

10

20

30

40

50

60

70

80

90

100

1ms 10ms 100ms 1s 10s 1min 10min 1Hr 10Hr

%
 o

f o
pe

n-
cl

os
e 

op
er

at
io

ns

Duration

Cumulative percentage of open-close operations against duration

snooper
nfstrace

Figure �� Normalised cumulative distribution of the
number of open�close sessions versus the duration�
From this graph we can deduce the longest of the
open�close sessions for a given number of those ses�
sions� For example� the snooper technique records
that ��� of the sessions have a duration of about
��� milliseconds or less� Note� the duration axis is
logarithmic�

in Figure �� The �gures show that the block oper�
ations upon which nfstrace�s record will be based
may not correspond with the logical open and close
operations in an open�close session�

Figure 
 graphes a comparison of the data�tran�
sfer rate as measured by snooper� as per Figure ��
with the amount of data nfstrace estimates was po�
tentially available to the system �the sum of the sizes
of �les accessed�� While not directly comparable� it
is worth noting that the sum of the sizes of �les is
able to give enough information to estimate with fair
accuracy the trends of data transfer between client
and server�

Figure 
 shows a cumulative distribution of
open�close sessions versus the amount of data trans�
ferred� It is important to note that one reason that
nfstrace di�ers so signi�cantly with snooper is that
nfstrace was unable to detect the large percentage
of open�close sessions during which approximately
� Kbyte was transferred� Additionally� snooper re�
sults estimate that fewer than ��� of the open�close
sessions transferred one or zero bytes� whereas nfs�
trace results estimate those circumstances existed
for more than ����� of the sessions it recorded�

A primary reason nfstrace does not record the
large number of sessions transferring approximately

�� ���� 
�� and ����� bytes is because those �les



File System session type snooper nfstrace

read � ���� �
����� 
�
 �������
�usr ��� ������� �� �����
�

�var�spool�mail �
 ������� �� �����
�
�usr�local ��� ����
�� ��� �������

�usr� ��� ��
�
�� �
� ��
����
�packages 
 ������� 
 �������

write � ��� ������� ��� ��
����
�var�spool�mail � ������� � ����
��

�usr� �

 ������� ��� ��
�
��
read�write � �� �������� � �

null � �

 ������� � �
�usr �� ����
�� � �

�var�spool�mail �� �����
� � �
�usr� �� ������� � �

Table ��� A breakdown of the open�close sessions of each type� breakdown is by the �le system of the �le�
Values in parentheses are each �le system�s operations as a percentage of the open�close sessions of that
type�

Block Read

Open

Read

Close

Block Read

Open

Read

Close

nfstrace open-close sessionreal open-close session

Close

Read
Read

Read

Open

Block Read
Block Read

Block Read

Case 1
Block Write

Block Write

Open

Write

Close

Write

Case 2 Case 3

Figure �� Several open�close sessions as generated by nfstrace are compared with the actual open�close
session that occurred� The open�close session generated by nfstrace depends heavily on the type of NFS
transaction each block access will invoke�



0 Mbyte

5 Mbyte

10 Mbyte

15 Mbyte

20 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Data over day (10 minute samples)

snooper read (data transfered)
nfstrace read (filesize)

0 Mbyte

2 Mbyte

4 Mbyte

6 Mbyte

8 Mbyte

10 Mbyte

12 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Data over day (10 minute samples)

snooper write (data transferred)
nfstrace write (filesize)

Figure 
� These graphs compare the transfer rate measured with snooper� to the total amount of data
nfstrace has calculated the client has had access to in each �le from which it has read data� As a low�order
approximation� these values are comparable giving the same characteristics for data utilisation over time
of the trace�



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 10 100 1K 10K 100K 1M

N
um

be
r 

of
 o

pe
n-

cl
os

e 
op

er
at

io
ns

Data transferred (bytes)

Cumulative number of open-close operations against data transferred

snooper
nfstrace

Figure 
� Cumulative distribution of the number of
open�close sessions versus the data transferred for
each open�close session� From this graph we can de�
duce the amount of data transferred per open�close
session for a given number of those sessions� For
example� the snooper technique records that over
����� sessions transfer about ����� bytes of data�
Note� the data transferred axis is logarithmic�

are in the cache and no data are transferred between
server and client� This reasoning is strengthened by
the fact that nfstrace gives trends similar to those
of snooper for other transfer values �even if the ac�
tual number of sessions is greatly reduced��

The di�erences between snooper and nfstrace

in Figure �� have resulted from nfstrace being un�
able to interpret frequent accesses to �les of a certain
length� in particular� �les which are 
�� ���� 
�� and
����� bytes in size� Accesses of such �les account
for a large percentage of the overall open�close ses�
sions for regularly�accessed �les but nfstrace is not
recording an open�close session for them� This re�
sults in an exaggeration in the graphs for the num�
ber of open�close sessions for common data�transfer
and �le�size values� This situation is probably exac�
erbated by the inability of nfstrace to record many
of the open�close sessions in which no data transfer
is made�

��
 Losses due to rpcspy

During this study� the recording of all Ethernet traf�
�c by the rpcspy machine was not possible �a loss
of ���� was recorded�� This implies a loss of ���� of
the total NFS transactions from the recorded trace�
if we assume a ratio of NFS to non�NFS tra�c at

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 10 100 1K 10K 100K 1M

N
um

be
r 

of
 o

pe
n-

cl
os

e 
op

er
at

io
ns

File size (bytes)

Cumulative number of open-close operations against file size

snooper
nfstrace

Figure ��� Cumulative distribution of the number of
open�close sessions versus the size of the �le accessed
in each open�close session� From this graph we can
deduce the maximum size of �les opened for each
open�close session for a given number of those ses�
sions� For example� the snooper technique records
that over ����� of the sessions access �les containing
less than ����� bytes of data� Note� the �le size axis
is logarithmic�

the same ratio as was recorded during the testing of
rpcspy network packet capture mechanism� While a
source of potential error� this data loss is overshad�
owed by the errors introduced by certain aspects of
the operation of nfstrace� While this error should
not be discounted� it can be considered to have low
overall signi�cance in the results�

� Comparison Summary

The preceding results show that� while the two sets
of results are not directly comparable� nfstrace is
able to make a �rst order approximation of a num�
ber of values traditionally measured by systems such
as snooper such as the total I�O transferred by a
machine or the quantity of data written� Addition�
ally� other estimated values� while estimated impre�
cisely by nfstrace in the current version� could po�
tentially give accurate enough results to be able to
replace systems such as snooper outright in a num�
ber of circumstances including measuring the num�
ber of active users per machine or the distribution
of �le size compared with �les accessed� Most dis�
crepancies in the interpretation by nfstrace when
compared with results from snooper relate to the



identi�cation of open�close sessions� Minimisation
of these errors would improve the estimation of both
open�close session duration and data�size results�

A number of the results collected by nfstrace

are not comparable with those collected by snooper�
e�g� the amount of data transferred� While values
for the maximum data transferred and write opera�
tions can be comparable� values a�ected by signi��
cant caching �e�g� reading of data� particularly small
amounts repeatedly from the same �le� will di�er sig�
ni�cantly�

In addition to measurements which can be com�
pared� the unique nature of both snooper and rpc�

spy means that each has access to di�erent types
of information� Snooper is ideally suited to record�
ing information about processes� an area from which
network monitors are unable to retrieve information�
On the other hand� nfstrace is ideally suited to col�
lecting information about all machines on a partic�
ular network including� for example� all the tra�c
for a particular server� These di�erences mean each
technique has a role to ful�l but there is certainly
potential for network monitoring to be able to make
measurements for which kernel instrumentation has
traditionally been used in the past�

Additionally� it is worth pointing out that the
information rpcspy generates and that nfstrace in
turn uses� is not in error� The di�erences between
nfstrace output and that of snooper occur because
nfstrace attempts to estimate the operations on the
user side of the cache from the operations that occur
on the �le system side of the cache� Improvements
in the performance of nfstrace would come about
from improvements in this estimation process�

� rpcspy�nfstrace problems

For nfstrace to be a more useful tool� the accuracy
of its estimations needs to be improved� There are a
number of areas where nfstrace either makes errors
or does not have enough information with which to
work�

nfstrace problems to be addressed�

�� nfstrace treats the creation of a �le as two
separate open�close sessions�

�� Underestimation of the number of open�close
sessions� This also means nfstrace can over�

estimate the data transferred per open�close
session� particularly in the case of writes�

�� nfstrace is unable to observe logical data
transfer�

�� nfstrace has no record of open�close sessions
that transfer no data at the logical level�

�� nfstrace has no record of open�close sessions
that both read and write data�

�� The nfstrace method used for summation of
read operations and write operations can result
in transferred data not being counted�

�� The method used for estimating the purpose of
an NFS getattr transaction is simplistic�


� nfstrace does not estimate the contents of a
client cache� As a result nfstrace will assume
�les in cache are being accessed when this is
not the case�


� nfstrace is unable to detect short open�close
sessions�

To a large extent these problems are also a result
of NFS not making enough information available for
nfstrace to be able to estimate the operations that
are occurring� The lack of data supplied by NFS also
means nfstrace acts as a �lter removing short� con�
secutive� open�close read sessions� Such operations
are absorbed by the cache and as a result �ne�grain
sporadic operations are missed�

	 Improving rpcspy and nfs�

trace

Improvements to rpcspy will be achieved by us�
ing a high�speed machine with a high�speed� low�
loss network interface to be dedicated to the task of
data collection� The improvements to nfstrace can
not be stated quite as concisely� Smaller changes to
nfstrace include�

� adding the ability to interpret other signi�cant
NFS transactions such as create�

� using a simple ratio multiplier to obtain an es�
timate of data transfers at the logical level�



� modi�cation of nfstrace to keep information
about �le truncation giving the ability to in�
terpret �le re�write events

� separately recording data read from and writ�
ten to the server for all open�close sessions�

� recording information on which blocks of a �le
have been accessed� and

� interpreting NFS getattr transactions that
immediately follow a �le being read or written
as another open�close session�

While some of these changes� such as the last
item listed� would need to be tested to ensure the
resulting extra records were correct� others in the list
would give immediate improvement in the abilities of
nfstrace�

More signi�cant changes to nfstrace include

� pre�loading information about programs that
cause stat system calls such as ls�

� build a block cache simulator into nfstrace

In order to pre�load information about common�
ly�used programs that cause stat system calls� it
may be necessary to pro�le the system prior to any
signi�cant tracing activity� In most systems� com�
monly�used programs such as ls could be expected
to generate potential problems and could be added
by default� However� the need to do a pro�ling op�
eration would not only increase the complexity of
passive network monitoring but might also negate
any advantage of network monitoring by potentially
requiring access to the machine being monitored�
Another alternative� or addition� to pre�loaded con�
�guration information is for nfstrace to charac�
terise programs such as ls as it processes the NFS�
transaction data� nfstrace would locate ls type
programs by noting programs which� once executed�
caused clusters of NFS lookup and getattr trans�
actions� typically for �les sharing the same sub�
directory� In this way� nfstrace would be simul�
taneously processing the data and gaining enough
information to locate programs causing extraneous
NFS getattr transactions thus improving the pre�
diction of ls type programs during the course of the
run�

The incorporation of a block�cache simulator
into nfstrace o�ers the best potential for increasing

the accuracy of nfstrace� Unfortunately� several
signi�cant items of information would be needed to
recreate accurately the block cache of a client� These
would include the cache size on the client� the num�
ber of cache entries and the size of the data blocks be�
ing transferred between client and server� Addition�
ally� the programming and testing of a cache simula�
tor is not a simple task and because of resources used
�memory� etc�� would potentially mean nfstrace

could not be run simultaneously with rpcspy which
is a preferred operating mode �in order to reduce
output data��

The addition of the simulator would mean that
nfstrace would be attempting to model a partic�
ular type of block cache� While there is a com�
mon ancestry for the method used by block caches
in UNIX and its derivatives� there are notable dif�
ferences� The introduction of such facilities as the
demand�paging of executables as well as subtle chan�
ges in the cache system means the behaviour of the
caches of systems being monitored will di�er� some�
times dramatically� The result is that nfstracemay
be required to incorporate models for several di�er�
ent block�cache systems� While this would add to
the complexity of nfstrace� the common ancestry
of block caches means much of the code used in each
simulator would be common to all� It is conceivable
that such an nfstrace could read a con�guration
�le containing information on which cache method
each client was using� Without appropriate con�gu�
ration information� nfstrace could assume a partic�
ular model� perhaps the most common cache method
used or the worst�case simulator model�

Such a pre�loaded con�guration �le would also
contain information about NFS parameters such as
cache and attribute timeouts� thereby increasing the
accuracy of the simulator� This information� on a
�le�system by �le�system basis� could also give in�
formation about the characteristics of access to a �le
system� e�g� mail �le systems can potentially cause
open�close sessions to be generated when none was�
and so on�

A block�cache simulator would increase the accu�
racy of the open�close session predictions nfstrace
makes and allow nfstrace to be used for other pur�
poses� nfstrace has the potential to simultaneously
simulate the caches of all the machines on a network
so it could be used to study interactions between the
caches of di�erent machines� For example� such a fa�
cility would enable a comprehensive study of block



sharing among NFS clients�

An extension to nfstracewould enable it to keep
track of information about the directory systems in
a distributed �le system� Modi�cations to directory
information are written synchronously back to the
server as the modi�cations take place but the direc�
tory information itself is cached on the clients� Be�
cause changes are written synchronously� it is pos�
sible for nfstrace to maintain an accurate simula�
tion of the state of the �le system� Additionally�
nfstrace could incorporate a directory�name cache
simulator in the same style as a block�cache simula�
tor and be able to simulate the contents of this cache
among many clients� As in the case of a block�cache
simulator� a directory�name cache simulator would
enable nfstrace to be used to study interactions be�
tween the caches of the clients and track the history
of changes to the �le system� The use of such a modi�
�cation may enable a follow�up study to Shirri� and
Ousterhout�s work on name and attribute caching
����	��

Many of the limitations in nfstrace� indeed� the
very need for nfstrace to have to estimate open�
close sessions� are caused by the fact that this infor�
mation about open or close is not transmitted in the
NFS protocol� Other distributed�system protocols�
such as Sprite ��
	 and the Andrew File System ���	�
transmit information related to the state of �les in
the distributed �le system� If nfstrace was modi�
�ed to work with such a state�orientated distributed
system� the accuracy of nfstrace output could po�
tentially be as high as a full kernel instrumentation
trace� The potential for accurate rpcspy�nfstrace
analysis of distributed systems should also hold true
for any distributed �le system that transmits enough
state information across the network� This method
even has the potential to work on theoretical dis�
tributed �le systems� such as xFS ���� 
	� which de�
part from a central �le server model completely� It
is conceivable that during the development of such
monitoring systems� methods based on the passive
monitoring of network tra�c would become a pri�
mary tool for assisting in the development and ulti�
mately the management of such systems�

Another technique for increasing the accuracy of
nfstrace is to add simulated state operations to
NFS� This would involve modifying the kernel of
each client to output extra NFS transactions for sys�
tem calls such as open� close and seek� It would
not be necessary for the server to act on or even

acknowledge these calls but the transmission of the
extra information through the network would poten�
tially give nfstrace enough information to be able
to establish when �les were opened and closed� Of
course� such modi�cations are contrary to many of
the concepts of passive network monitoring� requir�
ing modi�cations to perhaps many client machines�
However� this technique would maintain the bene�t
that the collection of the trace data would be inde�
pendent of the server and clients� It would impose
no extra workload directly upon them� This method
of adding additional information to the communica�
tions tra�c between client and server� for the pur�
poses of monitoring� was used in Baker et al� ��	 as
one of a number of modi�cations they made to col�
lect data for their work�

Distributed computer systems do not consist
solely of distributed �le systems� Systems in the
style of Sprite ��
	 and Amoeba ���	 enable the mi�
gration of processes among CPU elements �typically
a CPU element is a computer workstation�� A moni�
toring method for such a system might involve mon�
itoring the network�s interconnecting processing ele�
ments and tracking the movement of the processes in
the same way that nfstracemonitors the movement
of �le data among workstations� In this way� passive
network monitoring has possible applications in ar�
eas other than just the monitoring of distributed �le
systems�


 Summary comments

System monitoring has a signi�cant role in the de�
velopment of computer systems�

A common method of monitoring systems is to
use full kernel instrumentation� involving the modi�
�cation of the source�code for the operating system
of the machine� Passive network monitoring can be a
preferred choice over kernel instrumentation for cer�
tain system monitoring work� particularly where the
source�code of the operating system is not available�
Additionally� other advantages of passive network
monitoring include�

� an independence of the collection of results
from the machines being monitored on the net�
work�

� the ability to monitor simultaneously multiple
machines on a network� the passive network



monitoring system requires no modi�cations to
the operation of the monitored systems� and

� the collection of data with passive network
monitoring does not impact on the machines
being monitored�

Through the comparison of these two techniques� it
is shown that passive network monitoring is satisfac�
tory as a partial replacement for full kernel instru�
mentation�

In addition to this� passive network monitoring is
non�invasive� platform�independent and has the abil�
ity to simultaneously monitor many network users�
This gives it the potential for use in many systems
studies using a broader cross�section of machines�
Only through such a broad analysis can new systems
be built based on information gained from more than
just test systems and theories�

�� Future work

Ideally� future work would broaden the base over
which the comparison of the two systems was made�
The improvements could encompass both the inclu�
sion of all tra�c types� instead of the restriction to
only non�executable �le tra�c� and the performing
of the comparison on machines in a variety of oper�
ating circumstance� By comparing over a variety of
systems� any peculiarities of the load the test system
was placed under would be highlighted or� at least�
minimised�

With the current system� a further study estab�
lishing the accuracy of the rpcspy�nfstrace system
for the recording of block tra�c communicated be�
tween client and server would prove useful�

Using a more accurate nfstrace� a comprehen�
sive analysis in the style of Ousterhout et al� ���	�
Baker et al� ��	� Howard et al� ���	 and Spasojevic
and Satyanarayanan ��
	 could be possible� Such an
analysis would not only form an interesting compar�
ison and contrast with those studies but also enable
data to be collected from a variety of systems rather
than the traditional limitation to academic or re�
search installations�

A comparison of nfstrace with a similarly�des�
igned RPC transaction processor analysing other dis�
tributed �le systems based upon RPC communica�
tions would give an interesting point of comparison

between NFS and those systems�

The incorporation of a cache simulator into nfs�
trace would o�er the potential for an increase in the
accuracy of nfstrace estimations and the possibil�
ity for nfstrace to be used to perform other system
studies directly without the need for any extensive
results processing� Such a study could cover per�
formance issues� while another study could be made
into the sharing of �les and blocks among clients� In
the case of a performance study� the cache simula�
tor could be used to establish relationships between
block lifetimes and cache e�ectiveness with the size
of caches and timeout characteristics of the NFS sys�
tem�

An extension of this work could take the form of
a study which would also be possible with a suitably�
enhanced nfstrace system into the utilisation of
�les and sub�directories� including lifetimes� usage
distribution� etc� By combining such a modi�ed
nfstrace system with data about the �le system
before and after the trace period� it would be pos�
sible for nfstrace to accurately simulate and track
operations on the directories of the �le system� Such
a facility would allow studies into �le�naming struc�
tures and the caching of those structures in the style
of Shirri� and Ousterhout ���	�

Acknowledgements

The authors would like to thank Matt Blaze for
making the original suite of rpcspy�nfstrace soft�
ware available� The authors are equally grateful to
Songian Zhou and Chris Siebenmann for the access
to the original snooper code� Thanks are extended
to Cameron Blackwood and Ralphe Neill for com�
menting on drafts of this paper� A� W� Moore was
the recipient of a Monash University Postgraduate
Writing�Up Award�

References

��	 Anderson� P� E�ective Use of Local Work�
station Disks in an NFS Network� In USENIX

LISA VI October ����	� ���� �October �

���
pp� ��
�

��	 Baker� M� G�� Hartman� J�� Kupfer� M��
Shirriff� K�� and Ousterhout� J� Measure�



ments of a Distributed File System� In Pro�

ceedings of the �	th Symposium on Operating

System Principles �Paci�c Grove� CA� October
�

��� ACM� pp� �

�����

��	 Blaze� M� NFS Tracing by Passive Network
Monitoring� In USENIX Conference Proceed�

ings� Winter ���� �San Francisco� CA� January
�

��� USENIX� pp� �������� Also available
as a Technical Report with the Department of
Computer Science� Princeton University�

��	 Blaze� M� Caching in Large�Scale distributed


le systems� PhD thesis� Princeton University�
January �

��

��	 Blaze� M�� and Alonso� R� Issues in
Massive�Scale Distributed File Systems� In
USENIX File System Workshop� May ������

���� �Ann Arbor� MI� �

��� pp� ��������

��	 Boggs� D� R�� Mogul� J� C�� and Kent�

C� A� Measured Capacity of an Ethernet�
Myths and Reality� Tech� Rep� 

��� Digital
Western Research Laboratory� April �


�

��	 Carson� S�� and Setia� S� Analysis of the
periodic update write policy for disk cache�
IEEE Transactions on Software Engineering ���
� �January �

��� ������

�
	 Carson� S�� and Setia� S� Optimal Write
Batch Size in Log�Structured File Systems� In
USENIX File System Workshop� May ������

���� �Ann Arbor� MI� �

��� pp� �
�
��

�
	 Dahlin� M� D�� Mather� C� J�� Wang�

R� Y�� Anderson� T� E�� and Patterson�

D� A� A quantitative analysis of cache poli�
cies for scalable network �le systems� Tech�
Rep� UCB�CSD�
���

� Department of Com�
puter Science� University of California� Berke�
ley� February �

�� Also appeared in �

�
ACM SIGMETRICS Conference on Measure�
ments and Modeling of Computer Systems�
Nashville� TN� May� �

�� pp ��������

���	 Floyd� R� A�� and Ellis� C� S� Directory
reference patterns in hierarchical �le systems�
IEEE Transactions on Knowledge and Data En�

gineering �� � �June �


�� ��
�����

���	 Hartman� J�� and Ousterhout� J� Zebra�
A Striped Network File System� In USENIX

Workshop on File Systems� May ���� �May
�

��� pp� ������

���	 Howard� J�� Kazar� M�� Menees� S��

Nichols� D�� Satyanarayanan� M�� Side�

botham� R�� and West� M� Scale and perfor�
mance in a distributed �le system� ACM Trans�

actions on Computer Systems �� � �February
�


�� ���
��

���	 Kistler� J�� and Satyanarayanan� M� Dis�
connected operation in the coda �le system�
ACM Transactions on Computer Systems �
� �
�February �

��� �����

���	 Lyon� B� XDR � External Data Representation
Standard� June �

�� Network Working Group
Request For Comment �RFC� � ����� Written in
association with DARPA and Sun Microsystems
Inc�

���	 Lyon� B� RPC � Remote Procedure Call Pro�
tocol Speci�cation� April �


� Network Work�
ing Group Request For Comment �RFC� � �����
Written in association with DARPA and Sun
Microsystems Inc�

���	 Mogul� J� C�� Rashid� R� F�� and Accetta�
M� J� The packet��lter� An e�cient mecha�
nism for user�level network code� In Proceedings
of the ��th Symposium on Operating Systems

Principles �Austin TX� November �

��� ACM
SIGOPS�

���	 Mummert� L�� and Satyanarayanan� M�

Long Term Distributed File Reference Tracing�
Implementation and Experience� Tech� Rep�
CMU�CS�
������ School of Computer Science�
Carnegie Mellon University� November �

��

��
	 Ousterhout� J� K� Why Aren�t Operating
Systems Getting Faster as Fast as Hardware�
USENIX Summer Conference June ����� �June
�

���

��
	 Ousterhout� J� K�� Cherenson� A� R��

Douglis� F�� Nelson� M�� and Welch� B�

The Sprite network operating system� IEEE

Computer ��� � �February �


�� ������

���	 Ousterhout� J� K�� DaCosta� H�� Har�
rison� D�� Kunze� J�� Kupfer� M�� and

Thompson� J� A trace�driven analysis of the
UNIX ��� BSD �le system� In �
th Symposium



on Operating System Principles �Orcas Island�
WA� December �

��� ACM� pp� ������

���	 Reddy� A� L� N�� and Banerjee� P� An
Evaluation of Multiple�Disk I�O Systems� IEEE
Transactions on Computers 	�� �� �December
�


�� ��
����
��

���	 Ritchie� D� M�� and Thompson� K� The
UNIX time�sharing system� Communications of
the ACM ��� � �July �
���� ��������

���	 Ruemmler� C�� and Wilkes� J� UNIX
disk access patterns� Tech� Rep� HPL�
������
Hewlett Packard Laboratories� December �

��
Also published in the USENIX Winter �
� Tech�
nical Conference Proceedings� San Diego� CA�
Jan ����
� �

� pp ��������

���	 Sandberg� R�� Goldberg� D�� Kleiman�

S�� Walsh� D�� and Lyon� B� Design and
Implementation of the Sun Network Filesys�
tem� In USENIX Conference Proceedings� Sum�

mer ���� �Portland� OR� June �

��� USENIX�
pp� ��
�����

���	 Satyanarayanan� M� The In�uence of Scale
on Distributed File System Design� IEEE

Transactions on Software Engineering ��� �
�January �

��� ��
�

���	 Shirriff� K�� and Ousterhout� J� A Trace�
Driven Analysis of Name and Attribute Caching
in a Distributed System� In USENIX Confer�

ence Proceedings� Winter ���� �San Francisco�
CA� �

��� USENIX� pp� ��������

���	 Siebenmann� C�� and Zhou� S� Snooper

Users Guide� University of Toronto� August
�

��

��
	 Smith� A� J� Disk cache � miss ratio analysis
and design considerations� ACM Transactions

on Computer Systems 	� � �August �

��� ����
����

��
	 Spasojevic� M�� and Satyanarayanan� M�

A usage pro�le and evaluation of a wide�area
distributed �le system� Tech� Rep� CMU�CS�

������ School of Computer Science� Carnegie
Mellon University� October �

�� Also appeared
in Winter USENIX Conference� San Francisco�
CA� January� �

��

���	 Tanenbaum A�� et al� Experiences with the
Amoeba Distributed Operating System� Com�

munications of the ACM 		� �� ��

���

���	 Thompson� J� File Deletion in the UNIX Sys�
tem� Its Impact of �sic	 File System Design and
Analysis� April �

�� Computer Science Di�
vision�EECS�University of California� Berkeley
CS ��� term project�

���	 Thompson� J�� and Smith� A� E�cient
�stack� algorithms for analysis of write�back and
sector memories� ACM Transactions on Com�

puter Systems �� � �February �


�� �
�����

���	 Thompson� J� G� E�cient Analysis of

Caching Systems� PhD thesis� EECS� University
of California� Berkeley� September �

�� Also
available as UCB�EECS technical report CSD�

������

���	 Wang� R� Y�� and Anderson� T� E� xFS� A
Wide Area Mass Storage File System� In Fourth
Workshop on Workstation Operating Systems

�October �

��� pp� ����
�

���	 Zhou� S�� DaCosta� H�� and Smith� A� J�

A File System Tracing Package for Berkeley
UNIX� Proceedings ���� USENIX Summer

Conference Portland Oregon June ������ �June
�

��� ������
�

���	 xFS � Serverless Network File Service� July
�
th� �

�� Available via the World Wide Web
http���now�cs�berkeley�edu�Xfs�

xfs�html�


