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Abstract

This paper presents the comparison of two methods of
system monitoring, passive network monitoring and
kernel instrumentation. The comparison is made on
the basis of passive network monitoring being used
as a replacement for kernel instrumentation in some
situations. Despite the fact that the passive network
monitoring technique is shown to perform poorly as
a direct replacement for kernel instrumentation, this
paper indicates the areas where passive network mon-
itoring could be used to the greatest advantage and
presents methods by which the discrepancies between
results of the two techniques could be minimised.

1 Introduction

The use of file system monitoring in general, and
comprehensive kernel monitoring techniques in par-
ticular, have laid the critical groundwork for the de-
velopment and refinement for many operating sys-
tems. Kernel instrumentation has the potential to
give an exact record of what occurred in the kernel
of a system and, as a result, is commonly used when
high precision is required.

It has been used, in studies such as Ousterhout et
al. [20], Smith [28], Mummert and Satyanarayan-
an [17, 29] and Baker et al. [2], to record information
about an operating system and its file systems. The
results and conclusions of these studies have then
been used for studies of topics such as cache issues
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and simulation models [32, 7, 8, 33], and in the de-
sign process of new systems [11, 19, 13, 10, 21].

However, while there is a large variety of sys-
tems in common use, a similarly wide variety of com-
prehensive studies is not evident, which can be at-
tributed to the difficulties in performing such studies.
Comprehensive studies using kernel instrumentation
have a number of drawbacks, as seen in the following
list (adapted from Mogul et al. [16]):

e code which is to reside in the kernel is difficult
to write and debug,

e kernel source-code is not always available,

e the kernel must be recompiled and the machine
rebooted each time an error is found,

e errors in the kernel code are likely to cause
system crashes,

e functionally-independent kernel modules may
have complex interactions over shared resour-
ces,

e kernel-code debugging cannot be done during
normal machine operation; specific develop-
ment time must be scheduled, resulting in in-
convenience for users sharing the system and
odd work hours for system programmers,

e commonly additional load is introduced onto
the monitored system,

e sophisticated debugging and monitoring facili-
ties such as those available for developing user-
level programs may not be available for kernel
code.

Kernel instrumentation for file-system monitor-
ing takes the form of code inserted at the system-
call interface or at the internal interface between



system-call and file-system operations. Such meth-
ods suggest an alternative technique for monitoring
a computer’s file-system activities where the com-
munications channel between a machine and its disk
drives, and in particular between a diskless client
and its disk server, is passively monitored. Blaze
used this technique with his snooper/rpcspy soft-
ware [3], passively monitoring traffic between Net-
work File System (NFS) [24] clients and servers, and
predicting the operations the clients performed to
cause those operations.

Full kernel instrumentation is used commonly in
system monitoring but, by definition, it involves the
modification of the operating-system source-code for
the machine in question. Passive network monitoring
can be a preferred choice over kernel instrumenta-
tion for certain system-monitoring work, particularly
if the source-code is not available. Passive network
monitoring also has other advantages, including:

e results from the machines being monitored can
be collected independently of those machines,

e no modifications are required to the operation
of the monitored systems,

e the collection of data with passive network
monitoring does not impact on the machines
being monitored, and

e the ability exists to monitor multiple machines
simultaneously on a network.

This final point is important because distributed
systems are growing in popularity and a significant
number of computers in common use are part of a
distributed system, if only through the distribution
and sharing of files. Comprehensive studies of dis-
tributed systems in general and distributed file sys-
tems in particular are relatively rare. The main rea-
son for this is that the complexity of collecting data
is greatly exacerbated by the need to collect it simul-
taneously from a large number of machines. Kernel
instrumentation would require modification of any
number of different computers with different oper-
ating systems running on different hardware. There
would also be the issues of the load imposed in the
actual collection of data on or from each client and
the immense task of post-processing the data from
the different machines.

These disadvantages do not exist when using pas-
sive network monitoring of the data channel between

clients and a server. Data about all active clients can
be collected simultaneously and, if a distributed file
systems such as NFS is in use, the data collected
from the network is independent of the operating
system or machine architecture [15, 14].

2 rpcspy/nfstrace

If rpcspy/nfstrace are to be used as a replacement
for kernel instrumentation, the technique must be
able to deliver to a researcher data similar to that
generated by the kernel instrumentation techniques.
rpcspy/nfstrace has two distinct components for
achieving this.

rpcspy interacts with the ethernet-interface facil-
ities of the monitoring machine and collects packets
traversing the network to which it is connected. The
packets are converted into the request or reply part
of an NFS Remote Procedure Call (RPC). Each re-
quest and reply is then matched together, data of in-
terest are extracted and a transaction record is made
along with a time stamp of when the transaction was
completed.

The second component, nfstrace, uses an heu-
ristic based on the operation of NFS to make an
estimation of the duration of a file’s open-close ses-
sion (the time between when a file is first opened,
read from and/or written to and then closed) which
caused the NFS transactions recorded by rpcspy to
occur. nfstrace creates records of file open-close
sessions it estimates have occurred (and, thus, to
have generated the NFS transactions seen). This
estimation relies, in part, on consistency in NFS im-
plementations.

For example, for every open system call (indepen-
dent of whether the file is to be read to and/or writ-
ten from or just accessed) an NFS getattr
transaction is generated. However, open-close ses-
sions to read or write data handle the actual data
in significantly different ways although it should be
noted that the write transaction case is easier to
handle because the cache does not have as dominant
effect on the write operations. As a result, much of
the special-case handling nfstrace must do applies
only to NFS read transactions.

rpcspy/nfstrace together generate an estima-
tion of the open-close sessions that a kernel instru-
mentation system could record directly. Figure 1
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Figure 1: The data flow between a user program and
an NFS file system. Instrumentation points for ker-
nel instrumentation (snooper) and network monitor-
ing (rpcspy) are indicated. This diagram compares
the difference in the information available to each
system. In particular, one instrumentation point,
snooper, is before the cache and the other, rpcspy,
is after the cache.

shows how the instrumentation points for each of the
two systems differ in the components of the system
available to them and, thus, the information acces-
sible to them.

Kernel instrumentation is able to record events
such as the system calls occurring on the computer,
while passive network monitoring must interpret the
transactions between client and server to estimate
which system operations have occurred. rpcspy
/nfstrace results record what happened on the
server side of the client cache - the traffic that oc-
curred between client and server.

3 Previous work using rpcspy
/nfstrace

The rpcspy/nfstrace implementation by Blaze
has been used in several different works to aid in the
development of new systems and as an aid to the
configuration of existing systems. Anderson [1] used
rpcspy/nfstrace to analyse client-server file system
traffic and made use of information about the traffic
to better utilise local disks in the clients themselves.
Regularly-read, static, read-only files were moved to
the local disk, on a partially automatic basis, tak-
ing into account each file’s utilisation by a partic-

ular workstation. Blaze uses results collected using
rpcspy/nfstrace in a number of works to justify
the design of a wide area file system [4, 5]. Finally,
Dabhlin et al. [9] uses rpcspy and a partially-modified
version of nfstrace to collect results used in a paper
to justify a particular file system design [34].

Each of these studies has been made with the as-
sumption that complications introduced by the re-
sults of rpcspy/nfstrace are negligible. This is
valid for studies based upon the traffic between a
client and server which take into account the effects
of the client cache such as Dahlin et al. [9]. How-
ever, other studies can be at risk for assuming that
rpcspy/nfstrace is such a perfect replacement for
traditional techniques.

Blaze [4] notes in his description of the rpcspy
software that the effects of packet loss should be
quantified. Additionally, he notes in his description
of the rpcspy/nfstrace software that peculiarities
of the heuristics of nfstrace (and its original imple-
mentation) need to be evaluated more completely.

Previously, the use of rpcspy/nfstrace has
been without any hard data on the accuracy of the
implementation and only a passing appreciation of
areas where the implementation is inaccurate and
the reasons for those inaccuracies. The following sec-
tions present a comparison of two systems recording
data from the same source and then discuss the re-
sults.

4 Systematic error in rpcspy

The rpcspy/nfstrace tools depend heavily on the
ability of the network interface of the machine on
which they are being run to capture all traffic pass-
ing through the network. Packet-loss by the net-
work interface does not have a linear relationship
with network utilisation. The network interface will
not lose data when utilisation is low but data loss
will increase as utilisation increases to a point be-
yond which it will be unable to accept any further
increase in the data-transfer rate. The amount of
data it can process will flatten out no matter what
the utilisation beyond that point.

A study was performed to quantify the potential
data loss of rpcspy and to calibrate the network in-
terface rpcspy uses. To perform these tests satisfac-
torily, a network analyser capable of full-utilisation



measurements on Ethernet was required. A Hewlett
Packard Internet Advisor Model J2522As was used
both to make measurements and to generate artifi-
cial loads on the network. The packetfilter mech-
anism used was in a DECstation 3100 running Ul-
trix 4.3a and the NIT mechanism used was in a Sol-
bourne SC2000 (a machine compatible with the Sun
Sparcstation 2) running a SunOS 4.1.2 compatible
operating system.

Tests of rpcspy, where the network was loaded
artificially, used the traffic breakdown in Table 1
which was based on an analysis of the network’s reg-
ular traffic content collected over several 24-hour pe-
riods.

The packetfilter facility of Ultrix offers some
configuration options. In particular, the size of the
packet buffer, where packets processed by packet
filter are placed for collection by the user process,
can be set. The NIT mechanism in SunOS does not
offer this configurability. The default configuration
and an optimum (largest configurable buffer size) for
packetfilter in addition to the NIT mechanisms
are compared in Figure 2. This figure shows the
percentage of unprocessed Ethernet packets versus
Ethernet network utilisation. It is apparent that not
only are the characteristics of the NIT mechanism
poor beyond 10% utilisation but that the packet
filter mechanism did not demonstrate the same
level of loss until utilisation was close to 50%. The
packetfilter mechanism showed no loss until over
15% utilisation, a stage by which NIT mechanism loss
was close to 25%.

A significant issue in rpcspy is the combination
of processing overhead on the client, which is im-
posed by the need of rpcspy to match RPC transac-
tions, and the packet-loss characteristics of the Eth-
ernet interface which rpcspy is using. Figure 3 shows
the number of NF'S transactions versus Ethernet util-
isation. The Ethernet utilisation in these tests is al-
most purely NFS traffic. By using NFS traffic exclu-
sively we are able to establish the maximum number
of NFS transactions each rpcspy system is able to
process in a given time period. The Hewlett Packard
test equipment recorded the actual number of NFS
transactions that occurred over this time. For this
test the packetfilter was left in the default con-
figuration.

The test shows that each system has a maxi-
mum number of packets it can process. The NIT-
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Figure 2: A comparison of Ethernet utilisation ver-
sus packet loss for various workstation Ethernet in-
terfaces. packetfilter default and optim(um) are
two configurations of the Ethernet packet capture fa-
cility of the Digital DECstation, NIT is the Ethernet
capture facility in Sun Microsystem’s SunOS.

SunOS system is limited to processing about 175
NFS transactions per second. The default config-
uration packetfilter-Ultrix combination appears
to be limited to processing approximately 260 NFS
transactions per second. It is important to note
this was a stress-testing of rpcspy and that such
NFS loads were not a characteristic of the network
to which these machines were connected. From the
figures in Table 1 we can see that 36% of the to-
tal Ethernet traffic is from NFS. However, it would
not be true to say of this 36% that half the number
of NFS Ethernet packets is an approximate count
of complete NFS transactions. Such a simplifica-
tion would not allow for there being incomplete NFS
transactions (the loss of the request or reply in a
transaction), nor would it allow for NFS transactions
that required more than one pair of network packets
(transactions where the data payload required two
or more Ethernet packets). In each of these cases
rpcspy does not need as much processor time as if
it had had a complete NFS transaction. As a result,
the test network operating at 12% utilisation could
mean less than 72 transactions per second in a mixed
load with a variety of NFS traffic rather than the 200
transactions per second that the Figure 3 stress-test
indicates.

The exact cause of such data loss is not known
for certain but it could result from limitations in
the hardware of the network interface and/or in the



Protocol type Sub-protocol | Types of packet | Packet size (avg.) %
Internet Protocol (IP) 67 | UDP  36.9 NFS 155 | 24.7
1500 | 12.2

TCP  30.1 (all) 80 | 15.1

192 | 9.0

1272 | 6.0

Novell Netware (IPX) 33 - - 155 | 19.8
768 | 13.2

Table 1: A breakdown of the traffic mixture used for testing rpcspy response to Ethernet utilisation

NFS transactions recorded versus ethernet utilization
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Figure 3: The number of NFS transactions versus
Ethernet utilisation for the NIT and packetfilter
capture mechanisms. Results from a network anal-
yser recording no packet loss is also given.

software of the packet collection and filtering mecha-
nism. This characteristic is unfortunate. It is during
the time when the network is busiest that utilisation
across a distributed file system will potentially be
highest. Because there is potential for rpcspy based
tools to lose data about transactions at busy times,
studies such as file sharing, a situation that would
be more likely to occur at busier times, would be
affected adversely.

Such drawbacks could be overcome by the use
of faster workstations with faster hardware network
interfaces. However, this may not be solved as easily
if the problem is due principally to poor software
implementation performance in either the network
packet capture mechanism (NIT/packetfilter) or
rpcspy.

While this characteristic loss does exist, it is sig-
nificant only above about 10% utilisation for the
packetfilter mechanism. Boggs et al. [6] comment

that most Ethernet loads are well below 50% (and
are actually close to just 5% of the network capacity)
and the network on which measurements were taken
supports this observation with a maximum load over
24 hours of no greater than 18% and an average util-
isation over 24 hours of closer to 1.1%.

5 Comparison

The following results present a comparison between
rpcspy/nfstrace and a kernel instrumentation
technique. In these results there has been an as-
sumption that rpcspy/nfstrace would be used as
a substitute for kernel instrumentation.

The kernel instrumentation this paper used is the
snooper package. It was implemented originally by
Siebenmann and Zhou [27] for Ultrix version 3.3.
Snooper is a set of kernel instrumentation routines
for recording information about a number of kernel
functions including logical file operations, physical-
block operations, process execution and termination,
etc. The snooper package is based upon the package
of the same name described in Zhou et al. [35] which,
in turn, shares its ancestry with the package used by
Ousterhout et al. [20] to perform their study of the
UNIX 4.2 BSD file system.

The results from each system were processed into
open-close sessions, i.e. sets of file transactions boun-
ded by an open and a close system call. nfstrace
performs that function for rpcspy/nfstrace but ad-
ditional post-processing code was required for the
data produced by snooper

The comparisons of snooper and rpcspy/nfs-
trace have been done by using simultaneous traces
of a single machine over a 24-hour period. The trace
of this machine was performed from 11:00 a.m. Mon-
day, 12th of December, 1994, until 11:00 a.m. the fol-



lowing day. The machine traced was a Digital DEC-
station 3100 configured with 20Mbytes of memory,
running Ultrix 4.3a. This machine was configured
with a local disk for virtual memory swap activities.
The rpcspy trace was recorded to an additional local
disk so as not to perturb the results with extrane-
ous network activity. During the 24-hour period, a
loss of 1.5% of total Ethernet traffic was recorded.
Based on the graphs of packet loss versus utilization
(figure 2) and upon the average Ethernet packet uti-
lization (table 1) this gives an approximate loss of
0.6% of NFS transactions from the total recorded
trace.

The nfstrace post-processing tool uses a heu-
ristic which incorporates a timeout to determine how
long an open-close session will last. The value is user-
selectable but the default value of 135 seconds was
used throughout the analysis described herein.

5.1 Excluded data

All transactions associated with the reading of exe-
cutable files recorded by either the snooper or rpc
spy systems were removed from the trace data before
processing. This was done to avoid problems associ-
ated with a shortcoming in the snooper instrumen-
tation, not the rpcspy/nfstrace system. Records
pertaining to the snooper trace file itself were re-
moved from the output records during the processing
stage.

While the removal of all execution transactions
may seem to change the results presented, the re-
maining data still permit a satisfactory comparison
of the two monitoring systems. The amount of po-
tential comparison-error which would be introduced
due to the inclusion of incomplete execution records
by snooper was not justified. Additionally, file sys-
tem traffic resulting from the loading of executable
files was excluded from previous studies such as
Ousterhout et al. [20] and Baker et al. [2] due to sim-
ilar problems in the logging of executable file traffic.

5.2 System traffic

The characteristics of the total file-system communi-
cations traffic are commonly-used measurements. In
the case of diskless workstations, the measurements
are important for insuring that the networks have
adequate transport capacity and that the servers of

diskless workstations have adequate service capacity.
In any sort of workstation such values define the re-
quired capacity for disk interfaces, as well as being
used in cache and bus design [35, 21, 20, 2, 23].

A comparison of communications traffic to and
from the file system at the logical level and of the
communications traffic at the rpcspy network level
are not strictly comparable because each set of mea-
surements was made on a different side of the cache.
However, one of the objectives of nfstrace was to
estimate operations that occurred at the user level by
analysing the data communications traffic between
client and server and the transactions used by the
client to ensure the contents of the cache are up
to date. As a result, while rpcspy/nfstrace can-
not generate information on exactly what data were
transferred between the user programs and the file
system (including the NFS file-system routines and
the block cache), it can calculate the exact amount
of data transferred by the NFS file system between
NFS client and server.

Table 2 gives a summary of results for the com-
parison period. It is apparent immediately that there
is a major difference in the value nfstrace estimates
for the total data transferred when compared with
snooper. They differ by a factor of 1.7. From these
results it is equally apparent that over the course of
a long-term analysis (24 hours) the results for peak
values and write data are comparable for the two
systems.

Peak values display this characteristic because
they typically involve amounts of data that are too
large or too volatile to be suitable for long term stor-
age in the cache [20, 2, 28] - this characteristic is
independent of the particular load a machine is un-
der [18]. As a result, the similarity between trans-
ferred data, particularly peak values, would remain
across any sample taken. In comparison, values for
the total quantity of data transferred over time is
not similar. The difference between snooper read
averages and nfstrace values is not surprising. The
client cache will eliminate successive NFS transac-
tions for reading data from the NF'S server and, as
a result, nfstrace cannot record the data transfer
that occurred at the logical level.

Figure 4 shows plots of data transferred over time
as recorded by snooper and rpcspy/nfstrace.
Higher levels of data transfer, particularly signifi-
cant writing activity, between 7 a.m. and 11 a.m.



Particular interval snooper | nfstrace
measurement length (bytes) (bytes)

Total data transferred 86,644,530 | 46,967,724
Average data transferred 10 seconds 10,028 5,436
Peak data transferred 5,120,000 | 5,048,320
Average data read 7,468 2,590
Peak data read 5,120,000 | 3,914,935
Average data written 2,560 2,846
Peak data written 5,120,000 5,048,320
Average data transferred 10 minutes 601,698 326,165
Peak data transferred 19,028,550 | 17,015,414
Average data read 448,103 155,387
Peak data read 10,427,845 7,144,164
Average data written 153,595 170,777
Peak data written 8,600,705 | 9,289,091

Table 2: The total data transferred for the system.
intervals are also given.

is due to the testing of image encoding algorithms
(by another researcher) on this machine requiring
the reading and writing of large image files.

The graph of read-data shows an example of the
difference between data gained from snooper instru-
mentation and that available to nfstrace. Peri-
odic accesses by automatic jobs account for the reg-
ular communications traffic logged during the 19:00
to 07:00 period. Because this communications traf-
fic involves the regular execution of programs, com-
monly with little other file-system activity, the cache
of the client holds all the necessary software and as-
sociated data files. The result is that approximately
300 Kbytes of logical data are read each 30 minutes
at the snooper level but rpcspy records negligible
read-activity between client and server over the same
period.

The reason nfstrace is not as accurate for rec-
ords of raw data transfer is because NFS transactions
do not contain significant information about blocks
read from the cache of the client. The only specific
read data available to rpcspy about data transfers
that occur is when data are read by the client from
the server’s disks.

5.3 File system transactions

As with most unix systems, each file system is used
typically for a particular purpose. For example, one
file system contains the users’ directories, another

Peak and average values for 10 second and 10 minute

file system contains executable files for the system,
etc. The DECstation analysed in this study did not
have any local file systems, apart from that used to
store trace data locally, and a local, swap disk. Ta-
ble 3 lists the different file systems the client accessed
over the trace period and the tasks each file system
served.

A breakdown of the type of data transferred to
and from each file system can be used to assist in
making file-system-configuration decisions. Such de-
cisions can include which file systems generate so
much server traffic that it would be better for them
to be attached locally to the machine and how widely
a particular file system is used. A breakdown of each
file system’s communications traffic is given in Ta-
ble 4.

It is important to note that at the system-call
level, as recorded by snooper, there is a character-
istic breakdown of these transactions. Of particular
note is a very large percentage of operations asso-
ciated with the / partition. The large number of
transactions on this partition will have been poten-
tially compounded because the /tmp and /var/tmp
directories resided on the / file systems. /tmp and
/var/tmp can potentially carry a large percentage of
operations because temporary files are traditionally
created in this directory structure [31, 22].

Table 4 shows a moderate similarity between the
results from the two monitoring methods. Notable
exceptions are traffic involving the / partition and
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Figure 4: Read and Write transfers as recorded by kernel instrumentation (snooper) and network mon-

itoring (nfstrace). A quiescent system from 19:00 until 7:00, the machine is busy during the daylight
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File System Function and Contents

/ root file system, also includes /var and /tmp. Top-level file system
containing temporary directories and logging directories.

/usr contains standard software distribution, in addition to libraries and in-

clude files for the current system.
/var/spool/mail | contains each users’ mail file.

/usr/local contains locally installed software.
/usr2 home directories for a group of users.
/packages contains commercial software packages and collections of project specific

data (in this case image data).

Table 3: A breakdown of the file systems of the study and their respective functions.



File System | snooper | rpcspy/nfstrace

total
/ | 31,736,478 (36.63) | 5,863,351 (11.59)
/usr | 2,941,480 (03.39) | 1,446,003 (02.86)
/var/spool/mail | 4,385,788 (05.06) | 3,142,239 (06.21)
/usr/local | 1,455,692 (01.68) 965,364 (01.91)
/usr2 | 38,660,513 (44.62) | 35,251,413 (69.66)
/packages | 7,464,579 (08.62) | 3,934,663 (07.78)

read
/| 27,267,823 (42.26) | 2,853,302 (12.73)
/usr | 2,941,480 (04.56) | 1,446,003 (06.45)
/var/spool/mail | 3,836,074 (05.94) | 2,311,208 (10.32)
/usr/local | 1,455,692 (02.26) 965,364 (04.31)
/usr2 | 21,561,247 (33.41) | 10,895,621 (48.63)
/packages | 7,464,579 (11.57) | 3,934,663 (17.56)

write
/| 4,468,655 (20.20) | 3,010,049 (10.68)
/var/spool/mail 549,714  (02.49) 831,031 (02.95)
/usr2 | 17,099,266 (77.31) | 24,355,792 (86.38)

Table 4: Total data, read data and write data transferred per file system as measured by snooper and

rpcspy/nfstrace.

read-traffic in general. While differences between
values for read between snooper measurements and
those of rpcspy can be explained as resulting from
the cache mechanism filtering read requests between
client and server, the read traffic for the / partition is
particularly pronounced. This difference is likely to
result from a high usage of system files located in the
/etc directory being accessed, resulting in the corre-
sponding cache entries always being valid. Examples
of such files include /etc/passwd: the list of users
able to use a system, /etc/hosts: a static table of
the systems known to this client and /etc/mount: a
file listing the file systems that should be mounted
on this client.

The notable difference in the recorded quantities
of read and write data for /usr2 is a reflection of
the volatile nature of files on this file system. In
particular, software for image encoding was being
developed and a cycle of

1. edit program
2. compile program
3. run program

existed. This development cycle, during stage 1, re-
sulted in source-code files being written to the NFS

server (and seen by rpcspy) but not necessarily read
from the NFS server. During stage 2, in addition to
the source-code files, libraries will be read only once
from the server and then may remain in the local
cache while being used repeatedly. Finally, during
stage 3, while file transactions relating to the load-
ing of the executable file itself have been removed,
this program takes as input a raw image stream and
outputs an encoded image stream. On consecutive
runs the raw image stream could have remained in
local cache.

It should be noted that the ratio of read-to-write
traffic already greatly favours the write-traffic for
/usr2 as measured with the snooper system but the
cache activities, filtering traffic, increase this ratio.

Significant differences between the amount of
write traffic recorded by each monitoring system
for both the /usr2 and /var/spool/mail file sys-
tems can be attributed to the block cache needing
to transfer data to and from the file system in block-
sized pieces. The result of this is that a modification
of one byte in a file will result in the writing of a
whole block (8 Kbytes for these file systems).

From this breakdown it is clear that, while activ-
ities on the / file system are responsible for a large
percentage of logical file traffic, block caching seems



to reduce the quantity of data transferred by a fac-
tor of up to 6. By comparison, the /usr2 file system
is responsible for a higher quantity of data transfer
and, in the development and balancing of file sys-
tems, it would be important to establish whether
this is a transient condition or a regular trend for
communications traffic for that particular file sys-
tem.

5.4 System users

Table 5 presents several values related to the number
of active users on the system and the amount of traf-
fic generated by them. Such tabulations have been
made in a number of previous studies and are useful
in the estimation of the load a user may impose on
a system as well as the worst-case scenarios for this
load.

The differences in Table 5 for the number of users
are most likely the result of snooper recording the
real User ID (UID) associated with each logical op-
eration and rpcspy recording the effective User ID
associated each NFS transaction. This difference
comes about because programs such as inetd (the
internet service daemon) perform operations as one
user and spawn programs that will run as another
user. The result is that counts of active users made
through rpcspy/nfstrace usually differ by a value
of one when compared with the active user count
from snooper.

Average-data-utilised per user indicates that
cache-hit rates are, once again, absorbing a substan-
tial quantity of communications that would have oc-
curred between each user and the file system. It is
interesting to note that the maximum values recor-
ded by each system are almost identical. This is
most likely due to the transfer of large amounts of
data, causing the client’s cache to be quickly overrun
with new data. As a result, only a minimal amount
of data is cached during this time.

5.5 Files

As files are the common unit of data accessed on
a file system, information about the range of files
accessed, as well as the working size of those files,
enables developers to determine the necessary size
of file caches, to establish common working-set sizes
and to quantify other related measurements.

As has been mentioned earlier, the difference in
the average file size for the / file system was pre-
dictable. This will principally be a result of a large
number of small, system-related files not requiring
access from the NFS system. The differences in other
values will have resulted from the caching of, and re-
peated accesses to, active files (even if these files were
active for only a short period of time). In this con-
text, an active file is one which is accessed one or
more times.

Table 7 lists the number of different files recorded
at the snooper, rpcspy and nfstrace levels. At the
rpcspy level, this is a count of every file that had a
read or write NFS operation performed on it. The
filtering characteristic of the cache is obvious when
comparing the number of files that had logical oper-
ations performed on them at the snooper level with
the number of files for which data was read from or
written to at the rpcspy level. Larger differences for
the / file system will have been as a result of accesses
to the large number of regularly-accessed system files
located there. These files would be accessed often
and be modified infrequently and would, as a result,
have a long cache life.

The results in this table show an area where
the estimation method used by nfstrace can gen-
erate discrepancies. nfstrace must estimate traffic
to and from files that have not caused any rpcspy
read or write transactions. With the exception
of /var/spool/mail, nfstrace must estimate ad-
ditional operations for files on each of the five file
systems. nfstrace has estimated extraneous oper-
ations on files of /usr2 and underestimated these
operations for the other file systems, in particular
the / file system.

The rule base under which nfstrace operates
estimates operations on files from a combination
of NFS read, write, setattr and getattr trans-
actions. The estimates of files which did not in-
volve NFS read or write transactions would have
resulted from setattr or getattr operations. By
using getattr transactions alone, there is potential
for nfstrace to confuse getattr transactions caused
by such operations as getting a directory listing with
those transactions being used to validate the con-
tents of the client cache.

In comparison, the graph of Figure 5, a normal-
ised cumulative distribution of the number of files
of each size, shows that the estimation calculated by



| interval length | snooper | rpcspy
Number of active users
Maximum 10 minute 4 4
Average 1.6 2.2
Maximum 10 second 3 1
Average 1.0 1.0
Total bytes transferred per active user

Maximum 10 minute | 6,342,850 | 5,477,752
Average 263,535 109,820
Maximum 10 second | 5,120,000 | 5,048,320
Average 11,422 18,404

Table 5: The maximum and average number of active users over given intervals and the total quantity of

data transferred per active user in those intervals.

File system | snooper | nfstrace

/ 43,378 227,880

/usr 437,123 287,006
/var/spool/mail 267,887 201,417
/usr/local 10,226 12,310
/usr2 42,713 46,067

/packages | 1,316,180 440,371

Table 6: A comparison of the average size for files
accessed on each particular file system.

nfstrace compares well with the results of snooper.
The two significant differences between the results
of nfstrace and those of snooper which lead to
disparities in the graph are for the number of zero-
length files and the number of files which were ap-
proximately 700 bytes in length.

In the first case, nfstrace is not able to gener-
ate accurate estimations of accesses to various zero-
length files and creates records of many more ac-
cesses than actually happened. This may most likely
be due to nfstrace being unable to differentiate be-
tween getattr transactions for directories and those
resulting from the opening of a zero-length file. In
the second, related case, nfstrace has underesti-
mated the number of accesses to various files which
were approximately 700 bytes in length. In addition
to the reasons above, it is possible that nfstrace
evaluates many of the 700-byte file accesses as being
zero-byte files accesses because of the block cache
absorbing the small-file transactions.

Files with a short life-span can also present a
problem to nfstrace. This is because given a short
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Figure 5: Cumulative distribution of number of dif-
ferent files accessed versus file size. From this graph
we can deduce the number of times different files less
than a given size have been accessed. For example
both techniques suggest that over 150 of the files ac-
cessed are 1 kbytes in size or smaller. Note: the file
size axis is logarithmic.

enough life-span between file creation, the writing
and reading of data, and file deletion, no NFS read
or write transactions may occur during the open-
close session. As a result nfstrace is not easily
able to record data transfer operations on files with
a short life-span.

The following table, 7, gives a breakdown of the
number of different files accessed by the system dur-
ing the measurement period. These values are con-
sistent with the hypothesis that nfstrace was un-
able to evaluate correctly the number of accesses to
zero length files. The average file size for / would



strongly confirm this, although the /packages re-
sults run counter to this. This strong counter-exam-
ple could be due to the unusual nature of files on
that particular file system. We note also that nfst-
race results count one less file for that file system;
a single large file would have modified this average
considerably.

While there are notable differences in each of
Tables 6 and 7, the results from them, in addi-
tion to those of Figure 5 show that nfstrace was
able to give results broadly comparable with those
of snooper.

5.6 File open-close sessions

The open-close session of a particular file is a concept
around which a number of measurements are based.
A number of studies have used such measurements;
examples include file sharing, file utilisation and var-
ious cache studies [20, 2, 12, 13, 25].

Such open-close session measurements include the
length of time a particular file is open, the amount
of data accessed in that time, the amount of data po-
tentially accessed (the size of the file opened), what
sort of open-close session was involved, whether the
file was opened for read and/or write operations, etc.

The number of open-close sessions as well as a
breakdown of the relative types, are tabulated in
Table 8. The implementation of NFS under Ultrix
includes the synchronous writing of modified data
blocks to the file system at the close of a file. This
means that nfstrace can potentially miss write op-
erations on files that ultimately leave the file with
zero length, for example some sort of temporary file.

nfstrace will not be able to generate results for
reads on files that occur in close succession (where
the cache contents are still valid). Additionally,
nfstrace may not correctly interpret getattr NFS
transactions used to validate the cache. The result
is nfstrace will either miss some open-close sessions
altogether, incorrectly interpret NFS transactions as
not being an open-close session, or incorrectly con-
sider that the NFS transactions from two or more
separate open-close session are from the same open-
close session.

The larger number of writes recorded by nfst-
race will certainly include the read-write operations
snooper recorded. nfstrace is unable to detect
read-write sessions and would consider each of such

operations as a separate read and write session. Null
open-close sessions, where no data are transferred
and the file is simply closed, would not be able to
be detected by nfstrace. Instead, nfstrace inter-
prets any file open, if that were the only operation
on a particular file, to be a reading of an unknown
amount of data from the client cache.

Because the borders between read and write op-
erations cannot be determined accurately, nfstrace
will tend to collect successive open-close sessions to-
gether, interpreting them as one, longer, open-close
session. As a result of this, the average duration of
the open-close sessions reported by nfstrace may
be higher than the durations reported by snooper.

Tables 9 and 10, record the open-close sessions
on a type of open-close operation per file system ba-
sis, and by file system per operation. Firstly, Ta-
ble 9 shows the full effect of the cache filtering, com-
bined with nfstrace incorrectly interpreting infor-
mation available, causing open-close sessions to be
removed. This is especially the case for the / file sys-
tem. The results for /var/spool/mail are a good
example of where nfstrace has misinterpreted the
NFS getattr transactions as open-close sessions be-
cause mail files are often checked for new mail result-
ing in getattr transactions. By way of comparison,
a better result is given for the /packages file sys-
tem. Files from this file system are unlikely to be
able to be kept in cache for long periods. The result
is that nfstrace is able to give a better result for
open-close sessions because the NFS transactions for
this file system were more complete.

Because the cache is removing the need for a large
number of the read operations to result in NFS trans-
actions, the read:write ratio is closer to unity for
the results of nfstrace than the results of snooper.
While this ratio is expected, even desirable, for the
measurements of data transferred, these values are
incorrect for open-close sessions resulting in higher
figures for average data transferred per session and
incorrect information about the characteristics of the
sessions.

However, while the ratios of the various types of
open-close sessions produced by nfstrace are not
particularly close to those of recorded by snooper,
adding the figures for null sessions to the read open-
close sessions improves the comparison for all file sys-
tems except for /.

For Table 10, all write values are increased by



File System snooper rpcspy nfstrace

/| 111  (24.89 68 98 (22.37

/usr | 10 8 8
/var/spool/mail 3 3 3

) (17.13) )

(02.24) (02.02) (01.83)

(00.67) (00.76) (00.68)

/usr/local | 49 (10.99) | 46 (11.59) | 48 (10.96)
(60.31) (67,76) (63.47)

(00.90) (00.76) (00.68)

/usr2 | 269 269 278
/packages 4 3 3
Total | 446 397 438

Table 7: A breakdown per file-system of the total number of different files accessed during the trace period.
The values in parentheses are each count as a percentage of the total number of files.

snooper nfstrace
read entries | 7442 (88.07) | 1749 (68.51)
write entries | 557 (06.59) | 804 (31.49)
read-write entries 35 (00.41) - -
null entries | 416 (04.92) - -
Total | 8450 2553

Table 8: The count of open-close sessions each monitoring system interprets. Additionally, a breakdown
of these open-close sessions into read-only, write-only, read-write and null open-close sessions is shown. A
null session is where no data are read from or written to the file (although the file was opened). Values in
parentheses are the percentage of the total number of files each type represents.

File System | session type snooper nfstrace
7 | tead 6415 (00.33) | 818 (63.21)

write 354 (04.98) | 476  (36.79)

read-write 35  (00.49) - -

null 208  (04.20) - -

/usr | read 123 (73.21) | 61 (100.00)

null 45 (26.79) | - -
/var/spool/mail | read 18  (40.91) | 75  (91.46)
write 4 (09.09) | 7 (08.54)

null 22 (50.00) | - -

/usr/local | read 146  (100.00) | 100 (100.00)
Jusr2 | read 731 (74.52) | 686 (68.12)
write 199 (20.29) | 321 (31.88)

null 51 (05.20) -

/packages | read 9 (100.00) 9 (100.00)

Table 9: A breakdown of the open-close sessions on each file system by type of open-close session. Values
in parentheses are each type of operation as a percentage of the open-close sessions on that file system.



nfstrace, particularly in the case of /usr2. This
error will partly be because nfstrace interprets the
creation of any file and any subsequent writing to
that file as two separate write events. Additionally,
nfstrace can incorrectly interpret multiple writes
to the same file as consecutive open-close sessions.
Because nfstrace interprets an access to the first
byte of a file as the start of a new open-close session,
nfstrace can interpret multiple writes into the same
location in a file as multiple open-close sessions on
that file. As an example, this situation can arise with
the vi editor. vi uses log files that check-point the
edit operations as they occur on the file, so vi can
be continually writing small changes to the log file.
These collections of small writes will result in blocks
being written to the server and if there are a number
of writes made to the first block, the first block may
be written to the server several times. Each time the
first block is written nfstrace could potentially mis-
interpret the writing of data as separate open-close
sessions on the log file. It is worth noting that the
actual number of extra sessions is quite small and,
in comparison with values for all open-close sessions,
will be overwhelmed by the quantity of other open-
close sessions (read sessions in particular). However,
for open-close sessions writing to a file, these extra
open-close sessions can be significant.

Some of these problems are a result of the algo-
rithms used by nfstrace. While some assumptions
have been made by nfstrace so as to produce an
open-close session record, this particular situation
may be resolved with a more sophisticated nfstrace
algorithm.

The duration of an open-close session is impor-
tant in determining the amount of time a particular
file is in use. This, in turn, is important in calcu-
lating the amount of time files are shared between
users and, in a distributed file system, between sys-
tems. Figure 7 shows that duration of open-close ses-
sions recorded by rpcspy will be longer than those
recorded by snooper. The longer open-close sessions
that cause the differences in average durations are
likely to be a result of transactions that are part
of separate open-close sessions being interpreted as
part of the same open-close session.

Additionally, the calculation of duration from
NFS traffic means that lead and lag times (times in
which the file is open but no operation occurs) will
be different from the average length of the open-close
session. These situations are represented graphically
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Figure 7: Normalised cumulative distribution of the
number of open-close sessions versus the duration.
From this graph we can deduce the longest of the
open-close sessions for a given number of those ses-
sions. For example, the snooper technique records
that 70% of the sessions have a duration of about
100 milliseconds or less. Note: the duration axis is
logarithmic.

in Figure 6. The figures show that the block oper-
ations upon which nfstrace’s record will be based
may not correspond with the logical open and close
operations in an open-close session.

Figure 8 graphes a comparison of the data-tran-
sfer rate as measured by snooper, as per Figure 4,
with the amount of data nfstrace estimates was po-
tentially available to the system (the sum of the sizes
of files accessed). While not directly comparable, it
is worth noting that the sum of the sizes of files is
able to give enough information to estimate with fair
accuracy the trends of data transfer between client
and server.

Figure 9 shows a cumulative distribution of
open-close sessions versus the amount of data trans-
ferred. It is important to note that one reason that
nfstrace differs so significantly with snooper is that
nfstrace was unable to detect the large percentage
of open-close sessions during which approximately
1 Kbyte was transferred. Additionally, snooper re-
sults estimate that fewer than 500 of the open-close
sessions transferred one or zero bytes, whereas nfs-
trace results estimate those circumstances existed
for more than 1,000 of the sessions it recorded.

A primary reason nfstrace does not record the
large number of sessions transferring approximately
80, 750, 900 and 1,100 bytes is because those files



File System session type snooper nfstrace
read 76415  (36.20) | 818 (46.77)
Jusr | 123 (01.65) | 61 (03.49)
/var /spool/mail 18  (00.24) | 75 (04.29)
J/usr/local | 146  (01.96) | 100 (05.72)
Jusr2 | 731 (09.82) | 686 (39.22)
/packages 9 (00.12) 9 (00.51)
write 71 354 (6355) | 476 (59.20)
/var /spool/mail 4  (00.72) 7 (00.87)
Jusr2 | 199 (35.73) | 321 (39.93)
read-write 71 35 (100.00) | - -
null 71 208 (71.63) | - -
/usr 45  (10.82) - -
/var /spool/mail 22 (05.29) - -
/usr2 51 (12.26) - -

Table 10: A breakdown of the open-close sessions of each type, breakdown is by the file system of the file.
Values in parentheses are each file system’s operations as a percentage of the open-close sessions of that

type.

_ Open_, _ Open,, O

Read_| Block Read R Block Read _.
Read | Block Read J Clo
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Write |
Close | Close | Block Write
Casel Case 2 Case 3
] real open-close session l nfstrace open-close session

Figure 6: Several open-close sessions as generated by nfstrace are compared with the actual open-close
session that occurred. The open-close session generated by nfstrace depends heavily on the type of NFS
transaction each block access will invoke.



Data over day (10 minute samples)
20 Mbyte

| snooper readi(data transfered) ——
15 Mb | nfstrace read;(filesize) ----
goMe u
2 i '
P [l 1 [l
[ i i i
% I ) i i
@10 Mbyte i o i ‘
I [N i " " 1
© i\ | h i !
k=) ! | | i (SR i ) | \ | i
! [ i i Aol i I\ I i
] i I [ I
! 1) [ ) 1 I 1 1
S 5 Mbyte il R R i S A S \ |
not [N} P g A 1 v vk h \ [T i H ! LI Y
) i VI A DT AR R R T AT B A I F oo
| oA 1 VN WEEITRY | [ ! (A VAN AR TP AT
i [N R VAN 1Al WA ! Vo R A A U A O RO Y AV ! \ Ly
0 Mbyte NN A N Y R R A N PO N A VN

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

Time of day
Data over day (10 minute samples)
12 Mbyte T
snooper write (data transferred

10 Mbyte nfstrace write(filesize) ----—
@ 8 Mbyte \\y
o i
“g 6 Mbyte .‘
g |
2 2 Mbyte ‘/AW : L‘.‘

0 Mbyte I AN N A ‘,:/\JJ/\«\

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00
Time of day
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nfstrace has calculated the client has had access to in each file from which it has read data. As a low-order

approximation, these values are comparable giving the same characteristics for data utilisation over time
of the trace.
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Figure 9: Cumulative distribution of the number of
open-close sessions versus the data transferred for
each open-close session. From this graph we can de-
duce the amount of data transferred per open-close
session for a given number of those sessions. For
example, the snooper technique records that over
7,000 sessions transfer about 1,100 bytes of data.
Note: the data transferred axis is logarithmic.

are in the cache and no data are transferred between
server and client. This reasoning is strengthened by
the fact that nfstrace gives trends similar to those
of snooper for other transfer values (even if the ac-
tual number of sessions is greatly reduced).

The differences between snooper and nfstrace
in Figure 10 have resulted from nfstrace being un-
able to interpret frequent accesses to files of a certain
length, in particular, files which are 80, 750, 900 and
1,100 bytes in size. Accesses of such files account
for a large percentage of the overall open-close ses-
sions for regularly-accessed files but nfstrace is not
recording an open-close session for them. This re-
sults in an exaggeration in the graphs for the num-
ber of open-close sessions for common data-transfer
and file-size values. This situation is probably exac-
erbated by the inability of nfstrace to record many
of the open-close sessions in which no data transfer
is made.

5.7 Losses due to rpcspy

During this study, the recording of all Ethernet traf-
fic by the rpcspy machine was not possible (a loss
of 1.5% was recorded). This implies a loss of 0.6% of
the total NFS transactions from the recorded trace,
if we assume a ratio of NFS to non-NFS traffic at
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Figure 10: Cumulative distribution of the number of
open-close sessions versus the size of the file accessed
in each open-close session. From this graph we can
deduce the maximum size of files opened for each
open-close session for a given number of those ses-
sions. For example, the snooper technique records
that over 7,000 of the sessions access files containing
less than 1,100 bytes of data. Note: the file size axis
is logarithmic.

the same ratio as was recorded during the testing of
rpcspy network packet capture mechanism. While a
source of potential error, this data loss is overshad-
owed by the errors introduced by certain aspects of
the operation of nfstrace. While this error should
not be discounted, it can be considered to have low
overall significance in the results.

6 Comparison Summary

The preceding results show that, while the two sets
of results are not directly comparable, nfstrace is
able to make a first order approximation of a num-
ber of values traditionally measured by systems such
as snooper such as the total I/O transferred by a
machine or the quantity of data written. Addition-
ally, other estimated values, while estimated impre-
cisely by nfstrace in the current version, could po-
tentially give accurate enough results to be able to
replace systems such as snooper outright in a num-
ber of circumstances including measuring the num-
ber of active users per machine or the distribution
of file size compared with files accessed. Most dis-
crepancies in the interpretation by nfstrace when
compared with results from snooper relate to the



identification of open-close sessions. Minimisation
of these errors would improve the estimation of both
open-close session duration and data-size results.

A number of the results collected by nfstrace
are not comparable with those collected by snooper,
e.g. the amount of data transferred. While values
for the maximum data transferred and write opera-
tions can be comparable, values affected by signifi-
cant caching (e.g. reading of data, particularly small
amounts repeatedly from the same file) will differ sig-
nificantly.

In addition to measurements which can be com-
pared, the unique nature of both snooper and rpc-
spy means that each has access to different types
of information. Snooper is ideally suited to record-
ing information about processes, an area from which
network monitors are unable to retrieve information.
On the other hand, nfstrace is ideally suited to col-
lecting information about all machines on a partic-
ular network including, for example, all the traffic
for a particular server. These differences mean each
technique has a role to fulfil but there is certainly
potential for network monitoring to be able to make
measurements for which kernel instrumentation has
traditionally been used in the past.

Additionally, it is worth pointing out that the
information rpcspy generates and that nfstrace in
turn uses, is not in error. The differences between
nfstrace output and that of snooper occur because
nfstrace attempts to estimate the operations on the
user side of the cache from the operations that occur
on the file system side of the cache. Improvements
in the performance of nfstrace would come about
from improvements in this estimation process.

7 rpcspy/nfstrace problems

For nfstrace to be a more useful tool, the accuracy
of its estimations needs to be improved. There are a
number of areas where nfstrace either makes errors
or does not have enough information with which to
work.

nfstrace problems to be addressed:

1. nfstrace treats the creation of a file as two
separate open-close sessions.

2. Underestimation of the number of open-close
sessions. This also means nfstrace can over-

estimate the data transferred per open-close
session, particularly in the case of writes.

3. nfstrace is unable to observe logical data
transfer.

4. nfstrace has no record of open-close sessions
that transfer no data at the logical level.

5. nfstrace has no record of open-close sessions
that both read and write data.

6. The nfstrace method used for summation of
read operations and write operations can result
in transferred data not being counted.

7. The method used for estimating the purpose of
an NFS getattr transaction is simplistic.

8. nfstrace does not estimate the contents of a
client cache. As a result nfstrace will assume
files in cache are being accessed when this is
not the case.

9. nfstrace is unable to detect short open-close
sessions.

To a large extent these problems are also a result
of NFS not making enough information available for
nfstrace to be able to estimate the operations that
are occurring. The lack of data supplied by NF'S also
means nfstrace acts as a filter removing short, con-
secutive, open-close read sessions. Such operations
are absorbed by the cache and as a result fine-grain
sporadic operations are missed.

8 Improving rpcspy and nfs-
trace

Improvements to rpcspy will be achieved by us-
ing a high-speed machine with a high-speed, low-
loss network interface to be dedicated to the task of
data collection. The improvements to nfstrace can
not be stated quite as concisely. Smaller changes to
nfstrace include:

e adding the ability to interpret other significant
NFS transactions such as create,

e using a simple ratio multiplier to obtain an es-
timate of data transfers at the logical level,



e modification of nfstrace to keep information
about file truncation giving the ability to in-
terpret file re-write events

e separately recording data read from and writ-
ten to the server for all open-close sessions,

e recording information on which blocks of a file
have been accessed, and

o interpreting NFS getattr transactions that
immediately follow a file being read or written
as another open-close session.

While some of these changes, such as the last
item listed, would need to be tested to ensure the
resulting extra records were correct, others in the list
would give immediate improvement in the abilities of
nfstrace.

More significant changes to nfstrace include

e pre-loading information about programs that
cause stat system calls such as 1s,

e build a block cache simulator into nfstrace

In order to pre-load information about common-
ly-used programs that cause stat system calls, it
may be necessary to profile the system prior to any
significant tracing activity. In most systems, com-
monly-used programs such as 1s could be expected
to generate potential problems and could be added
by default. However, the need to do a profiling op-
eration would not only increase the complexity of
passive network monitoring but might also negate
any advantage of network monitoring by potentially
requiring access to the machine being monitored.
Another alternative, or addition, to pre-loaded con-
figuration information is for nfstrace to charac-
terise programs such as 1s as it processes the NFS-
transaction data. nfstrace would locate 1s type
programs by noting programs which, once executed,
caused clusters of NFS lookup and getattr trans-
actions, typically for files sharing the same sub-
directory. In this way, nfstrace would be simul-
taneously processing the data and gaining enough
information to locate programs causing extraneous
NFS getattr transactions thus improving the pre-
diction of 1s type programs during the course of the
run.

The incorporation of a block-cache simulator
into nfstrace offers the best potential for increasing

the accuracy of nfstrace. Unfortunately, several
significant items of information would be needed to
recreate accurately the block cache of a client. These
would include the cache size on the client, the num-
ber of cache entries and the size of the data blocks be-
ing transferred between client and server. Addition-
ally, the programming and testing of a cache simula-
tor is not a simple task and because of resources used
(memory, etc.) would potentially mean nfstrace
could not be run simultaneously with rpcspy which
is a preferred operating mode (in order to reduce
output data).

The addition of the simulator would mean that
nfstrace would be attempting to model a partic-
ular type of block cache. While there is a com-
mon ancestry for the method used by block caches
in UNIX and its derivatives, there are notable dif-
ferences. The introduction of such facilities as the
demand-paging of executables as well as subtle chan-
ges in the cache system means the behaviour of the
caches of systems being monitored will differ, some-
times dramatically. The result is that nfstrace may
be required to incorporate models for several differ-
ent block-cache systems. While this would add to
the complexity of nfstrace, the common ancestry
of block caches means much of the code used in each
simulator would be common to all. It is conceivable
that such an nfstrace could read a configuration
file containing information on which cache method
each client was using. Without appropriate configu-
ration information, nfstrace could assume a partic-
ular model, perhaps the most common cache method
used or the worst-case simulator model.

Such a pre-loaded configuration file would also
contain information about NFS parameters such as
cache and attribute timeouts, thereby increasing the
accuracy of the simulator. This information, on a
file-system by file-system basis, could also give in-
formation about the characteristics of access to a file
system, e.g. mail file systems can potentially cause
open-close sessions to be generated when none was,
and so on.

A block-cache simulator would increase the accu-
racy of the open-close session predictions nfstrace
makes and allow nfstrace to be used for other pur-
poses. nfstrace has the potential to simultaneously
simulate the caches of all the machines on a network
so it could be used to study interactions between the
caches of different machines. For example, such a fa-
cility would enable a comprehensive study of block



sharing among NFS clients.

An extension to nfstrace would enable it to keep
track of information about the directory systems in
a distributed file system. Modifications to directory
information are written synchronously back to the
server as the modifications take place but the direc-
tory information itself is cached on the clients. Be-
cause changes are written synchronously, it is pos-
sible for nfstrace to maintain an accurate simula-
tion of the state of the file system. Additionally,
nfstrace could incorporate a directory-name cache
simulator in the same style as a block-cache simula-
tor and be able to simulate the contents of this cache
among many clients. As in the case of a block-cache
simulator, a directory-name cache simulator would
enable nfstrace to be used to study interactions be-
tween the caches of the clients and track the history
of changes to the file system. The use of such a modi-
fication may enable a follow-up study to Shirriff and
Ousterhout’s work on name and attribute caching

([26))-

Many of the limitations in nfstrace, indeed, the
very need for nfstrace to have to estimate open-
close sessions, are caused by the fact that this infor-
mation about open or close is not transmitted in the
NFS protocol. Other distributed-system protocols,
such as Sprite [19] and the Andrew File System [12],
transmit information related to the state of files in
the distributed file system. If nfstrace was modi-
fied to work with such a state-orientated distributed
system, the accuracy of nfstrace output could po-
tentially be as high as a full kernel instrumentation
trace. The potential for accurate rpcspy/nfstrace
analysis of distributed systems should also hold true
for any distributed file system that transmits enough
state information across the network. This method
even has the potential to work on theoretical dis-
tributed file systems, such as xFS [36, 9], which de-
part from a central file server model completely. It
is conceivable that during the development of such
monitoring systems, methods based on the passive
monitoring of network traffic would become a pri-
mary tool for assisting in the development and ulti-
mately the management of such systems.

Another technique for increasing the accuracy of
nfstrace is to add simulated state operations to
NFS. This would involve modifying the kernel of
each client to output extra NFS transactions for sys-
tem calls such as open, close and seek. It would
not be necessary for the server to act on or even

acknowledge these calls but the transmission of the
extra information through the network would poten-
tially give nfstrace enough information to be able
to establish when files were opened and closed. Of
course, such modifications are contrary to many of
the concepts of passive network monitoring, requir-
ing modifications to perhaps many client machines.
However, this technique would maintain the benefit
that the collection of the trace data would be inde-
pendent of the server and clients. It would impose
no extra workload directly upon them. This method
of adding additional information to the communica-
tions traffic between client and server, for the pur-
poses of monitoring, was used in Baker et al. [2] as
one of a number of modifications they made to col-
lect data for their work.

Distributed computer systems do not consist
solely of distributed file systems. Systems in the
style of Sprite [19] and Amoeba [30] enable the mi-
gration of processes among CPU elements (typically
a CPU element is a computer workstation). A moni-
toring method for such a system might involve mon-
itoring the network’s interconnecting processing ele-
ments and tracking the movement of the processes in
the same way that nfstrace monitors the movement
of file data among workstations. In this way, passive
network monitoring has possible applications in ar-
eas other than just the monitoring of distributed file
systems.

9 Summary comments

System monitoring has a significant role in the de-
velopment of computer systems.

A common method of monitoring systems is to
use full kernel instrumentation, involving the modi-
fication of the source-code for the operating system
of the machine. Passive network monitoring can be a
preferred choice over kernel instrumentation for cer-
tain system monitoring work, particularly where the
source-code of the operating system is not available.
Additionally, other advantages of passive network
monitoring include:

e an independence of the collection of results
from the machines being monitored on the net-
work,

e the ability to monitor simultaneously multiple
machines on a network; the passive network



monitoring system requires no modifications to
the operation of the monitored systems, and

e the collection of data with passive network
monitoring does not impact on the machines
being monitored.

Through the comparison of these two techniques, it
is shown that passive network monitoring is satisfac-
tory as a partial replacement for full kernel instru-
mentation.

In addition to this, passive network monitoring is
non-invasive, platform-independent and has the abil-
ity to simultaneously monitor many network users.
This gives it the potential for use in many systems
studies using a broader cross-section of machines.
Only through such a broad analysis can new systems
be built based on information gained from more than
just test systems and theories.

10 Future work

Ideally, future work would broaden the base over
which the comparison of the two systems was made.
The improvements could encompass both the inclu-
sion of all traffic types, instead of the restriction to
only non-executable file traffic, and the performing
of the comparison on machines in a variety of oper-
ating circumstance. By comparing over a variety of
systems, any peculiarities of the load the test system
was placed under would be highlighted or, at least,
minimised.

With the current system, a further study estab-
lishing the accuracy of the rpcspy/nfstrace system
for the recording of block traffic communicated be-
tween client and server would prove useful.

Using a more accurate nfstrace, a comprehen-
sive analysis in the style of Ousterhout et al. [20],
Baker et al. [2], Howard et al. [12] and Spasojevic
and Satyanarayanan [29] could be possible. Such an
analysis would not only form an interesting compar-
ison and contrast with those studies but also enable
data to be collected from a variety of systems rather
than the traditional limitation to academic or re-
search installations.

A comparison of nfstrace with a similarly-des-
igned RPC transaction processor analysing other dis-
tributed file systems based upon RPC communica-
tions would give an interesting point of comparison

between NFS and those systems.

The incorporation of a cache simulator into nfs-
trace would offer the potential for an increase in the
accuracy of nfstrace estimations and the possibil-
ity for nfstrace to be used to perform other system
studies directly without the need for any extensive
results processing. Such a study could cover per-
formance issues, while another study could be made
into the sharing of files and blocks among clients. In
the case of a performance study, the cache simula-
tor could be used to establish relationships between
block lifetimes and cache effectiveness with the size
of caches and timeout characteristics of the NFS sys-
tem.

An extension of this work could take the form of
a study which would also be possible with a suitably-
enhanced nfstrace system into the utilisation of
files and sub-directories, including lifetimes, usage
distribution, etc. By combining such a modified
nfstrace system with data about the file system
before and after the trace period, it would be pos-
sible for nfstrace to accurately simulate and track
operations on the directories of the file system. Such
a facility would allow studies into file-naming struc-
tures and the caching of those structures in the style
of Shirriff and Ousterhout [26].
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