* THE UNIVERSITY OF

\EEJ WAIKATO Research Commons

?}gt’; Te Whare Wananga o Waikato

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act
and the following conditions of use:

e Any use you make of these documents or images must be for research or private
study purposes only, and you may not make them available to any other person.

e Authors control the copyright of their thesis. You will recognise the author’s right to
be identified as the author of the thesis, and due acknowledgement will be made to
the author where appropriate.

e You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

Chapter 1
Introduction

From the debut of the first simulator, people have kept asking the same question:
"How realistic the simulation result can be?”” The reason for asking this question
is quite reasonable, because a simulator is actually useless if it cannot mimic the
behaviors of the real thing.

In the simulator's world, the words like accuracy or exactness are normally used
to describe how realistic a test result is. To achieve accuracy, developers have
made several efforts in the past decade or so. The focus, however, has been
primarily on the use of real network stacks. As can be seen from some previous
tests, a highly abstract network stack makes the test result neither convincing nor
realistic.

Undoubtedly, a real world network stack is the most critical part of a realistic
network simulator, but it is not the only part to achieve accuracy. The modern
network simulators are quite complex systems and the other parts of a simulator
such as event scheduler, timing, queuing and application layer, can also affect the
final results of simulations. Among these factors, there are increased interests in
the application layer of simulator.

1.1 Why Application Layer Is so Important

In the real world, different data sources make network stack behave differently
which, therefore, affects network performance in different ways. When
investigating the performance of network stack, it is unavoidable to associate such
kind of investigation with a specific data source. The interaction between
application layer and network stack is a major topic in networking history and
will be more important in future.

The traditional HTTP 1.0 over TCP problem is perhaps, the clearest instance to
demonstrate how application layer affects performance of network layer.

The HTTP 1.0 protocol creates a new TCP connection for each item that it
requests from server. If, for example, a page contains nothing except three images,
it will result in four TCP connections - one for the page itself and three others for
each of the images. This is inefficient in terms of bandwidth utilization. A
three-way handshake process is needed to set up a connection, and two additional

packets are required to close it. Even for a very simple page, the burden of setting
up and tearing down of connections are still considerably heavy.

Another problem with the HTTP 1.0 is the poor bandwidth utilization incurred by
the slow start mechanism. Instead of transmitting packets as fast as possible, the
HTTP 1.0 sets the TCP window size to one segment initially. The TCP window
size doubles each time a whole window of packets are transferred successfully.
This mechanism works fine when the connection is long-lived, but for short-lived
connections this slow start mechanism is quite inefficient in terms of network
bandwidth utilization. Several studies have shown that the vast majority of web
accesses retrieve small files, on the order of 6 KB [15] [16]. In other words, if the
payload of packet is 1500 bytes in size, a 6K bytes web page needs only 4 packets.
Because slow start is initialized each time when a connection is created, so for
most HTTP 1.0 connections it always works at very low data rate and utilizes
network bandwidth poorly.

Unfortunately, in spite of tremendous development in technology, the modern
world still suffers the same problem as the old HTTP 1.0 did. The Internet is now
increasingly being used to deliver real time data such as video-conferencing,
streaming, HDTV, P2P and so on. Most of real time applications are now running
on top of UDP, which is a highly efficient, but unreliable transport layer protocol.
The real time UDP packets may experience different bandwidth and congestion
conditions, so an annoying drawback with UDP is the data loss. For some real
time communications, data loss can affect Quality of Service (QoS) significantly
and thus, is difficult to tolerate. In video-conferencing, the data being transferred
is typically significantly compressed to save network bandwidth, and this makes it
very sensitive to data loss. A single packet loss corrupting an I-frame can stop
reception of video for several seconds. To achieve high QoS, other reliable
transport layer protocols such as TCP have to be considered.

TCP is the most well developed, extensively used and widely available Internet
transport protocol. TCP is reliable and responsive to network congestion
conditions. Another reason to choose TCP to run real time applications is the
reality that many firewalls reject all non-TCP traffic. On the other hand, the fatal
drawback of TCP is its low efficiency compared to UDP. TCP is not suitable for
transmitting real time traffic because it favors reliable delivery over timely
delivery.

Both TCP and UDP are not perfect for transmitting real time multimedia data. To
adapt to future network environment, TCP and UDP have to be modified or even
new protocols will have to be introduced into transport layer such as Stream
Control Transmission Protocol (SCTP).

Thus, network applications affect the performance of network stack and even

make the network stack to be modified. Application layer is critical to network
performance. However, in simulators data sources are implemented using very
simple model and have nothing to do with real world network applications. There
are several drawbacks with such simulated user applications.

1.2 Limitations of Simulated Applications

Simulated applications are usually over-simplified and network simulators take a
simple way to implement data sources. Timer is usually used to control when to
send out the next message. After starting the application, a timer is initialized to
wait for a short period of time and an event handler is set to handle timeout events.
When the timer expires, simulator's scheduler invokes the indicated event handler,
which, in turn, sends out messages and then resets timer for the next message. In
the NS-2, a simulated "telnet" is just about 30 lines of C++ code. Such
implementation is not programmed using real world application code such as

BSD Socket API; and even worse, many details of real world network

applications are ignored intentionally to facilitate designing. The question,
therefore, remains as to what extent such over-simplified simulated applications
mimic the behaviors of real world network applications.

In the real world, countless network applications are available. These come with
either source code or only binaries, but just limited amount of applications are
provided in simulators. At times, new applications in simulator have to be created
by extending the existing application class. For example, in NS-2 you can derive
your own application class from the existing class "Application". Such
implementations are still employing over-simplified model and time-consuming.

The simulated applications are neither realistic nor sufficient. Thus, to solve this
problem, a new model called “BSD Socket API for Simulator” is proposed here to
run untouched real world network application binaries on top of general-purpose
Simulators.

1.3 BSD Socket API for Simulator

Running real world code on top of simulator has been implemented in several
projects such as embedded network simulator, ENTRAPID, Alpine, NCTCns, and
Lunar. All of these projects, however, have some limitations such as:

® Some of the projects, such as embedded network simulator and NCTUns,
need the simulator to be integrated into kernel. Only simple simulators
can be used in such project as these cannot make full use of the powerful
functionality and versatile tools provided by modern general-purpose

simulators such as NS-2, Omnet++ and JSim.

Some of the projects, such as ENTRAPID and Lunar, need the real world
applications to be recompiled and re-linked against some special libraries.
This approach is not working for those real world applications that do not
come with source codes.

Some of the projects, such as Alpine and NCTUns, need root privileges.
All of the projects use exclusive simulators

On the other hand, the BSD Socket API for Simulator is designed to eliminate
most of these drawbacks. It is fully compatible with BSD Socket API, simulator
independent, transparent to real world applications and it keeps the original real
world application binaries untouched.

1.4 Contributions of this Thesis

The achievements of the BSD Socket API for Simulator are as follows:

A new simulation framework is designed and implemented. The new
model is based on the concept of “message redirecting”. Real world
applications redirect messages by loading customized shared libraries.
Simulator exchanges information with the shared libraries through its
customized application layer.

A multi-threaded simulator application layer is implemented. The single
thread simulator, NS-2, does not suit for running unmodified real world
applications due to the existence of blocked calls. To solve the problem,
a multi-threaded model is proposed and a multi-threaded simulator
application layer is implemented.

A shared library is implemented as the interface of real world
applications to redirect messages to simulator. The shared library is
loaded into the address space of real world application. It catches the
socket related calls and redirects them to simulator.

Unit tests have testified that the 29 socket-related functions in the shared
library are compatible with their counterparts in the BSD Socket APIL.
Three groups of real world applications are run on top of the BSD Socket
API for Simulator as functional tests.

Efficiency tests are done to measure to what degree the BSD Socket API
for Simulator slows down simulations.

1.5 The Rest of this Document

Chapter 2 "Background" introduces background of this project. Some
previous works are presented and their advantages and disadvantages are

analyzed. Among the previous works, the Network Simulation Cradle
(NSC) is explained in detail.

Chapter 3 "Architecture Overview" explains briefly how the two major
parts of the project, namely, the simulator application pair and the BSD
Socket API shared library, are implemented and how they interact with
each other.

Chapter 4, "Multi-threaded Simulator Application Pair", describes why
the multi-threaded simulator application pair is necessary in this project,
how it is implemented and the mechanism employed to balance work
load among multiple simulator application pairs.

Chapter 5 "Shared Library" is core to this document. This chapter
describes the procedure to set up and tear down basic TCP and UDP
connections; and introduces the implementations of various sending and
receiving functions such as send(), recv(), sendto(), recvfrom(), sendmsg()
and recvmsg(); closeing socket by close () and shutdown (); I/O
multiplexing by select(), pselect() and poll(); running standard 1/O library
functions over sockets; getting and setting socket options.

Chapter 6 "Tests" introduces unit tests, functional tests and efficiency
tests done in this project.

Chapter 7 "Limitations and Future Works” analyzes limitations of “BSD
Socket API for Simulator” and what else can be done to improve it in
future works.

Appendix A "Function list" shows all the socket-related function
prototypes implemented in the BSD Socket API for Simulator shared
library.

Appendix B "Kernel Data Structures" lists data structures being moved
out of kernel. Due to the name conflict when compiling the BSD Socket
API for Simulator, some kernel data structures have to be moved to a
user-level header file.

Appendix C "Modifications to code from UNIX Network Programming".
Examples from “Unix Network Programming” [W. Richard Stevens et al]
are supposed to run on UNIX, but the BSD Socket API for Simulator is
running on Linux. So when compiling the code on Linux, a number of
"Symbol missing" errors occurred. To eliminate such errors, some
symbols are defined.

Chapter 2
Background

Running real world applications on top of simulator is not a new effort, but
organizing powerful general-purpose modern network simulator, real world
network stack and real world application in one system is new to the world. In
this chapter, some related past works are reviewed; advantages and disadvantages
of each work are analyzed. Subsequently, the Network Simulation Cradle (NSC)
is introduced in depth. The NSC is the first effort ever to integrate general
purpose simulator with real world network stack and is chosen to be the base of
the BSD Socket API for Simulator.

2.1 Past works

From the perspective of network simulator history, the efforts of using real world
network stack and the efforts of running real world application on top of
simulator are closely related. Each of the following past works is reviewed from
two aspects: the way the real world network stack is integrated with simulator and
the way the real world application is integrated with real world network stack.

2.1.1 Embedded Network Simulator

The Embedded network simulator [Luigi Rizzo, 1997] is a protocol development
environment. To make use of the advantages of network simulator and
experimental test bed, this project proposes to embed network simulator in
operational systems. A simulator is built in kernel at the interface between TCP
and IP.

The embedded simulator intercepts calls between the two layers and generates the
effects of queues, bandwidth limitations, delays and noises. Not surprisingly, such
system enables real world network applications to run without the need of
modification. Embedded network simulator moves simulator into kernel instead
of moving network stacks out of kernel. In the past when simulators were simple
and of limited functionality, this approach was viable. Actually, the first simulator
built in this project was only 300 lines of code.

The limitations of this approach are the need of modifications to all the kernels in

which the simulators will be running and the efficiency cost when the simulators
are quite complex. It is impossible to build a modern simulator such as NS-2 or
Omnet++ inside kernel, not mentioning the simulators using JAVA like J-Sim.

2.1.2 ENTRAPID

ENTRAPID [X.W. Huang et al. 1999] is a real time network simulator and a
Protocol Development Environment (PDE) as well. Unlike the previous
embedded network simulator, the ENTRAPID is nothing but a user space process.
It is built on two concepts: Virtualized Networking Kernel (VNK) and Virtualized
Process. VNK is the 4.4 BSD network stacks, which is moved out of kernel and
modified to let it run in user space. By means of kernel virtualization, an
ENTRAPID process can contain multiple VNKs. Applications are also
virtualized to run on top of VNK. System calls issued by virtualized applications
are redirected to VNKs. ETRAPID can also control physical network devices to
communicate with external processes.

ENTRAPID can organize a quite complex and powerful test framework, but it has
some limitations. Firstly, the network kernel is modified manually. The process of
moving the stack out of kernel is quite a lot of work and it is hard to keep the
modified stack up to date. Secondly, the ENTRAPID cannot run unmodified
programs. The program's source code is linked with a proxy library that first
converts networking and file system calls to messages, and then sends the
messages to a virtualized process. Subsequently, the virtualized process decodes
the message and executes the network or file system calls in the context of
ENTRAPID. Thirdly, because a message from an application is copied to VNK,
from VNK to wire, from wire to another VNK, from VNK to destination
application, so ENTRAPID lacks efficiency.

2.1.3 Alpine

Alpine [David Ely et al. 2001] is a user-level infrastructure for network protocol
development. Alpine converts FreeBSD 3.3 network stack into a user-level shared
library with a few hand modifications. There are two critical modifications that
need to be mentioned.

The first one is to add a new layer under the IP layer called "Faux-Ethernet
Driver" to the shared library. This new layer is the lowest layer of the shared
library, it is used to send packets using a raw socket and receive packet using a
packet capture tool (libpcap).

The second modification is to add a new layer on top of the system call layer. The
new layer is the topmost layer of the shared library. The new layer implements a
new programming interface to replace the traditional system calls. This layer
captures all the system calls on socket descriptors or file descriptors and deals
with them transparently.

Alpine moves network stack out of kernel with fewer efforts than embedded
network simulator and ENTRAPID. Another attractive feature of Alpine is that
application binaries can run on top of it without the need of recompiling and
re-linking.

There are, however, two drawbacks for Alpine. Firstly, some operations, like
opening a raw socket, capturing packets by libpcap, need root privileges;
secondly, the fork() system call is not implemented inside the new application
interface layer, a large portion of network applications cannot run on Alpine.

2.1.4 NCTUns

NCTUns [S.Y Wang et al. 2003] is a real time network emulator and simulator.
Instead of moving network stack out of kernel, NCTUns keeps network stack
where it was but modified by hand to integrate simulation functionality into
kernel. NCTUns takes a similar way as that of embedded network simulator.

Tunnel Network Interface is key to NCTUns and is a pseudo network interface
that does not have a real physical network attached to it. The interface has a
corresponding device special file in the /dev directory. When applications write to
the special file, the packet enters the kernel. To the kernel, there is no difference
between packets from a real interface and that from the tunnel network interface.
A read from the tunnel network interface causes one packet to be copied from
kernel to user space and passed to the reading application. Therefore, the tunnel
network interface behaves completely the same way as the real network interface.

Besides real world network stack, another benefit NCTUns provides is the ability
to run unmodified real world network applications and real world network utility
programs by exposing the standard UNIX POSIX APL

There are, however, several drawbacks of NCTUns: the first one is the scalability
limitation, because there is only one network stack on a host, to simulate a
complex network with different network stacks will need multiple hosts and a
distributed test environment. The second limitation is that the user needs root
privileges to modify and recompile the kernel and run simulations.

2.1.5 Lunar

Lunar [Christopher C. Knestrick. 2004] is a Linux User-level Network
Architecture. Lunar is designed as part of Open Network Emulator (ONE), a
large-scale network emulation test-bed. In Lunar, the network stack of Linux
operating system (2.4.3 version of the Linux kernel) is extracted and compiled as
a user-level library. The shared library provides an interface which implements
the BSD socket API and related functions. The unmodified real world application
source code is recompiled and re-linked against Lunar's shared library.

Lunar acts as an interface between user applications and network simulator.
Network traffic is generated using real-world programs and regulated by network
simulator. Lunar combines the benefits of direct code execution with the control
and scalability of modern network simulator.

In Lunar, real world applications have to be recompiled and linked against Lunar
before running. The real world applications which source codes are not available
cannot run on Lunar.

2.1.6 Network Simulation Cradle

Network Simulation Cradle (NSC) [Sam Jansen. 2005], like Alpine and Lunar,
moves network stack out of kernel and compiles it as a shared library. The NSC
uses the shared library to create Agent for NS-2 network simulator.

NSC integrates real world network stacks with the NS-2 by creating an NSC
agent. The agent creates, initializes and interacts with real world network stacks.
The network stacks themselves become part of the network simulator.

Real world network stacks are modified automatically using a tool, so there is no
manual modification in NSC. Multiple modified network stacks can be run in the
same simulation and on the same physical machine.

The disadvantage, however, of NSC is that it still uses the simulated applications
to generate network traffic. NS-2's applications are simply instances of some C++
classes employing quite simple model.

2.1.7 Characteristics of Past Works

The following Table summarizes the characteristics of past works in terms of

simulator, network stack and application.

Name Simulator Network stack Application
Embedded In kernel In kernel (1) Run unchanged real world
Network Simple Modified by hand |application
Simulator Exclusive
ENTRAPID In user space In user space (1) Real world application's
Exclusive Modified by hand [source code is compiled and
linked against a proxy library
Alpine In user space In user space (1) Only run part of
Exclusive Modified by hand junchanged real world
Shared library programs
(2) Need root privileges
NCTUns In kernel In kernel (1) Run unchanged real world
Exclusive Modified by hand |application
(2) Need root privileges
Lunar In user space In user space (1) Real world application's
Exclusive slightly modified |source code is compiled and
user-level library |linked with a user-level library
NSC In user space In user space (1) Simulated Application
Eeneral-purpose [slightly modified
user-level library

Table 2.1 Characteristics of Past Works

From the above table, there are some options for three interesting aspects of past
works. These options lead to different features.

® Simulator can be in user space or in kernel. In kernel simulator is

® Application can be:

10

usually functionally limited and it is a painful process to debug the
simulator or add new features. Simulator can be exclusive or
general-purpose; the exclusive simulator is built to meet some
special needs, so it does not contain versatile tools provided by
general-purpose simulators.
Network stack can be in kernel or user space. In kernel network,
stack suffers the same problem as that of in kernel simulator.
Besides, in kernel network stack is not scalable. In user space
network, stack is usually compiled as a library. It increases the
flexibility and scalability.

(1) Untouched real word code.
(2) Untouched real world code but need special conditions
such as root privileges.
(3) Real world code but need to be recompiled and re-linked.
(4) Simulated application.
It is, therefore, obvious that the "untouched real world code" is the
ideal solution.

2.2 Goals of BSD Socket API for Simulator

To eliminate limitations of past works and distinguish the BSD Socket API for
Simulator with previous works, several goals are set up for BSD Socket API for
Simulator.

1. BSD Socket API for simulator is completely compatible with BSD
Socket API. Socket APl is part of IEEE1003.1g standard, which is
also called POSIX.1g. Most UNIX and Linux systems today
conform to Portable Operating System Interface (POSIX). Socket
APT has been a networking standard for UNIX-like systems.

2. BSD Socket API for Simulator is simulator independent. Currently,
the BSD Socket API for Simulator is developed and tested on
NS-2, and it is supposed to be moved to other general-purpose
simulators such as Omnet++ with trivial works. It can make use of
the powerful functionality and tools provided by general-purpose
simulators.

3. BSD Socket API for Simulator keeps real world application
binaries untouched, no recompilation and re-linking are necessary
before running them.

4. BSD Socket API for Simulator is transparent for real world
applications. These applications run on simulator exactly the same
as they do on an operating system. No special conditions, such as
root privileges, are necessary when running them.

From table 2.1, an interesting thing worth noting is that NSC is the only attempt
ever made to integrate general-purpose simulator with real world network stack. It
is the only one that satisfies the second goal of BSD Socket API for Simulator,
simulator independent. Besides, NSC has other advantages to make it the best
candidate to implement BSD Socket API for Simulator.

11

2.3 Network Simulation Cradle

NSC is the first development of integrating real world stacks with existing
general-purpose network simulator. It has been implemented on top of NS-2 and
is being transferred to Omnet++. The figure below, taken from “Simulation with
Real Network Stacks” [Sam Jansen and Anthony McGregor], shows per-network
stack interactions of NSC:

Q
Connect R 3
© Global
Y . Recei K é Data
“ eceive packet 5
&
5 Socket send <
~ Pid (=)
g L’ <
I :
N <
= N Socket Read E
o E
n _Send packet —
zZ | [< g
- _ Modify timer = PN
E al Ll
I R Fire timer R n Code
NSC
Agent Shared Library

Figure 2-1 Per-network stack interactions

NSC consists of two parts, NSC agent and shared library that communicate
through a well defined interface. There are two tasks for NSC agent. Firstly, it is
used to create and interact with another part of NSC, the shared library. Secondly,
it is used to interact with other parts of NS-2 simulator such as NS-2's application
layer. The shared library contains the network stack and supporting code that
implements the interface necessary to communicate with NS-2.

NSC has several characteristics that can distinguish it with other past works.

1. Real network stacks are integrated with simulator seamlessly. Real
network stack becomes part of simulator. Users create an
NSC-agent completely the same as they do with normal NS-2
agents.

2. NSC is simulator independent. NSC does not depend on any
specific simulator; theoretically, it can be used with any
general-purpose modern network simulator. Originally it was

12

implemented in NS-2, and it is going to work with Omnet++ as
well.

3. There is no hand modification to network stack in NSC. A C parser
modifies the network stack programmatically to automate the
virtualization of network stacks.

4. Different network stacks or multiple instances of the same network
stacks can be used in one simulation and on the same host machine.
This feature increases the scalability of simulation greatly. NSC is
able to employ network stacks from Linux, FreeBSD, OpenBSD
and the network stacks designed for embedded systems such as
IwlP.

NSC is the first effort ever made to make use of the strength of both real
network stacks and modern general purpose simulators. Due to its nature of
simulator independence, NSC is chosen as the base of the BSD Socket API for
Simulator.

2.4 Summary

Several past works are reviewed and their strengths and drawbacks analyzed in
terms of simulator, network stack and application. Among the past works, the
NSC has some advantages over the others that can best satisfy the need of the
BSD Socket API for Simulator and, thus, is chosen as the base of the project.

13

Chapter 3
Architecture Overview

This chapter introduces the overall architecture of BSD Socket API for Simulator.
The introduction begins with an abstract block diagram, and then followed by
introductions to functions of each items on the diagram including simulator
application pair, integrating simulator application pair with NSC, BSD Socket
API shared library and the communication between shared library and simulator
application pair.

BSD Socket API for Simulator consists of two parts: shared library and simulator
application pair.

The shared library is pre-loaded by setting the environment variable
LD_PRELOAD when running real world applications (RWAs). As a result,
system calls and function calls on socket descriptors is intercepted and messages
contained inside the calls are redirected to simulator by the shared library.

The redirected messages are accepted by one side of simulator application pair
and then passed down to Network Simulation Cradle (NSC). Subsequent to this, it
is the responsibility of simulator and NSC to deal with the message. How the
message traverses simulator and NSC will not be discussed here. Actually, it has
no difference from those that are passed by normal simulators without NSC. The
messages ultimately reach the other end of simulator application pair.

The other side of simulator application pair gets the message from NSC's

interface and relays it to the destined real world application. The destined real
world application has shared library pre-loaded as well. The shared library
extracts payload the message originally sent by sender, from the received message.
Finally, the payload is passed to the destined real world application.

3.1 Structure of BSD Socket API for Simulator

The BSD Socket API for Simulator is composed of two objects, shared library
and simulator application pair. As real world applications and simulator run in
different address spaces, to make data flow between source real world application
and destination real world application via NS-2, there must be an inter-process
communication mechanism. For simplicity, an assumption is made here: the

14

communication mechanism does exist, so different parts of BSD Socket API for
Simulator can talk to each other. The inter-process mechanism used in this project
will be explained in a following section.

The following figure shows the typical data flow of BSD Socket API for
Simulator: a source real world application is sending a message out; its
destination is another real world application. The arrows show the direction of
data flow; solid lines represent inter-process communication; dashed lines
represent intra-process communication.

Source RWA Destination RWA
Send() recv()
| ?
| 1
v :
Source Shared Library Destination Shared Library
A
A 4
Simulator Application A - P> Simulator Application B
i A
A 4 :
NSC NS _2 NSC
S "
_____________________________________ — Inter-Process
_____ » Intra-Process

Figure 3-1 Structure of BSD Socket API for Simulator

Each simulator application has two interfaces: one receives messages from shared
library and sends the received message to NSC. The other one receives message
from NSC and forwards the received message to shared library.

The scenario shown in figure 3.1 is quite straightforward. Both the source and
destination RW As pre-load shared libraries which are called source shared library
and destination shared library respectively. System calls or function calls issued
by source RWA, such as send () or fputs(), are intercepted by source shared
library and processed accordingly. The processing here involves appending extra
information, such as where the message comes from and where it is heading to, to
the original message contained in the original calls. By this way, each of the
intermediate nodes on the route from source RWA to destination RWA will learn

15

about the destination of the message. This extra information will be used by
simulator application B when it receives message from NSC agent. It investigates
the extra information to obtain the destination address and then relays the
message to the destination RWA. The new message is then redirected to simulator
and finally reaches simulator application B.

The destination application B redirects the received message out of simulator to
destination RWA.

The destination shared library catches the message sent by simulator application
B and copies payload, the message sent by source RWA, to destination RWA’s
receiving buffer.

3.2 Simulator Application Pair

The process shown in figure 3-1 is actually a bi-directional communication in
BSD Socket API for Simulator. The two-way communication is achieved by
co