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Abstract

Data stream mining is a fast growing research topic due to the ubiquity of

data in several real-world problems. Given their ephemeral nature, data stream

sources are expected to undergo changes in data distribution, a phenomenon

called concept drift. This paper focuses on one specific type of drift that has

not yet been thoroughly studied, namely feature drift. Feature drift occurs

whenever a subset of features becomes, or ceases to be, relevant to the learning

task, thus, learners must detect and adapt to these changes accordingly. We

survey existing work on feature drift adaptation in both explicit and implicit ap-

proaches. Additionally, we benchmark several algorithms and a naive proposal

in synthetic and real-world datasets. The results from our experiments indicate

the need for future research in this area as even naive approaches produced gains

in accuracy while reducing resources usage. Finally, we state current research

topics, challenges and future directions for feature drift adaptation.
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1. Introduction

In the last decades the interest in mining massive and potentially unbounded

datasets that arrive at rapid rates, namely data streams, has grown substan-

tially. Examples of data streams include, but are not limited to, sensor networks,

wearable sensors, computer network traffic sniffers and video surveillance. Aim-

ing at extracting useful knowledge from these massive amounts of data, a variety

of inductive learning techniques were developed and achieved concrete results

in both supervised [1, 2, 3] and unsupervised [4, 5, 6, 7] settings.

The most common task in streaming scenarios is classification. In this task,

instances are labeled according to a finite set of labels and the goal is to derive

a model that accurately classifies upcoming unlabeled instances. Data stream

classification algorithms are presented with a great and possibly unbounded

amount of data, which are made available to the algorithm in a serialized fast-

paced fashion [8]. Moreover, due to the inherent ephemeral aspects of data

streams, one must assume that the underlying concept is unstable, i.e. changes

in data distribution are expected to occur, a phenomenon called concept drift

[9].

Although current techniques for data stream classification handle most of the

challenges posed by streaming environments, not much attention has been given

to possible changes in the relevance of features through time, a phenomenon

called feature drift [10]. To maintain an accurate predictive model on a data

stream that exhibits feature drifts, a classifier must be trained and updated on

the set of features that is currently relevant. One way to select the relevant

subset of features is through feature selection. However, performing feature

selection over data streams is still an open research topic since the majority of

existing feature selection algorithms require multiple passes over data.

As in batch learning, if an algorithm is capable of discerning between rele-

vant, irrelevant and redundant features, it is expected to compute faster, show

lower memory usage (due to diminished dimensionality) and even produce higher

prediction accuracy [11]. Nevertheless, performing feature selection incremen-
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tally and adaptively as the stream progresses is not straightforward.

In this paper we review the classification task for data streams (Sec. 2) and

the basic concepts of feature selection (Sec. 3). Later, we discuss existing works

that perform feature drift adaptation in both explicit and implicit fashions,

showing their major limitations (Sec. 4). Several surveyed algorithms are then

benchmarked on both synthetic and real datasets that contain feature drifts. We

also propose and evaluate a naive algorithm to handle feature drifts. Results

obtained corroborate the need for future research on feature selection for data

streams (Sec. 5). Finally, we state the challenges of this research area and

future directions (Secs. 6 and 7).

2. Data Stream Mining

Data acquisition and storage is getting cheaper and easier every day. Recent

studies show that 2.5 quintillion of bytes are produced every day, and out of

that it is estimated that approximately 90% of overall stored data were created

between 2012 and 2014 [12]. Since it might be difficult to extract useful knowl-

edge from this abundant data, data mining techniques have been widely used

for this task [13, 14, 8, 15].

Nowadays, a variety of computational systems create enormous amounts of

data, mostly in sequential fashion, and impose several constraints on available

processing time and memory space. Extracting interesting patterns from data

streams has received growing attention of the data mining community in the

last few years [2, 16, 4, 17].

2.1. Data Stream Classification

The most common approach for extracting useful knowledge from data streams

is classification. Classification is the task that distributes a set of instances into

classes (discrete values) accordingly to relations or affinities. Assuming a set

of possible classes Y = {y1, . . . , yc}, a classifier builds a model that predicts

for every unlabeled instance ~xi its corresponding class yi, ideally with close to

perfect accuracy [14].
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The classification task can be formalized as follows: a set of n training

instances in the form (~xi, yi) where yi is a discrete class label and ~xi is a d-

dimensional vector of attributes belonging to a feature set D with cardinality

(or number of dimensions) d, where the feature set can be categorical, ordinal,

numeric or most likely a mix of all three types. A classifier uses the training set

to produce a model f : ~x→ Y that is used to classify future unlabeled instances.

According to the Bayesian theory, classification can be posed as a function

of the prior probabilities of the classes P [y] and the class conditional probability

density functions (pdfs) P [~x|y] for all possible classes yi ∈ Y [8]. Classification

decision (labeling) is performed accordingly to the posterior probabilities of the

classes, where Eq. 1 states the posterior probability for an arbitrary class yi

and P [~x] =
∑
yi∈Y P [yi]× P [~x|yi].

P [yi|~x] =
P [yi]× P [~x|yi]

P [~x]
(1)

Data stream classification, or online classification, is a variant of the ma-

chine learning task batch classification. Although both are concerned with the

problem of learning a model which is able to predict a nominal value for fu-

ture unlabeled instances, the difference between these two approaches concerns

about how data is presented to the learner. In a batch configuration, a static

and entirely accessible dataset is provided to the learning algorithm, which usu-

ally performs multiple passes over the training set to build its predictive model.

Conversely, in streaming environments, instances are not readily available to

the classifier for training, instead, these are presented sequentially over time,

and the learner must incrementally adapt its model f as new instances become

available [18].

Formally, let S = [it]∞t=0 define a data stream providing instances it =

(~xt, yt), each of which arriving at a timestamp t, where ~xt is a d-dimensional

feature vector belonging to a feature set D, and yt is the instance’s ground-truth

label.

4



2.2. Concept Drift

Batch learning techniques assume that there is a static dataset generated

by a unknown and stationary probability distribution, where the data can be

physically stored and analyzed in multiple steps by a batch algorithm. Nonethe-

less, none of the latter assumptions can be verified in streaming scenarios and

the development of data stream classifiers must account for several constraints

[19, 8, 20].

Firstly, instances arrive continuously over time and there is no control over

the order that they arrive in nor how they should be processed. Additionally,

streams are potentially unbounded, therefore, instances should be discarded

right after their processing (or accordingly to available main memory space).

Due to the inherent temporal aspect of data streams, their underlying data

distribution is expected to change over time, implying changes in the concept

to be learned, a phenomenon called concept drift.

Eq. 2 defines a concept C as a set of prior probabilities of the classes and

class-conditional probability density functions [21].

C =
⋃
yi∈Y

{(P [yi], P [~x|yi])} (2)

Given a stream S, retrieved instances it will be generated by a concept Ct.

If during every instant ti of the stream Cti = Cti−1
holds, then C is a stable

concept. Otherwise, if between any two timestamps ti and tj = ti + ∆ (with

∆ ≥ 1) Cti 6= Ctj betides, then a concept drift has occurred.

For more details on the problem of concept drift, the reader is referred to

more specific works [18, 8, 14].

3. Feature Selection

Datasets (or streams) for analysis may contain hundreds (or even thousands

or millions) of features (attributes), many of which are possibly irrelevant or

redundant to the learning task. Dealing with this massive amount of features

is not only computationally expensive but it also jeopardizes inductive learning
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algorithms since the training set would cover a dwindling part of the feature

space. Even if we assume a large dataset with trillions of uniformly distributed

instances in a moderate attribute space of 100 features, only about 10−18 of the

potential space would be covered [22]. Also, high dimensional spaces can be a

problem due to the “curse of dimensionality”, where learning algorithms based

on distance computations are known to fail [17]. To overcome these problems,

a variety of feature selection algorithms were developed and aim at performing

dimensionality reduction in batch learning [23, 24, 11].

In the following section we describe important concepts related to feature

selection which enable us to later formalize and discuss feature drifts properly.

3.1. Definitions

Up to this point, the term “relevance” was used without a formal definition.

In this section, we define the concept of relevance in the feature selection task.

As stated in [25, 26], there are different definitions available in the literature,

nevertheless, several may be contradictory and misleading. In this paper we pro-

vide the most common definitions by dividing features in three types: relevant,

irrelevant and redundant.

Definition 3.1. Assuming Si = D \ {Di}, a feature Di is relevant iff

∃S′i ⊂ Si, such that P [Y |Di, S
′
i] 6= P [Y |S′i] holds (3)

Otherwise, Di is said to be irrelevant.

According to this definition, if a feature that is statistically relevant, is re-

moved from a feature set, then this will reduce overall prediction power. This

definition encompasses two possibilities for a feature to be statistically signifi-

cant: (i) it is strongly correlated with the class; or (ii) it forms a feature subset

with other features, and this subset is strongly correlated with the class [27].

Another aim of feature selection algorithms is to tackle redundant data. A

feature becomes redundant due to the existence of other relevant features, which

provide similar prediction power.
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Definition 3.2. Assuming Si = D \ {Di}, a feature Di is redundant iff

∃S′i ⊂ Si, such that P [Y |Di, Si] = P [Y |Si] ∧ P [Y |Si] 6= P [Y |S′i] (4)

Several studies proposed the removal of redundant features as this might

jeopardize prediction accuracy due to overfitting [28], while others noticed that

the removal of this type of feature may cause the exclusion of potentially relevant

features [29]. Most of existing works propose to find redundant features through

correlations [30, 31, 28] or clustering similar patterns into feature clusters [32,

33].

3.2. Feature Selection Task Definition

The feature selection task for data streams is to obtain the optimal subset

D∗ ⊆ D of features that represents the concept to be learned from a dataset or

data stream. The goal of feature selection is to remove irrelevant and redundant

attributes, while maintaining the probability distribution of the original data

classes P [Y ]. Mining this reduced dimensionality dataset implies a smaller

number of parameters in the patterns to be discovered, which leads to easier

concepts to understand and which provides as good or better accuracy in the

predictive model, whilst requiring less data [34].

The problem of feature selection can be formalized as an optimization prob-

lem.

Definition 3.3. Assuming the full and variable set of features D, the goal is

to select a subset D∗ that retains only the relevant information in S. Suppose

that the goodness of a subset of features D′ ⊆ D is given by Q(·), then feature

selection can be stated as in Eq. 5, where dmax is the upper bound on the number

of selected features.

D∗ = argmax
D′⊆D

Q(D′) subject to |D′| ≤ dmax (5)

Finding D∗ is a difficult task that, assuming dmax = d, requires an ex-

ploratory search which is by definition O(2d). In Fig. 1 we present a graphi-

cal representation of the features subset space assuming D = {D1, D2, D3, D4}.
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Figure 1: Feature subsets space assuming D = {D1, D2, D3, D4}.

Due to the exponential computational complexity, most algorithms employ some

kind of heuristic to guide the selection process, which may lead to suboptimal

selected discriminant feature subsets.

3.3. Taxonomy of Feature Selection Methods

Existing works on feature selection are commonly divided into three classes:

filters, wrappers and embedded methods [35]. In this section we briefly describe

these three categories.

Filters. Filters apply statistical measures to assign a score to each feature. Fea-

tures are then ranked by scores and either selected to be kept or removed given

a threshold. These methods are usually univariate and consider each feature

independently. Two important traits of filters are their independence from the

learning algorithm adopted and low computational cost. Examples of filter

methods include the χ2 test, Information Gain, Entropy, Correlation Coeffi-

cient Scores, Las Vegas Filters, Relief and ReliefF [11].

Wrappers. Wrappers consider the selection of a subset of features as a search

problem, where different combinations are prepared, evaluated and pairwisely

compared, usually in bottom-top or top-bottom approaches. A predictive model

is used to evaluate each combination of features and to assign a score based on
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prediction accuracy. Therefore, wrappers are sensitive to the learning algo-

rithm’s bias, i.e. recognize that certain algorithms may work better with differ-

ent features [36]. An important drawback of wrappers is their computational

cost, which is prohibitive in high dimensional or in real-time scenarios. The

most common search processes are: best-first search, stochastic hill-climbing al-

gorithms, forward and backward passes, beam search and simulated annealing.

Embedded methods. Embedded methods learn which features best contribute to

the overall accuracy of the learning algorithm while the model is created. De-

cision tree learning, for example, can be considered to be an embedded method

since the construction of the tree and the selection of the features are interleaved,

but the selection of features itself is done by filters. Embedded approaches in-

teract directly with the learning algorithm and present better computational

complexity than wrappers [37].

3.4. Feature Drift

Most existing algorithms for data streams tackle the infinite length and

drifting concept characteristics. However, not much attention has been given

to feature drifts. Feature drifts occur whenever a subset of features becomes,

or ceases to be, relevant to the concept to be learned. This forces a learner to

adapt its predictive model to ignore irrelevant attributes and account for the

newly relevant ones [21].

Definition 3.4. Given a feature space D at a timestamp t, it is possible to

select the ground-truth relevant subset D∗t ⊆ D such that ∀Di ∈ D∗t Def. 3.1

holds and ∀Dj ∈ D \ D∗t the same definition does not. A feature drift occurs if,

at any two time instants ti and tj = ti + ∆, D∗ti 6= D
∗
tj holds.

Definition 3.5. Let r(Di, tj) ∈ {0, 1} denote a function that determines whether

Def. 3.1 holds for a feature Di at a timestamp tj of the stream. A positive rel-

evance, i.e. r(Di, ti) = 1, states that Di ∈ D∗ at a timestamp ti and that Di

impacts the underlying probabilities P [~x|yi] of the concept Ct of S. A feature
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drift occurs whenever the relevance of an attribute Di changes in a timespan

between tj and tk, as stated in Eq. 6.

∃tj∃tk, tj < tk, r(Di, tj) 6= r(Di, tk) (6)

Changes in r(·, ·) directly affect the ground-truth decision boundary to be

learned by the learning algorithm. Therefore, feature drifts can be posed as a

specific type of concept drift that may occur with or without changes in the

data distribution P [~x] [38, 10].

As in conventional concept drifts, changes in r(·, ·) may occur during the

processing of the stream. Thus, data stream learners are expected to detect

changes in D∗, discerning between features that became irrelevant and those

that are now relevant and vice-versa. Finally, it is necessary to either (i) discard

and learn an entirely new classification model; or (ii) adapt the current model

to these drifts [21].

Although feature drifts may occur in a variety of environments, one of the

most common domains in which it happens is text mining. In order to exemplify

a feature drift, we refer to the e-mail spam detection system presented in [39].

This system was a result of a text mining process on an online news dissemina-

tion system. Essentially, this work intended to create an incremental filtering

of emails that classifies emails as spam or ham and, based on this classifica-

tion, decides whether this email is relevant for dissemination among users. The

dataset contains 9,324 instances and 39,917 features, such that each attribute

represents the presence of a single word (feature) in an instance (e-mail). This

dataset, called Spam Corpus, is known for containing a feature drift which oc-

curs gradually around the instance of number 1,500 [1, 39, 10] and that highly

impacts on the learner.

In Fig. 2a we present a plot of the information gain [40] of two specific

attributes presented in this problem, namely “directed” and “info”, where one

can see that the importance of these two features starts exchanging gradually

around instance 1,500 [38]. Detecting and discerning the two features that ex-

change relevance as the stream progresses is an important task that must be

10



0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

0

0.5

1
directed

info

Instances

In
fo

rm
at

io
n

G
a
in

(a) Information gain of features “di-

rected” and “info” during the stream.

0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

40
60
80

100 VFDT

VFDR

Instances

A
cc

u
ra

cy
(%

)

(b) Accuracy obtained for a decision

tree (VFDT) and a decision rule learner

(VFDR).

Figure 2: Analysis of information gain for two specific features and accuracy obtained on the

Spam Corpus dataset. Adapted from [10, 38].

embedded within streaming learning algorithms, since changes greatly impact

the accuracy of the model (Fig. 2b) and learning with a subset of the whole

feature set is also computationally faster. We refrain from providing a detailed

description of these classifiers since the Very Fast Decision Tree (VFDT) and

Very Fast Decision Rules (VFDR) are discussed in Secs. 4.1 and 4.2, respec-

tively.

3.5. A Note on Dynamic Feature Selection versus Streaming Feature Selection

It is important to emphasize the difference between Dynamic Feature Selec-

tion for data streams and Streaming Feature Selection (also commonly referred

as Online Feature Selection [23, 24]). Streaming feature selection regards the

possibility of finding the best subset of features in a very high-dimensional space

(hundreds of thousands or millions of dimensions), which is a typical problem

of big data [23]. Although both tasks’ objectives overlap, streaming feature

selection receives as input a stream of features (not instances), and their inclu-

sion in the model is performed sequentially, without observing future features

[41]. Therefore, Streaming Feature Selection is used in batch learning, when the

amount of features is gigantic, scaling up to thousands or millions of attributes

and the amount of instances is static and does not vary with time.
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4. Existing Works on Overcoming Feature Drifts

There are few works in the literature that perform feature selection during

stream learning. There are even fewer that aim at explicitly detecting and

adapting to feature drifts. In this section we summarize existing algorithms

that perform feature selection as the stream progresses, either assuming the

existence, or not, of feature drifts.

In Tab. 1 we summarize existing algorithms. We categorize them accordingly

to four characteristics: their learning approach, the specific feature selection

algorithm, the specific feature drift adaptation method adopted; and whether

they perform explicit dynamic feature selection or not.

We start by discussing two important and widely used approaches for clas-

sifying data streams: decision trees (Sec. 4.1) and decision rules (Sec. 4.2).

Although most part of the summarized algorithms presented in this paper were

not developed aiming at performing feature drift detection and adaptation, we

discuss them and highlight their capabilities to attack this problem, either via

randomness (Sec. 4.3), combinatorics (Sec. 4.4) or windowing (Sec. 4.5).

4.1. Decision Tree Learning

Learning with decision trees is a predictive approach used in statistics, data

mining and machine learning. In its simplest implementations, each internal

node contains a test on a feature Di ∈ D, each branch from a node corresponds

to an outcome of the test and each leaf contains a possible prediction (class

value from Y ) [14].

Predictions for instances ~x are obtained by traversing the tree with features’

values, determining which branch should be followed, until a leave is reached.

Decision trees are learned by recursion, replacing leaves by test nodes, start-

ing at the root. The feature of each test node is chosen by comparing all the

available attributes Di ∈ D according to some heuristic measure.
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Table 1: Summary of existing algorithms that perform feature selection during stream learn-

ing.

Algorithm
Learning

Approach

Feature Selection

Algorithm

Feature Drift

Adaptation Method

Explicit Dynamic

Feature Selection
Reference

VFDT Tree

Entropy

Information Gain

Gini Coefficient

– [37]

Facil Rules Purity – [42]

VFDR Rules Entropy – [3]

Streaming Random Forest Ensemble (Trees) – Randomness/Combinatorics [43, 19]

Random Rules Ensemble (Rules) – Randomness/Combinatorics [15]

Streaming Stacking – Ensemble Combinatorics [44]

CVFDT Tree

Entropy

Information Gain

Gini Coefficient

Windowing 3 [45]

HEFT-Stream Ensemble FCBF Windowing 3 [21]

HAT Tree

Entropy

Information Gain

Gini Coefficient

Windowing 3 [46]

HUWRS Ensemble – Windowing [47]

4.1.1. Very Fast Decision Tree

The Very Fast Decision Tree (VFDT) algorithm constructs decision trees

by using constant memory and constant time per sample [37]. Trees are built

by recursively replacing leaves with decision nodes, as data arrives. Different

heuristic evaluation functions are used to determine whether a split should be

performed or not, such as Entropy (Eq. 7), Correlation (Eq. 8), Information

Gain (Eq. 9) and Gini Impurity (Eq. 10) [48], where n is the amount of instances

in the dataset analyzed.

H(Di) = −
∑
q∈Di

P [q] log2 P [q] (7)

C(Di, Y ) =

∑
q∈Di

∑
yi∈Y (q − D̄i)(yi − Ȳ )√∑

q∈Di
(q − D̄i)2

√∑
yi∈Y (yi − Ȳ )2

(8)

IG(Di) = H(Di)−
∏

Dj∈D,Dj 6=Di

H(Dj)

n
(9)

GI(Di) = 1−
∑
q∈Di

(P [q])2 (10)
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In order to determine whether a new branch should be built in the tree, VFDT

assumes that the input data meets the Hoeffding bound [49].

Definition 4.1. The Hoeffding Inequality states that with probability (1 − δ)

the true mean of a variable is at least (r̄ − ε), where ε is given by Eq.11, δ is

a user-given confidence bound, r ∈ R+ is a random variable with range R, n

is the number of independent observations and r̄ is the mean computed by the

latter observations.

ε =

√
R2 ln

(
1
δ

)
2n

(11)

The Hoeffding bound is able to give results regardless of the probability dis-

tribution that generates data. However, the number of observations needed to

reach certain values of δ and ε are different across different probability distri-

butions [50], therefore, it must be seen as a pessimistic bound. Generally, with

probability (1−δ), one can say that one attribute is superior when compared to

others when the observed difference of information gain (or any other heuristic

metric that computes the importance of an attribute) is greater then ε.

Although VFDT performs embedded feature selection in data streams, it

assumes that the distribution generating data does not change over time, there-

fore, it does not detect nor adapt to possible drifts.

4.2. Decision Rule Learning

Although decision trees account for readability, in some specific scenarios,

where trees tend to grow large, they become hard to understand since nodes

appear in a specific context defined by tests at antecedent nodes [15]. In con-

trast, classifiers based on rules have the advantage of both modularity and inter-

pretability, where each rule is independent of the others and can be interpreted

in isolation from any other rules.

A decision rule is a logic predicate in the IF antecedent THEN label

form, where the antecedent is a conjunction of conditions over features Di ∈ D

and the label is a possible class value that belongs to Y .
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4.2.1. Facil

The first streaming rule learner published was Facil [42]. Facil creates rules

according to the arrival of instances in an incremental fashion. In order to

cope with concept drifts, Facil encompasses both explicit and implicit forgetting

mechanisms. The explicit approach occurs when the examples are older than

a user-given threshold W , adopting a sliding window approach to eliminate

old rules. Conversely, implicit forgetting occurs when removing rules that are

not relevant as they do not enforce any concept description boundary. This

approach’s rationale is that rules are inconsistent if they store both positive

and negative instances that are near to one another at the decision boundary.

Therefore, rules are removed if the impurity (ratio between positive instances

it covers and its total number of cover examples) of a rule reaches a user-given

threshold. Whenever the removal of a rule occurs, the subset originally covered

by these rules are used to form two new rules that achieve satisfiable purity.

4.2.2. Very Fast Decision Rules

A more robust approach for learning rules from data streams is proposed

in [3]. This algorithm, called Very Fast Decision Rules (VFDR), is capable of

learning ordered and/or unordered rules. The algorithm starts with an empty

rule set and rules are grown and expanded according to the minimization of

entropy (Eq. 7) of class labels Y of instances covered by each rule. Additionally,

in order to determine whether a rule should be expanded, VDFR also adopts

the Hoeffding bound (Eq. 11).

VFDR considers two cases of rule learning: ordered and unordered sets of

rules. In the former, all labeled instances update statistics of the first rule

triggered. While in the latter, labeled instances update statistics of all the rules

that cover it. In both cases, if no rules cover an instance, the default rule is

updated to cover them.

Finally, VFDR encompasses two classification strategies. The first uses only

information about class distribution and does not account for features’ values.

Since it uses a small part of the available information, it is a crude approx-
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imation of the instances. Conversely, in an informed strategy, instances are

classified with the class that maximizes the posteriori probability assuming the

independence of attributes given the class (P [yi|~x] ∝ P [yi]
∏
P [~x|yi]).

4.3. Randomness

Diversity is a trait of a variety of recently proposed algorithms for learning

from data streams [51, 52, 53], particularly ensembles. Ensembles are sets of

classifiers that are trained in parallel or in sequence and have their predictions

aggregated during polling [54]. In several of these approaches, experts of an

ensemble are trained with different inputs in order to promote diversity [55]. A

well-known approach for inducing diversity in ensembles is Bagging [56]. Orig-

inally, a bagging ensemble is composed of m classifiers, which are trained with

subsets (bootstraps) of the whole training set. However, sampling usually is

not feasible in a data stream configuration, since that would require storing all

instances before creating subsets. Therefore, authors in [53] observed that the

probability of an instance ~xi to be selected for a subset can be approximated

by a Poisson distribution with λ = 1.

Although promoting diversity through instances is an interesting approach to

enhance a learner’s accuracy, more recent approaches aim at promoting diversity

through different feature subsets, i.e. vertical partitioning of data [43, 19]. By

learning through ensembles with different features, experts learn partially (or

completely) disjoint areas of the feature space, resulting in a highly diverse

ensemble. Although these algorithms do not focus explicitly on adapting to

feature drifts, they do present implicit adaptation to this characteristic of data

streams by covering different feature subspaces in parallel.

4.3.1. Streaming Random Forest

The Streaming Random Forest classifier is an adaptation of the ensemble-

based Random Forest classifier [57]. Random forests are ensembles of decision

trees. Assuming a dataset with n instances, each belonging to a feature set D,

random forests grow a set of trees, each using a bootstrap sample drawn from
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the full training set. Bootstrapping guarantees that about n
3 of the records are

not included in the training set and so are available for evaluation of each tree

[19].

The construction of each tree follows a variant of the typical decision tree

building algorithm. In standard decision tree algorithms, the set of attributes

considered at a node is the entire set D. Conversely, in the Random Forest

algorithm, the set of attributes considered at each node of each tree of the

ensemble is a different randomly chosen subset D′ ⊂ D, where |D′| ≤M .

As an ensemble, the labeling of each new instance is the fusion of the votes of

all the trees. The random forest classification error depends on (i) the correlation

among its component trees, since smaller correlations cause higher variance

canceling in voting and (ii) the strength of each individual tree, since the more

accurate each subtree is, the better its individual vote and the smaller the error

rate is [43].

Therefore, the value of M is a sensitive parameter of random forests that

must be chosen carefully. Small values of M tend to increase the strength of

each individual tree, while decreasing the correlation between them [43].

4.3.2. Random Rules

In [15], authors extend the VFDR algorithm by promoting randomness. This

algorithm, called Random Rules for Data Stream (RR), encompasses the fol-

lowing parameters: a number of rule sets (Ns) and the number of attributes M

that respects the M < |D| restriction.

Initially, each of the composing rule sets is empty and each of these is asso-

ciated with a random subset D′ ⊂ D of size M . For each instance it retrieved

from S, RR generates a random number p between 0 and 1 for each rule set.

If p ≥ Trnd, a user-given threshold, RR verifies whether each rule set contains

a rule that covers it, i.e. if all the literals of the rule are true for the given in-

stance. If the above condition holds, all covering rules are expanded using only

the features adopted by the rule set D′. Otherwise, that is, if no rules cover it,

then the default rule is updated to cover it, again, respecting the features in D′.
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Finally, authors presented two voting schemes. The first classifies ~xt with the

class yi that maximizes P [yi], while the second assumes the class that maximizes

the posteriori probability maxyi∈Y P [yi|~xt] presented in Eq. 1.

4.4. Combinatorics

By exploring combinatorics, ensembles of decision trees and random rules

algorithms can be extended and posed as dynamic wrappers for dynamic feature

selection for data streams. If one assumes an ensemble of decision trees or a

random rule algorithm, where each of its containing experts is trained with a

different subset of the entire feature setD, and that the cardinality of each subset

is at maximum M , the ensemble would contain
∑M
i=1

(
M
i

)
experts. Although

training this high amount of experts is computationally expensive in terms of

both processing time and memory space, it guarantees that a near optimal (or

optimal, if M ≥ |D∗|) subset D′ allocated to one of the experts will maximize its

acuity metric [19]. Therefore, by applying weighted majority voting [58], feature

drifts can be detected according to the increase of the weights of experts with

the current most discriminative subsets of features, while those with subsets of

irrelevant features will possess lower weights due to lower accuracy performance.

4.4.1. Streaming Stacking

In [44], authors produce a classification model based on an ensemble of deci-

sion trees, each of which is built from a random and distinct subset of D′ ⊂ D.

The overall model is formed by combining the log-odds of the class probabilities

of its containing trees using sigmoid perceptrons, with one perceptron per class.

Contrarily to the conventional boosting approach, which forms an ensemble in

a greedy fashion, each tree is built in sequence by assigning weights as a by-

product and their method generates trees in parallel and combines them using

perceptron classifiers by applying stacking [59]. Due to the streaming scenario,

VFDTs are used as ensemble members since they are able to be trained incre-

mentally. Additionally, the ensemble adopts the ADWIN change detector [50]

in order to detect and adapt to possible concept drifts.
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Figure 3: Window models. Adapted from [20].

This approach is based on generating trees for all possible feature subsets

of a given size M . Assuming a feature set D of size d, there are
(
d
M

)
possible

subsets. Clearly, only moderate values of M or values close to d are practical,

since
(
d
M

)
=
(

d
d−M

)
. Authors claim that M = 2 is very practical for datasets

with a moderate number of features, although certainly not feasible for high-

dimensional data (e.g. Spam Corpus [39]).

4.5. Windowing

A common approach for both data management and dealing with drifting

data is to maintain a predictive model consistent with a set of recent examples

[20] given three window models: sliding, damped and landmark. In all cases,

the difficulty is to select their appropriate size due to the stability-plasticity

dilemma. While short windows reflect the current data distribution and ensure

fast adaptation to drifts (plasticity), shorter ones worsen the performance of the

system in stable areas. Conversely, larger windows give better performance in

stable periods (stability), however, they also respond more slowly to drifts [18].

Sliding windows (Fig. 3a) store in memory a fixed or variable amount W

of recent examples. Whenever a new instance arrives, it is enqueued in a FIFO

(first in, first out) policy data structure, where the oldest one is discarded. The

rationale behind this type of window is that buffered data reflect the current

concept adequately. In opposition to sliding windows, damped windows (Fig.

3b) associate a weight w to each datum, which decays with time. This win-

dowing technique is interesting because weights can be seen as indicatives of

how important an instance is to the current concept, thus, may be accounted
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for during voting. Finally, landmark windows require processing a stream by

handling disjoint chunks ci of data separately by instances called “landmarks”.

Landmarks can be defined in terms of time, in terms of the number of instances

seen since the previous landmark or accordingly to memory constraints. All

instances belonging to a same landmark window are stored or summarized into

a same data structure, which is used for training. In this section we present

existing works that rely in windowing approaches to explicitly adapt to feature

drifts.

4.5.1. Concept-adapting Very Fast Decision Tree

Concept-adapting Very Fast Decision Tree (CVFDT) is an extension to

VFDT to deal with concept drifts [45]. CFVDT keeps a model consistent with

respect to the current state of a sliding window from the data stream, thus

creating and replacing alternate decision subtrees when it detects that the dis-

tribution of data is changing at a node. As instances it arrive, CFVDT updates

the statistics at its nodes by decrementing counters according to the oldest

element in the window, which is about to be dequeued and “forgotten”.

Therefore, CFVDT is an Hoeffding Tree which periodically verifies the statis-

tics of nodes to determine if the Hoeffding criterion is still met. According to

user-given parameters T0, T1 and T2, CFVDT traverses the entire decision tree

and checks at each test node if the splitting attribute is still the best when

compared to others. If there is an alternate better splitting attribute, the en-

tire subtree is replaced by a new split node with this attribute. Later, during

the next T1 instances, all retrieved instances from S are used to build the new

subtree, which are then tested with the following T2 instances.

4.5.2. Heterogeneous Ensemble for Data Stream

The Heterogeneous Ensemble with Feature Drift for Data Stream (HEFT-

Stream) is an algorithm that incorporates feature selection into an hetero-

geneous ensemble to adapt to different types of concept and feature drifts

[21]. HEFT-Stream adopts an modification of the Fast Correlation-Based Filter
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(FCBF) algorithm so it dynamically updates the selected relevant feature subset

of a data stream.

FCBF is a feature selection algorithm where the class relevance and pair-

wise dependencies between features are accounted for. Based on information

theory, FCBF adopts symmetrical uncertainty (SU) to compute dependencies

of features and class relevance. Using a top-down approach, starting from the

whole feature set D, FCBF heuristically applies a backward selection technique

to remove irrelevant and redundant features.

Symmetrical uncertainty uses both entropy and conditional entropy to calcu-

late the dependencies of features. Assuming two arbitrary features Di and Dj ,

the symmetrical uncertainty between these two can be computed according to

Eq. 12, where H(·) is the entropy of a feature (Eq. 7), H(·, ·) is the conditional

entropy and MI(·, ·) is the mutual information between two features (Eq. 13).

SU(Di, Dj) = 2

[
H(Di)−H(Di|Dj)

H(Di) +H(Dj)

]
= 2

[
MI(Di, Dj)

H(Di) +H(Dj)

]
(12)

MI(Di, Dj) =
∑
q∈Di

∑
r∈Dj

P [q, r] log
P [q, r]

P [q]× P [r]
(13)

HEFT-Stream adopts a landmark windowing approach. Incoming data is

stored in a buffer with a predefined size. Next, the matrix of symmetrical

uncertainty values is computed to select the most relevant feature subset. After

the processing of each data chunk, HEFT-Stream postulates that a feature drift

has occurred if two consecutive selected subsets of features differ.

Additionally, in order to boost the overall ensemble accuracy, HEFT-Stream

promotes diversity among member classifiers by encompassing an Online Bag-

ging sampling procedure [53].

Classification of each instance is performed through a weighted combination

of member classifiers classifications. Each member classifier k is associated to

a weight wk (Eq. 14) which is an accumulated error from its creation time to

the current time. The weight wk is stated in Eq. 14 where α is a padding value
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which was originally empirically set to 0.001 and Ek is the accumulative error

of the kth member classifier.

wk =
1

(Ek + α)
×

[
K∑
m=1

(Em + α)−1

]
(14)

Finally, at the end of a chunk, the classifier with the highest value of Ek is

replaced by a new classifier. This new classifier is associated with the feature

set D′ selected by FCBF and its type corresponds to the most accurate expert

of the ensemble.

Although HEFT-Stream is stated as a generic ensemble capable of using any

kind of base classification learners, authors only show results for a combination

of an Updatable Näıve Bayes algorithm and VFDT.

4.5.3. Hoeffding Adaptive Tree

Most of decision tree-based algorithms for learning from data streams either

assume that the underlying distribution is static, e.g. VFDT (see Sec. 4.1.1), or

contain hardwired constants concerning the speed or frequency of change, e.g.

CVFDT (see Sec. 4.5.1). These choices are inconclusive and often incorrect due

to the plasticity-stability dilemma, but also since one cannot assume that all

changes in a stream occur with the same frequencies and lengths.

In [46] authors proposed the adoption of an adaptive sliding window drift

detector, named ADWIN [50], inside decision trees for data streams. Their

proposal, called Hoeffding Adaptive Tree (HAT), is an extension to CVFDT in

which an ADWIN drift detector is used to monitor and flag changes in split

nodes of the tree. Therefore, instead of relying on window parameters T0, T1

and T2 for re-evaluating split nodes, HAT replaces split nodes when a significant

error rate change occurs, given a confidence level δ that is inputted to ADWIN.

HATs are thus able to cope with both concept drifts and feature drifts since

split nodes are re-evaluated. This allows split nodes to be consistent in terms of

the feature adopted to perform the split and in which range/value of this feature

the decision should be made. One of the major drawbacks of this method is
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that ADWIN is known for triggering too many false positives [60], i.e. it flags

changes when they do not really occur.

4.5.4. Heuristic Updatable Weighted Random Subspaces

The Heuristic Updatable Weighted Random Subspaces (HUWRS) is a ran-

dom subspace-based ensemble for data streams [47]. HUWRS works under the

hypothesis that when a feature drift occurs, there is no need to learn an en-

tirely new predictive model. Instead, authors recommend building experts of

the ensemble based on random subspaces, while feature drifts are detected ac-

cordingly to a landmark window. HUWRS assumes that data arrives in batches.

On each arriving batch, features are discretized in equal-sized bins and the class

distribution inside each bin of every feature is computed.

HUWRS postulates that a feature drift occurs in a feature Di if the Hellinger

weight between the class distribution of the current and prior landmarks differ at

least by p%, a user-given threshold. The Hellinger weight is given by Equation

15, which is a normalization to the Hellinger distance, given by Equation 16. In

Equations 15 and 16, Y ′ and Y ′′ stand for the class distributions of the current

and prior landmarks for an arbitrary feature Di.

wH(Y ′, Y ′′) =

√
2− dH(Y ′, Y ′′)√

2
(15)

dH(Y ′, Y ′′) =

√∑
q∈Di

(√
P [Y ′|Di = q]−

√
P [Y ′′|Di = q]

)2
(16)

Since a low Hellinger distance means a high agreement in the two distri-

butions, a low Hellinger distance should correspond to a high weight. We em-

phasize that
√

2 is the maximum Hellinger distance between distributions for

binary classification problems, thus, this value is used as a normalization factor

so that the Hellinger weight is bounded in [0; 1].

Whenever a feature drift is flagged for a feature Di, HUWRS resets only the

experts associated with such feature. Therefore, HUWRS is expected to adapt

to feature drifts while performing less retraining when compared to full reset
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approaches. One important drawback of HUWRS is that the experts adopted in

the ensemble are not incremental. Therefore, classifiers are unable to increment

their models if conventional concept drifts occur.

5. Empirical Analysis

In this section we assess the impact of feature drifts on data stream classi-

fication algorithms. First, we introduce the experimental protocol adopted, in-

cluding data generators, one real-world dataset and statistical procedures (Sec.

5.1). Later, we discuss the results obtained, highlighting existing algorithms

difficulties to overcome feature drifts (Sec. 5.2). Finally, we propose a naive

solution to the feature drift problem by splitting and treating the stream into

disjoint chunks of data and applying simple filters. We also show the efficiency

of this approach in both synthetic and real world problems, thus, highlighting

the need for future research in this area and the room for more sophisticated

approaches (Sec. 5.3).

5.1. Experimental Protocol

In this section we present the experimental protocol adopted. We start

by presenting the datasets used and later the evaluation procedure, focusing

on accuracy, processing time and memory usage metrics and statistical testing

procedure.

5.1.1. Generators

In order to evaluate whether a learning algorithm is able to work in different

scenarios, it is necessary to assess its performance over different datasets. In

opposition to real-world data, synthetic data stream generators are important

and often used due to their flexibility, since they offer a precise definition of

drifts types and locations during the streams. In this section we propose and

survey generators capable of synthesizing feature drifts, thus, enabling proper

evaluation of learning algorithms in these scenarios. All the values picked for
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presented parameters were chosen accordingly to their usage in previous papers

of the area.

SEA-FD. In [38], authors proposed a data stream generator that extends the

SEA generator [61]. SEA-FD simulates streams with d > 2 uniformly dis-

tributed features given by the user, where ∀Di ∈ D, Di ∈ [0; 10] and only

two randomly picked features are relevant to the concept to be learned: D∗ =

{Dω, Dζ}. As in [61, 38], the class value y is defined by Eq. 17, where θ is a

user-given threshold. In our experiments, θ = 7 and each instance synthesized

has a 5% probability of being generated as noise.

y =

1, if Dα +Dβ ≤ θ

0, otherwise

(17)

BG-FD. The Binary Generator with Feature Drift (BG-FD) generates instances

composed by boolean ({0, 1}) features. BG-FD has three functions: BG1-FD,

BG2-FD and BG3-FD, all inspired by [31]. In BG1-FD, from the entire set

of features D, only a random subset D∗ ⊂ D is relevant to the concept to be

learned. Additionally, |D∗| = dr, where dr is a user-given parameter. Con-

versely, in BG2-FD and BG3-FD we have D∗ = {Dα, Dβ , Dε}. Labels of in-

stances are given according to three different functions presented in Eqs. 18, 19

and 20 for BG1-FD, BG2-FD and BG3-FD, respectively.

y =


1, if

∧
Di∈D∗

Di

0, otherwise

(18)

y =

1, if (Dα ∧Dβ) ∨ (Dα ∧Dε) ∨ (Dβ ∧Dε)

0, otherwise

(19)

y =

1, if (Dα ∧Dβ ∧Dε) ∨ (¬Dα ∧ ¬Dβ ∧ ¬Dε)

0, otherwise

(20)
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In all cases, class labels yi ∈ Y are evenly likely to occur and instances have

a 5% probability of being generated as noise.

RTG-FD. The original Random Tree Generator (RTG) builds a decision tree

by randomly performing splits on features and assigning a random class label

to each leaf [62]. Instances are created by generating a random valued ~x and

traversing the tree for its corresponding label. We propose an extension to this

generator, namely RTG-FD, such that only a random subset of features D∗ ⊂ D

are relevant. Assuming Di = D \ D∗ as the subset of irrelevant features, |Di| is

a user-given parameter.

5.1.2. Drift Framework

We synthesize feature drifts in streams accordingly to the framework pro-

posed in [14]. This framework models a drift as the change between two pure

distributions, each given by a distinct concept. Intuitively, at the beginning of

a drift window there is a higher probability that instances belong to the prior

concept CA. As we move towards its end, the probability that an instance

belongs to the posterior concept CB increases. The drift window ends when

concept CB becomes stable. To model the probability that every new instance

it drawn from S belongs to concept CA or CB , a sigmoid function as stated in

Eq. 21 is adopted, where P [CB ] and P [CA] = |1− P [CB ]| are, respectively, the

probabilities of it belonging to CA or CB , W is the drift window size, t is the

current timestamp and t0 is the time of the drift, i.e. when P [CA] = P [CB ]

holds.

P [CB ] = |1− P [CA]| =
(

1 + e−W (t−t0)
)−1

(21)

Therefore, with the latter generators, feature drifts occur when the relevant

subset of features D∗ of CA differs from the relevant subset of features D∗ of

the subsequent concept CB .

Synthetic data streams. Synthetic experiments encompass the usage of all pre-

sented generators. All streams created have a length of 100,000 instances,

26



|D| = 50 and |D∗| = 3, with the exception of SEA-FD experiments, where

|D∗| = 2. Streams with an (A) suffix contain 9 equally distributed abrupt

(w = 1) feature drifts, while streams with a (G) contain 9 drifts at the same

time points as for (A), however, these drifts are gradual (w = 1, 000).

Real datasets. Complementing the synthetic data streams, our experiments also

encompass the Spam Corpus dataset [39]. This dataset (earlier discussed in Sec.

3.4) was extracted from a text mining process on an online news dissemination

system. The Spam Corpus dataset contains 9,324 instances and 39,917 features,

such that each attribute represents the presence of a single word (feature) in

the instance (e-mail). Also, this dataset is known for containing a concept drift

which occurs gradually around the instance number 1,500 [39, 10].

5.1.3. Evaluation Procedure

Our evaluation procedure assesses an algorithm’s efficiency in terms of accu-

racy, processing time and memory usage. To quantify the accuracy of classifiers,

we adopted the Prequential test-then-train procedure [63]. Although the Pre-

quential evaluation is known for being pessimistic, authors in [63] claim that it

converges to a periodic holdout estimate when estimated over a sliding window.

The Prequential accuracy of a classifier is computed, at a timestamp ti, over a

sliding window of size w′, according to Eq. 22, where L(·, ·) is a loss function

(in our case, we adopted a 0-1 function) for the obtained class value yk and the

expected ŷk.

Pw′(ti) = 1− 1

w′

i∑
k=i−w′+1

L(yk, ŷk) (22)

Processing time is measured as the time that the algorithms spends pro-

cessing in seconds, and memory usage is presented in RAM-Hours, where 1

RAM-Hour equals 1 GB of RAM being used for one hour.

All experimental results presented in this paper were obtained on a Intel

Xeon CPU E5649 @ 2.53GHz ×8 based computer running CentOS with 16GB

of memory and under the Massive Online Analysis (MOA) framework [62].
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Finally, in order to determine whether there is significant statistical differ-

ence between algorithms, Wilcoxon’s test [64] or a combination of Friedman’s

[65] and Nemenyi’s [66] non-parametric hypothesis tests are used, according to

the number of evaluated hypotheses.

5.2. Benchmarking Existing Works

In this section we present the results for the following algorithms: Very Fast

Decision Rules (VFDR), Very Fast Decision Tree (VFDT), Hoeffding Adaptive

Tree (HAT), Random Rules (RR), Streaming Random Forest (SRF), HEFT-

Stream (HEFT) and Streaming Stacking (SS) (all surveyed in Sec. 4), an 1-

Nearest Neighbor algorithm (1NN) and an Updatable Näıve Bayes (NB).

Tab. 2 presents the average prequential accuracy results obtained during

experiments for all the algorithms. We highlight the higher results obtained

by HAT and ensemble-based approaches, which outperformed its base learners

in most cases. This highlights the power of HAT and ensemble-based algo-

rithms to perform feature drift detection, either via combinatorics, randomness

or windowing.

In Fig. 4 we present the accuracy of the best and worst ranked algorithms

during the SEA-FD(A), SEA-FD(G) and Spam Corpus experiments, where one

can see that HAT is able to quickly recover from feature drifts and boosts

accuracy even after them. Specifically in Fig. 4c, one can see that HAT is

capable of detecting the feature drift, therefore quickly adapting to it while

the Updatable Näıve Bayes (NB) slowly recovers from it only after half the

experiment.

Tabs. 3 and 4 present results obtained for processing time and RAM-Hours,

respectively, where one can see that ensemble-based algorithms possess higher

processing time and memory usage, as expected. We emphasize that both

Random Rules and Streaming Random Forest with M = 2 were incapable

of performing in the Spam Corpus dataset, due to insufficient memory space

(> 16GB).
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Table 2: Average accuracy obtained during experiments.

Average Accuracy (%)

Experiment NB VFDR VFDT HAT 1NN
RR

(M = 1)

RR

(M = 2)

SRF

(M = 1)

SRF

(M = 2)
HEFT SS

RTG-FD(A) 55.43 56.43 55.65 64.19 57.21 65.98 66.35 65.56 65.42 59.62 56.73

RTG-FD(G) 55.41 55.86 55.68 63.33 57.14 65.78 66.37 65.56 65.21 62.13 56.13

SEA-FD(A) 79.83 78.92 80.82 83.73 75.28 95.57 95.65 98.29 98.59 83.02 75.37

SEA-FD(G) 78.92 77.62 80.80 84.16 75.28 93.23 93.32 96.97 97.39 83.22 75.21

BG1-FD(A) 69.99 72.67 78.21 94.04 76.00 78.50 76.37 78.17 78.15 90.07 92.16

BG1-FD(G) 69.99 70.21 78.25 93.20 75.69 78.30 76.49 78.18 78.18 89.59 92.03

BG2-FD(A) 62.02 68.17 66.63 91.15 73.20 59.05 61.14 60.07 61.74 88.51 77.79

BG2-FD(G) 61.94 66.41 66.73 89.12 72.89 58.45 62.71 59.98 63.15 88.06 76.38

BG3-FD(A) 54.99 54.24 62.43 86.04 62.96 59.18 60.82 59.91 61.05 86.78 53.37

BG3-FD(G) 54.74 54.07 60.70 81.24 62.93 58.19 60.65 59.78 61.40 86.00 57.38

Spam Corpus 71.13 74.81 79.32 84.48 79.85 75.22 – 74.17 – 82.65 –

In order to determine whether there is significant statistical difference be-

tween algorithms’ accuracy, processing time and memory usage, we started with

Friedman’s test, while ignoring RR (M = 2) and SRF (M = 2) since they do

not present accuracy values for all datasets. We divided our comparison in two

distinct tests. The first test compares NB, VFDR, VFDT, HAT and 1NN ,

while the second compares ensemble-based algorithms, i.e. RR, SRF, HEFT

and SS.

In our first test, Friedman test pointed out that there was a difference be-

tween algorithms by adopting a confidence level of 95% in terms of accuracy

and the post-hoc Nemenyi test showed that {HAT} � {1NN , VFDT, VFDR,

NB} also with a 95% confidence level. The same procedure was repeated

for processing time and memory usage, and results show that {NB, VFDT,

1NN} � {HEFT, HAT, SRF (M = 1), VFDR, RR (M = 1)} for processing

time and {NB, 1NN , VFDT} � {VFDR, SRF (M = 1), HAT, HEFT, RR

(M = 1)} in terms of memory space.

In the second evaluation, Friedman’s test pointed that {HEFT} � {RR

(M = 1), SRF(M = 1), SS} in terms of accuracy, however, there is no significant

statistical between ensemble-based algorithms in processing time and memory

usage.
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Figure 4: Accuracy of the best and worst algorithms as the stream progresses.

Table 3: Processing time obtained during experiments.

Processing time (s)

Experiment NB VFDR VFDT HAT 1NN
RR

(M = 1)

RR

(M = 2)

SRF

(M = 1)

SRF

(M = 2)
HEFT SS

RTG-FD(A) 1.94 85.21 6.66 82.50 7.49 316.36 95.97 10.14 104.68 13.23 31.74

RTG-FD(G) 1.62 94.20 6.07 81.24 7.59 351.77 93.79 51.65 847.12 12.93 31.03

SEA-FD(A) 2.07 424.62 4.36 4.76 110.43 57.52 84.82 63.60 8598.08 29.01 30.61

SEA-FD(G) 2.07 192.48 4.68 3.61 110.38 58.72 79.43 65.10 8594.82 34.74 30.98

BG1-FD(A) 1.45 5.50 4.61 104.44 2.66 3700.78 112.59 45.47 576.54 5.20 27.75

BG1-FD(G) 1.43 5.54 4.44 103.24 2.86 3627.28 112.54 45.98 1036.78 5.47 27.82

BG2-FD(A) 1.59 7.55 4.04 104.88 3.18 2589.64 86.90 25.58 290.87 6.07 27.52

BG2-FD(G) 1.37 6.57 3.98 102.78 3.84 3756.22 89.38 49.93 1134.00 6.00 26.73

BG3-FD(A) 1.46 5.35 3.37 104.43 3.40 2330.19 86.94 25.52 295.29 5.89 27.88

BG3-FD(G) 1.33 5.75 3.67 102.54 4.09 3730.27 87.28 49.42 1145.98 5.74 26.81

Spam Corpus 617.66 691.51 695.06 145.23 6329.34 369.99 – 487.75 – 2132.02 –

5.3. Performing Feature Selection in Data Chunks

In this section we propose and empirically evaluate a naive approach to

handle feature drifts in data streams. We hypothesize that by splitting a stream

into chunks, it is possible to determine the most discriminative subset of features

of a stream, and train the classifier exclusively with them. In all cases, the most

discriminative subset of features D∗ is assumed as the union of features Di ∈

D that maximize the goodness function Q(Di) individually. We acknowledge

that this discriminative subset selection is naive hence it does not account for

redundant features [28]. This occurs due to all features being deemed relevant to
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Table 4: RAM-Hours obtained during experiments.

RAM-Hours (GB-Hour)

Experiment NB VFDR VFDT HAT 1NN
RR

(M = 1)

RR

(M = 2)

SRF

(M = 1)

SRF

(M = 2)
HEFT SS

RTG-FD(A) 1.76 × 10−8 4.64×10−4 1.85×10−6 1.05×10−5 1.18×10−6 1.94×10−4 2.90×10−5 5.31×10−7 8.22×10−5 3.16×10−6 1.82×10−5

RTG-FD(G) 1.62 × 10−8 4.91×10−4 1.81×10−6 1.03×10−5 1.21×10−6 2.28×10−4 3.58×10−5 7.56×10−6 2.29×10−3 3.25×10−6 1.82×10−5

SEA-FD(A) 1.56 × 10−8 1.04× 10−2 6.08× 10−7 2.38× 10−7 1.36× 10−5 9.34×10−5 3.05×10−4 9.21×10−5 1.10×10−5 5.44×10−2 2.11×10−5

SEA-FD(G) 1.42 × 10−8 2.32× 10−3 6.20× 10−7 1.42× 10−7 1.36× 10−5 9.27×10−5 3.68×10−4 9.09×10−5 7.87×10−6 5.44×10−2 2.16×10−5

BG1-FD(A) 1.21 × 10−8 2.95×10−7 7.36×10−7 1.33×10−5 3.99×10−8 9.08×10−3 3.48×10−5 4.37×10−6 3.86×10−4 8.22×10−7 5.57×10−6

BG1-FD(G) 1.29 × 10−8 3.15×10−7 7.25×10−7 1.31×10−5 4.71×10−8 8.95×10−3 3.50×10−5 4.51×10−6 9.79×10−4 8.81×10−7 5.60×10−6

BG2-FD(A) 1.32 × 10−8 6.34×10−7 4.91×10−7 1.33×10−5 6.70×10−8 4.54×10−3 2.10×10−5 1.70×10−6 1.30×10−4 9.94×10−7 5.59×10−6

BG2-FD(G) 1.23 × 10−8 4.97×10−7 4.45×10−7 1.31×10−5 8.04×10−8 9.16×10−3 2.61×10−5 4.90×10−6 1.07×10−3 9.95×10−7 5.35×10−6

BG3-FD(A) 1.32 × 10−8 2.54×10−7 2.89×10−7 1.33×10−5 7.57×10−8 3.63×10−3 2.13×10−5 1.72×10−6 1.32×10−4 9.70×10−7 5.68×10−6

BG3-FD(G) 1.20 × 10−8 2.99×10−7 3.65×10−7 1.30×10−5 1.19×10−7 9.15×10−3 2.53×10−5 4.85×10−6 1.08×10−3 9.53×10−7 5.33×10−6

Spam Corpus 2.34× 10−2 5.11× 10−2 1.56× 10−2 1.40 × 10−3 5.50× 10−2 4.10× 10−3 – 4.46× 10−3 – 1.80× 10−1 –

(~xi−5, yi−5) (~xi−4, yi−4) (~xi−3, yi−3) (~xi−2, yi−2) (~xi−1, yi−1) (~xi, yi) (~xi+1, yi+1)

Data chunk (B)

Q(·) findSubset()
extract()

D → D′
f

Update D′

Classifier reset

Figure 5: LFDD overview.

the concept (correlated with the class), while they are possibly highly correlated

to one another [67]. Additionally, other studies suggest and empirically show

that features with individual low discriminative power, when put together, are

able to show interesting discriminative power at times [21, 35]. By performing

feature selection as the stream progresses, we assume that a feature drift occurs

when the most discriminative subset of features of a chunk of data differs from

the subset of features of the previous chunk.

Our proposal is named Landmark-based Feature Drift Detector (LFDD). Its

pseudocode is presented in Alg. 1 and an overview is depicted in Figure 5. It

receives as input a data stream S, a base learner e (e.g. NB, VFDT, VFDR

and 1NN), a landmark window size W , an heuristic goodness function Q(·)

(e.g. Entropy, Gain Ratio and Information Gain) and a maximum amount of

features dmax.

During the training step, instances (~xi, yi) retrieved from S are stored in an

instance buffer B (lines 3 and 4) and used for training after the extraction of
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the most discriminative subset of features D′ (line 12).

When the size of the instance buffer reaches W (line 5), then D′ is compared

to the new most discriminant subset of features (line 6) given by a function

findSubset(·, ·, ·), computed according to the instance buffer B, to the heuristic

goodness function Q(·) and the maximum amount of features dmax (line 6). If

the new subset of discriminant of features Dnew differs from the subset of the

last chunk of data (line 7), we hypothesize that a feature drift has occurred, so

the expert e is reset and D′ is replaced with Dnew (lines 8 and 9).

During the evaluation step, all instances are first translated into the reduced

feature set D′ (line 13) and then the base learner is asked for a class label (line

14).

5.3.1. Benchmarking LFDD

In this section we evaluate the usage of LFDD in the Updatable Naive Bayes

(NB), Very Fast Decision Tree (VFDT), Very Fast Decision Rules (VFDR) and

a 1-Nearest Neighbor (1NN) algorithms. Our goal is to investigate if LFDD is

able to improve overall accuracy of classification algorithms in feature drifting

streams. We experimented with LFDD while varying the parameter dmax in

the [2; 49] interval and the following heuristic goodness functions: Correlation,

Gain Ratio and Information Gain. We refrain from verifying the impact of

the landmark window size W since it represents a trade-off without a clear

unique solution due to the plasticity-stability dilemma. A small size results

in a window that reflects the current distribution of data and enables quicker

drift adaptation (plasticity), while a large size enables a larger amount of data

to work on, important in non-drifting periods of the stream (stability) [14].

Therefore, the size of the landmark window was empirically set to W = 1, 000

for synthetic experiments and W = 100 for the Spam Corpus dataset.

In Figs. 6 and 7 we present the accuracy obtained by LFDD when varying the

base learner, heuristic goodness function Q(·) and dmax in the SEA-FD(G) and

Spam Corpus experiments, respectively. We do not provide the graphical results

for other experiments since they follow the same behavior as those discussed in
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Algorithm 1: Landmark-based feature drift detector (LFDD) pseu-

docode.
input : a data stream S, a base learner e, a landmark window size W , a

goodness function Q(·) and a maximum amount of features dmax.

/* TRAINING STEP */

/* buffer of instances */

1 B ← ∅;

/* adopted set of features */

2 D′ ← random subset of D subject to dmax;

3 foreach (~xi, yi) ∈ S do

4 B ← B ∪ {(~xi, yi)};

5 if |B| = W then

6 Dnew ← findSubset(B, Q, dmax);

7 if Dnew 6= D′ then

8 D′ ← Dnew;

9 e.reset();

10 B ← ∅;

11 ~x′i ← extract(~xi,D′);

12 e.train(~x′i);

/* EVALUATION STEP */

13 ~x′i ← extract(~xi,D′);

14 return e.evaluate(~x′i)

this section. In these plots, we mark with a dot the base learner behavior,

i.e. the base learner behavior learning with all original features. Cases where

no dots appear for a given learner indicate that LFDD outperformed the base

learner in all cases, independently of dmax.

In Fig. 6 it is possible to verify that LFDD is able to boost all base learners

by adopting any goodness function and for a wide range of values of dmax.

For instance, a conventional NB, when combined to LFDD, is able to improve

over its default setting by selecting between 2 and 42 features. In other cases,
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such as presented in Figs. 6b and 6c, it is possible to see that, Information

Gain and Gain Ratio, when applied to both NB and VFDT are superior to

the conventional base learner setting in all cases, i.e. when dmax ∈ [2; 49].

This highlights that both the original VFDT and NB are incapable of quickly

adapting to feature drifts and the usage of LFDD helps in feature drift detection

and model adaptation.

In Figs. 8 and 9 we present the processing time results for the same ex-

periments, where one can see that processing time increases according to the

growth in the dimensionality adopted dmax. First, it is important to notice that

both NB and VFDT, when combined to LFDD, do not present significant im-

provements in processing time. This occurs due to the simple learning scheme

adopted by both algorithms: the first (NB) works with a simple contingency

table, which requires a O(dmax) to classify each instance; while the second

(VFDT) requires at maximum O(log2 dmax). Although there is no interesting

gain being achieved for processing time by adopting LFDD, we recall that there

is a gain in accuracy (Figs. 6 and 7).

On the other hand, two other cases are the opposite: 1NN and VFDR.

To classify each instance a 1NN classifier acts in O(N × dmax), therefore, the

value of dmax highly impacts processing time. Conversely, VFDR exhibits an

increased processing time due to the rule set, that grows according to dmax.

Again, we mark the base learner default behavior, showing that in most cases,

working on a reduced dimensionality up to a given threshold results in less

processing time for synthetic experiments. We highlight the Spam Corpus ex-

periment, where are all base learners, when associated with LFDD and any

heuristic goodness measures, resulted in less processing time when compared to

their default configuration, i.e. no feature selection.

Figs. 10 and 11 present RAM-Hours results for SEA-FD(G) and Spam

Corpus experiments where one can see that with the increase of dmax, algorithms

increase their memory usage as well. Again, we highlight both 1NN and VFDR,

since the first stores in memory a buffer with O(N×dmax) space and the second

has its rule set growing exponentially with dmax.
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Figure 6: Accuracy obtained by LFDD during the SEA-FD(G) experiment.
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Figure 7: Accuracy obtained by LFDD during the Spam Corpus experiment.

We emphasize that when comparing accuracy, processing time, and memory

usage, both information gain and gain ratio have presented interesting results.

While heuristic goodness functions were able to boost LFDD’s base learner’s

accuracy, the overhead of selecting features and converting arriving instances

into this reduced dimensionality also provided descreases in both processing

time and memory space usage when compared to the default configuration of

each base learner. This empirically shows that feature selection, even for data

streams, is able to provide machine learning models with higher accuracy, for

less processing time and memory space [11].

Finally, we present the results obtained by the adoption of LFDD in all ex-

periments in accuracy (Tab. 5), processing time (Tab. 6) and memory space
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Figure 8: Processing time (s) obtained during the SEA-FD(G) experiment.
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Figure 9: Processing time (s) obtained by LFDD during the Spam Corpus experiment.

(Tab. 7). Our intent was to perform a pessimistic evaluation of LFDD, there-

fore, the results presented in the latter cited Tables reflect the lowest accuracy

obtained by LFDD regardless of the goodness function adopted, and highest pro-

cessing time and memory usage. In order to assess whether the usage of LFDD

presents significant differences when compared to an isolated base classifier, we

performed several paired Wilcoxon’s tests.

In terms of accuracy, Wilcoxon’s test pointed out that LFDD outperforms

base classifiers in all cases by assuming a 95% confidence level. This fact shows

that a simple landmark-based filter is able to produce interesting feature drift

adaptation when compared to conventional learners. It is also important to

emphasize that both VFDT and VFDR had their results boosted, therefore
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Figure 10: RAM-Hours obtained during the SEA-FD(G) experiment.
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Figure 11: RAM-Hours obtained by LFDD during the Spam Corpus experiment.

highlighting the fact that their models are unable to adapt to feature drift more

promptly.

In terms of processing time and memory usage, one can see that the adoption

of LFDD when compared to the original learners, allows for faster computation

and lower memory consumption in all cases, results corroborated by Wilcoxon’s

test. By combining results across all three aspects, one can see that performing

periodical evaluations of features’ discriminative power consistently leads to

smaller subsets of features for classifiers to work with. As in batch learning, we

showed that feature selection is beneficial since it allows learners, on average, to

obtain higher accuracy, while reducing both processing time and memory usage.
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Table 5: Accuracy obtained by algorithms with and without LFDD.

Accuracy (%)

Experiment NB LFDD-NB VFDT LFDD-VFDT VFDR LFDD-VFDR 1NN LFDD-1NN

RTG-FD(A) 55.43 84.90 55.65 84.76 56.43 55.42 57.21 56.43

RTG-FD(G) 55.41 84.19 55.68 84.23 55.86 55.37 57.14 56.24

SEA-FD(A) 79.83 79.96 80.82 86.82 78.92 78.57 75.28 86.31

SEA-FD(G) 78.92 79.35 80.80 84.23 77.62 79.20 75.28 86.27

BG1-FD(A) 69.99 94.06 78.21 93.81 72.67 80.11 86.00 88.98

BG1-FD(G) 69.99 93.03 78.25 92.81 70.21 79.37 85.69 89.01

BG2-FD(A) 62.02 81.44 66.63 86.88 68.17 74.18 73.20 87.88

BG2-FD(G) 61.94 76.32 66.73 86.17 66.41 73.85 72.89 86.72

BG3-FD(A) 54.99 57.73 62.43 73.92 54.24 57.40 65.96 83.46

BG3-FD(G) 54.74 56.74 60.70 69.92 54.07 57.70 65.93 80.68

Spam Corpus 86.64 86.85 86.47 86.83 74.81 81.30 79.85 83.58

6. Research Challenges and Future Directions

Determining the most discriminative subset of features as a data stream

progresses is not straightforward. In this paper we presented and benchmarked

existing works that perform feature drift adaptation in both explicit and im-

plicit fashions. This survey shows that feature drift is another challenging trait

of streaming scenarios that must be accounted for by new stream learning al-

gorithms. Through our naive proposal, namely LFDD, we showed that it is

possible to perform feature selection as the stream progresses and that this al-

lows for quicker feature drift recovery and reduces overall processing time and

memory usage. Nevertheless, there exists a number of research questions that

are still unanswered and pose challenges for the streaming research community.

Inductive tree learning is one of the most commonly used approaches for

classifying data streams. As discussed in Sec. 4, very few decision trees regard

the possibility of changes in the underlying distribution of data, and therefore

introduce some kind of pruning strategy into the tree evolution. With rare

exceptions, existing strategies are based on equal-sized windowing techniques,

where the algorithm verifies if the attributes used in split nodes are still maximiz-

ing a goodness function Q(·), or if they should be replaced by more appropriate

splits.
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Table 6: Processing time obtained by algorithms with and without LFDD.

Processing time (s)

Experiment NB LFDD-NB VFDT LFDD-VFDT VFDR LFDD-VFDR 1NN LFDD-1NN

RTG-FD(A) 1.94 1.77 6.66 6.53 85.21 80.95 7.49 6.59

RTG-FD(G) 1.62 1.47 6.07 5.77 94.20 85.72 7.59 6.53

SEA-FD(A) 1.93 2.07 4.36 4.23 424.62 399.14 110.43 7.84

SEA-FD(G) 1.97 2.01 4.68 4.49 192.48 182.86 110.38 7.95

BG1-FD(A) 1.45 1.31 4.61 4.52 5.50 5.00 2.66 2.26

BG1-FD(G) 1.43 1.32 4.44 4.26 5.54 5.21 2.86 2.52

BG2-FD(A) 1.59 1.51 4.04 4.00 7.55 6.87 3.18 2.86

BG2-FD(G) 1.37 1.29 3.98 3.86 6.57 6.18 3.84 3.42

BG3-FD(A) 1.46 1.36 3.37 3.24 5.35 5.08 3.40 2.92

BG3-FD(G) 1.33 1.21 3.67 3.63 5.75 5.23 4.09 3.48

Spam Corpus 617.66 586.78 695.06 667.26 691.51 636.19 6329.34 5506.53

Table 7: RAM-Hours obtained by algorithms with and without LFDD.

RAM-Hours (GB-Hour)

Experiment NB LFDD-NB VFDT LFDD-VFDT VFDR LFDD-VFDR 1NN LFDD-1NN

RTG-FD(A) 1.76× 10−8 1.64 × 10−8 1.85× 10−6 1.74 × 10−6 4.64× 10−4 4.59 × 10−4 1.18× 10−6 1.16 × 10−6

RTG-FD(G) 1.62× 10−8 1.51 × 10−8 1.81× 10−6 1.68 × 10−6 4.91× 10−4 4.86 × 10−4 1.21× 10−6 1.19 × 10−6

SEA-FD(A) 1.56× 10−8 1.47 × 10−8 6.08× 10−7 5.72 × 10−7 1.04× 10−2 1.02 × 10−2 1.36× 10−5 1.35 × 10−5

SEA-FD(G) 1.42× 10−8 1.32 × 10−8 6.20× 10−7 5.83 × 10−7 2.32× 10−3 2.23 × 10−3 1.36× 10−5 1.35 × 10−5

BG1-FD(A) 1.21× 10−8 1.13 × 10−8 7.36× 10−7 6.84 × 10−7 2.95× 10−7 2.80 × 10−7 3.99× 10−8 3.91 × 10−8

BG1-FD(G) 1.29× 10−8 1.20 × 10−8 7.25× 10−7 6.74 × 10−7 3.15× 10−7 3.09 × 10−7 4.71× 10−8 4.62 × 10−8

BG2-FD(A) 1.32× 10−8 1.23 × 10−8 4.91× 10−7 4.62 × 10−7 6.34× 10−7 6.28 × 10−7 6.70× 10−8 6.63 × 10−8

BG2-FD(G) 1.23× 10−8 1.16 × 10−8 4.45× 10−7 4.14 × 10−7 4.97× 10−7 4.92 × 10−7 8.04× 10−8 7.88 × 10−8

BG3-FD(A) 1.32× 10−8 1.24 × 10−8 2.89× 10−7 2.69 × 10−7 2.54× 10−7 2.51 × 10−7 7.57× 10−8 7.42 × 10−8

BG3-FD(G) 1.20× 10−8 1.13 × 10−8 3.65× 10−7 3.43 × 10−7 2.99× 10−7 2.84 × 10−7 1.19× 10−7 1.17 × 10−7

Spam Corpus 2.34× 10−2 2.18 × 10−2 1.56× 10−2 1.45 × 10−2 5.11× 10−2 4.96 × 10−2 5.50× 10−2 5.45 × 10−2

The same can be said for decision rule learning. Algorithms like Facil and

VFDR do not encompass strategies for adapting its model to drifts in data,

therefore they must be accompanied by drift detectors (e.g. ADWIN [50] and

Page-Hinkley’s test [68]) that periodically reset the entire rule set according to

error rates of the classifier.

Through randomness and combinatorics, the latter approaches can be com-

bined into ensembles to boost accuracy and to allow for implicit drift adaptation.

Nevertheless, training and maintaining an ensemble is not only computationally

costly, but it must also employ specific diversity induction and voting schemes.

By randomness, Streaming Random Forests and Random Rules create en-
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sembles and each of its experts are associated with a random subset of features

D′. Arriving instances are then used to train experts after their conversion to

D′. Due to randomness, it is necessary that experts are allocated with D′ that

cover diverse areas of the feature subsets space. The assumption is that at least

one of the experts is associated with a useful D′ ⊇ D∗. By associating each ex-

pert with a dynamic weight that grows and shrinks accordingly to correct and

misclassified instances, the ensemble implicitly adapts to feature drifts since

experts with the most discriminative subsets will present higher accuracy rates.

Analogously, the same algorithms can form ensembles by exploring combi-

natorics. Assuming a feature set D with |D| = M , it is necessary to create

an ensemble with
∑M
i=1

(
M
i

)
experts. Again, by associating each expert with

a subset D′ and a dynamic weight, the one with D′ = D∗ will present higher

accuracy rates and will outvote other experts in predictions. Nevertheless, by

exploring combinatorics the size of the ensemble becomes intractable as the size

of the experts grows very quickly with M .

Finally, approaches like CVFDT [45], HEFT-Stream [21] and LFDD assume

that the most discriminative subset of features can be computed by filters on

disjoint chunks of instances. These algorithms have outperformed others in

experiments, however, their major limitation is how to determine the size of

these windows, which directly affects the learning process. Small windows allow

for quicker recognition of possible changes in the chosen subset of features,

however, this approach may lead to the detection of false changes if the stream

is noisy. Conversely, bigger windows enable a larger amount of data to work on,

yet fail to quickly detect changes in the most discriminative subset.

Another open question regards how each classifier deals with changes in this

chosen discriminative subset. For example, if a change is detected in a decision

tree or decision rule learning algorithm, it is possible to adapt the model learned

in order to avoid full model reset, e.g. Hoeffding Adaptive Tree [46], however,

the same might not hold for other types of learners.

Therefore, open research topics include the development of techniques that

constantly verify the relevance of features as new instances arrive in an adaptive
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and incremental fashion. Performing such verification as data arrives, and in-

dependently of window sizes and base classifiers is important, since it allows for

faster recognition of feature drifts and improves a classifier’s overall accuracy

and processing time.

7. Conclusion

This paper presented, formalized and exemplified one rarely addressed char-

acteristic of data streams: feature drifts. Additionally, we surveyed and bench-

marked algorithms that perform feature selection during stream learning in both

explicit and implicit fashions. Results obtained highlight that feature drift is

another challenging trait of data streams that must be accounted for by new

stream learning algorithms.

Besides serving as an introduction into the research area of dynamic feature

selection for data streams, we expect that this paper helps to position new

adaptive learning techniques and applications to which these apply.

As a conclusion, we believe that performing dynamic feature selection in

data streams has not received proper attention in the current research scenario.

Studying how to perform dynamic feature selection as streams progress enables

algorithms to work only with the most relevant features by discarding irrelevant

ones. Throughout simple experiments based on a naive proposal, we showed

that a classifier’s accuracy can be boosted in feature drifting data, while reduc-

ing both processing time and memory space. We hope that the results presented

here will motivate more research into developing incremental and adaptive fea-

ture selection for data streams.
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