
Adaptive Text Mining: Inferring
Structure from Sequences

IAN H. WITTEN, Department of Computer Science, University of
Waikato, Hamilton, New Zealand. E-mail: ihw@cs.waikato.ac.nz

ABSTRACT: Text mining is about inferring structure from sequences representing natural lan-
guage text, and may be defined as the process of analyzing text to extract information that is use-
ful for particular purposes. Although hand-crafted heuristics are a common practical approach
for extracting information from text, a general, and generalizable, approach requires adaptive
techniques. This paper studies the way in which the adaptive techniques used in text compres-
sion can be applied to text mining. It develops several examples: extraction of hierarchical
phrase structures from text, identification of keyphrases in documents, locating proper names
and quantities of interest in a piece of text, text categorization, word segmentation, acronym
extraction, and structure recognition. We conclude that compression forms a sound unifying
principle that allows many text mining problems to be tacked adaptively.

Keywords: Text mining, phrase hierarchies, keyphrase extraction, generic entity extraction, text categoriza-

tion, word segmentation, acronym extraction, compression algorithms, adaptive techniques.

1 Introduction

Text mining is about inferring structure from sequences representing natural language
text, and may be defined as the process of analyzing text to extract information that is
useful for particular purposes—often called “metadata”. Compared with the kind of
data stored in databases, text is unstructured, amorphous, and contains information at
many different levels. Nevertheless, the motivation for trying to extract information
from it is compelling—even if success is only partial. Despite the fact that the prob-
lems are difficult to define clearly, interest in text mining is burgeoning because it is
perceived to have enormous potential practical utility.

Text compression is about identifying patterns that can be exploited to provide a
more compact representation of the text. A relatively mature technology, it offers key
insights for text mining. Research in compression has always taken the pragmatic
view that files need to be processed whatever they may contain, rather than the norma-
tive approach of classical language analysis which generally assumes idealized input.
Modern compression methods avoid making prior assumptions about the input by us-
ing adaptive techniques. In practice text—particularly text gathered from the Web, the
principal source of material used today—is messy, and many useful clues come from
the messiness. Adaptation is exactly what is required to deal with the vagaries of text
universally encountered in the real world.

This paper studies the way in which the adaptive techniques used in text compres-

J. of Discrete Algorithms, Vol. 0 No. 0, pp. 1–23, 0000 c Hermes Science Publications

2 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

sion can be applied to text mining.
One useful kind of pattern concerns the repetition of words and phrases. So-called

“dictionary” methods of compression capitalize on repetitions: they represent struc-
ture in terms of a set of substrings of the text, and achieve compression by replacing
fragments of text by an index into a dictionary. A recent innovation is “hierarchical”
dictionary methods, which extend the dictionary to a non-trivial hierarchical structure
which is inferred from the input sequence [21]. As well as fulfilling their original
purpose of forming an excellent basis for compression, such hierarchies expose in-
teresting structure in the text that is very useful for supporting information-browsing
interfaces, for example [23]. Section 2 describes schemes for generating phrase hier-
archies that operate in time linear in the size of the input, and hence are practical on
large volumes of text.

Keyphrases are an important kind of metadata for many documents. They are often
used for topic search, or to summarize or cluster documents. It is highly desirable to
automate the keyphrase extraction process, for only a small minority of documents
have author-assigned keyphrases, and manual assignment of keyphrases to existing
documents is very laborious. Appropriate keyphrases can be selected from the set of
repeated phrases mentioned above. In order to do so we temporarily depart from our
theme of text compression and, in Section 3, look at simple machine learning selection
criteria and their success in keyphrase assignment.

Returning to applications of text compression, “character-based” compression meth-
ods offer an alternative to dictionary-based compression and open the door to new
adaptive techniques of text mining. Character-based language models provide a promis-
ing way to recognize lexical tokens. Business and professional documents are packed
with loosely structured information: phone and fax numbers, street addresses, email
addresses and signatures, tables of contents, lists of references, tables, figures, cap-
tions, meeting announcements, URLs. In addition, there are countless domain-specific
structures—ISBN numbers, stock symbols, chemical structures, and mathematical
equations, to name a few. Tokens can be compressed using models derived from
different training data, and classified according to which model supports the most
economical representation. We will look at this application in Section 4.

There are other areas in which compression has been used for text mining: text
categorization, segmentation into tokens, and acronym extraction. We review these in
Section 5, concluding with more speculative material on structure recognition.

2 Generating phrase hierarchies

Dictionary-based compression methods capitalize on repetitions. In simplest form,
they replace subsequent occurrences of a substring with references to the first instance.
Standard compression methods are non-hierarchical, but hierarchical dictionary-based
schemes have recently emerged that form a grammar for a text by replacing each
repeated string with a production rule.

Such schemes usually operate online, making a replacement as soon as repetition is
detected. “Online” algorithms process the input stream in a single pass, and begin to
emit compressed output long before they have seen all the input. Historically, virtually

Adaptive Text Mining: Inferring Structure from Sequences 3

all compression algorithms have been online, because main memory has until recently
been the principal limiting factor on the large-scale application of string processing
algorithms for compression. However, offline operation permits greater freedom in
choosing the order of replacement. Offline algorithms can examine the input in a more
considered fashion, and this raises the question of whether to seek frequent repetitions
or long repetitions—or some combination of frequency and length.

This section describes three algorithms for inferring hierarchies of repetitions in
sequences that have been developed recently for text compression. Surprisingly, they
can all be implemented in such a way as to operate in time that is linear in the length
of the input sequence. This is a severe restriction: apart from standard compres-
sion algorithms that produce non-hierarchical structure (e.g. [35]) and tail-recursive
hierarchical structure (e.g. [36]), no linear-time algorithms for detecting hierarchical
repetition in sequences were known until recently.

2.1 SEQUITUR: an on-line technique

Online operation severely restricts the opportunities for detecting repetitions, for there
is no alternative to proceeding in a greedy left-to-right manner. It may be possible
to postpone decision-making by retaining a buffer of recent history and using this
to improve the quality of the rules generated, but at some point the input must be
processed greedily and a commitment made to a particular decomposition—that is
inherent in the nature of (single-pass) online processing.

SEQUITUR is an algorithm that creates a hierarchical dictionary for a given string
in a greedy left-to-right fashion [21]. It builds a hierarchy of phrases by forming a
new rule out of existing pairs of symbols, including non-terminal symbols. Rules that
become non-productive—in that they do not yield a net space saving—can be deleted,
and their head replaced by the symbols that comprise the right-hand side of the deleted
rules. This allows rules that concatenate more than two symbols to be formed. For
example, the string abcdbcabcdbc gives rise to the grammar

S ! AA
A ! aBdB
B ! bc

Surprisingly, SEQUITUR operates in time that is linear in the size of the input [22].
The proof sketched here also contains an explanation of how the algorithm works.
SEQUITUR operates by reading a new symbol and processing it by appending it to the
top-level string and then examining the last two symbols of that string. Zero or more
of the three transformations described below are applied, until none applies anywhere
in the grammar. Finally, the cycle is repeated by reading in a new symbol.

At any given point in time, the algorithm has reached a particular point in the input
string, and has generated a certain set of rules. Let r be one less than the number of
rules, and s the sum of the number of symbols on the right-hand side of all these rules.
Recall that the top-level string S, which represents the input read so far, forms one of
the rules in the grammar; it begins with a null right-hand side. Initially, r and s are
zero.

4 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

Here are the three transformations. Only the first two can occur when a new symbol
is first processed; the third can only fire if one or more of the others has already been
applied in this cycle.

1. The digram comprising the last two symbols matches an existing rule in the gram-
mar. Substitute the head of that rule for the digram. s decreases by one; r remains
the same.

2. The digram comprising the last two symbols occurs elsewhere on the right-hand
side of a rule. Create a new rule for it and substitute the head for both its occur-
rences. r increases by one; s remains the same (it increases by two on account of
the new rule, and decreases by two on account of the two substitutions).

3. A rule exists whose head occurs only once in the right-hand sides of all rules.
Eliminate this rule, substituting its body for the head. r decreases by one; s de-
creases by one too (because the single occurrence of the rule’s head disappears).

To show that this algorithm operates in linear time, we demonstrate that the total
number of rules applied cannot exceed 2n, where n is the number of input symbols.
Consider the quantity q = s� r=2. Initially 0, it can never be negative because r � s.
It increases by 1 for each input symbol processed, and it is easy to see that it must
decrease by at least 1/2 for each rule applied. Hence the number of rules applied is at
most twice the number of input symbols.

2.2 Most frequent first

SEQUITUR processes the symbols in the order in which they appear. The first-occurring
repetition is replaced by a rule, then the second-occurring repetition, and so on. If on-
line operation is not required, this policy can be relaxed. This raises the question of
whether there exist heuristics for selecting substrings for replacement that yield better
compression performance. There are two obvious possibilities: replacing the most
frequent digram first, and replacing the longest repetition first.

The idea of forming a rule for the most frequently-occurring digram, substituting
the head of the rule for that digram in the input string, and continuing until some
terminating condition is met, was proposed a quarter century ago by Wolff [33] and
has been reinvented many times since then. The most common repeated digram is
replaced first, and the process continues until no digram appears more than once. This
algorithm operates offline because it must scan the entire string before making the first
replacement.

Wolff’s algorithm is inefficient: it takes O(n2) time because it makes multiple
passes over the string, recalculating digram frequencies from scratch every time a new
rule is created. However, Larsson and Moffat [16] recently devised a clever algorithm,
dubbed RE-PAIR, whose time is linear in the length of the input string, which creates
just this structure of rules: a hierarchy generated by giving preference to digrams on
the basis of their frequency. They reduce execution time to linear by incrementally
updating digram counts as substitutions are made, and using a priority queue to keep
track of the most common digrams.

Adaptive Text Mining: Inferring Structure from Sequences 5

For an example of the frequent-first heuristic in operation, consider the string babaabaabaa.
The most frequent digram is ba, which occurs four times. Creating a new rule for this
yields the grammar

S ! AAaAaAa
A ! ba.

Replacing Aa gives
S ! ABBB
A ! ba
B ! Aa,

a grammar with eleven symbols (including three end of rule symbols). This happens
to be the same as the length of the original string (without terminator).

2.3 Longest first

A second heuristic for choosing the order of replacements is to process the longest
repetition first. In the same string babaabaabaa the longest repetition is abaa, which
appears twice. Creating a new rule gives

S ! bAbaA
A ! abaa.

Replacing ba yields
S ! bABA
A ! aBa
B ! ba,

resulting in a grammar with a total of twelve symbols.
Bentley and McIlroy [2] explored the longest-first heuristic for very long repeti-

tions, and removed them using an LZ77 pointer-style approach before invoking gzip
to compress shorter repetitions. This is not a linear-time solution.

Suffix trees [12] provide an efficient mechanism for identifying longest repetitions.
In a suffix tree, the longest repetition corresponds to the deepest internal node, mea-
sured in symbols from the root. The deepest non-terminal can be found by traversing
the tree, which takes time linear in the length of the input because there is a one-to-one
correspondence between leaf nodes and symbols in the string.

We are left with two problems: how to find all longest repetitions, and how to
update the tree after creating a rule. Farach-Colton and Nevill-Manning (private com-
munication) have shown that it is possible to build the tree, and update it after each re-
placement, in time which is linear overall. The tree can be updated in linear amortized
time by making a preliminary pass through it and sorting the depths of the internal
nodes. Sorting can be done in linear time using a radix sort, because no repetition will
be longer than n/2 symbols. The algorithm relies on the fact that the deepest node is
modified at each point.

6 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

2.4 Discussion

It is interesting to compare the performance of the three algorithms we have described:
SEQUITUR, most frequent first, and longest first [24]. It is not hard to devise short
strings on which any of the three outperforms the other two. In practice, however,
longest-first is significantly inferior to the other techniques; indeed, simple artificial
sequences can be found on which the number of rules it produces grows linearly with
sequence length whereas the number of rules produced by frequent-first grows only
logarithmically. Experiments on natural language text indicate that in terms of the total
number of symbols in the resulting grammar, which is a crude measure of compres-
sion, frequent-first outperforms SEQUITUR, with longest-first lagging well behind.

There are many applications of hierarchical structure inference techniques in do-
mains related more closely to text mining than compression [24]. For example, hier-
archical phrase structures suggest a new way of approaching the problem of familiariz-
ing oneself with the contents of a large collection of electronic text. Nevill-Manning et
al. [23] presented the hierarchical structure inferred by SEQUITUR interactively to the
user. Users can select any word from the lexicon of the collection, see which phrases
it appears in, select one of them and see the larger phrases in which it appears, and
so on. Larus [17] gives an application in program optimization, where the first step
is to identify frequently-executed sequences of instructions—that is, paths that will
yield the greatest improvement if optimized. Martin [19] has used these techniques to
segment the input for speech synthesis, so that phonemes can be attached to rules at
the appropriate levels.

3 Extracting keyphrases

Automatic keyphrase extraction is a promising area for text mining because keyphrases
are an important means for document summarization, clustering, and topic search.
Only a minority of documents have author-assigned keyphrases, and manually as-
signing keyphrases to existing documents is very laborious. Therefore, it is highly
desirable to automate the keyphrase extraction process.

The phrase extraction techniques described above provide an excellent basis for
selecting candidate keyphrases. In order to go further and decide which phrases are
keyphrases, we need to step outside the area of compression and use techniques from
machine learning. We have combined phrase extraction with a simple procedure based
on the “naive Bayes” learning scheme, and shown it to perform comparably to the
state-of-the-art in keyphrase extraction [9]. Performance can be boosted even further
by automatically tailoring the extraction process to the particular document collection
at hand, and experiments with a large collection of technical reports in computer sci-
ence have shown that the quality of the extracted keyphrases improves significantly if
domain-specific information is exploited.

Adaptive Text Mining: Inferring Structure from Sequences 7

3.1 Background

Several solutions have been proposed for generating or extracting summary informa-
tion from texts [3] [14] [15]. In the specific domain of keyphrases, there are two funda-
mentally different approaches: keyphrase assignment and keyphrase extraction. Both
use machine learning methods, and require for training purposes a set of documents
with keyphrases already identified. In keyphrase assignment, there is a predefined set
from which all keyphrases are chosen—a controlled vocabulary. Then the training data
provides, for each keyphrase, a set of documents that are associated with it. For each
keyphrase, a classifier is created from all training documents using the ones associated
with it as positive examples and the remainder as negative examples. A new document
is processed by each classifier, and is assigned the keyphrases associated with those
that classify it positively [7]. Here, the only keyphrases that can be assigned are ones
that are in the controlled vocabulary. In contrast, keyphrase extraction, which forms
the basis of the method described here, employs linguistic and information retrieval
techniques to extract phrases from a new document that are likely to characterize it.
The training set is used to tune the parameters of the extraction algorithm, and any
phrase in the new document is a potential keyphrase.

Turney [29] describes a system for keyphrase extraction, GenEx, that is based on
a set of parametrized heuristic rules which are fine-tuned using a genetic algorithm.
The genetic algorithm optimizes the number of correctly identified keyphrases in the
training documents by adjusting the rules’ parameters. Turney compares GenEx to
the straightforward application of a standard machine learning technique—bagged
decision trees [4]—and concludes that GenEx performs better. He also shows that
it generalizes well across collections: trained on a collection of journal articles it suc-
cessfully extracts keyphrases from a collection of web pages on a different topic. This
is an important feature because training GenEx on a new collection is computationally
very expensive.

3.2 Keyphrase extraction

Keyphrase extraction is a classification task. Each phrase in a document is either a
keyphrase or not, and the problem is to correctly classify phrases into one of these
two categories. Machine learning provides off-the-shelf tools for this problem. In the
terminology of machine learning, the phrases in a document are “examples” and the
learning problem is to find a mapping from the examples to the classes “keyphrase”
and “not-keyphrase”. Learning techniques can automatically generate this mapping if
they are provided with a set of training examples—that is, examples that have class
labels assigned to them. In the context of keyphrase extraction this is simply a set
of phrases which have been identified as either being keyphrases or not. Once the
learning scheme has generated the mapping given the training data, it can be applied
to unlabeled data, thereby extracting keyphrases from new documents.

Not all phrases in a document are equally likely to be keyphrases a priori. In order
to facilitate the learning process, most phrases can be eliminated from the examples
that are presented to the learning scheme. We have experimented with many ways

8 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

of doing this, most involving one of the hierarchical phrase extraction algorithms de-
scribed above. Following this process, all words are case-folded, and stemmed using
the iterated Lovins method. This involves using the classic Lovins stemmer [18] to
discard any suffix, and repeating the process on the stem that remains, iterating until
there is no further change. The final step in preparing the phrases for the learning
scheme is to remove all stemmed phrases that occur only once in the document.

Once candidate phrases have been generated from the text, it is necessary to derive
selected properties from them. In machine learning these properties are called the
“attributes” of an example. Several potential attributes immediately spring to mind:
the number of words in a phrase, the number of characters, the position of the phrase
in the document, etc. However, in our experiments, only two attributes turned out to
be useful in discriminating between keyphrases and non-keyphrases. The first is the
distance into the document of the phrase’s first appearance. The second, and more
influential, is the “term frequency times inverse document frequency,” or TF�IDF,
score of a phrase [32]. This is a standard measure used in information retrieval which
favors terms that occur frequently in the document (“term frequency”) but disfavors
ones that occur in many different documents (“inverse document frequency”) on the
grounds that common terms are poor discriminators.

Both these attributes are real numbers. We use the “naive Bayes” learning method
because it is simple, quick, and effective: it conditions class probabilities on each
attribute, and assumes that the attributes are statistically independent. In order to
make it possible to compute conditional probabilities, we discretize the attributes prior
to applying the learning scheme, quantizing the numeric attributes into ranges so that
each value of the resulting new attribute represents a range of values of the original
numeric attribute. Fayyad and Irani’s [8] discretization scheme, which is based on the
Minimum Description Length principle, is suitable for this purpose.

The naive Bayes learning scheme is a simple application of Bayes’ formula. It as-
sumes that the attributes—in this case TF�IDF and distance—are independent given
the class. Making this assumption, the probability that a phrase is a keyphrase given
that it has discretized TF�IDF value T and discretized distance D is easily computed
from the probability that a keyphrase has TF�IDF score T , the probability that a
keyphrase has distance D, the a priori probability that a phrase is a keyphrase, and a
suitable normalization factor. All these probabilities can be estimated by counting the
number of times the corresponding event occurs in the training data.

This procedure is used to generate a Bayes model from a set of training documents
for which keyphrases are known (for example, because the author provided them).
The resulting model can then be applied in a straightforward way to a new document
from which keyphrases are to be extracted.

First, TF�IDF scores and distance values are calculated for all phrases in the new
document using the procedure described above, using the discretization obtained from
the training documents. (Both attributes, TF�IDF and distance, can be computed
without knowing whether a phrase is a keyphrase or not.) The naive Bayes model is
then applied to each phrase, giving the estimated probability of this phrase being a
keyphrase. The result is a list of phrases ranked according to their associated proba-
bilities. Finally, the r highest ranked phrases are output, where r is a user-determined

Adaptive Text Mining: Inferring Structure from Sequences 9

parameter.

3.3 Experimental results

We have evaluated this keyphrase extraction method on several different document
collections with author-assigned keyphrases. The criterion for success is the extent to
which the algorithm produces the same stemmed phrases as authors do. This method
of evaluation is the same as used by Turney [29], and on comparing our results with
GenEx we conclude that both methods perform at about the same level.

An interesting question is how keyphrase extraction performance scales with the
amount of training data available. There are two ways in which the quantity of avail-
able documents can influence performance on fresh data. First, training documents
are used in computing the discretization of the attributes TF�IDF and distance, and
the corresponding parameters for the naive Bayes model. It is essential that these doc-
uments have keyphrases assigned to them because the learning method needs labeled
examples. Second, training documents are used to calculate the document frequency
of each phrase, which in turn is used to derive its TF�IDF score. In this case, unla-
beled documents are appropriate because the phrase labels are not used.

To investigate these effects we performed experiments with a large collection of
computer science technical reports (CSTR) from the New Zealand Digital Library.
The results show that keyphrase extraction performance is close to optimum if about
50 training documents are used for both generating the classifier and computing the
global frequencies. In other words, 50 labeled documents are sufficient to push perfor-
mance to its limit. However, we will see in the next subsection that if domain-specific
information is exploited in the learning and extracting process, much larger volumes
of labeled training documents prove beneficial.

3.4 Exploiting domain-specific information

A simple modification of the above procedure enables it to exploit collection-specific
knowledge about the likelihood of a particular phrase being a keyphrase. To do this,
just keep track of the number of times a candidate phrase occurs as a keyphrase in
the training documents and use this information in the form of an additional, third,
attribute in the learning and extraction process.

The new attribute only makes sense if the documents for which keyphrases are to be
extracted are from the same domain as the training documents. Otherwise, biasing the
extraction algorithm towards phrases that have occurred as author-assigned keyphrases
during training cannot possibly have any beneficial effect. In order to make use of the
information provided by the new attribute, it is therefore necessary to re-train the
extraction algorithm if keyphrases are to be extracted from documents on a different
topic. Training time becomes a critical factor.

We have empirically verified that exploiting domain-specific information increases
the number of correctly extracted keyphrases by performing experiments with the
CSTR collection mentioned above [9]. In order to isolate the effect of changing the

10 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

number of documents for computing the keyphrase-frequencyattribute, we used a sep-
arate set of documents—the keyphrase frequency corpus—for counting the number
of times a phrase occurs as a keyphrase. We found that the use of the keyphrase-
frequency attribute improved keyphrase extraction markedly when the size of the
keyphrase-frequency corpus increased from zero (i.e. no keyphrase-frequency at-
tribute) to 100, and improved markedly again when increased from 100 to 1000. The
actual set of 130 training documents was held constant; also, the same set of 500 test
documents was used throughout this experiment.

3.5 Discussion

We conclude that a simple algorithm for keyphrase extraction, which filters phrases
extracted using a hierarchical decomposition scheme such as those described in Sec-
tion 2 based on the naive Bayes machine learning method, performs comparably to
the state of the art. Furthermore, performance can be boosted by exploiting domain-
specific information about the likelihood of keyphrases. The new algorithm is par-
ticularly well suited for making use of this information because it can be trained up
very quickly in a new domain. Experiments on a large collection of computer science
technical reports confirm that this modification significantly improves the quality of
the keyphrases extracted.

4 Generic entity extraction

We now return to our main theme: using the adaptive techniques developed in text
compression for the purposes of text mining. In this section and the next, we will re-
view applications of character-based compression methods. Throughout this work, the
well-known PPM text compression scheme is used [1, 6], with order 5 (except where
otherwise mentioned) and escape method D [13]. However, the methods and results
are not particularly sensitive to the compression scheme used, although character-
based prediction is assumed.

“Named entities” are defined as proper names and quantities of interest in a piece
of text, including personal, organization, and location names, as well as dates, times,
percentages, and monetary amounts [5]. The standard approach to extracting them
from text is manual: tokenizers and grammars are hand-crafted for the particular data
being extracted. Commercial text mining software includes IBM’s Intelligent Miner
for Text [28], which uses specific recognition modules carefully programmed for the
different data types, Apple’s Data Detectors [20], which uses language grammars, and
the Text Tokenization Tool of [11].

An alternative approach to generic entity extraction is to use compression-based
training instead of explicit programming to detect instances of sublanguages in run-
ning text [31].

Adaptive Text Mining: Inferring Structure from Sequences 11

4.1 An example

In order to assess the power of language models to discriminate tokens, experiments
were conducted with information items extracted (manually) from twenty issues of
a 4-page, 1500-word, weekly electronic newsletter. Items of the kind that readers
might wish to take action on were classified into generic types: people’s names; dates
and time periods; locations; sources, journals, and book series; organizations; URLs;
email addresses; phone numbers; fax numbers; and sums of money. These types
are subjective: dates and time periods are lumped together, whereas for some pur-
poses they should be distinguished; personal and organizational names are separated,
whereas for some purposes they should be amalgamated. The methodology we de-
scribe accommodates all these options: there is no committment to any particular
ontology.

4.2 Discriminating isolated tokens

The first experiment involved the ability to discriminate between different token types
when the tokens are taken in isolation. Lists of names, dates, locations, etc. in twenty
issues of the newsletter were input to the PPM compression scheme separately, to form
ten compression models. Each issue contained about 150 tokens, unevenly distributed
over token types. In addition, a plain text model was formed from the full text of all
these issues. These models were used to identify each of the tokens in a newsletter
that did not form part of the training data, on the basis of which model compresses
them the most. Although the plain text model could in principle be assigned to a
token because it compresses it better than all the specialized models, in fact this never
occurred.

Of the 192 tokens in the test data, 40% appeared in the training data (with the same
label) and the remainder were new. 90.6% of the total were identified correctly and
the remaining 9.4% incorrectly; all errors were on new symbols. Three of the “old”
symbols contain line breaks that do not appear in the training data: for example, in
the test data Parallel Computing\nJournal is split across two lines as in-
dicated. However, these items were nevertheless identified correctly. The individual
errors are easily explained; some do not seem like errors at all. For example, the place
names Norman and Berkeley were “mis”-identified as people’s names, time peri-
ods like Spring 2000 were mis-identified as sources (because of confusion with
newsgroups like comp.software.year-2000), people’s names were confused
with organizational names, and so on.

4.3 Distinguishing tokens in context

When tokens appear in text, contextual information provides additional cues for dis-
ambiguating them. Identification must be done conservatively, so that strings of plain
text are not misinterpreted as tokens—since there are many strings of plain text, there
are countless opportunities for error.

Context often helps recognition: e.g., email addresses in this particular newsletter

12 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

are always flanked by angle brackets. Conversely, identification may be foiled by mis-
leading context: e.g., some names are preceded by Rep., which reduces the weight
of the capitalization evidence for the following word because capitalization routinely
follows a period.

The second experiment evaluated the effect of context by assuming that all tokens
have been located in the test issue, and the task is to identify their types in situ. If a
stretch of text is identified as a token of the appropriate type it will compress better
using the specialized model; however, begin- and end-token markers must be coded to
indicate this fact. To investigate this, all tokens in the data were replaced by a surrogate
symbol that was treated by PPM as a single character (different from all the ASCII
characters). A different surrogate was used for each token type. A new model was
generated from the modified training data, and the test article was compressed by this
model to give a baseline entropy of e0 bits. Then each token in turn, taken individually,
was restored into the test article as plain text and the result recompressed to give
entropy e bits. This will (likely) be greater than e0 because the information required
to represent the token itself (almost certainly) exceeds that required to represent its
type. Suppose em is the token’s entropy with respect to model m. Then the net space
saved by recognizing this token as belonging to model m is

e� (e0 + em) bits:

This quantity was evaluated for each model to determine which one classified the
token best, or whether it was best left as plain text. The procedure was repeated for
each token.

When context is taken into account the error rate per token actually increases from
9.4% to 13.5%. However, almost all these “errors” are caused by failure to recognize
a token as different from plain text, and the rate of actual mis-recognitions is only
1%—or just two mis-recognitions, one of which is the above-mentioned Berkeley
being identified as a name.

To mark up a string as a token requires the insertion of two extra symbols: begin-
and end-token, and it is this additional overhead that causes the above-noted failures to
recognize tokens. However, the tradeoff between actual errors and failures to identify
can be adjusted by using a non-zero threshold when comparing the compression for
a particular token with the compression when its characters are interpreted as plain
text. This allows a small increase in the number of errors to be sacrificed for a larger
decrease in identification failures.

4.4 Locating tokens in context

Tokens can be located by considering the input as an interleaved sequence of infor-
mation from different sources. Every token is to be bracketed by begin-token and
end-token markers; the problem is to “correct” text by inserting such markers appro-
priately. The markers also identify the type of token in question—thus we have begin-
name-token, end-name-token, etc., written as <n>, </n>. Whenever begin-token is
encountered, the encoder switches to the compression model appropriate to that token
type, initialized to a null prior context. Whenever end-token is encountered, the en-

Adaptive Text Mining: Inferring Structure from Sequences 13

coder reverts to the plain text model that was in effect before, replacing the token by a
single symbol representing that token type.

The algorithm takes a string of text and works out the optimal sequence of mod-
els that would produce it, along with their placement. It works Viterbi-style [30],
processing the input characters to build a tree in which each path from root to leaf
represents a string of characters that is a possible interpretation of the input. The
paths are alternative output strings, and begin-token and end-token symbols appear on
them. The entropy of a path can be calculated by starting at the root and coding each
symbol along the path according to the model that is in force when that symbol is
reached. The context is re-initialized to a unique starting token whenever begin-token
is encountered, and the appropriate model is entered. On encountering end-token, it is
encoded and the context reverts to what it was before.

What causes the tree to branch is the insertion of begin-token symbols for every
possible token type, and the end-token symbol—which must be for the currently ac-
tive token type so that nesting is properly respected. To expand the tree, a list of open
leaves is maintained, each recording the point in the input string that has been reached
and the entropy value up to that point. The lowest-entropy leaf is chosen for expan-
sion at each stage. Unless the tree and the list of open leaves are pruned, they grow
very large very quickly. A beam search is used, and pruning operations are applied
that remove leaves from the list and therefore prevent the corresponding paths from
growing further.

To evaluate the procedure for locating tokens in context, we used the training data
from the same issues of the newsletter as before, and the same single issue for testing.
The errors and mis-recognitions noted above when identifying tokens in context (rates
of 1% and 12.5% respectively) also occur when locating tokens. Inevitably there
were a few incorrect positive identifications—2.6% of the number of tokens—where
a segment of plain text was erroneously declared to be a token. In addition, 8% of
tokens suffered from incorrect boundary placement, where the algorithm reported a
token at approximately the same place as in the original, but the boundaries were
slightly perturbed. Finally, a further 4.7% of tokens suffered discrepancies which
were actually errors made inadvertently by the person who marked up the test data.

4.5 Discussion

We find these initial results encouraging. There are several ways that they could be im-
proved. The amount of training data—about 3000 tokens, distributed among ten token
types—is rather small. The data certainly contains markup errors, probably at about
the same rate—4.7% of tokens—as the test file. Many of the mistakes were amongst
very similar categories: for example, fax numbers contained embedded phone num-
bers and were only distinguished by the occurrence of the word fax; several times they
were confused with phone numbers and this counted as an error. Some of the mis-
takes were perfectly natural—Norman as a name instead of a place, for example. In
addition, improvements could likely be made to the pruning algorithm.

14 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

5 Other text mining tasks

Character-based compression can be applied in many other ways to text mining tasks.
Here are some examples.

5.1 Text categorization

A central feature of the approach to generic entity extraction described in the previ-
ous section is the basic assumption that a token can be identified by compressing it
according to different models and seeing which produces the fewest bits of output.
We now examine whether this extends to text categorization—the assignment of nat-
ural language texts to predefined categories based on their content. Already-classified
documents, which define the categories, are used to build a model that can be used to
classify new articles.

Text categorization is a hot topic in machine learning. Typical approaches extract
“features,” generally words, from text, and use the feature vectors as input to a ma-
chine learning scheme that learns how to classify documents. This “bag of words”
model neglects word order and contextual effects. It also raises some problems: how
to define a “word,” what to do with numbers and other non-alphabetic strings, and
whether to apply stemming. Because there are so many different features, a selec-
tion process is applied to determine the most important words, and the remainder are
discarded.

Compression seems to offer a promising alternative approach to categorization, with
several potential advantages:

� it yields an overall judgement on the document as a whole, and does not discard
information by pre-selecting features;

� it avoids the messy problem of defining word boundaries;
� it deals uniformly with morphological variants of words;
� depending on the model (and its order), it can take account of phrasal effects that

span word boundaries;
� it offers a uniform way of dealing with different types of documents—for example,

files in a computer system;
� it minimizes arbitrary decisions that inevitably need to be taken to render any

learning scheme practical.

We have performed extensive experiments on the use of PPM for categorization using
a standard dataset [10]. Best results were obtained with order 2; other values degraded
performance in almost all cases—presumably because the amount of training data
available is insufficient to justify more complex models.

5.1.1 The benchmark data
All our results are based on the Reuters-21578 collection of newswire stories, the stan-
dard testbed for the evaluation of text categorization schemes. In total there are 12,902
stories averaging 200 words each, classified into 118 categories. Many stories are as-

Adaptive Text Mining: Inferring Structure from Sequences 15

signed to multiple categories, and some are not assigned to any category at all. The
distribution among categories is highly skewed: the ten largest—earnings, corporate
acquisitions, money market, grain, crude oil, trade issues, interest, shipping, wheat,
and corn—contain 75% of stories, an average of around 1000 stories each.

5.1.2 Pairwise discrimination
Applying a straightforward compression methodology to the problem of text cate-
gorization quickly yields encouraging results. In the two-class case, to distinguish
documents of class A from documents of class B we form separate models MA and
MB from the training documents of each class. Then, given a test document (different
from the training documents), we compress it according to each model and calculate
the gain in per-symbol compression obtained by using MA instead of MB . We as-
sign the document to class A or B depending on whether this difference is positive
or negative, on the principle that MA will compress documents of class A better, and
similarly for MB . Encouraging results are obtained.

5.1.3 Building positive and negative models
To extend to multiply-classified articles, we decide whether a model belongs to a
particular category independently of whether it belongs to any other category. We
build positive and negative models for each category, the first from all articles that
belong to the category and the second from those that do not.

5.1.4 Setting the threshold
Deciding whether a new article should in fact be assigned to categoryC or not presents
a tradeoff between making the decision liberally, increasing the chance that an article
is correctly identified but also increasing the number of “false positives”; or conser-
vatively, reducing the number of false positives at the expense of increased “false
negatives.” This tradeoff is captured by the standard information retrieval notions of
precision, that is the number of articles that the algorithm correctly assigns to cate-
gory C expressed as a proportion of the documents that it assigns to this category,
and recall, that is the number of articles that the algorithm correctly assigns to cate-
gory C expressed as a proportion of the articles that actually have this category. To
allow comparison of our results with others, we maximize the average of recall and
precision—a figure that is called the “breakeven point.”

The basic strategy is to calculate the predicted probabilityPr[CjA] of articleA hav-
ing classificationC, compare it to a predetermined threshold, and declare the article to
have classification C if it exceeds the threshold. We choose the threshold individually
for each class, to maximize the average of recall and precision for that class. To do
this the training data is further divided into a new training set and a “validation set,” in
the ratio 2:1. The threshold t is chosen to maximize the average of recall and precision
for the category (the breakeven point) on the validation set. Then maximum utility is
made of the information available by rebuilding the positive and negative models from

16 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

the full training data.
As an additional benefit, threshold selection automatically compensates for the fact

that the positive and negative models are based on different amounts of training data.
In general, one expects to achieve better compression with more data.

5.1.5 Results
Elsewhere [10] we have compared this method with results reported for the Naive
Bayes and Linear Support Vector Machine methods [7]. The compression-based
method outperforms Naive Bayes on the six largest categories (grain is the only ex-
ception) and is worse on the four smallest ones. It is almost uniformly inferior to the
support vector method, money market being the only exception.

Compared to LSVM, compression-based categorization produces particularly bad
results on the categories wheat and corn, which are (almost) proper subsets of the
category grain. Articles in grain summarize the result of harvesting grain products—
for example, by listing the tonnage obtained for each crop—and all use very similar
terminology. Consequently the model for wheat is very likely to assign a high score
to every article in grain.

The occurrence of the word “wheat” is the only notable difference between an ar-
ticle in grain that belongs to wheat and one that does not. The presence of a single
word is unlikely to have a significant effect on overall compression, and this is why the
new method performs poorly on these categories. Support vector machines perform
internal feature selection, and can focus on a single word if that is the only discrimi-
nating feature of a category. In comparison, Naive Bayes performs badly on the same
categories as the new method, because it too has no mechanism for internal feature
selection.

5.1.6 Modifications
Our initial results were obtained quickly, and we found them encouraging. We then
made many attempts to improve them, all of which met with failure.

To force compression models that are more likely to discriminate successfully be-
tween similar categories, we experimented with a more costly approach. Instead of
building one positive and one negative model, we built one positive and 117 nega-
tive models for each of the 118 categories. Each negative model only used articles
belonging to the corresponding category that did not occur in the set of positive arti-
cles. During classification, an article was assigned to a category if the positive model
compressed it more than all negative models did. Results were improved slightly for
categories like wheat and corn. However, the support vector method still performed
far better. Moreover, compared to the standard compression-based method, perfor-
mance deteriorated on some other categories.

We also experimented with several modifications to the standard procedure, none
of which produced any significant improvement over the results reported above:

� not rebuilding the models from the full training data;
� using the same number of stories for building the positive and negative models

Adaptive Text Mining: Inferring Structure from Sequences 17

(usually far more stories are available for the negative one);
� priming the models with fresh Reuters data from outside the training and test sets;
� priming the models with the full training data (positive and negative articles);
� artificially increasing the counts for the priming data over those for the training

data and vice versa;
� using only a quarter of the original training data for validation;
� using a word model of order 0, escaping to a character model of order 2 for unseen

words.

5.1.7 Discussion
Compared to state-of-the-art machine learning techniques for categorizing English
text, the compression-based method produces inferior results because it is insensitive
to subtle differences between articles that belong to a category and those that do not.
We do not believe our results are specific to the PPM compression scheme. If the
occurrence of a single word is what counts, any compression scheme will likely fail
to classify the article correctly. Machine learning schemes fare better because they
automatically eliminate irrelevant features.

Compared to word-based approaches, compression-based methods avoid ad hoc de-
cisions when preparing input text for the actual learning task. Moreover, these meth-
ods transcend the restriction to alphabetic text and apply to arbitrary files. However,
feature selection seems to be essential for some text categorization tasks, and this is
not incorporated in compression methods.

5.2 Segmentation into tokens

Conventional text categorization is just one example of many text mining methods
that presuppose that the input is somehow divided into lexical tokens. Although
“words” delimited by non-alphanumeric characters provide a natural tokenization for
many items in ordinary text, this assumption fails in particular cases. For example,
generic tokenization would not allow many date structures (e.g. 30Jul98, which is
used throughout the newsletters of Section 4) to be parsed. In general, any prior seg-
mentation into tokens runs the risk of obscuring information.

A simple special case of this scheme for compression-based entity extraction can be
used to divide text into words, based on training data that has been segmented by hand.
An excellent testbed for this research is the problem of segmenting Chinese text, which
is written without using spaces or other word delimiters. Although Chinese readers
are accustomed to inferring the corresponding sequence of words as they read, there is
considerable ambiguity in the placement of boundaries which must be resolved in the
process. Interpreting a text as a sequence of words is necessary for many information
retrieval and storage tasks: for example, full-text search and word-based compression.

Inserting spaces into text can be viewed as a hidden Markov modeling problem.
Between every pair of characters lies a potential space. Segmentation can be achieved
by training a character-based compression model on pre-segmented text, and using
a Viterbi-style algorithm to interpolate spaces in a way that maximizes the overall

18 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

text the unit of New York-based Loews Corp that makes Kent cigarettes stopped using
crocidolite in its Micronite cigarette filters in 1956.

input theunitofNewYork-basedLoewsCorpthatmakesKentcig
arettesstoppedusingcrocidoliteinitsMicronitecigarettef
iltersin1956.

output the unit of New York-based LoewsCorp that makes Kent cigarettes stopped using
croc idolite in its Micronite cigarette filters in 1956.

TABLE 1. Segmenting words in English text

probability of the text.
For non-Chinese readers, we illustrate the success of the space-insertion method

by showing its application to English text in Table 1, which is due to Teahan [26].
At the top is the original text, including spaces in the proper places, then the input
to the segmentation procedure, and finally the output of the PPM-based segmentation
method.

In this experiment PPM was trained on a sample of English, and its recall and
precision for space insertion were both 99.52%. Corresponding figures for a word-
based method that does not use compression-based techniques [25] were 93.56% and
90.03% respectively, a result which is particularly striking because PPM had been
trained on only a small fraction of the amount of text used for the other scheme.

PPM performs well on unknown words: although Micronite does not occur in the
Brown Corpus, it is correctly segmented in Table 1c. There are two errors. First, a
space was not inserted into LoewsCorp because the single “word” requires only 54.3
bits to encode, whereas Loews Corp requires 55.0 bits. Second, an extra space was
added to crocidolite because that reduced the number of bits required from 58.7 to
55.3.

Existing techniques for Chinese text segmentation are either word-based, or rely on
hand-crafted segmentation rules. In contrast, the compression-based methodology is
based on character-level models formed adaptively from training text. Such models
do not rely on a dictionary and fall back on general properties of language statistics to
process novel words. Excellent results have been obtained with the new scheme [27].

5.3 Acronym extraction

Identifying acronyms in documents—which is certainly also about looking for pat-
terns in text—presents a rather different kind of problem. Webster defines an “acronym”
as

a word formed from the first (or first few) letters of a series of words, as radar,
from radio detecting and ranging.

Acronyms are often defined by preceding or following their first use with a textual
explanation—as in Webster’s example. Finding all acronyms, along with their defini-
tions, in a particular technical document is a problem that has previously been tackled
using ad hoc heuristics. The information desired—acronyms and their definitions—is
relational, and this distinguishes it from the text mining problems discussed above.

Adaptive Text Mining: Inferring Structure from Sequences 19

It is not immediately obvious how compression can assist in locating relational in-
formation such as this. Language statistics certainly differ between acronyms and run-
ning text, because the former have a higher density of capital letters and a far higher
density of non-initial capital letters. However, it seems unlikely that acronym defini-
tions will be recognized reliably on this basis: they will not be readily distinguished
from ordinary language by their letter statistics.

We have experimented with coding potential acronyms with respect to the initial
letters of neighboring words, and using the compression achieved to signal the oc-
currence of an acronym and its definition [34]. Our criterion is whether a candidate
acronym could be coded more efficiently using a special model than it is using a reg-
ular text compression scheme. A phrase is declared to be an acronym definition if the
discrepancy between the number of bits required to code it using a general-purpose
compressor and the acronym model exceeds a certain threshold.

We first pre-filter the data by identifying acronym candidates: for initial work we
decided to consider words in upper case only. Then we determined two windows for
each candidate, one containing 16 preceding words and the other 16 following words.
This range covered all acronym definitions in our test data.

5.3.1 Compressing the acronyms
Candidate acronms are coded using a group of models that express the acronym in
terms of the leading letters of the words on either side. This group comprises four
separate models. The first tells whether the acronym precedes or follows its definition.
The second gives the distance from the acronym to the first word of the definition. The
third identifies a sequence of words in the text by a set of offsets from the previous
word. The fourth gives the number of letters to be taken from each word. Each of
these models is an order-0 PPM model with a standard escape mechanism.

After compressing the acronym candidates with respect to their context, all legal
encodings for each acronym are compared and the one that compresses best is selected.
For comparison, we compress the acronym using the text model, taking the preceding
context into account. The candidate is declared to be an acronym if

bits acronym model

bits text model

� t

for some predetermined threshold t. Although subtracting the number of bits seems
more easily justified than using the ratio between them, in fact far better results were
obtained using the ratio method. We believe that the reason for this is linked to the
curious fact that, using a standard text model, longer acronyms tend to compress into
fewer bits than do shorter ones. While short acronyms are often spelt out, long ones
tend to be pronounced as words. This affects the choice of letters: longer acronyms
more closely resemble “natural” words.

20 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

5.3.2 Experimental results
To test these ideas, we conducted an experiment on a sizable sample of technical re-
ports, and calculated recall and precision for acronym identification. The operating
point on the recall/precision curve can be adjusted by varying t. While direct com-
parison with other acronym-extraction methods is not possible because of the use of
different text corpora, our scheme performs well and provides a viable basis for ex-
tracting acronyms and their definitions from plain text. Compared to other methods,
it reduces the need to come up with heuristics for deciding when to accept a candi-
date acronym—although some prior choices are made when deciding how to code
acronyms with respect to their definitions.

5.4 Structure recognition

We have shown that while compression is a useful tool for many token classification
tasks, it is less impressive for document categorization. As a discriminant, overall
compression tends to weaken as the size of individual items grows, because a single
holistic measure may become less appropriate. Some decisions depend on the occur-
rence or non-occurrence of a few special words, which makes feature selection essen-
tial. Even in token discrimination, different kinds of token may be distinguishable only
by the context in which they occur—for example, author’s names and editor’s names
no doubt enjoy identical statistical properties, but are distinguished in bibliographic
references by local context.

The size of individual tokens can often be reduced by extending the techniques
described above to work hierarchically. This allows more subtle interactions to be
captured. Names are decomposable into forenames, initial, surname; email addresses
into username, domain, and top-level domain; and fax numbers contain embedded
phone numbers. After analyzing the errors made during the generic entity extraction
experiments of Section 4, we refined the markup of the training documents to use
these decompositions. For instance:

Name <n><f>Ian</f> <i>H</i>. <s>Witten</s></n>

Email <e><u>ihw</u>@<d>cs.waikato.ac</d>.<t>nz</t></e>

Fax <f><p>+64-7-856-2889</p> fax</f>

We use the term “soft parsing” to denote inference of what is effectively a grammar
from example strings, using exactly the same compression methodology as before.
During training, models are built for each component of a structured item, as well
as the item itself. For example, the forename model is trained on all forenames that
appear in the training data, while the name model is trained on patterns like forename
followed by space followed by middle initial followed by period and space followed
by surname, where each of the lower-level items—forename, middle initial and sur-
name—are treated by PPM as a single “character” that identifies the kind of token that
occurs. When the test file is processed to locate tokens in context, these new tags are
inserted into it too. The algorithm described in Section 4 accommodates nested tokens
without any modification at all.

Initial results are mixed. Some errors are corrected (e.g. some names that had been

Adaptive Text Mining: Inferring Structure from Sequences 21

confused with other token types are now correctly marked), but other problems remain
(e.g. the fax/phone number mix-up) and a few new ones emerge. Some are caused by
the pruning strategies used; others are due to insufficient training data. Despite incon-
clusive initial results, we believe that soft parsing will prove invaluable in situations
with strong hierarchical context (e.g. references and tables).

It is possible that the technique can be extended to the other kinds of tasks consid-
ered above. For example, we could mark up an acronym, with its definition. Webster’s
radar example above might look like

Acronym ... of a series of words, as <a>radar, from

<d>radio detecting and ranging</d>.

To capture the essential feature of acronyms—that the word being defined is built from
characters in the definition—the search algorithm needs to be extended to consider this
possibility.

In text categorization, important features could be highlighted. The word “wheat,”
which distinguishes articles on wheat from other articles in the grain category, could
be marked in the training data—or by an automatic feature selection process—and
the markup inferred in the test data. Such techniques may allow compression-based
generalization to tackle problems that require feature selection.

6 Conclusions

Text mining is a burgeoning new area that is likely to become increasingly important
in future. This paper has argued, through examples, that compression forms a sound
unifying principle that allows many text mining problems to be tacked adaptively.

Word-based and character-based compression methods can be applied to different
kinds of text mining tasks. Phrase hierarchies can be extracted from documents using
recently-developed algorithms for inferring hierarchies of repetitions in sequences, all
of which have been proposed for text compression. Although we have not focused on
applications of phrase hierarchies in this paper, they are beginning to be applied in a
diverse range of areas, including browsing in digital libraries.

The extraction of different kinds of entities from text is commonly approached
through the use of hand-tailored heuristics. However, adaptive methods offer signifi-
cant advantages in construction, debugging, and maintenance. While they suffer from
the necessity to mark up large numbers of training documents, this can be alleviated
by priming the compression models with appropriate data—lists of names, addresses,
etc.—gathered from external sources.

Other kinds of text-mining problems also succumb to compression-based tech-
niques: examples are word segmentation and acronym extraction. Some, notably text
categorization, seem less well-suited to the holistic approach that compression offers.
However, hierarchical decomposition can be used to strengthen context, and perhaps
even to incorporate the results of automatic feature selection.

Adaptive text mining using compression-based techniques is in its infancy. Watch
it grow.

22 J. of Discrete Algorithms, Vol. 0 No. 0, 0000

Acknowledgments

Much of the research reported in this paper here has been undertaken in conjunction
with others. In particular, Zane Bray, John Cleary, Eibe Frank, Stuart Inglis, Ma-
lika Mahoui, Gordon Paynter, Craig Nevill-Manning, Bill Teahan, YingYing Wen and
Stuart Yeates have all contributed greatly to the work described here.

References
[1] Bell, T.C., Cleary, J.G. and Witten, I.H. (1990) Text Compression. Prentice Hall, Englewood Cliffs,

New Jersey.
[2] Bentley, J. and McIlroy, D. (1999) “Data compression using long common strings.” Proc Data Com-

pression Conference, pp. 287–295. IEEE Press, Los Alamitos, CA.
[3] Brandow, R., Mitze, K. and Rau, L. F. (1995) “Automatic condensation of electronic publications by

sentence selection.” Information Processing and Management, Vol. 31, No. 5, pp. 675–685.
[4] Breiman, L. (1996) “Bagging predictors.” Machine Learning, Vol. 24, No. 2, pp. 123–140.
[5] Chinchor, N.A. (1999) “Overview of MUC-7/MET-2.” Proc Message Understanding Conference

MUC-7.
[6] Cleary, J.G. and Witten, I.H. (1984) “Data compression using adaptive coding and partial string match-

ing.” IEEE Trans on Communications, Vol. 32, No. 4, pp. 396–402.
[7] Dumais, S. T., Platt, J., Heckerman, D. and Sahami, M. (1998) “Inductive learning algorithms and

representations for text categorization.” In Proceedings of the 7th International Conference on Infor-
mation and Knowledge Management.

[8] Fayyad, U. M. and Irani, K. B. (1993) “Multi-interval discretization of continuousvalued attributes for
classification learning..” In Proc International Joint Conference on Artifical Intelligence, pp. 1022–
1027.

[9] Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C. and Nevill-Manning, C. (1999) “Domain-specific
keyphrase extraction.” Int Joint Conference on Artificial Intelligence, Stockholm, Sweden, pp. 668–
673.

[10] Frank, E., Chiu, C. and Witten, I.H. (2000) “Text categorization using compression models.” Proc
Data Compression Conference (Poster paper). IEEE Press, Los Alamitos, CA. Full version available
as Working Paper 00/2, Department of Computer Science, University of Waikato.

[11] Grover, C., Matheson, C. and Mikheev, A. (1999) “TTT: Text Tokenization Tool.”
http://www.ltg.ed.ac.uk/

[12] Gusfield, D. (1997) Algorithms on strings, trees, and sequences. Cambridge University Press, Cam-
bridge, UK.

[13] Howard, P.G. (1993) The design and analysis of efficient lossless data compression systems. PhD
thesis, Brown University.

[14] Johnson, F. C., Paice, C. D., Black, W. and Neal, A. (1993) “The application of linguistic processing
to automatic abstract generation.” J Document and Text Management, Vol. 1, pp. 215–241.

[15] Kupiec, J. M., Pedersen, J. and Chen, F. (1995) “A trainable document summarizer.” In Proc ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 68–73. ACM Press.

[16] Larsson, N.J. and Moffat, A. (1999) “Offline dictionary-based compression.” Proc Data Compression
Conference, pp. 296–305. IEEE Press, Los Alamitos, CA.

[17] Larus, J.R. (1999) “Whole program paths.” Proc. SIGPLAN 99 Conf. on Programming Languages
Design and Implementation; May.

[18] Lovins, J. (1968) “Development of a stemming algorithm.” Mechanical translation and computational
linguistics, Vol. 11, pp. 22–31.

[19] Martin, A.R. (1999) “Intelligent Speech Synthesis Using the Sequitur Algorithm and Graphical Train-
ing: Server Software,” M.S. Thesis, Engineering Science, University of Toronto.

[20] Nardi, B.A., Miller, J.R. and Wright, D.J. (1998) “Collaborative, programmable intelligent agents.”
Comm ACM, Vol. 41, No. 3, pp. 96–104.

Adaptive Text Mining: Inferring Structure from Sequences 23

[21] Nevill-Manning, C.G. and Witten, I.H. (1997) “Identifying hierarchical structure in sequences: a
linear-time algorithm.” J Artificial Intelligence Research, Vol. 7, pp. 67-82.

[22] Nevill-Manning, C.G. and Witten, I.H. (1998) “Phrase hierarchy inference and compression in
bounded space,” Proc. Data Compression Conference, J.A. Storer and M. Cohn (Eds.), Los Alami-
tos, CA: IEEE Press. 179–188.

[23] Nevill-Manning, C.G., Witten, I.H. and Paynter, G.W. (1999) “Lexically-generated subject hierarchies
for browsing large collections.” International Journal of Digital Libraries, Vol. 2, No. 2/3, pp. 111-
123.

[24] Nevill-Manning, C.G. and Witten, I.H. (in press) “Online and offline heuristics for inferring hierarchies
of repetitions in sequences,” Proc. IEEE.

[25] Ponte, J.M. and Croft, W.B. (1996) “Useg: A retargetable word segmentation procedure for informa-
tion retrieval.” Proc on Document Analysis and Information Retrieval, Las Vegas, Nevada.

[26] Teahan, W.J. (1997) Modelling English text. PhD thesis, University of Waikato, NZ.
[27] Teahan, W.J., Yen, Y., McNab, R. and Witten, I.H. (in press) “A compression-based algorithm for

Chinese word segmentation.” Computational Linguistics.
[28] Tkach, D. (1997) Text mining technology: Turning information into knowledge. IBM White paper.
[29] Turney, P. (in press) “Learning to extract keyphrases from text.” Information Retrieval.
[30] Viterbi, A.J. (1967) “Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm.” IEEE Trans. on Information Theory, pp. 260-269; April.
[31] Witten, I.H., Bray, Z., Mahoui, M. and Teahan, W.J. (1999) “Text mining: a new frontier for lossless

compression.” Proc Data Compression Conference, pp. 198-207. IEEE Press, Los Alamitos, CA.
[32] Witten, I.H., Moffat, A. and Bell, T.C. (1999) Managing gigabytes: compressing and indexing docu-

ments and images. Second Edition, Morgan Kaufmann, San Francisco, California.
[33] Wolff, J.G. (1975) “An algorithm for the segmentation of an artificial language analogue.” British J

Psychology, Vol. 66, pp. 79–90.
[34] Yeates, S., Bainbridge, D. and Witten, I.H. (2000) “Using compression to identify acronyms in text.”

Proc Data Compression Conference (Poster paper). IEEE Press, Los Alamitos, CA. Full version avail-
able as Working Paper 00/1, Department of Computer Science, University of Waikato.

[35] Ziv, J. and Lempel, A. (1977) “A universal algorithm for sequential data compression.” IEEE Trans
Information Theory, Vol. IT-23, No. 3, pp. 337–343; May.

[36] Ziv, J. and Lempel, A. (1978) “Compression of individual sequences via variable-rate coding.” IEEE
Trans Information Theory, Vol. IT-24, No. 5, pp. 530–536; September.

Received 1 February 2001.

