

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

Department of Computer Science

Hamilton, New Zealand

Improving Hoeffding Trees

by

Richard Kirkby

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

at the

University of Waikato

in the subject of

Computer Science

November 2007

c© 2007 Richard Kirkby

ii

Abstract

Modern information technology allows information to be collected at a far
greater rate than ever before. So fast, in fact, that the main problem is mak-
ing sense of it all. Machine learning offers promise of a solution, but the field
mainly focusses on achieving high accuracy when data supply is limited. While
this has created sophisticated classification algorithms, many do not cope with
increasing data set sizes. When the data set sizes get to a point where they
could be considered to represent a continuous supply, or data stream, then
incremental classification algorithms are required. In this setting, the effec-
tiveness of an algorithm cannot simply be assessed by accuracy alone. Con-
sideration needs to be given to the memory available to the algorithm and the
speed at which data is processed in terms of both the time taken to predict
the class of a new data sample and the time taken to include this sample in
an incrementally updated classification model.

The Hoeffding tree algorithm is a state-of-the-art method for inducing de-
cision trees from data streams. The aim of this thesis is to improve this algo-
rithm. To measure improvement, a comprehensive framework for evaluating
the performance of data stream algorithms is developed. Within the frame-
work memory size is fixed in order to simulate realistic application scenarios.
In order to simulate continuous operation, classes of synthetic data are gener-
ated providing an evaluation on a large scale. Improvements to many aspects
of the Hoeffding tree algorithm are demonstrated. First, a number of methods
for handling continuous numeric features are compared. Second, tree predic-
tion strategy is investigated to evaluate the utility of various methods. Finally,
the possibility of improving accuracy using ensemble methods is explored.

The experimental results provide meaningful comparisons of accuracy and
processing speeds between different modifications of the Hoeffding tree algo-
rithm under various memory limits. The study on numeric attributes demon-
strates that sacrificing accuracy for space at the local level often results in
improved global accuracy. The prediction strategy shown to perform best
adaptively chooses between standard majority class and Naive Bayes predic-
tion in the leaves. The ensemble method investigation shows that combining
trees can be worthwhile, but only when sufficient memory is available, and
improvement is less likely than in traditional machine learning. In particular,
issues are encountered when applying the popular boosting method to streams.

iii

iv

Acknowledgments

This thesis could not exist without the monumental support of my co-supervisors,

Geoff Holmes and Bernhard Pfahringer.

Geoff is a great leader, providing the environment and opportunity, in-

cluding generous financial support. He has patiently endured some of my less

acceptable attempts at technical writing, always pushing for greater quality.

For this I am incredibly grateful, as the thesis is so much better for it. It was

his masterful vision and overall wisdom that has secured my success.

Bernhard has always offered an open office door for me to drop by any time

and discuss the latest conundrum, happy to put aside other demands on his

time. His keen insight and probing questions always managed to crystallize my

thoughts and draw me closer to a solution. His exceptional problem solving

skills have meant that no problem was too great.

They have both been a pleasure to work with, a supervision team I really

could not have asked more from. I will forever remain in their debt.

I would also like to thank the Machine Learning group, my colleagues Eibe

Frank, Mark Hall, Remco Bouckaert, Gabi Schmidberger, Grant Anderson,

and the countless students who have come and gone over the years. They

have all helped to make the Machine Learning lab an interesting and fun

environment to work in.

My final but no less deserving thanks are reserved for my support system

outside university. Thanks go to my family and friends, who may not always

understand what it is that I do, but who are encouraging just the same. My

parents especially for raising and supporting me in ways I can never repay.

Their encouragement and endorsement of my expensive childhood computer

hobby has led me to this point.

My wife and two lovely boys are the ultimate drive that helped me follow

this sometimes difficult journey to completion. I thank them so much for

making my life the pleasure that it is.

v

vi

Contents

Abstract iii

Acknowledgments v

List of Tables xi

List of Figures xv

List of Algorithms xix

1 Introduction 1

1.1 Assumptions . 3

1.2 Requirements . 4

1.3 Strategies . 7

1.4 Thesis Structure . 10

2 Experimental Setting 13

2.1 Previous Evaluation Practices 15

2.1.1 Batch Setting . 15

2.1.2 Data Stream Setting . 18

2.2 Evaluation Procedures for Data Streams 22

2.2.1 Holdout . 22

2.2.2 Interleaved Test-Then-Train 23

2.2.3 Comparison . 24

2.3 Testing Framework . 25

2.4 Environments . 30

2.4.1 Sensor Network . 31

2.4.2 Handheld Computer . 31

2.4.3 Server . 32

2.5 Data Sources . 32

vii

2.5.1 Lack of Real-World Data 33

2.5.2 Random Tree Generator 34

2.5.3 Random RBF Generator 35

2.5.4 LED Generator . 36

2.5.5 Waveform Generator . 36

2.5.6 Function Generator . 36

2.6 Generation Speed and Data Size 37

2.7 Summary . 41

3 Hoeffding Trees 43

3.1 The Hoeffding Bound for Tree Induction 45

3.2 The Basic Algorithm . 47

3.2.1 Split Confidence . 48

3.2.2 Sufficient Statistics . 48

3.2.3 Grace Period . 49

3.2.4 Pre-pruning . 51

3.2.5 Tie-breaking . 51

3.2.6 Skewed Split Prevention 53

3.3 Memory Management . 54

3.3.1 Poor Attribute Removal 58

3.4 Java Implementation Details . 59

3.4.1 Fast Size Estimates . 62

3.5 Summary . 63

4 Numeric Attributes 65

4.1 Batch Setting Approaches . 66

4.1.1 Equal Width . 67

4.1.2 Equal Frequency . 68

4.1.3 k-means Clustering . 68

4.1.4 Fayyad and Irani . 68

4.1.5 C4.5 . 69

4.2 Data Stream Approaches . 70

4.2.1 VFML Implementation 72

4.2.2 Exhaustive Binary Tree 73

4.2.3 Quantile Summaries . 74

4.2.4 Gaussian Approximation 75

4.2.5 Numerical Interval Pruning 80

4.3 Experimental Comparison of Methods 81

viii

4.4 Summary . 91

5 Prediction Strategies 93

5.1 Majority Class . 93

5.2 Naive Bayes Leaves . 94

5.3 Adaptive Hybrid . 98

5.4 Experimental Comparison of Methods 99

5.5 Summary . 111

6 Hoeffding Tree Ensembles 113

6.1 Batch Setting . 118

6.1.1 Bagging . 118

6.1.2 Boosting . 119

6.1.3 Option Trees . 125

6.2 Data Stream Setting . 128

6.2.1 Bagging . 128

6.2.2 Boosting . 129

6.2.3 Option Trees . 131

6.3 Realistic Ensemble Sizes . 137

6.4 Summary . 138

7 Ensemble Evaluation 141

7.1 Results . 141

7.2 Discussion . 148

7.3 Summary . 158

8 Conclusions 161

8.1 Contributions . 165

8.2 Future Work . 168

A Detailed Result Tables 173

A.1 Numeric Methods . 175

A.2 Prediction Methods . 201

A.3 Ensemble Methods . 215

References 243

ix

x

List of Tables

2.1 Paper survey part 1—Evaluation methods and data sources. . . 19

2.2 Paper survey part 2—Presentation styles. 19

2.3 Properties of the data sources. 33

2.4 Sizes of data sets in UCI KDD archive that are suitable for

evaluating classification. 34

2.5 Function generator attributes. 37

2.6 Generation speed and data size of the streams. 40

4.1 Summary of batch discretization methods, categorized in four

axes. 67

4.2 Summary of stream discretization methods. All methods are

local, static, and involve two stages, the second of which is su-

pervised. 72

4.3 Final numeric methods compared. 82

4.4 Final results averaged over all data sources comparing eight

methods for handling numeric attributes. 84

4.5 vfml10 vs gauss10 accuracy (%). 86

5.1 Example sufficient statistics in a leaf after 100 examples have

been seen. There are two class labels: C1 has been seen 40 times,

and C2 has been seen 60 times. There are three attributes: A1

can either have value A or B, A2 can be C, D or E, and A3 can

be F, G, H or I. The values in the table track how many times

each of the values have been seen for each class label. 94

5.2 Final results averaged over all data sources comparing four meth-

ods for Hoeffding tree prediction. 101

5.3 Modified htnba accuracy compared to htmc, where htnba

growth stops as soon as memory is full in 100KB, retaining all

Naive Bayes models at the expense of tree size. 103

5.4 htmc vs htnb accuracy (%). 105

xi

5.5 htnb vs htnb1k accuracy (%). 106

5.6 htmc vs htnba accuracy (%). 107

7.1 Final results averaged over all data sources comparing ensemble

methods. 142

7.2 htnba vs bag5 accuracy (%). 144

7.3 htnba vs boost5 accuracy (%). 145

7.4 htnba vs hot5 accuracy (%). 146

7.5 bag5 vs hot5 accuracy (%). 147

8.1 Average accuracy gains, relative % change from previous. 164

8.2 Average training speed losses, relative % change from previous. . 164

8.3 Average prediction speed losses, relative % change from previous.164

A.1 vfml10 method with 100KB memory limit. 176

A.2 vfml10 method with 32MB memory limit. 177

A.3 vfml10 method with 400MB memory limit. 178

A.4 vfml100 method with 100KB memory limit. 179

A.5 vfml100 method with 32MB memory limit. 180

A.6 vfml100 method with 400MB memory limit. 181

A.7 vfml1000 method with 100KB memory limit. 182

A.8 vfml1000 method with 32MB memory limit. 183

A.9 vfml1000 method with 400MB memory limit. 184

A.10 bintree method with 100KB memory limit. 185

A.11 bintree method with 32MB memory limit. 186

A.12 bintree method with 400MB memory limit. 187

A.13 gk100 method with 100KB memory limit. 188

A.14 gk100 method with 32MB memory limit. 189

A.15 gk100 method with 400MB memory limit. 190

A.16 gk1000 method with 100KB memory limit. 191

A.17 gk1000 method with 32MB memory limit. 192

A.18 gk1000 method with 400MB memory limit. 193

A.19 gauss10 method with 100KB memory limit. 194

A.20 gauss10 method with 32MB memory limit. 195

A.21 gauss10 method with 400MB memory limit. 196

A.22 gauss100 method with 100KB memory limit. 197

A.23 gauss100 method with 32MB memory limit. 198

A.24 gauss100 method with 400MB memory limit. 199

xii

A.25 htmc method with 100KB memory limit. 202

A.26 htmc method with 32MB memory limit. 203

A.27 htmc method with 400MB memory limit. 204

A.28 htnb method with 100KB memory limit. 205

A.29 htnb method with 32MB memory limit. 206

A.30 htnb method with 400MB memory limit. 207

A.31 htnb1k method with 100KB memory limit. 208

A.32 htnb1k method with 32MB memory limit. 209

A.33 htnb1k method with 400MB memory limit. 210

A.34 htnba method with 100KB memory limit. 211

A.35 htnba method with 32MB memory limit. 212

A.36 htnba method with 400MB memory limit. 213

A.37 bag3 method with 100KB memory limit. 216

A.38 bag3 method with 32MB memory limit. 217

A.39 bag3 method with 400MB memory limit. 218

A.40 bag5 method with 100KB memory limit. 219

A.41 bag5 method with 32MB memory limit. 220

A.42 bag5 method with 400MB memory limit. 221

A.43 bag10 method with 100KB memory limit. 222

A.44 bag10 method with 32MB memory limit. 223

A.45 bag10 method with 400MB memory limit. 224

A.46 boost3 method with 100KB memory limit. 225

A.47 boost3 method with 32MB memory limit. 226

A.48 boost3 method with 400MB memory limit. 227

A.49 boost5 method with 100KB memory limit. 228

A.50 boost5 method with 32MB memory limit. 229

A.51 boost5 method with 400MB memory limit. 230

A.52 boost10 method with 100KB memory limit. 231

A.53 boost10 method with 32MB memory limit. 232

A.54 boost10 method with 400MB memory limit. 233

A.55 hot3 method with 100KB memory limit. 234

A.56 hot3 method with 32MB memory limit. 235

A.57 hot3 method with 400MB memory limit. 236

A.58 hot5 method with 100KB memory limit. 237

A.59 hot5 method with 32MB memory limit. 238

A.60 hot5 method with 400MB memory limit. 239

A.61 hot10 method with 100KB memory limit. 240

xiii

A.62 hot10 method with 32MB memory limit. 241

A.63 hot10 method with 400MB memory limit. 242

xiv

List of Figures

1.1 The data stream classification cycle. 6

2.1 Learning curves produced for the same learning situation by two

different evaluation methods, recorded every 100,000 examples. . 24

2.2 Learning curves demonstrating the problem of stopping early. . 26

2.3 Example difference between learning curves based on training

examples (left) versus training time (right). 29

2.4 Generator functions 1-5. 38

2.5 Generator functions 6-10. 39

3.1 Hoeffding bound on a two-class problem with default parameters. 49

3.2 Effect of grace period on the rrbfc data with a 32MB memory

limit. 50

3.3 Effect of tie-breaking on the rrbfc data with a 32MB memory

limit. 52

3.4 Effect of preventing skewed splits on the rrbfc data with a

32MB memory limit. 53

3.5 The size of an unbounded tree in memory is closely related to

how many active leaves it has. This growth pattern occurs when

learning a Hoeffding tree on the led data. 54

3.6 The memory management strategy employed after leaves of a

tree have been sorted in order of promise. Dots represent active

leaves which store sufficient statistics of various size, crosses

represent inactive leaves which do not store sufficient statistics. . 56

3.7 How closely two algorithms manage to obey a memory limit of

32 megabytes on the led data. 57

3.8 Effect of poor attribute removal on rrbfc data with a 32MB

limit. 58

3.9 Java code testing two methods for measuring object sizes in

memory. 61

xv

3.10 Output from running the code in Figure 3.9. 62

4.1 Gaussian approximation of 2 classes. 77

4.2 Gaussian approximation of 3 classes. 78

4.3 Gaussian approximation of 4 classes. 78

4.4 Examples of poor accuracy achieved by gk10 in 32MB. 85

4.5 Part 1 of learning curves for numeric methods in 32MB memory

limit. 87

4.6 Part 2 of learning curves for numeric methods in 32MB memory

limit. 88

4.7 Effect that example ordering has on learning accuracy in 32MB

on the genF2 data. Left hand side: default random order.

Right hand side: modified stream where every consecutive se-

quence of one million training examples has been sorted on the

value of the salary attribute. 90

5.1 Two exceptional cases where Naive Bayes leaves perform better

than majority class prediction in 100KB of memory. 104

5.2 Part 1 of learning curves for prediction methods in 400MB mem-

ory limit. 109

5.3 Part 2 of learning curves for prediction methods in 400MB mem-

ory limit. 110

6.1 A simple model of the leaf count of combinations of decision

trees as a function of total memory size. 116

6.2 Left hand side: recursive tree structure used by original hy-

pothesis boosting. Right hand side: flat structure of boost-by-

majority and AdaBoost. 120

6.3 Average accuracy of Hoeffding option tree over many data sets

versus the maximum number of options per example. Accura-

cies were estimated in unbounded memory. 136

7.1 Part 1 of learning curves for ensemble methods (left) and hot

option distribution (right) in 400MB memory limit. 149

7.2 Part 2 of learning curves for ensemble methods (left) and hot

option distribution (right) in 400MB memory limit. 150

7.3 Part 3 of learning curves for ensemble methods (left) and hot

option distribution (right) in 400MB memory limit. 151

xvi

7.4 Part 4 of learning curves for ensemble methods (left) and hot

option distribution (right) in 400MB memory limit. 152

7.5 Part 5 of learning curves for ensemble methods (left) and hot

option distribution (right) in 400MB memory limit. 153

7.6 Bias variance decomposition on rtcn. 154

7.7 Bias variance decomposition on wave21. 155

xvii

xviii

List of Algorithms

1 Evaluation procedure. 25

2 Hoeffding tree induction algorithm. 47

3 Textbook incremental Gaussian. 76

4 Numerically robust incremental Gaussian. 76

5 Adaptive prediction algorithm. 98

6 Generic ensemble training algorithm. 113

7 AdaBoost. Input is a sequence of m examples, WeakLearn is

the base weak learner and T is the number of iterations. 122

8 Arc-x4, Breiman’s ad-hoc boosting algorithm. 123

9 Oza and Russell’s Online Bagging. M is the number of models

in the ensemble and I(·) is the indicator function. 128

10 Oza and Russell’s Online Boosting. N is the number of examples

seen. 131

11 Hoeffding option tree induction algorithm. δ′ is the confidence

for additional splits and maxOptions is the maximum number

of options that should be reachable by any single example. . . . 133

12 Option counter update, for adding and removing options. 135

xix

xx

Chapter 1

Introduction

A largely untested hypothesis of modern society is that it is important to record

data as it may contain valuable information. This occurs in almost all facets

of life from supermarket checkouts to the movements of cows in a paddock.

To support the hypothesis, engineers and scientists have produced a raft of

ingenious schemes and devices from loyalty programs to RFID tags. Little

thought however, has gone into how this quantity of data might be analyzed.

Machine learning, the field for finding ways to automatically extract infor-

mation from data, was once considered the solution to this problem. Histori-

cally it has concentrated on learning from small numbers of examples, because

only limited amounts of data were available when the field emerged. Some very

sophisticated algorithms have resulted from the research that can learn highly

accurate models from limited training examples. It is commonly assumed that

the entire set of training data can be stored in working memory.

More recently the need to process larger amounts of data has motivated the

field of data mining. Ways are investigated to reduce the computation time and

memory needed to process large but static data sets. If the data cannot fit into

memory, it may be necessary to sample a smaller training set. Alternatively,

algorithms may resort to temporary external storage, or only process subsets of

data at a time. Commonly the goal is to create a learning process that is linear

in the number of examples. The essential learning procedure is treated like a

scaled up version of classic machine learning, where learning is considered a

single, possibly expensive, operation—a set of training examples are processed

to output a final static model.

The data mining approach may allow larger data sets to be handled, but it

still does not address the problem of a continuous supply of data. Typically, a

model that was previously induced cannot be updated when new information

1

2 CHAPTER 1. INTRODUCTION

arrives. Instead, the entire training process must be repeated with the new

examples included. There are situations where this limitation is undesirable

and is likely to be inefficient.

The data stream paradigm has recently emerged in response to the contin-

uous data problem. Algorithms written for data streams can naturally cope

with data sizes many times greater than memory, and can extend to chal-

lenging real-time applications not previously tackled by machine learning or

data mining. The core assumption of data stream processing is that training

examples can be briefly inspected a single time only, that is, they arrive in a

high speed stream, then must be discarded to make room for subsequent ex-

amples. The algorithm processing the stream has no control over the order of

the examples seen, and must update its model incrementally as each example

is inspected. An additional desirable property, the so-called anytime property,

requires that the model is ready to be applied at any point between training

examples.

The Hoeffding tree induction method, a method for producing decision tree

models, represents one of the best known algorithms for classifying streams of

examples. Improvements to it are the focus of this thesis. As the method is

already state-of-the-art, it is not expected that massive gains will be possible,

but rather smaller incremental improvements that are beneficial nonetheless.

To measure improvements to this algorithm, an evaluation framework is devel-

oped to provide useful insight about classification performance. This fosters

algorithm development that results in measurably improved performance.

Studying purely theoretical advantages of algorithms is certainly useful

and enables new developments, but the demands of data streams require this

to be followed up with empirical evidence of performance. Claiming that an

algorithm is suitable for data stream scenarios implies that it possesses the nec-

essary practical capabilities. Doubts remain if these claims cannot be backed

by reasonable empirical evidence.

A central argument of this thesis is that data stream classification algo-

rithms require appropriate and complete evaluation practices. The evaluation

should allow users to be sure that particular problems can be handled, to

quantify improvements to algorithms, and to determine which algorithms are

most suitable for their problem. The framework is suggested with these needs

in mind.

Measuring data stream classification performance is a three dimensional

problem involving processing speed, memory and accuracy. It is not possible

1.1. ASSUMPTIONS 3

to enforce and simultaneously measure all three at the same time so this thesis

argues that it is necessary to fix the memory size and then record the other

two. Various memory sizes can be associated with data stream application

scenarios so that basic questions can be asked about expected performance of

algorithms in a given application scenario.

1.1 Assumptions

This thesis is concerned with the problem of classification, perhaps the most

commonly researched machine learning task. The goal of classification is to

produce a model that can predict the class of unlabeled examples, by training

on examples whose label, or class, is supplied. To clarify the problem set-

ting being addressed, several assumptions are made about the typical learning

scenario:

1. The data is assumed to have a small and fixed number of columns, or

attributes/features—several hundred at the most.

2. The number of rows, or examples, is very large—millions of examples

at the smaller scale. In fact, algorithms should have the potential to

process an infinite amount of data, meaning that they will not exceed

memory limits or otherwise fail no matter how many training examples

are processed.

3. The data has a limited number of possible class labels, typically less than

ten.

4. The amount of memory available to a learning algorithm depends on

the application. The size of the training data will be considerably larger

than the available memory.

5. There should be a small upper bound on the time allowed to train or

classify an example. This permits algorithms to scale linearly with the

number of examples, so users can process N times more than an existing

amount simply by waiting N times longer than they already have.

6. Stream concepts are assumed to be stationary, that is, the problem of

concept drift is not directly addressed. Concept drift occurs when the

underlying concept defining the target being learned begins to shift over

4 CHAPTER 1. INTRODUCTION

time. The solutions explored here could be extended to handle concept

drift, but this is reserved for future work.

The first three points emphasize that the aim is to scale with the number

of examples. Data sources that are large in other dimensions, such as numbers

of attributes or possible labels are not the intended problem domain. Points

4 and 5 outline what is needed from a solution. Regarding point 6, some re-

searchers argue that addressing concept drift is one of the most crucial issues in

processing data streams. For this thesis it is believed more important that the

other requirements are met first, otherwise a solution will not be satisfactory

when demands are too high regardless of whether concept drift is addressed.

1.2 Requirements

The conventional machine learning setting, referred to in this thesis as the

batch setting, operates assuming that the training data is available as a whole

set—any example can be retrieved as needed for little cost. An alternative is

to treat the training data as a stream, a potentially endless flow of data that

arrives in an order that cannot be controlled. Note that an algorithm capable

of learning from a stream is, by definition, a data mining algorithm.

Placing classification in a data stream setting offers several advantages. Not

only is the limiting assumption of early machine learning techniques addressed,

but other applications even more demanding than mining of large databases

can be attempted. An example of such an application is the monitoring of high-

speed network traffic, where the unending flow of data is too overwhelming to

consider storing and revisiting.

A classification algorithm must meet several requirements in order to work

with the assumptions and be suitable for learning from data streams. The

requirements, numbered 1 through 4, are detailed below.

Requirement 1: Process an example at a time, and in-

spect it only once (at most)

The key characteristic of a data stream is that data ‘flows’ by one example after

another. There is no allowance for random access of the data being supplied.

Each example must be accepted as it arrives in the order that it arrives. Once

inspected or ignored, an example is discarded with no ability to retrieve it

again.

1.2. REQUIREMENTS 5

Although this requirement exists on the input to an algorithm, there is

no rule preventing an algorithm from remembering examples internally in the

short term. An example of this may be the algorithm storing up a batch of

examples for use by a conventional learning scheme. While the algorithm is

free to operate in this manner, it will have to discard stored examples at some

point if it is to adhere to requirement 2.

The inspect-once rule may only be relaxed in cases where it is practical to

re-send the entire stream, equivalent to multiple scans over a database. In this

case an algorithm may be given a chance during subsequent passes to refine

the model it has learned. However, an algorithm that requires any more than a

single pass to operate is not flexible enough for universal applicability to data

streams.

Requirement 2: Use a limited amount of memory

The main motivation for employing the data stream model is that it allows

processing of data that is many times larger than available working memory.

The danger with processing such large amounts of data is that memory is easily

exhausted if there is no intentional limit set on its use.

Memory used by an algorithm can be divided into two categories: memory

used to store running statistics, and memory used to store the current model.

For the most memory-efficient algorithm they will be one and the same, that

is, the running statistics directly constitute the model used for prediction.

This memory restriction is a physical restriction that can only be relaxed if

external storage is used, temporary files for example. Any such work-around

needs to be done with consideration of requirement 3.

Requirement 3: Work in a limited amount of time

For an algorithm to scale comfortably to any number of examples, its runtime

complexity must be linear in the number of examples. This can be achieved in

the data stream setting if there is a constant, preferably small, upper bound

on the amount of processing per example.

Furthermore, if an algorithm is to be capable of working in real-time, it

must process the examples as fast if not faster than they arrive. Failure to do

so inevitably means loss of data.

Absolute timing is not as critical in less demanding applications, such as

when the algorithm is being used to classify a large but persistent data source.

6 CHAPTER 1. INTRODUCTION

3 model
requirement 4

2 learning
requirements 2 & 3

1 input
requirement 1

examples
training

examples
test

predictions

Figure 1.1: The data stream classification cycle.

However, the slower the algorithm is, the less value it will be for users who

require results within a reasonable amount of time.

Requirement 4: Be ready to predict at any point

An ideal algorithm should be capable of producing the best model it can from

the data it has observed after seeing any number of examples. In practice it is

likely that there will be periods where the model stays constant, such as when

a batch based algorithm is storing up the next batch.

The process of generating the model should be as efficient as possible, the

best case being that no translation is necessary. That is, the final model is

directly manipulated in memory by the algorithm as it processes examples,

rather than having to recompute the model based on running statistics.

The data stream classification cycle

Figure 1.1 illustrates the typical use of a data stream classification algorithm,

and how the requirements fit in. The general model of data stream classifica-

tion follows these three steps in a repeating cycle:

1.3. STRATEGIES 7

1. The algorithm is passed the next available example from the stream

(requirement 1).

2. The algorithm processes the example, updating its data structures. It

does so without exceeding the memory bounds set on it (requirement 2),

and as quickly as possible (requirement 3).

3. The algorithm is ready to accept the next example. On request it is

able to supply a model that can be used to predict the class of unseen

examples (requirement 4).

1.3 Strategies

The task of modifying machine learning algorithms to handle large data sets is

known as scaling up [27]. Analogous to approaches used in data mining, there

are two general strategies for taking machine learning concepts and applying

them to data streams. The wrapper approach aims at maximum reuse of

existing schemes, whereas adaptation looks for new methods tailored to the

data stream setting.

Using a wrapper approach means that examples must in some way be

collected into a batch so that a traditional batch learner can be used to induce

a model. The models must then be chosen and combined in some way to form

predictions. The difficulties of this approach include determining appropriate

training set sizes, and also that training times will be out of the control of a

wrapper algorithm, other than the indirect influence of adjusting the training

set size. When wrapping around complex batch learners, training sets that are

too large could stall the learning process and prevent the stream from being

processed at an acceptable speed. Training sets that are too small will induce

models that are poor at generalizing to new examples. Memory management of

a wrapper scheme can only be conducted on a per-model basis, where memory

can be freed by forgetting some of the models that were previously induced.

Examples of wrapper approaches from the literature include Wang et al. [121],

Street and Kim [114] and Chu and Zaniolo [25].

Purposefully adapted algorithms designed specifically for data stream prob-

lems offer several advantages over wrapper schemes. They can exert greater

control over processing times per example, and can conduct memory man-

agement at a finer-grained level. Common varieties of machine learning ap-

proaches to classification fall into several general classes. These classes of

8 CHAPTER 1. INTRODUCTION

method are discussed below, along with their potential for adaptation to data

streams:

decision trees This class of method is the main focus of the thesis. Chapter 3

studies a successful adaptation of decision trees to data streams [32] and

outlines the motivation for this choice.

rules Rules are somewhat similar to decision trees, as a decision tree can be

decomposed into a set of rules, although the structure of a rule set can

be more flexible than the hierarchy of a tree. Rules have an advantage

that each rule is a disjoint component of the model that can be evaluated

in isolation and removed from the model without major disruption, com-

pared to the cost of restructuring decision trees. However, rules may be

less efficient to process than decision trees, which can guarantee a single

decision path per example. Ferrer-Troyano et al. [39, 40] have developed

methods for inducing rule sets directly from streams.

lazy/nearest neighbour This class of method is described as lazy because in

the batch learning setting no work is done during training, but all of the

effort in classifying examples is delayed until predictions are required.

The typical nearest neighbour approach will look for examples in the

training set that are most similar to the example being classified, as the

class labels of these examples are expected to be a reasonable indicator

of the unknown class. The challenge with adapting these methods to the

data stream setting is that training can not afford to be lazy, because it

is not possible to store the entire training set. Instead the examples

that are remembered must be managed so that they fit into limited

memory. An intuitive solution to this problem involves finding a way

to merge new examples with the closest ones already in memory, the

main question being what merging process will perform best. Another

issue is that searching for the nearest neighbours is costly. This cost may

be reduced by using efficient data structures designed to reduce search

times. Nearest neighbour based methods are a popular research topic for

data stream classification. Examples of systems include [89, 47, 81, 8].

support vector machines/neural networks Both of these methods are re-

lated and of similar power, although support vector machines [22] are

induced via an alternate training method and are a hot research topic

1.3. STRATEGIES 9

due to their flexibility in allowing various kernels to offer tailored solu-

tions. Memory management for support vector machines could be based

on limiting the number of support vectors being induced. Incremental

training of support vector machines has been explored previously, for ex-

ample [115]. Neural networks are relatively straightforward to train on a

data stream. A real world application using neural networks is given by

Gama and Rodrigues [53]. The typical procedure assumes a fixed net-

work, so there is no memory management problem. It is straightforward

to use the typical backpropagation training method on a stream of exam-

ples, rather than repeatedly scanning a fixed training set as required in

the batch setting.

Bayesian methods These methods are based around Bayes’ theorem and

compute probabilities in order to perform Bayesian inference. The sim-

plest Bayesian method, Naive Bayes, is described in Section 5.2, and is

a special case of algorithm that needs no adaptation to data streams.

This is because it is straightforward to train incrementally and does not

add structure to the model, so that memory usage is small and bounded.

A single Naive Bayes model will generally not be as accurate as more

complex models. The more general case of Bayesian networks is also

suited to the data stream setting, at least when the structure of the

network is known. Learning a suitable structure for the network is a

more difficult problem. Hulten and Domingos [71] describe a method of

learning Bayesian networks from data streams using Hoeffding bounds.

Bouckaert [10] also presents a solution.

meta/ensemble methods These methods wrap around other existing meth-

ods, typically building up an ensemble of models. Examples of this

include [102, 89]. This is the other major class of algorithm studied

in-depth by this thesis, beginning in Chapter 6.

Gaber et al. [48] survey the field of data stream classification algorithms

and list those that they believe are major contributions. Most of these have

already been covered: Domingos and Hulten’s VFDT [32], the decision tree al-

gorithm studied in-depth by this thesis; ensemble-based classification by Wang

et al. [121] that has been mentioned as a wrapper approach; SCALLOP, a rule-

based learner that is the earlier work of Ferrer-Troyano et al. [39]; ANNCAD,

which is a nearest neighbour method developed by Law and Zaniolo [89] that

10 CHAPTER 1. INTRODUCTION

operates using Haar wavelet transformation of data and small classifier ensem-

bles; and LWClass proposed by Gaber et al. [47], another nearest neighbour

based technique, that actively adapts to fluctuating time and space demands by

varying a distance threshold. The other methods in their survey that have not

yet been mentioned include on demand classification. This method by Aggar-

wal et al. [1] performs dynamic collection of training examples into supervised

micro-clusters. From these clusters, a nearest neighbour type classification

is performed, where the goal is to quickly adapt to concept drift. The final

method included in the survey is known as an online information network

(OLIN) proposed by Last [88]. This method has a strong focus on concept

drift, and uses a fuzzy technique to construct a model similar to decision trees,

where the frequency of model building and training window size is adjusted to

reduce error as concepts evolve.

Of the broad classes of algorithm, there are no existing benchmarks to

determine which class is superior to any other at classifying data streams.

Decision trees were chosen because they are a classic area of research, and

there is existing evidence to suggest that they are an effective method for data

stream classification.

1.4 Thesis Structure

The chapters that follow build the thesis in logical sequence:

Chapter 2 reviews the common methodologies in practice for evaluating

data stream algorithms. After considering the desirable attributes of a com-

prehensive evaluation strategy a final framework is proposed. The framework

includes simulation of three environments by varying memory demands, and

a set of synthetic data generators in preparation for evaluation of learning

algorithms in the thesis.

Chapter 3 introduces the basic decision tree learning algorithm that oper-

ates on data streams by relying on Hoeffding bounds to decide when sufficient

information has been seen to justify tree expansion. Many aspects of the basic

algorithm are explored.

Chapter 4 sets out to resolve the issue of how Hoeffding trees should handle

continuous numeric attributes. Potential approaches are surveyed, and then

candidates are tested using the evaluation framework from Chapter 2 in an

experiment to determine which strategy performs best.

Chapter 5 conducts a study of prediction methods, using the evaluation

1.4. THESIS STRUCTURE 11

framework from Chapter 2 to produce empirical evidence in support of a newly

suggested method. This hybrid approach adaptively combines the strengths

of two previous methods.

Chapter 6 surveys common methods for improving accuracy in the batch

setting via ensembles of models. Possibilities for transferring these methods

to data streams are explored, along with the theoretical implications of com-

bining increasing numbers of models when memory is limited. Algorithms are

elaborated, including a novel method of inducing option trees—a generalized

representation of decision trees offering the benefits of ensembles in a single

and potentially more memory-efficient structure.

Chapter 7 experimentally compares the main algorithms suggested in Chap-

ter 6 using the evaluation framework from Chapter 2. Some of the results on

data stream problems are surprising, and some do not entirely match the expec-

tations arising from generalizations in the batch setting, so a deeper analysis

and discussion looks more closely at the issues.

Chapter 8 summarizes the findings and lists the contributions made. It

concludes with a discussion of potential for future work.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Experimental Setting

This chapter establishes the settings under which experiments are conducted,

creating the framework necessary to place various learning algorithms under

test. The experimental methodology adopted by this thesis is motivated by

the requirements of the end user and their desired application.

A user wanting to classify examples in a stream of data will have a set

of requirements. They will have a certain volume of data, composed of a

number of features per example, and a rate at which examples arrive. They

will have the computing hardware on which the training of the model and the

classification of new examples is to occur. Users will naturally seek the most

accurate predictions possible on the hardware provided. They are, however,

more likely to accept a solution that sacrifices accuracy in order to function,

than no solution at all. Within reason the user’s requirements may be relaxed,

such as reducing the training features or upgrading the hardware, but there

comes a point at which doing so would be unsatisfactory.

The behaviour of a data stream learning algorithm has three dimensions of

interest—the amount of space (computer memory) required, the time required

to learn from training examples and to predict labels for new examples, and

the error of the predictions. When the user’s requirements cannot be relaxed

any further, the last remaining element that can be tuned to meet the demands

of the problem is the effectiveness of the learning algorithm—the ability of the

algorithm to output minimum error in limited time and space.

The error of an algorithm is the dimension that people would like to control

the most, but it is the least controllable. The biggest factors influencing error

are the representational power of the algorithm, how capable the model is at

capturing the true underlying concept in the stream, and its generalization

power, how successfully it can ignore noise and isolate useful patterns in the

13

14 CHAPTER 2. EXPERIMENTAL SETTING

data.

Adjusting the time and space used by an algorithm can influence error.

Time and space are interdependent. By storing more pre-computed informa-

tion, such as look up tables, an algorithm can run faster at the expense of

space. An algorithm can also run faster by processing less information, either

by stopping early or storing less, thus having less data to process. The more

time an algorithm has to process, or the more information that is processed,

the more likely it is that error can be reduced.

The time and space requirements of an algorithm can be controlled by

design. The algorithm can be optimised to reduce memory footprint and run-

time. More directly, an algorithm can be made aware of the resources it is

using and dynamically adjust. For example, an algorithm can take a memory

limit as a parameter, and take steps to obey the limit. Similarly, it could be

made aware of the time it is taking, and scale computation back to reach a

time goal.

The easy way to limit either time or space is to stop once the limit is

reached, and resort to the best available output at that point. For a time

limit, continuing to process will require the user to wait longer, a compromise

that may be acceptable in some situations. For a space limit, the only way

to continue processing is to have the algorithm specifically designed to dis-

card some of its information, hopefully information that is least important.

Additionally, time is highly dependent on physical processor implementation,

whereas memory limits are universal. The space requirement is a hard overrid-

ing limit that is ultimately dictated by the hardware available. An algorithm

that requests more memory than is available will cease to function, a conse-

quence that is much more serious than either taking longer, or losing accuracy,

or both.

It follows that the space dimension should be fixed in order to evaluate

algorithmic performance. Accordingly, to evaluate the ability of an algorithm

to meet user requirements, a memory limit is set, and the resulting time and

error performance of the algorithm is measured on a data stream. Different

memory limits have been chosen to gain insight into general performance of

algorithmic variations by covering a range of plausible situations.

Several elements are covered in order to establish the evaluation framework

used in this thesis. Evaluation methods already established in the field are

surveyed in Section 2.1. Possible procedures are compared in 2.2 and the final

evaluation framework is described in Section 2.3. The memory limits used for

2.1. PREVIOUS EVALUATION PRACTICES 15

testing are motivated in Section 2.4, and Section 2.5 describes the data streams

used for testing. Finally, Section 2.6 analyzes the speeds and sizes of the data

streams involved. The particular algorithms under examination are the focus

of the remainder of the thesis.

2.1 Previous Evaluation Practices

This section assumes that the critical variable being measured by evaluation

processes is the accuracy of a learning algorithm. Accuracy, or equivalently

its converse, error, may not be the only concern, but it is usually the most

pertinent one. Accuracy is typically measured as the percentage of correct

classifications that a model makes on a given set of data, the most accurate

learning algorithm is the one that makes the fewest mistakes when predicting

labels of examples. With classification problems, achieving the highest possible

accuracy is the most immediate and obvious goal. Having a reliable estimate

of accuracy enables comparison of different methods, so that the best available

method for a given problem can be determined.

It is very optimistic to measure the accuracy achievable by a learner on the

same data that was used to train it, because even if a model achieves perfect

accuracy on its training data this may not reflect the accuracy that can be

expected on unseen data—its generalization accuracy. For the evaluation of

a learning algorithm to measure practical usefulness, the algorithm’s ability

to generalize to previously unseen examples must be tested. A model is said

to overfit the data if it tries too hard to explain the training data, which is

typically noisy, so performs poorly when predicting the class label of examples

it has not seen before. One of the greatest challenges of machine learning is

finding algorithms that can avoid the problem of overfitting.

2.1.1 Batch Setting

Previous work on the problem of evaluating batch learning has concentrated on

making the best use of a limited supply of data. When the number of examples

available to describe a problem is in the order of hundreds or even less then

reasons for this concern are obvious. When data is scarce, ideally all data that

is available should be used to train the model, but this will leave no remaining

examples for testing. The following methods discussed are those that have in

the past been considered most suitable for evaluating batch machine learning

16 CHAPTER 2. EXPERIMENTAL SETTING

algorithms, and are studied in more detail by Kohavi [82].

The holdout method divides the available data into two subsets that are

mutually exclusive. One of the sets is used for training, the training set, and

the remaining examples are used for testing, the test or holdout set. Keeping

these sets separate ensures that generalization performance is being measured.

Common size ratios of the two sets used in practice are 1/2 training and 1/2

test, or 2/3 training and 1/3 test. Because the learner is not provided the full

amount of data for training, assuming that it will improve given more data, the

performance estimate will be pessimistic. The main criticism of the holdout

method in the batch setting is that the data is not used efficiently, as many

examples may never be used to train the algorithm. The accuracy estimated

from a single holdout can vary greatly depending on how the sets are divided.

To mitigate this effect, the process of random subsampling will perform multi-

ple runs of the holdout procedure, each with a different random division of the

data, and average the results. Doing so also enables measurement of the accu-

racy estimate’s variance. Unfortunately this procedure violates the assumption

that the training and test set are independent—classes over-represented in one

set will be under-represented in the other, which can skew the results.

In contrast to the holdout method, cross-validation maximizes the use of

examples for both training and testing. In k-fold cross-validation the data

is randomly divided into k independent and approximately equal-sized folds.

The evaluation process repeats k times, each time a different fold acts as the

holdout set while the remaining folds are combined and used for training. The

final accuracy estimate is obtained by dividing the total number of correct

classifications by the total number of examples. In this procedure each avail-

able example is used k − 1 times for training and exactly once for testing.

This method is still susceptible to imbalanced class distribution between folds.

Attempting to reduce this problem, stratified cross-validation distributes the

labels evenly across the folds to approximately reflect the label distribution

of the entire data. Repeated cross-validation repeats the cross-validation pro-

cedure several times, each with a different random partitioning of the folds,

allowing the variance of the accuracy estimate to be measured.

The leave-one-out evaluation procedure is a special case of cross-validation

where every fold contains a single example. This means with a data set of

n examples that n-fold cross validation is performed, such that n models are

induced, each of which is tested on the single example that was held out.

In special situations where learners can quickly be made to ‘forget’ a single

2.1. PREVIOUS EVALUATION PRACTICES 17

training example this process can be performed efficiently, otherwise in most

cases this procedure is expensive to perform. The leave-one-out procedure is

attractive because it is completely deterministic and not subject to random

effects in dividing folds. However, stratification is not possible and it is easy

to construct examples where leave-one-out fails in its intended task of mea-

suring generalization accuracy. Consider what happens when evaluating using

completely random data with two classes and an equal number of examples

per class—the best an algorithm can do is predict the majority class, which

will always be incorrect on the example held out, resulting in an accuracy of

0%, even though the expected estimate should be 50%.

An alternative evaluation method is the bootstrap method introduced by

Efron [35]. This method creates a bootstrap sample of a data set by sampling

with replacement a training data set of the same size as the original. Under

the process of sampling with replacement the probability that a particular

example will be chosen is approximately 0.632, so the method is commonly

known as the 0.632 bootstrap. All examples not present in the training set are

used for testing, which will contain on average about 36.8% of the examples.

The method compensates for lack of unique training examples by combining

accuracies measured on both training and test data to reach a final estimate:

accuracybootstrap = 0.632× accuracytest + 0.368× accuracytrain (2.1)

As with the other methods, repeated random runs can be averaged to increase

the reliability of the estimate. This method works well for very small data

sets but suffers from problems that can be illustrated by the same situation

that causes problems with leave-one-out, a completely random two-class data

set—Kohavi [82] argues that although the true accuracy of any model can only

be 50%, a classifier that memorizes the training data can achieve accuracytrain

of 100%, resulting in accuracybootstrap = 0.632× 50% + 0.368× 100% = 68.4%.

This estimate is more optimistic than the expected result of 50%.

Having considered the various issues with evaluating performance in the

batch setting, the machine learning community has settled on stratified ten-

fold cross-validation as the standard evaluation procedure, as recommended

by Kohavi [82]. For increased reliability, ten repetitions of ten-fold cross-

validation are commonly used. Bouckaert [9] warns that results based on this

standard should still be treated with caution.

18 CHAPTER 2. EXPERIMENTAL SETTING

2.1.2 Data Stream Setting

The data stream setting has different requirements from the batch setting. In

terms of evaluation, batch learning’s focus on reusing data to get the most

out of a limited supply is not a concern as data is assumed to be abundant.

With plenty of data, generalization accuracy can be measured via the holdout

method without the same drawbacks that prompted researchers in the batch

setting to pursue other alternatives. The essential difference is that a large

set of examples for precise accuracy measurement can be set aside for testing

purposes without starving the learning algorithms of training examples.

Instead of maximizing data use, the focus shifts to trends over time—in the

batch setting a single static model is the final outcome of training, whereas in

the stream setting the model evolves over time and can be employed at different

stages of growth. In batch learning the problem of limited data is overcome

by analyzing and averaging multiple models produced with different random

arrangements of training and test data. In the stream setting the problem of

(effectively) unlimited data poses different challenges. One solution involves

taking snapshots at different times during the induction of a model to see how

much the model improves with further training.

Data stream classification is a relatively new field, and as such evalua-

tion practices are not nearly as well researched and established as they are

in the batch setting. Although there are many recent computer science pa-

pers about data streams, only a small subset actually deal with the stream

classification problem as defined in this thesis. A survey of the literature in

this field was done to sample typical evaluation practices. Eight papers were

found representing examples of work most closely related to this study. The

papers are Domingos and Hulten [32], Gama et al. [52], Gama et al. [50], Jin

and Agrawal [77], Oza and Russell [101], Street and Kim [114], Fern and Gi-

van [38], and Chu and Zaniolo [25]. Important properties of these papers are

summarized in Tables 2.1 and 2.2.

The ‘evaluation methods’ column of Table 2.1 reveals that the most com-

mon method for obtaining accuracy estimates is to use a single holdout set.

This is consistent with the argument that nothing more elaborate is required

in the stream setting, although some papers use five-fold cross-validation, and

Fern and Givan [38] use different repeated sampling methods.

In terms of memory limits enforced during experimentation, the majority

of papers do not address the issue and make no mention of explicit memory

2.1. PREVIOUS EVALUATION PRACTICES 19

Table 2.1: Paper survey part 1—Evaluation methods and data sources.
enforced max # of max # of

paper evaluation memory training test
ref. methods limits data sources examples examples
[32] holdout 40MB, 14 custom syn. 100m 50k

80MB 1 private real 4m 267k
[52] holdout none 3 public syn. (UCI) 1m 250k
[50] holdout none 4 public syn. (UCI) 1.5m 250k
[77] holdout? 60MB 3 public syn. (genF1/6/7) 10m ?

[101] 5-fold cv, none 10 public real (UCI) 54k 13.5k
holdout 3 custom syn. 80k 20k

2 public real (UCIKDD) 465k 116k
[114] 5-fold cv, none 2 public real (UCI) 45k (5-fold cv)

holdout 1 private real 33k (5-fold cv)
1 custom syn. 50k 10k

[38] various strict 4 public real (UCI) 100k
hardware 8 public real (spec95) 2.6m

[25] holdout none 1 custom syn. 400k 50k
1 private real 100k ?

Table 2.2: Paper survey part 2—Presentation styles.
paper

ref. presentation of results and comparisons
[32] 3 plots of accuracy vs examples

1 plot of tree nodes vs examples
1 plot of accuracy vs noise
1 plot of accuracy vs concept size
extra results (timing etc.) in text

[52] 1 table of error, training time & tree size
(after 100k, 500k & 1m examples)
1 plot of error vs examples
1 plot of training time vs examples
extra results (bias variance decomp., covertype results) in text

[50] 1 table of error, training time & tree size
(after 100k, 500k, 750k/1m & 1m/1.5m examples)

[77] 1 plot of tree nodes vs noise
2 plots of error vs noise
3 plots of training time vs noise
6 plots of examples vs noise
1 plot of training time vs examples
1 plot of memory usage vs examples

[101] 3 plots of online error vs batch error
3 plots of accuracy vs examples
2 plots of error vs ensemble size
2 plots of training time vs examples

[114] 8 plots of error vs examples
[38] 25 plots of error vs ensemble size

13 plots of error vs examples
6 plots of error vs tree nodes

[25] 3 plots of accuracy vs tree leaves
2 tables of accuracy for several parameters and methods
3 plots of accuracy vs examples

20 CHAPTER 2. EXPERIMENTAL SETTING

limits placed on algorithms. Domingos and Hulten [32] makes the most effort

to explore limited memory, and the followup work by Jin and Agrawal [77] is

consistent by also mentioning a fixed limit. The paper by Fern and Givan [38] is

a specialized study in CPU branch prediction that carefully considers hardware

memory limitations.

The ‘data sources’ column lists the various sources of data used for evaluat-

ing data stream algorithms. Synthetic data (abbreviated syn. in the table), is

artificial data that is randomly generated, so in theory is unlimited in size, and

is noted as either public or custom. Custom data generators are those that are

described for the first time in a paper, unlike public synthetic data that have

been used before and where source code for their generation is freely available.

Real data is collected from a real-world problem, and is described as being

either public or private. All public sources mention where they come from,

mostly from UCI [7], although Jin and Agrawal [77] make use of the generator

described in Section 2.5.6, and Fern and Givan [38] use benchmarks specific to

the CPU branch prediction problem. Section 2.5 has more discussion about

common data sources.

Reviewing the numbers of examples used to train algorithms for evaluation

the majority of previous experimental evaluations use less than one million

training examples. Some papers use more than this, up to ten million examples,

and only very rarely is there any study like Domingos and Hulten [32] that is

in the order of tens of millions of examples. In the context of data streams

this is disappointing, because to be truly useful at data stream classification

the algorithms need to be capable of handling very large (potentially infinite)

streams of examples. Only demonstrating systems on small amounts of data

does not build a convincing case for capacity to solve more demanding data

stream applications.

There are several possible reasons for the general lack of training data for

evaluation. It could be that researchers come from a traditional machine learn-

ing background with entrenched community standards, where results involving

cross-validation on popular real-world data sets are expected for credibility,

and alternate practices are less understood. Emphasis on using real-world

data will restrict the sizes possible, because as explained in Section 2.5.1 there

is very little data freely available that is suitable for data stream evaluation.

Another reason could be that the methods are being directly compared with

batch learning algorithms, as several of the papers do, so the sizes may deliber-

ately be kept small to accommodate batch learning. Hopefully no evaluations

2.1. PREVIOUS EVALUATION PRACTICES 21

are intentionally small due to proposed data stream algorithms being too slow

or memory hungry to cope with larger amounts of data in reasonable time or

memory, because this would raise serious doubts about the algorithm’s prac-

tical utility.

In terms of the sizes of test sets used, for those papers using holdout and

where it could be determined from the text, the largest test set surveyed was

less than 300 thousand examples in size, and some were only in the order of

tens of thousands of examples. This suggests that the researchers believe that

such sizes are adequate for accurate reporting of results.

Table 2.2 summarizes the styles used to present and compare results in the

papers. The most common medium used for displaying results is the graphi-

cal plot, typically with the number of training examples on the x-axis. This

observation is consistent with the earlier point that trends over time should

be a focus of evaluation. The classic learning curve plotting accuracy/error

versus training examples is the most frequent presentation style. Several other

types of plot are used to discuss other behaviours such as noise resistance and

model sizes. An equally reasonable but less common style presents the results

as figures in a table, perhaps not as favoured because less information can be

efficiently conveyed this way.

In terms of claiming that an algorithm significantly outperforms another,

the accepted practice is that if a learning curve looks better at some point dur-

ing the run (attains higher accuracy, and the earlier the better) and manages

to stay that way by the end of the evaluation, then it is deemed a superior

method. Most often this is determined from a single holdout run, and with

an independent test set containing 300 thousand examples or less. It is rare

to see a serious attempt at quantifying the significance of results with confi-

dence intervals or similar checks. Typically it is claimed that the method is

not highly sensitive to the order of data, that is, doing repeated random runs

would not significantly alter the results.

A claim of this thesis is that in order to adequately evaluate data stream

classification algorithms they need to be tested on large streams, in the order

of hundreds of millions of examples where possible, and under explicit memory

limits. Any less than this does not actually test algorithms in a realistically

challenging setting. This is claimed because it is possible for learning curves

to cross after substantial training has occurred, as discussed in Section 2.3 and

seen later in the experimental results, for example Figure 4.5 on page 87.

Almost every data stream paper argues that innovative and efficient algo-

22 CHAPTER 2. EXPERIMENTAL SETTING

rithms are needed to handle the substantial challenges of data streams but the

survey shows that few of them actually follow through by testing candidate

algorithms appropriately. The best paper found, Domingos and Hulten [32],

represents a significant inspiration for this thesis because it also introduces

the base algorithm expanded upon in Chapter 3 onwards. The paper serves

as a model of what realistic evaluation should involve—limited memory to

learn in, millions of examples to learn from, and several hundred thousand

test examples.

2.2 Evaluation Procedures for Data Streams

The evaluation procedure of a learning algorithm determines which examples

are used for training the algorithm, and which are used to test the model output

by the algorithm. The procedure used historically in batch learning has partly

depended on data size. Small data sets with less than a thousand examples,

typical in batch machine learning benchmarking, are suited to the methods

that extract maximum use of the data, hence the established procedure of

ten repetitions of ten-fold cross-validation. As data sizes increase, practical

time limitations prevent procedures that repeat training too many times. It is

commonly accepted with considerably larger data sources that it is necessary

to reduce the numbers of repetitions or folds to allow experiments to complete

in reasonable time. With the largest data sources attempted in batch learning,

on the order of hundreds of thousands of examples or more, a single holdout run

may be used, as this requires the least computational effort. A justification for

this besides the practical time issue may be that the reliability lost by losing

repeated runs is compensated by the reliability gained by sheer numbers of

examples involved.

When considering what procedure to use in the data stream setting, one of

the unique concerns is how to build a picture of accuracy over time. Two main

approaches were considered, the first a natural extension of batch evaluation,

and the second an interesting exploitation of properties unique to data stream

algorithms.

2.2.1 Holdout

When batch learning reaches a scale where cross-validation is too time consum-

ing, it is often accepted to instead measure performance on a single holdout

2.2. EVALUATION PROCEDURES FOR DATA STREAMS 23

set. This is most useful when the division between train and test sets have

been pre-defined, so that results from different studies can be directly com-

pared. Viewing data stream problems as a large-scale case of batch learning,

it then follows from batch learning practices that a holdout set is appropriate.

To track model performance over time, the model can be evaluated periodi-

cally, for example, after every one million training examples. Testing the model

too often has potential to significantly slow the evaluation process, depending

on the size of the test set.

A possible source of holdout examples is new examples from the stream

that have not yet been used to train the learning algorithm. A procedure can

‘look ahead’ to collect a batch of examples from the stream for use as test

examples, and if efficient use of examples is desired they can then be given to

the algorithm for additional training after testing is complete. This method

would be preferable in scenarios with concept drift, as it would measure a

model’s ability to adapt to the latest trends in the data.

Since no concept drift is assumed, a single static held out set should be suf-

ficient, which avoids the problem of varying estimates between potential test

sets. Assuming that the test set is independent and sufficiently large relative

to the complexity of the target concept, it will provide an accurate measure-

ment of generalization accuracy. As noted when looking at other studies, test

set sizes on the order of tens of thousands of examples have previously been

considered sufficient.

2.2.2 Interleaved Test-Then-Train

An alternate scheme for evaluating data stream algorithms is to interleave

testing with training. Each individual example can be used to test the model

before it is used for training, and from this the accuracy can be incrementally

updated. When intentionally performed in this order, the model is always

being tested on examples it has not seen. This scheme has the advantage that

no holdout set is needed for testing, making maximum use of the available

data. It also ensures a smooth plot of accuracy over time, as each individual

example will become increasingly less significant to the overall average.

The disadvantages of this approach are that it makes it difficult to accu-

rately separate and measure training and testing times. Also, the true accuracy

that an algorithm is able to achieve at a given point is obscured—algorithms

will be punished for early mistakes regardless of the level of accuracy they are

24 CHAPTER 2. EXPERIMENTAL SETTING

 65

 70

 75

 80

 85

 90

 95

 0 5 10 15 20 25 30

ac
cu

ra
cy

 (%
 c

or
re

ct
)

training instances processed (millions)

holdout
interleaved test-then-train

Figure 2.1: Learning curves produced for the same learning situation by two
different evaluation methods, recorded every 100,000 examples.

eventually capable of, although this effect will diminish over time.

With this procedure the statistics are updated with every example in the

stream, and can be recorded at that level of detail if desired. For efficiency

reasons a sampling parameter can be used to reduce the storage requirements

of the results, by recording only at periodic intervals like the holdout method.

2.2.3 Comparison

Figure 2.1 is an example of how learning curves can differ between the two

approaches given an identical learning algorithm and data source. The holdout

method measures immediate accuracy at a particular point, without memory

of previous performance. During the first few million training examples the

graph is not smooth. If the test set were small thus unreliable or the algorithm

more unstable then fluctuations in accuracy could be much more noticeable.

The interleaved method by contrast measures the average accuracy achieved

to a given point, thus after 30 million training examples, the generalization

accuracy has been measured on every one of the 30 million examples, rather

than the independent one million examples used by the holdout. This explains

why the interleaved curve is smooth. It also explains why the estimate of

accuracy is more pessimistic, because during early stages of learning the model

2.3. TESTING FRAMEWORK 25

was less accurate, pulling the average accuracy down.

The interleaved method makes measuring estimates of both time and ac-

curacy more difficult. It could be improved perhaps using a modification that

introduces exponential decay, but this possibility is reserved for future work.

The holdout evaluation method offers the best of both schemes, as the aver-

aged accuracy that would be obtained via interleaved test-then-train can be

estimated by averaging consecutive ranges of samples together. Having con-

sidered the relative merits of the approaches, the holdout method constitutes

the foundation of the experimental framework described next.

2.3 Testing Framework

Algorithm 1 Evaluation procedure.
Fix mbound, the maximum amount of memory allowed for the model
Hold out ntest examples for testing
while further evaluation is desired do

start training timer
for i = 1 to ntrain do

get next example etrain from training stream
train and update model with etrain, ensuring that mbound is obeyed

end for
stop training timer and record training time
start test timer
for i = 1 to ntest do

get next example etest from test stream
test model on etest and update accuracy

end for
stop test timer and record test time
record model statistics (accuracy, size etc.)

end while

Algorithm 1 lists pseudo-code of the evaluation procedure used for exper-

imental work in this thesis. The process is similar to that used by Domingos

and Hulten [32], the study that was found to have the most thorough evalua-

tion practices of those surveyed in Section 2.1.2. It offers flexibility regarding

which statistics are captured, with the potential to track many behaviours of

interest.

The ntrain parameter determines how many examples will be used for train-

ing before an evaluation is performed on the test set. A set of ntest examples

26 CHAPTER 2. EXPERIMENTAL SETTING

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

ac
cu

ra
cy

 (%
 c

or
re

ct
)

training instances processed (millions)

A
B

Figure 2.2: Learning curves demonstrating the problem of stopping early.

is held aside for testing. In the data stream case without concept drift this set

can be easily populated by collecting the first ntest examples from the stream.

To get reliable timing estimates, ntrain and ntest need to be sufficiently large.

In the actual implementation, the timer measured the CPU runtime of the

relevant thread, in an effort to reduce problems caused by the multithreaded

operating system sharing other tasks. In all experiments, ntest was set to one

million examples, which helps to measure timing but also ensures reliability of

the accuracy estimates, where according to Table 2.1 previous studies in the

field have typically used a tenth of this amount or even less.

The framework is designed to test an algorithm that tends to accumulate

information over time, so the algorithm will desire more memory as it trains

on more examples. The algorithm needs to be able to limit the total amount

of memory used, thus obey mbound, no matter how much training takes place.

One of the biggest issues with the evaluation is deciding when to stop

training and start testing. In small memory situations, some algorithms will

reach a point where they have exhausted all memory and can no longer learn

new information. At this point the experiment can be terminated, as the

results will not change from that point.

More problematic is the situation where time or training examples are

exhausted before the final level of performance can be observed. Consider

2.3. TESTING FRAMEWORK 27

Figure 2.2. Prior to 14 million examples, algorithm B is the clear choice in

terms of accuracy, however in the long run it does not reach the same level of

accuracy as algorithm A. Which algorithm is actually better depends on the

application. If there is a shortage of time or data, algorithm B may be the

better choice. Not only this, but if the models are employed for prediction

during early stages of learning, then algorithm B will be more useful at the

beginning.

To rule out any effect that data order may have on the learning process,

the evaluation procedure may be run multiple times, each time with a different

set of training data from the same problem. The observations gathered from

each run can then be averaged into a single result. An advantage of this

approach is that the variance of behaviour can also be observed. Ideally the

data between runs will be unique, as is possible with synthetically generated or

other abundant data sources. If data is lacking at least the training examples

can be reordered.

An ideal method of evaluation would wait until an accuracy plateau is ob-

servable for every candidate before termination. It would also run multiple

times with different data orders to establish confidence in the results. Unfor-

tunately neither of these scenarios are feasible considering the large amount of

experimental work needed for this thesis.

To see why this is so, consider the time required to run all of the exper-

iments in this thesis. There are 19 different data sources. There are three

memory limits, but only two are counted here because experiments terminate

early in the smallest environment. There are at least 20 different variants

of algorithm being tested, which underestimates the full amount of work by

ignoring background experimentation such as performing bias/variance decom-

position in Chapter 7. If ten hours are required per run, the total time required

is:

19 data sets × 2 environments × 20 algorithms × 10 hours = 7600 hours

So a conservative estimate is that 317 days or more than 45 weeks of linear

computing time is required to generate the results. Running the evaluation

process in parallel is straightforward, so with several machines the practical

runtime can be reduced, but not without access to substantial computing re-

sources. Requiring multiple runs or more than ten hours per run will readily

inflate the computing time needed.

For this practical reason, all experiments allowed a maximum of ten hours

28 CHAPTER 2. EXPERIMENTAL SETTING

training time. The time required for the entire evaluation process is slightly

longer than ten hours due to time required for testing, which is not included

in the limit. Aside from algorithms being tested in the smallest memory envi-

ronment, nearly every algorithm trained for the full ten hour period and could

have continued for longer if permitted. The only exceptions were a small num-

ber of cases where the most memory-hungry ensemble methods described in

Chapter 7 became incapable of doing any more work in the memory allowed.

Regarding the problem that terminating evaluation too early can bias re-

sults, there are two causes of early termination, shortage of data or shortage

of time. Data shortage is avoided by using synthetic data generators thereby

having unlimited data. Time shortage is more problematic but as explained it

is unreasonable to expect more than ten hours of training per evaluation run,

which is considered to be a reasonable amount of time.

The question of when an algorithm is superior to another is decided by

looking at the final result recorded after the ten hour evaluation completed.

The accuracy results are reported as percentages to two decimal places, and

if a method’s final accuracy reading in this context is greater than another

then it is claimed to be superior. As with other similar studies there is no

attempt to strictly analyze the confidence of results, although differences of

several percentages are more convincing than fractional differences.

Measuring the standard error of results via multiple runs would enable

the confidence of results to be more formally analyzed, but every additional

run would multiply time requirements. A less expensive but useful alternative

might be to examine differences between algorithms in another way, using

McNemar’s test [26] for example, which can be computed by tracking the

agreement between competing methods on each test example. Extra analysis

such as this was not considered necessary for this thesis, but the idea presents

opportunity for future research into evaluation of data stream classification.

Two factors add informal confidence in the results obtained. Firstly, the

class of base algorithm being studied (fully described in Chapter 3) has low

sensitivity to data order, as reported previously [68, 50] and confirmed in

smaller scale initial experiments. This suggests that even if multiple runs

were performed and averaged, the final results would not change very much.

Secondly, this study uses test set sizes that are several times larger than the

largest used in previous studies, further decreasing the likelihood that methods

can achieve high accuracy via chance alone.

The methodology employed is largely consistent with other studies, only

2.3. TESTING FRAMEWORK 29

 58.5
 59

 59.5
 60

 60.5
 61

 61.5
 62

 62.5
 63

 63.5

 0 10 20 30 40 50 60 70 80

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training examples (millions)

RTCN - sampled every 10 million examples

HTMC
HTNB

HTNB1K
HTNBA

 58.5
 59

 59.5
 60

 60.5
 61

 61.5
 62

 62.5
 63

 63.5

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTCN - sampled every 10 million examples

HTMC
HTNB

HTNB1K
HTNBA

Figure 2.3: Example difference between learning curves based on training ex-
amples (left) versus training time (right).

on a greater scale. Where previous studies rarely trained on more than sev-

eral million examples, the ten hour evaluation runs commonly involve several

hundreds of millions of examples. There are two main ways that results are pre-

sented, as graphical plots and in tables. Graphical plots are interspersed with

the text where they seem appropriate for demonstrating relevant behaviour.

Unfortunately, because the graphs need to be of sufficient size to reasonably

compare multiple methods, only selected graphs are shown. The space re-

quired to print readable graphs of every method on every data source in every

environment and every interesting dimension is simply too high to justify.

The information collected during a run of the evaluation procedure can be

plotted in several ways to give a visual analysis of an algorithm’s behaviour.

Of critical interest is the learning curve, as discussed previously, where the

accuracy of the algorithm’s predictions is plotted against either time or number

of training examples. Previous studies have always plotted learning curves on a

per-example basis, rather than a per-time basis that is dependent on the speed

of computing hardware. This thesis uses both styles interchangeably, which can

slightly alter the appearance of relationships between methods, see Figure 2.3.

The main difference between these styles is that time-based plots have every

line spanning almost the full width of the graph rather than having slower

methods terminating earlier. Plotted this way, per-example performance is

still observable because each sample point represents a fixed number of training

examples, such that more frequent points in a line represent more training

examples being processed. Often with these graphs the sampling period is

purposely adjusted to ensure a reasonable separation between sample points,

enhancing readability. Where appropriate the sampling period is noted in the

title of the graph. The difference between per-example and per-time plots can

30 CHAPTER 2. EXPERIMENTAL SETTING

be dramatic when the speeds of algorithms differ greatly, such as the example

in Figure 3.2 on page 50.

The graphs are supplemented by tables in Appendix A. The tables can-

not convey subtle changes over time like graphs can, but they can report the

complete set of end results, allowing comparison of the key results for every

method/data source/environment combination. The tables record the final

readings at the end of evaluation, which is sufficient information for determin-

ing the best methods. Presented in this form the final results are meaningfully

summarized in a reasonable amount of space.

The other important property of a learning algorithm besides accuracy is

speed. It is important to differentiate learning speed from processing speed.

Learning speed refers to the number of examples required to reach a given

accuracy level. Processing speed is the rate at which examples are processed,

consisting of both training and testing speeds, and can be measured in terms of

examples processed per second. When comparing algorithms, it is the relative

time taken on identical hardware that is important, as the absolute times will

vary depending on the power of the computing hardware.

The hardware/software environment has a large influence on the results

obtained, because a ten hour time limit is completely arbitrary when comput-

ing resources are unspecified. The experimental environment was purposely

kept consistent for all time-dependent experiments, as follows:

Hardware: Intel Core2 6300 CPU running at 1.86Ghz with a 2048KB cache

and 1GB of RAM

Software: Sun Java HotSpot Server VM (build 1.6.0 01-b06), running under

GNU/Linux Fedora core 6

2.4 Environments

This section defines three environments that are simulated using memory lim-

its, since memory limits cannot be ignored and can significantly limit capacity

to learn from data streams. Potential practical deployment of data stream

classification has been divided into scenarios of increasing memory utilization,

from the restrictive sensor environment, to a typical consumer grade handheld

PDA environment, to the least restrictive environment of a dedicated server.

Although technology advancements will mean that these environments are

something of a moving target, the insights gained about the scalability of

2.4. ENVIRONMENTS 31

algorithms will still be valid. The environments chosen range from restrictive

to generous, with an order of magnitude difference between them.

Note that when referring to memory sizes, the traditional meaning of the

terms kilobyte and megabyte is adopted, such that 1 kilobyte = 1,024 bytes,

and 1 megabyte = 10242 bytes = 1,048,576 bytes.

2.4.1 Sensor Network

This environment represents the most restrictive case, learning in 100 kilobytes

of memory. Because this limit is so restrictive, it is an interesting test case for

algorithm efficiency.

Sensor networks [4, 49] are a hot topic of research, and typically the nodes

designed for these networks are low power devices with limited resources. In

this setting it is often impractical to dedicate more than hundreds of kilobytes

to processes because typically such devices do not support much working mem-

ory.

When memory limits are in the order of kilobytes, other applications re-

quiring low memory usage also exist, such as specialized hardware in which

memory is expensive. An example of such an application is CPU branch pre-

diction, as explored by Fern and Givan [38]. Another example is a small ‘packet

sniffer’ device designed to do real-time monitoring of network traffic [6].

2.4.2 Handheld Computer

In this case the algorithm is allowed 32 megabytes of memory. This simulates

the capacity of lightweight consumer devices designed to be carried around by

users and fit into a shirt pocket.

The ability to do analysis on site with a handheld device is desirable for

certain applications. The papers [78] and [79] describe systems for analysing

vehicle performance and stockmarket activity respectively. In both cases the

authors describe the target computing hardware as personal handheld devices

with 32 megabytes. Horovitz et al. [69] describe a road safety application using

a device with 64 megabytes.

The promise of ubiquitous computing is getting closer with the widespread

use of mobile phones, which with each generation are evolving into increasingly

more powerful and multifunctional devices. These too fall into this category,

representing large potential for portable machine learning given suitable algo-

rithms. Imielinski and Nath [75] present a vision of this future ‘dataspace’.

32 CHAPTER 2. EXPERIMENTAL SETTING

2.4.3 Server

This environment simulates either a modern laptop/desktop computer or server

dedicated to processing a data stream. The memory limit assigned in this en-

vironment is 400 megabytes. Although at the time of writing this thesis a

typical desktop computer may have several gigabytes of RAM, it is still gen-

erous to set aside this much memory for a single process. Considering that

several algorithms have difficulty in fully utilizing this much working space, it

seems sufficiently realistic to impose this limit.

A practical reason for imposing this limit is that the experiments need

to terminate in reasonable time. In cases where memory is not filled by an

algorithm it is harder to judge what the behaviour will be in the theoretical

limit, but the practical ten hour limit is an attempt to run for sufficient time

to allow accuracy to plateau.

There are many applications that fit into this higher end of the computing

scale. An obvious task is analysing data arising from the Internet, as either web

searches [61], web usage [113], site logs [112] or click streams [60]. Smaller scale

computer networks also produce traffic of interest [90], as do other telecommu-

nication activities [122], phone call logs for example. Banks may be interested

in patterns of ATM transactions [62], and retail chains and online stores will

want details about customer purchases [85]. Further still, there is the field of

scientific observation [57], which can be astronomical [100], geophysical [97],

or the massive volume of data output by particle accelerator experiments [70].

All of these activities are sources of data streams that users will conceivably

want to analyze in a server environment.

2.5 Data Sources

For the purposes of research into data stream classification there is a shortage

of suitable and publicly available real-world benchmark data sets. The UCI

ML [7] and KDD [65] archives house the most common benchmarks for machine

learning algorithms, but many of those data sets are not suitable for evaluating

data stream classification. The KDD archive has several large data sets, but

not classification problems with sufficient examples. The Forest Covertype

data set is one of the largest, and that has less than 600,000 examples.

To demonstrate their systems, several researchers have used private real-

world data that cannot be reproduced by others. Examples of this include the

2.5. DATA SOURCES 33

Table 2.3: Properties of the data sources.
name nominal numeric classes
rts/rtsn 10 10 2
rtc/rtcn 50 50 2
rrbfs 0 10 2
rrbfc 0 50 2
led 24 0 10
wave21 0 21 3
wave40 0 40 3
genF1-F10 6 3 2

web trace from the University of Washington used by Domingos and Hulten to

evaluate VFDT [32], and the credit card fraud data used by Wang et al. [121]

and Chu and Zaniolo [25].

More typically, researchers publish results based on synthetically gener-

ated data. In many of these cases, the authors have invented unique data

generation schemes for the purpose of evaluating their algorithm. Examples

include the random tree generator also used to evaluate VFDT, and the cus-

tom generators described in Oza and Russell [101], Street and Kim [114] and

Chu and Zaniolo [25]. Synthetic data has several advantages—it is easier to

reproduce and there is little cost in terms of storage and transmission. Despite

these advantages there is a lack of established and widely used synthetic data

streams.

For this thesis, the data generators most commonly found in the literature

have been collected, and and an extra scheme (RBF) has been introduced. For

ease of reference, each data set variation is assigned a short name. The basic

properties of each are summarized in Table 2.3.

2.5.1 Lack of Real-World Data

The first place to find real-world benchmark data for evaluating machine learn-

ing algorithms is the UCI machine learning repository [7]. Larger real-world

data sets can be found in the UCI KDD archive [65], which was established to

serve the needs of larger scale benchmarking.

Table 2.4 summarizes the sizes of the data sets in the KDD archive that

were found to best suit the task of evaluating classification. The archive has

other large data sets that are not considered because they are intended for

topics with different requirements such as text categorization and time series

classification.

34 CHAPTER 2. EXPERIMENTAL SETTING

Table 2.4: Sizes of data sets in UCI KDD archive that are suitable for evalu-
ating classification.

name attributes training/test examples
Census-Income 40 199,523/99,762
COIL 17 340
Corel Image 89 68,040
Forest Covertype 54 581,012
Insurance Company (COIL2000) 86 5,822/4,000
Internet Usage 71 10,108
IPUMS 60 233,584
KDD Cup 1998 481 95,412
KDD Cup 1999 40 4,898,430/311,029
MS Anonymous Web 294 32,711

The data set with the most examples is KDD Cup 1999 which has nearly

five million training examples. The task is to detect network intrusion at-

tempts. After initial experiments with this data it became clear that it is not

a very useful benchmark—it is too easy to achieve near-perfect accuracy, there

are many classes with a highly imbalanced distribution of examples between

classes, making it hard to discern anything from the accuracies measured for

competing methods. Further analysis of the data revealed that there is a

high number of repeated examples, such that the number of unique training

examples is several times less than the total number of examples specified.

Brugger [19] has expressed concerns that this data set is flawed.

The next largest data set available is Forest Covertype, a more reasonable

classification benchmark. It is not surprising that this data set has been used

in several papers on data stream classification [52, 101], given the lack of

alternatives.

For the style of evaluation required by this thesis, where several hundreds

of millions of training examples are required to test genuine ability to handle

data streams, these data sets are simply not adequate. The need to rely on

artificial data is unfortunate but necessary.

2.5.2 Random Tree Generator

This generator is based on that proposed by Domingos and Hulten [32], pro-

ducing concepts that in theory should favour decision tree learners. It con-

structs a decision tree by choosing attributes at random to split, and assigning

a random class label to each leaf. Once the tree is built, new examples are gen-

2.5. DATA SOURCES 35

erated by assigning uniformly distributed random values to attributes which

then determine the class label via the tree.

The generator has parameters to control the number of classes, attributes,

nominal attribute labels, and the depth of the tree. For consistency between

experiments, two random trees were generated and fixed as the base concepts

for testing—one simple and the other complex, where complexity refers to the

number of attributes involved and the size of the tree.

The simple random tree (rts) has ten nominal attributes with five values

each, ten numeric attributes, two classes, a tree depth of five, with leaves

starting at level three and a 0.15 chance of leaves thereafter. The final tree

has 741 nodes, 509 of which are leaves.

The complex random tree (rtc) has 50 nominal attributes with five values

each, 50 numeric attributes, two classes, a tree depth of ten, with leaves starting

at level five and a 0.15 chance of leaves thereafter. The final tree has 127,837

nodes, 90,259 of which are leaves.

A degree of noise can be introduced to the examples after generation. In the

case of discrete attributes and the class label, a probability of noise parameter

determines the chance that any particular value is switched to something other

than the original value. For numeric attributes, a degree of random noise is

added to all values, drawn from a random Gaussian distribution with standard

deviation equal to the standard deviation of the original values multiplied by

noise probability. The streams rtsn and rtcn are introduced by adding 10%

noise to the respective random tree data streams. It is hoped that experiment-

ing with both noiseless and noisy versions of a problem can give insight into

how well the algorithms manage noise.

2.5.3 Random RBF Generator

This generator was devised to offer an alternate concept type that is not nec-

essarily as easy to capture with a decision tree model.

The RBF (Radial Basis Function) generator works as follows: A fixed num-

ber of random centroids are generated. Each center has a random position,

a single standard deviation, class label and weight. New examples are gen-

erated by selecting a center at random, taking weights into consideration so

that centers with higher weight are more likely to be chosen. A random di-

rection is chosen to offset the attribute values from the central point. The

length of the displacement is randomly drawn from a Gaussian distribution

36 CHAPTER 2. EXPERIMENTAL SETTING

with standard deviation determined by the chosen centroid. The chosen cen-

troid also determines the class label of the example. This effectively creates a

normally distributed hypersphere of examples surrounding each central point

with varying densities. Only numeric attributes are generated.

rrbfs refers to a simple random RBF data set—100 centers and ten at-

tributes. rrbfc is more complex—1000 centers and 50 attributes. Both are

two class problems.

2.5.4 LED Generator

This data source originates from the CART book [18]. An implementation in

C was donated to the UCI [7] machine learning repository by David Aha. The

goal is to predict the digit displayed on a seven-segment LED display, where

each attribute has a 10% chance of being inverted. It has an optimal Bayes

classification rate of 74%. The particular configuration of the generator used

for experiments (led) produces 24 binary attributes, 17 of which are irrelevant.

2.5.5 Waveform Generator

This generator shares its origins with led, and was also donated by David Aha

to the UCI repository. The goal of the task is to differentiate between three

different classes of waveform, each of which is generated from a combination

of two or three base waves. The optimal Bayes classification rate is known

to be 86%. There are two versions of the problem. wave21 has 21 numeric

attributes, all of which include noise. wave40 introduces an additional 19

irrelevant attributes.

2.5.6 Function Generator

This generator was introduced by Agrawal et al. in [2], and was a common

source of data for early work on scaling up decision tree learners [96, 111, 54].

The generator produces a stream containing nine attributes, six numeric

and three categorical, described in Table 2.5. Although not explicitly stated by

the authors, a sensible conclusion is that these attributes describe hypothetical

loan applications.

There are ten functions defined for generating binary class labels from the

attributes. The functions are listed in Figures 2.4 and 2.5. Presumably these

determine whether the loan should be approved. For the experiments the ten

2.6. GENERATION SPEED AND DATA SIZE 37

Table 2.5: Function generator attributes.
name description values
salary salary uniformly distributed from 20K to 150K
commission commission if (salary < 75K) then 0 else

uniformly distributed from 10K to 75K
age age uniformly distributed from 20 to 80
elevel education level uniformly chosen from 0 to 4
car make of car uniformly chosen from 1 to 20
zipcode zip code of town uniformly chosen from 9 zipcodes
hvalue value of house uniformly distributed

from 0.5k100000 to 1.5k100000
where k ∈ {1...9} depending on zipcode

hyears years house owned uniformly distributed from 1 to 30
loan total loan amount uniformly distributed from 0 to 500K

functions are used as described, with a perturbation factor of 5% (referred to

as genF1-genF10). Perturbation shifts numeric attributes from their true

value, adding an offset drawn randomly from a uniform distribution, the range

of which is a specified percentage of the total value range.

2.6 Generation Speed and Data Size

During evaluation the data is generated on-the-fly. This directly influences the

amount of training examples that can be supplied in any given time period.

The speed of the data generators was measured in the experimental hard-

ware/software environment. The results are shown in Table 2.6, where the full

speed possible for generating each stream was estimated by timing how long it

took to generate ten million examples. The possible speed ranges from around

nine thousand examples per second on rtcn to over 500 thousand examples

per second for the function generators genFx. The biggest factor influencing

speed is the number of attributes being generated, hence the fastest streams

are those with the least attributes. The addition of noise to the streams also

has a major impact on the speeds—going from rts to rtsn and from rtc to

rtcn causes the speed to roughly halve, where the only difference between

these variants is the addition of noise. This result is consistent with the notion

that a dominant cost of generating the streams is the time needed to generate

random numbers, as adding noise involves producing at least one additional

random number per attribute.

In terms of the sizes of the examples, the assumption is made that storage

38 CHAPTER 2. EXPERIMENTAL SETTING

1. if (age < 40) ∨ (age ≥ 60) then
group = A

else
group = B

2. if ((age < 40) ∧ (50000 ≤ salary ≤ 100000)) ∨
((40 ≤ age < 60) ∧ (75000 ≤ salary ≤ 125000)) ∨
((age ≥ 60) ∧ (25000 ≤ salary ≤ 75000)) then
group = A

else
group = B

3. if ((age < 40) ∧ (elevel ∈ [0..1])) ∨
((40 ≤ age < 60) ∧ (elevel ∈ [1..3])) ∨
((age ≥ 60) ∧ (elevel ∈ [2..4])) then
group = A

else
group = B

4. if ((age < 40) ∧ (elevel ∈ [0..1] ?
(25000 ≤ salary ≤ 75000) : (50000 ≤ salary ≤ 100000))) ∨

((40 ≤ age < 60) ∧ (elevel ∈ [1..3] ?
(50000 ≤ salary ≤ 100000) : (75000 ≤ salary ≤ 125000))) ∨

((age ≥ 60) ∧ (elevel ∈ [2..4] ?
(50000 ≤ salary ≤ 100000) : (25000 ≤ salary ≤ 75000))) then

group = A
else

group = B

5. if ((age < 40) ∧ ((50000 ≤ salary ≤ 100000) ?
(100000 ≤ loan ≤ 300000) : (200000 ≤ loan ≤ 400000))) ∨

((40 ≤ age < 60) ∧ ((75000 ≤ salary ≤ 125000) ?
(200000 ≤ loan ≤ 400000) : (300000 ≤ loan ≤ 500000))) ∨

((age ≥ 60) ∧ ((25000 ≤ salary ≤ 75000) ?
(30000 ≤ loan ≤ 500000) : (100000 ≤ loan ≤ 300000))) then

group = A
else

group = B

Figure 2.4: Generator functions 1-5.

2.6. GENERATION SPEED AND DATA SIZE 39

6. if ((age < 40) ∧ (50000 ≤ (salary + commission) ≤ 100000)) ∨
((40 ≤ age < 60) ∧ (75000 ≤ (salary + commission) ≤ 125000)) ∨
((age ≥ 60) ∧ (25000 ≤ (salary + commission) ≤ 75000)) then
group = A

else
group = B

7. if (0.67 × (salary + commission) − 0.2 × loan − 20000 > 0) then
group = A

else
group = B

8. if (0.67 × (salary + commission) − 5000 × elevel − 20000 > 0) then
group = A

else
group = B

9. if (0.67 × (salary + commission) − 5000 × elevel
− 0.2 × loan − 10000 > 0) then
group = A

else
group = B

10. if (hyears ≥ 20) then
equity = 0.1 × hvalue × (hyears − 20)

else
equity = 0

if (0.67 × (salary + commission) − 5000 × elevel
− 0.2 × equity − 10000 > 0) then
group = A

else
group = B

Figure 2.5: Generator functions 6-10.

40 CHAPTER 2. EXPERIMENTAL SETTING

Table 2.6: Generation speed and data size of the streams.
examples examples in

per second bytes per 10 hours terabytes in
stream (thousands) attributes example (millions) 10 hours

rts 274 20 168 9866 1.50
rtsn 97 20 168 3509 0.53
rtc 19 100 808 667 0.49

rtcn 9 100 808 338 0.25
rrbfs 484 10 88 17417 1.39
rrbfc 120 50 408 4309 1.60

led 260 24 200 9377 1.71
wave21 116 21 176 4187 0.67
wave40 56 40 328 2003 0.60
genF1 527 9 80 18957 1.38
genF2 531 9 80 19108 1.39
genF3 525 9 80 18917 1.38
genF4 523 9 80 18838 1.37
genF5 518 9 80 18653 1.36
genF6 524 9 80 18858 1.37
genF7 527 9 80 18977 1.38
genF8 524 9 80 18848 1.37
genF9 519 9 80 18701 1.36

genF10 527 9 80 18957 1.47

2.7. SUMMARY 41

of each attribute and class label requires eight bytes of memory, matching the

actual Java implementation where all values are stored as double precision

floating point numbers (Section 3.4). Certain attribute types could be stored

more efficiently, but this approach offers maximum flexibility, and storing con-

tinuous values in less space would reduce precision.

Considering the entire evaluation period of ten hours, the total number

of examples that can be produced at full speed range from around 300 to

19,000 million. With the eight-byte-per-attribute assumption, this translates

to between approximately 0.25 to 1.7 terabytes of data. With data volumes of

this magnitude the choice of generating data on-the-fly is justified, a solution

that is cheaper than finding resources to store and retrieve several terabytes

of data.

2.7 Summary

Aiming to best meet user requirements for data stream classification, the ne-

cessity for memory-limited algorithms has been argued. Looking first at prior

studies, a comprehensive evaluation framework has been described, testing

methods on a scale not previously attempted. The framework is comple-

mented with three simulated memory-limited environments, defined to cover

the range of potential deployment scenarios. A suite of synthetic benchmark

data streams have been proposed, and their properties studied. The evalua-

tion framework enables experimental work and comparison of algorithms to be

performed throughout the thesis.

42 CHAPTER 2. EXPERIMENTAL SETTING

Chapter 3

Hoeffding Trees

This chapter describes the Hoeffding tree algorithm, chosen as the base method

on which to build this study of data stream classification and experimental eval-

uation. The reasons for choosing this algorithm are elaborated below. Most

importantly, the algorithm is an ideal starting point, as it is innovative and

effective at high speed data stream classification, yet it also presents opportu-

nities for improvement.

Hoeffding trees were introduced by Domingos and Hulten in the paper

“Mining High-Speed Data Streams” [32]. They refer to their implementation

as VFDT, an acronym for Very Fast Decision Tree learner. In that paper the

Hoeffding tree algorithm is the basic theoretical algorithm, while VFDT in-

troduces several enhancements for practical implementation. In this thesis the

term Hoeffding tree refers to any variation or refinement of the basic principle,

VFDT included.

In further work Domingos and Hulten went on to show how their idea can

be generalized [71], claiming that any learner based on discrete search can be

made capable of processing a data stream. The key idea depends on the use

of Hoeffding bounds, described in Section 3.1. While from this point of view

VFDT may only be one instance of a more general framework, not only is it

the original example and inspiration for the general framework, but because it

is based on decision trees it performs very well, for reasons given shortly.

Hoeffding trees are being studied because they represent current state-of-

the-art for classifying high speed data streams. The algorithm fulfills the re-

quirements necessary for coping with data streams while remaining efficient, an

achievement that was rare prior to its introduction. Previous work on scaling

up decision tree learning produced systems such as SLIQ [96], SPRINT [111]

and RAINFOREST [54]. These systems perform batch learning of decision

43

44 CHAPTER 3. HOEFFDING TREES

trees from large data sources in limited memory by performing multiple passes

over the data and using external storage. Such operations are not suitable for

high speed stream processing.

Other previous systems that are more suited to data streams are those

that were designed exclusively to work in a single pass, such as the incremen-

tal systems ID5R [117] and its successor ITI [118], and other earlier work on

incremental learning. Systems like this were considered for data stream suit-

ability by Domingos and Hulten, who found them to be of limited practical

use. In some cases these methods require more effort to update the model

incrementally than to rebuild the model from scratch. In the case of ITI, all

of the previous training data must be retained in order to revisit decisions,

prohibiting its use on large data sources.

The Hoeffding tree induction algorithm induces a decision tree from a data

stream incrementally, briefly inspecting each example in the stream only once,

without need for storing examples after they have been used to update the

tree. The only information needed in memory is the tree itself, which stores

sufficient information in its leaves in order to grow, and can be employed to

form predictions at any point in time between processing training examples.

Domingos and Hulten present a proof guaranteeing that a Hoeffding tree

will be ‘very close’ to a decision tree learned via batch learning. This shows

that the algorithm can produce trees of the same quality as batch learned

trees, despite being induced in an incremental fashion. This finding is sig-

nificant because batch learned decision trees are among the best performing

machine learning models. The classic decision tree learning schemes C4.5 [104]

and CART [18], two similar systems that were independently developed, are

widely recognised by the research community and regarded by many as de

facto standards for batch learning.

There are several reasons why decision tree learners are highly regarded.

They are fairly simple, the decision tree model itself being easy to comprehend.

This high level of interpretability has several advantages. The decision process

induced via the learning process is transparent, so it is apparent how the model

works. Questions of why the model works can lead to greater understanding

of a problem, or if the model manages to be successful without truly reflecting

the real world, can highlight deficiencies in the data used.

The quest for accuracy means that interpretability alone will not guarantee

widespread acceptance of a machine learning model. Perhaps the main reason

decision trees are popular is that they are consistently accurate on a wide

3.1. THE HOEFFDING BOUND FOR TREE INDUCTION 45

variety of problems. The classic decision tree systems recursively split the

multi-dimensional data into smaller and smaller regions, using greedily chosen

axis-orthogonal splits. This divide-and-conquer strategy is simple yet often

successful at learning diverse concepts.

Another strong feature of decision trees is their efficiency. With n examples

and m attributes, page 197 of [124] shows that the average cost of basic decision

tree induction is O(mn log n), ignoring complexities such as numeric attributes

and subtree raising. A more detailed study of tree induction complexity can

be found in [94]. The cost of making a decision is O(tree depth) in the worst

case, where typically the depth of a tree grows logarithmically with its size.

For the batch setting, recent studies [23] have shown that single decision

trees are no longer the best off-the-shelf method. However, they are competi-

tive when used as base models in ensemble methods. For this reason, ensemble

methods employing Hoeffding trees are explored later in chapters 6 and 7.

3.1 The Hoeffding Bound for Tree Induction

Each internal node of a standard decision tree contains a test to divide the

examples, sending examples down different paths depending on the values of

particular attributes. The crucial decision needed to construct a decision tree is

when to split a node, and with which example-discriminating test. If the tests

used to divide examples are based on a single attribute value, as is typical

in classic decision tree systems, then the set of possible tests is reduced to

the number of attributes. So the problem is refined to one of deciding which

attribute, if any, is the best to split on.

There exist popular and well established criteria for selecting decision tree

split tests. Perhaps the most common is information gain, used by C4.5.

Information gain measures the average amount of ‘purity’ that is gained in each

subset of a split. The purity of the subsets is measured using entropy, which

for a distribution of class labels consisting of fractions p1, p2, ..., pn summing

to 1, is calculated thus:

entropy(p1, p2, ..., pn) =
n∑

i=1

−pi log2 pi (3.1)

Gain in information is measured by subtracting the weighted average en-

tropy of the subsets of a split from the entropy of the class distribution before

splitting. Entropy is a concept from information theory that measures the

46 CHAPTER 3. HOEFFDING TREES

amount of information conveyed by a message in bits. Throughout this thesis

the splitting criterion is assumed to be information gain, but this does not rule

out other methods. As pointed out by Domingos and Hulten, other similar

methods such as the Gini index used by CART can be just as equally applied.

The estimated information gain resulting from a split on each attribute is

the heuristic used to guide split decisions. In the batch learning setting this

decision is straightforward, as the attribute with the highest information gain

over all of the available and applicable training data is the one used. How

to make the same (or very similar) decision in the data stream setting is the

innovation contributed by Domingos and Hulten. They employ the Hoeffding

bound [67], otherwise known as an additive Chernoff bound.

The Hoeffding bound states that with probability 1− δ, the true mean of

a random variable of range R will not differ from the estimated mean after n

independent observations by more than:

ε =

√
R2 ln(1/δ)

2n
(3.2)

This bound is useful because it holds true regardless of the distribution

generating the values, and depends only on the range of values, number of

observations and desired confidence. A disadvantage of being so general is that

it is more conservative than a distribution-dependent bound. An alternative

bound has been suggested by Jin and Agrawal [77]. The Hoeffding bound

formulation is well founded and works well empirically, so tighter bounds are

not explored in this thesis.

For the purposes of deciding which attribute to split on, the random vari-

able being estimated is the difference in information gain between splitting

on the best and second best attributes. For example, if the difference in gain

between the best two attributes is estimated to be 0.3, and ε is computed to

be 0.1, then the bound guarantees that the maximum possible change in dif-

ference will be 0.1. From this the smallest possible difference between them in

the future must be at least 0.2, which will always represent positive separation

for the best attribute.

For information gain the range of values (R) is the base 2 logarithm of the

number of possible class labels. With R and δ fixed, the only variable left

to change the Hoeffding bound (ε) is the number of observations (n). As n

increases, ε will decrease, in accordance with the estimated information gain

getting ever closer to its true value.

3.2. THE BASIC ALGORITHM 47

A simple test allows the decision, with confidence 1−δ, that an attribute has

superior information gain compared to others—when the difference in observed

information gain is more than ε. This is the core principle for Hoeffding tree

induction, leading to the following algorithm.

3.2 The Basic Algorithm

Algorithm 2 Hoeffding tree induction algorithm.
1: Let HT be a tree with a single leaf (the root)
2: for all training examples do
3: Sort example into leaf l using HT
4: Update sufficient statistics in l
5: Increment nl, the number of examples seen at l
6: if nl mod nmin = 0 and examples seen at l not all of same class then
7: Compute Gl(Xi) for each attribute
8: Let Xa be attribute with highest Gl

9: Let Xb be attribute with second-highest Gl

10: Compute Hoeffding bound ε =
√

R2 ln(1/δ)
2nl

11: if Xa "= X∅ and (Gl(Xa)−Gl(Xb) > ε or ε < τ) then
12: Replace l with an internal node that splits on Xa

13: for all branches of the split do
14: Add a new leaf with initialized sufficient statistics
15: end for
16: end if
17: end if
18: end for

Algorithm 2 lists pseudo-code for inducing a Hoeffding tree from a data

stream. Line 1 initializes the tree data structure, which starts out as a single

root node. Lines 2-18 form a loop that is performed for every training example.

Every example is filtered down the tree to an appropriate leaf, depending

on the tests present in the decision tree built to that point (line 3). This leaf

is then updated (line 4)—each leaf in the tree holds the sufficient statistics

needed to make decisions about further growth. The sufficient statistics that

are updated are those that make it possible to estimate the information gain of

splitting on each attribute. Exactly what makes up those statistics is discussed

in Section 3.2.2. Line 5 simply points out that nl is the example count at the

leaf, and it too is updated. Technically nl can be computed from the sufficient

statistics.

48 CHAPTER 3. HOEFFDING TREES

For efficiency reasons the code block from lines 6-17 is only performed pe-

riodically, every nmin examples for a particular leaf, and only when necessary,

when a mix of observed classes permits further splitting. The delayed evalua-

tion controlled by nmin is discussed in Section 3.2.3.

Lines 7-11 perform the test described in the previous section, using the

Hoeffding bound to decide when a particular attribute has won against all

of the others. G is the splitting criterion function (information gain) and G

is its estimated value. In line 11 the test for X∅, the null attribute, is used

for pre-pruning (Section 3.2.4). The test involving τ is used for tie-breaking

(Section 3.2.5).

If an attribute has been selected as the best choice, lines 12-15 split the

node, causing the tree to grow. Preventing the tree from using too much

memory is the topic of Section 3.3.

3.2.1 Split Confidence

The δ parameter used in the Hoeffding bound is one minus the desired proba-

bility that the correct attribute is chosen at every point in the tree. Because

a high likelihood of correctness is desired, with probability close to one, this

parameter is generally set to a small value. For the experiments described

throughout the thesis, δ is set to the VFDT default of 10−7.

Figure 3.1 shows a plot of the Hoeffding bound using the default parameters

for a two-class problem (R = log2(2) = 1, δ = 10−7). The bound rapidly drops

to below 0.1 within the first one thousand examples, and after ten thousand

examples is less than 0.03. This means that after ten thousand examples the

calculated information gain of an attribute needs to be 0.03 greater than the

second best attribute for it to be declared the winner.

3.2.2 Sufficient Statistics

The statistics in a leaf need to be sufficient to enable calculation of the infor-

mation gain afforded by each possible split. Efficient storage is important—it

is costly to store information in the leaves, so storing unnecessary information

would result in an increase in the total memory requirements of the tree.

For attributes with discrete values, the statistics required are simply counts

of the class labels that apply for each attribute value. If an attribute has v

unique attribute values and there are c possible classes, then this information

can be stored in a table with vc entries. The node maintains a separate table

3.2. THE BASIC ALGORITHM 49

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ho
ef

fd
in

g
bo

un
d

(ε
)

number of observations (n)

Figure 3.1: Hoeffding bound on a two-class problem with default parameters.

per discrete attribute. Updating the tables simply involves incrementing the

appropriate entries according to the attribute values and class of the training

example. Table 5.1 on page 94, used as an example when looking at prediction

methods, shows what such tables can look like.

Continuous numeric attributes are more difficult to summarize. Chapter 4

is dedicated to this topic.

3.2.3 Grace Period

It is computationally costly to evaluate the information gain of attributes

after each and every training example. Given that a single example will have

little influence on the results of the calculation, it is sensible to wait for more

examples before re-evaluating. The nmin parameter, or grace period, dictates

how many examples since the last evaluation should be seen in a leaf before

revisiting the decision.

This has the attractive effect of speeding up computation while not greatly

harming accuracy. The majority of training time will be spent updating the

sufficient statistics, a lightweight operation. Only a fraction of the time will

splits be considered, a more costly procedure. The worst impact that this

delay will have is a slow down of tree growth, as instead of splitting as soon

as possible, a split will delayed by as much as nmin − 1 examples.

50 CHAPTER 3. HOEFFDING TREES

 95.4

 95.6

 95.8

 96

 96.2

 96.4

 96.6

 96.8

 97

 97.2

 10 15 20 25 30

ac
cu

ra
cy

 o
n

te
st

 s
et

 (%
)

training instances processed (millions)

no grace period
grace period = 200

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 99

 0 100 200 300 400 500 600 700 800

ac
cu

ra
cy

 o
n

te
st

 s
et

 (%
)

training instances processed (millions)

no grace period
grace period = 200

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1 2 3 4 5 6 7 8 9 10

tra
in

in
g

in
st

an
ce

s
pr

oc
es

se
d

(m
illi

on
s)

training time (hours)

no grace period
grace period = 200

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 99

 0 1 2 3 4 5 6 7 8 9 10

ac
cu

ra
cy

 o
n

te
st

 s
et

 (%
)

training time (hours)

no grace period
grace period = 200

Figure 3.2: Effect of grace period on the rrbfc data with a 32MB memory
limit.

For experimentation nmin is fixed at 200, the default setting found in the

original paper [32]. Figure 3.2 shows the impact this setting has on the accu-

racy of trees induced from the rrbfc data. From the plot in the top-left it

would appear that considering split decisions after every training example does

improve the accuracy of the tree, at least within the first 30 million training

examples shown on this data. From an accuracy per example perspective, the

non grace period tree is superior. The plot to the top-right shows more of

the picture, where each tree was allowed ten hours to grow, the tree that had

nmin set to 200 was able to process almost 800 million examples and achieve

significantly better accuracy within that time than the tree lacking a grace

period. The plot to the bottom-left shows the total number of examples that

were processed over that time—without a grace period 30 million examples

in ten hours were possible, with a grace period approximately 25 times more

examples were processed in the same time period. Viewing accuracy per time

spent in the bottom-right plot makes the advantage of using a grace period

clear.

3.2. THE BASIC ALGORITHM 51

3.2.4 Pre-pruning

It may turn out more beneficial to not split a node at all. The Hoeffding tree

algorithm detects this case by also considering the merit of no split, represented

by the null attribute X∅. A node is only allowed to split when an attribute looks

sufficiently better than X∅, by the same Hoeffding bound test that determines

differences between other attributes. This will suspend further growth below

a leaf, until such time that another attribute looks better than the null one.

Pre-pruning in the stream setting is not a permanent decision as it is in

batch learning. Nodes are prevented from splitting until it appears that a

split will be useful, so in this sense, the memory management strategy of

disabling nodes (Section 3.3) can also be viewed as a form of pre-pruning.

Conventional knowledge about decision tree pruning is that pre-pruning can

often be premature and is not as commonly used as post-pruning approaches.

A reason for premature pre-pruning is lack of data, which is not a problem

in abundant data streams. Another danger of pre-pruning is that helpful

attribute interactions will be overlooked, since the trees do not look beyond

the immediate decision.

All of the Hoeffding tree implementations used in experiments for this thesis

had pre-pruning enabled, as suggested by Domingos and Hulten [32]. After

the main experimentation was complete, further experiments were conducted

with pre-pruning disabled. These experiments showed no noticeable difference

in size, speed or accuracy of trees. This raises questions about the value of

pre-pruning—it does not appear to be harmful and has theoretical merit, but

in practice may not provide much benefit. This question remains open and is

not further explored by this thesis.

In the batch learning setting it is very easy to induce a tree that perfectly

fits the training data but does not generalize to new data. This problem is

typically overcome by post-pruning the tree. On non-concept drifting data

streams such as those described here, it is not as critical to prevent overfitting

via post-pruning as it is in the batch setting. If concept drift were present, ac-

tive and adaptive post-pruning could be used to adjust for changes in concept,

a topic outside the scope of this thesis.

3.2.5 Tie-breaking

A situation can arise where two or more competing attributes cannot be sep-

arated. A pathological case of this would be if there were two attributes with

52 CHAPTER 3. HOEFFDING TREES

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 100 200 300 400 500 600 700

tre
e

siz
e

(to
ta

l n
od

es
)

training instances processed (millions)

with tie-breaking
without tie-breaking

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 100 200 300 400 500 600 700

ac
cu

ra
cy

 o
n

te
st

 s
et

 (%
)

training instances processed (millions)

with tie-breaking
without tie-breaking

Figure 3.3: Effect of tie-breaking on the rrbfc data with a 32MB memory
limit.

identical values. No matter how small the Hoeffding bound it would not be

able to separate them, and tree growth would stall.

If competing attributes are equally good, and are superior to some of the

other split options, then waiting too long to decide between them can do more

harm than good to the accuracy of the tree. It should not make a difference

which of the equal competitors is chosen. To alleviate this situation, Domingos

and Hulten introduce a tie breaking parameter, τ . If the Hoeffding bound is

sufficiently small, that is, less than τ , then the node is split on the current best

attribute regardless of how close the next best option is.

The effect of this parameter can be viewed in a different way. Knowing the

other variables used in the calculation of the Hoeffding bound, it is possible

to compute an upper limit on the number of examples seen by a leaf before

tie-breaking intervenes, forcing a split on the best observed attribute at that

point. The only thing that can prevent tie-breaking is if the best option turns

out to be not splitting at all, hence pre-pruning comes into effect.

τ is set to the literature default of 0.05 for the experiments. With this

setting on a two-class problem, ties will be broken after 3,224 examples are

observed. With nmin being set to 200, this will actually be delayed until 3,400

examples.

Tie-breaking can have a very significant effect on the accuracy of trees

produced. An example is given in Figure 3.3, where without tie-breaking the

tree grows much slower, ending up around five times smaller after 700 million

training examples and taking much longer to come close to the same level of

accuracy as the tie-breaking variant.

3.2. THE BASIC ALGORITHM 53

 94

 94.5

 95

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 99

 0 100 200 300 400 500 600 700

ac
cu

ra
cy

 o
n

te
st

 s
et

 (%
)

training instances processed (millions)

with skewed split checks
without skewed split checks

Figure 3.4: Effect of preventing skewed splits on the rrbfc data with a 32MB
memory limit.

3.2.6 Skewed Split Prevention

There is another element present in the Hoeffding tree experimental implemen-

tation that is not mentioned in the pseudo-code. It is a small enhancement

to split decisions that was first introduced by Gama et al. [52] and originally

formulated for two-way numeric splits. In this thesis the concept has been

generalized to apply to any split including splits with multiple branches.

The rule is that a split is only allowed if there are at least two branches

where more than pmin of the total proportion of examples are estimated to

follow the branch. The pmin threshold is an arbitrary parameter that can be

adjusted, where a default value of 1% seems to work well enough. This prevents

a highly skewed split from being chosen, where less than 1% of examples go

down one path and over 99% of examples go down another. Such a split can

potentially look attractive from an information gain perspective if it increases

the purity of the subsets, but from a tree growth perspective is rather spurious.

In many cases this rule has no effect on tree classification accuracy, but

Figure 3.4 shows it can have a positive effect in some cases.

54 CHAPTER 3. HOEFFDING TREES

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250 300 350 400
 0

 20

 40

 60

 80

 100

 120

 140

nu
m

be
r o

f a
ct

ive
 le

av
es

m
em

or
y

siz
e

(m
eg

ab
yt

es
)

training instances processed (millions)

active leaves in tree
actual size in memory

Figure 3.5: The size of an unbounded tree in memory is closely related to
how many active leaves it has. This growth pattern occurs when learning a
Hoeffding tree on the led data.

3.3 Memory Management

The basic algorithm as described will continue to split the tree as needed,

without regard for the ever-increasing memory requirements. This thesis ar-

gues that a core requirement of data stream algorithms is the ability to limit

memory usage. To limit Hoeffding tree memory size, there must be a strategy

that limits the total number of nodes in the tree. The node-limiting strategy

used follows the same principles that Domingos and Hulten introduced for the

VFDT system.

When looking at the memory requirements of a Hoeffding tree, the dom-

inant cost is the storage of sufficient statistics in the leaves. Figure 3.5 is an

example of how closely, in unbounded memory, the number of leaves in a tree

can reflect its actual memory requirements. Section 3.4.1 describes in more de-

tail how this relationship is exploited to efficiently estimate the actual memory

size of the tree based on node counts.

The main idea behind the memory management strategy is that when faced

with limited memory, some of the leaves can be deactivated, such that their

sufficient statistics are discarded. Deciding which leaves to deactivate is based

on a notion of how promising they look in terms of yielding accuracy gains for

3.3. MEMORY MANAGEMENT 55

the tree.

In VFDT, the least promising nodes are defined to be the ones with the

lowest values of plel, where pl is the probability that examples will reach a

particular leaf l, and el is the observed rate of error at l. Intuitively this makes

sense, the leaves considered most promising for further splitting are those that

see a high number of examples and also make a high number of mistakes. Such

leaves will be the largest contributors to error in classification, so concentrating

effort on splitting these nodes should see the largest reduction in error.

The implementation created for this thesis measures the ‘promise’ of leaves

in an equivalent and straightforward way. Every leaf in the tree is capable

of returning the full count of examples it has observed for each class since

creation. The promise of a node is defined as the total remaining number of

examples that have been seen to fall outside the currently observed majority

class. Like VFDT’s plel measure, this estimates the potential that a node has

for misclassifying examples. If n is the number of examples seen in a leaf, and

E is the number of mistakes made by the leaf, and N is the total number

of examples seen by the tree, then plel = n/N × E/n = E/N . Promise is

measured using E, which is equivalent to using E/N , as N is constant for all

leaves.

To make memory management operate without introducing excessive run-

time overhead, the size is estimated approximately whenever new nodes are

introduced to the tree using the method described in Section 3.4.1. Periodi-

cally, a full and precise memory check is performed. This is done after every

mem-period training examples are processed, where mem-period is a user de-

fined constant. The periodic memory check calculates the actual memory

consumption of the tree, a potentially costly process.

After checking memory usage, if there happen to be inactive nodes or if

the maximum memory limit has been exceeded then a scan of the leaves is

performed. The leaves are ordered from least promising to most promising,

and a calculation is made based on the current sizes of the nodes to deter-

mine the maximum number of active nodes that can be supported. Once this

threshold has been established, any active leaves found below the threshold

are deactivated, and any inactive leaves above the threshold are reactivated.

This process ensures that the tree actively and dynamically adjusts its focus

on growing the most promising leaves first, while also keeping within specified

memory bounds.

Figure 3.6 illustrates the process. The top part of the illustration shows

56 CHAPTER 3. HOEFFDING TREES

Figure 3.6: The memory management strategy employed after leaves of a tree
have been sorted in order of promise. Dots represent active leaves which store
sufficient statistics of various size, crosses represent inactive leaves which do
not store sufficient statistics.

twenty leaf nodes from a hypothetical Hoeffding tree ordered from least to most

promising. The size of active nodes in memory can differ due to the method

used to track numeric attributes (Chapter 4) and when the sufficient statistics

of poor attributes have been removed (Section 3.3.1). The sizes of the dots

indicate the sizes of the active nodes, and inactive nodes are represented by

crosses. Based on the average size of the active nodes and the total memory

allowed, the threshold is determined in this case to allow a maximum of six

active nodes. The bottom row shows the outcome after memory management

is complete—below the threshold, the least promising nodes have all been

deactivated, and above the threshold nodes 15 and 18 have been activated to

make all of the most promising ones active.

For methods where the relative size between internal nodes, active leaves

and inactive leaves is relatively constant this method is very effective at keeping

the tree within a memory bound. For some methods where summary statistics

in leaves can grow rapidly and vary substantially in size, such as the exhaustive

binary tree numeric handling method (bintree) described in Chapter 4, it is

less successful in maintaining a strict memory bound. In these cases, the tree’s

memory usage has a chance to creep beyond the limit in the period between

memory checks, but will be brought back to the memory limit as soon as the

next check is performed. Figure 3.7 demonstrates a case of memory ‘creep’ that

occurred in the experiments—the target memory limit is 32 megabytes, and

for efficiency the memory usage is only precisely measured every one hundred

thousand examples, that is, mem-period = 100,000. In this case, the memory

3.3. MEMORY MANAGEMENT 57

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36

 0 100 200 300 400 500 600 700

ac
tu

al
 tr

ee
 s

ize
 in

 m
em

or
y

(m
eg

ab
yt

es
)

training instances processed (millions)

BINTREE algorithm
HTNBA algorithm

Figure 3.7: How closely two algorithms manage to obey a memory limit of 32
megabytes on the led data.

used by bintree temporarily exceeds the memory bounds by as much as three

megabytes or roughly 9%, but all the while fluctuating close to and more often

further below the desired bound. The figure compares this with the memory

requirements of the htnba variant on the same data, a much more stable

method described in Chapter 5. The majority of the Hoeffding tree variants

tested in the experiments exhibit stable memory behaviour, so most cases look

like this, where the memory plot over time hits the target precisely before

completely flattening out.

While the dominant storage cost is incurred for active nodes, limiting their

number will eventually cause the size of internal nodes and inactive leaves to

become significant. A point will be reached where no further growth of the

tree can occur without the memory limit being exceeded. Once this stage is

reached, all leaves of the tree will be made inactive, and the tree will no longer

be able to grow.

One element of memory usage that has not yet been accounted for is the

temporary working space needed to perform operations on the tree. Imple-

mented in a modern computer language, update and prediction operations

will make several function calls, and will store values and pointers in local

memory, typically using some space on a working stack. This cost, which will

58 CHAPTER 3. HOEFFDING TREES

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700

nu
m

be
r o

f a
ct

ive
 le

av
es

training instances processed (millions)

keep all attributes
remove poor attributes

 95

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 99

 0 100 200 300 400 500 600 700

ac
cu

ra
cy

 o
n

te
st

 s
et

 (%
)

training instances processed (millions)

keep all attributes
remove poor attributes

Figure 3.8: Effect of poor attribute removal on rrbfc data with a 32MB limit.

partly depend on implementation details, is assumed to be small and bounded

such that it is insignificant compared to storage of the tree itself.

3.3.1 Poor Attribute Removal

An additional strategy for saving space was also suggested by Domingos and

Hulten [32]. This strategy aims to reduce the size of the sufficient statistics in

each leaf. The idea is to discard sufficient statistics for individual attributes

when it looks very unlikely that they will be selected. When new leaves are

formed, all attributes are considered as candidates for splitting. During every

evaluation round that does not result in a decision to split, attributes are

determined to be poor if their information gain is less than the gain of the

current best attribute by more than the Hoeffding bound. According to the

bound, such attributes are unlikely to be selected in that particular node of

the tree, so the information tracking them in the leaf is discarded and they are

ignored in split decisions from that point onward.

This strategy is not as powerful as full node deactivation, the best it can

do is help to reduce the average size of leaf nodes. Theoretically this should

benefit the accuracy of trees, because it will allow more leaves to remain active

in limited memory. In practice the gains appear to be slight, as demonstrated

in Figure 3.8, where on rrbfc the plot to the left shows a significant increase

in the number of leaves allowed to remain active in a 32MB limit, while the

plot to the right shows that this only translates to a small gain in accuracy.

In this case the accuracy is measured when the tree makes predictions using

standard majority class prediction. Removing poor attributes will affect the

enhanced prediction methods described in Chapter 5, where this is discussed

further.

3.4. JAVA IMPLEMENTATION DETAILS 59

3.4 Java Implementation Details

The data stream evaluation framework and all algorithms evaluated in this the-

sis were implemented in the Java programming language. The framework is

named MOA, an acronym for Massive Online Analysis, and has evolved during

the course of developing this thesis. MOA is related to WEKA1, the Waikato

Environment for Knowledge Analysis [124], which is an award-winning2 open-

source workbench containing implementations of a wide range of batch ma-

chine learning methods. WEKA is also written in Java. The main benefits

of Java are portability, where applications can be run on any platform with

an appropriate Java virtual machine, and the strong and well-developed sup-

port libraries. Use of the language is widespread, and features such as the

automatic garbage collection help to reduce programmer burden and error.

One of the key data structures used in MOA is the description of an example

from a data stream. This structure borrows from WEKA, where an example is

represented by an array of double precision floating point values. This provides

freedom to store all necessary type of values—numeric attribute values can be

stored directly, and discrete attribute values and class labels are represented

by integer index values that are stored as floating point values in the array.

Double precision floating point values require storage space of 64 bits, or 8

bytes. This detail can have implications for memory utilization.

A challenge in developing the system has been measuring the total sizes of

objects in memory. Java deliberately hides details about how memory is allo-

cated. This frees programmers from the burden of maintaining direct memory

pointers that is otherwise typical in C programming, reducing dependence on

a particular platform and eliminating a common source of error. The downside

is that it makes the task of precisely measuring and limiting the memory usage

of algorithms more difficult.

Early attempts at memory measurement revolved around exploiting Java’s

automatic serialization mechanism. It is easy to make all objects capable of

being serialized, which means that they can be written out as a flat stream

of bytes to be reconstructed later. The idea was to measure the size of the

serialized stream of an object, which must be related to its true size in memory.

The measuring process can be performed with minimum overhead by writing

1The moa and the weka are both birds native to New Zealand. The weka is a cheeky bird
of similar size to a chicken. The moa was a large ostrich-like bird, an order of magnitude
larger than a weka, that was hunted to extinction for its meat.

2Recipient of the 2005 SIGKDD Data Mining and Knowledge Discovery Service Award.

60 CHAPTER 3. HOEFFDING TREES

the object to a dummy stream that allocates no memory but instead simply

counts the total number of bytes requested during write operations. It turns

out that this method, while suitable for approximate relative measurement

of object size, was not precise enough to achieve the level of control needed

to confidently evaluate the algorithms. Often the true size of objects would

be underestimated, so that even if the Java virtual machine was allocated a

generous amount of memory it could still run into problems, strongly indicating

that the serialized size estimates were inadequate.

Fortunately the release of Java 5 introduced a new mechanism allowing

access to more accurate memory allocation measurements that are implemen-

tation specific. The instrumentation interface is harder to access as it requires

extra work to be done by invoking the virtual machine with an agent, but

once correctly set up can be queried for the size of a single object in memory.

The size returned does not account for other sub-objects that are referenced,

so it will not immediately return the total size of a complex data structure in

memory, but this can be achieved by implementing additional code that uses

reflection to traverse an entire data structure and compute the total size.

The Java code listing in Figure 3.9 tests the two size measuring methods.

Five simple Java classes possessing an increasing number of fields are mea-

sured, along with the size of those objects when replicated 100 times in an

array. Figure 3.10 displays the result of running the test in the same software

environment as all of the experimental results reported in this thesis. The

results show that the serialization method has a tendency to over-estimate the

size of single small objects in memory, which would be expected due to the

overhead that must be required to completely describe a serialized stream. In-

terestingly though, serialization also has a tendency to underestimate the size

of a collection of objects, where for example the size of the classA array is es-

timated to be almost half of the instrumentation size. This behaviour explains

the problems encountered when trying to rely on serialization measurements

for experiments. The problem lies in hidden implementation details that make

the serialization mechanism store information more efficiently than the virtual

machine. The instrumentation measurements expose other effects that could

not otherwise be predicted. There appears to be some form of byte padding ef-

fect present, where an object with a single integer field (4 bytes worth) requires

the same space as one with two fields (16 bytes in both cases). The reason for

this will be a technical decision on behalf of the virtual machine implementa-

tion, perhaps a byte alignment issue for the sake of efficiency. Whatever the

3.4. JAVA IMPLEMENTATION DETAILS 61

...
public static class ClassA implements Serializable {

public int fieldA;
}
public static class ClassB implements Serializable {

public int fieldA, fieldB;
}
public static class ClassC implements Serializable {

public int fieldA, fieldB, fieldC;
}
public static class ClassD implements Serializable {

public int fieldA, fieldB, fieldC, fieldD;
}
public static class ClassE implements Serializable {

public int fieldA, fieldB, fieldC, fieldD, fieldE;
}
public static void main(String[] args) throws Exception {

ClassA classAobject = new ClassA();
ClassB classBobject = new ClassB();
ClassC classCobject = new ClassC();
ClassD classDobject = new ClassD();
ClassE classEobject = new ClassE();
ClassA[] classAarray = new ClassA[100];
ClassB[] classBarray = new ClassB[100];
ClassC[] classCarray = new ClassC[100];
ClassD[] classDarray = new ClassD[100];
ClassE[] classEarray = new ClassE[100];
for (int i = 0; i < 100; i++) {

classAarray[i] = new ClassA();
classBarray[i] = new ClassB();
classCarray[i] = new ClassC();
classDarray[i] = new ClassD();
classEarray[i] = new ClassE();

}
System.out.println("classAobject serialized size = "

+ serializedByteSize(classAobject)
+ " instrument size = "
+ instrumentByteSize(classAobject));

...

Figure 3.9: Java code testing two methods for measuring object sizes in mem-
ory.

62 CHAPTER 3. HOEFFDING TREES

classAobject serialized size = 72 instrument size = 16
classBobject serialized size = 85 instrument size = 16
classCobject serialized size = 98 instrument size = 24
classDobject serialized size = 111 instrument size = 24
classEobject serialized size = 124 instrument size = 32
classAarray serialized size = 1124 instrument size = 2016
classBarray serialized size = 1533 instrument size = 2016
classCarray serialized size = 1942 instrument size = 2816
classDarray serialized size = 2351 instrument size = 2816
classEarray serialized size = 2760 instrument size = 3616

Figure 3.10: Output from running the code in Figure 3.9.

reason, this discovery serves to highlight the value of an accurate measurement

mechanism, enabling the ability to account for such nuances that could not be

anticipated otherwise.

3.4.1 Fast Size Estimates

For the Java implementation, the number of active and inactive nodes in a

Hoeffding tree are used to estimate the total true size of the tree in memory.

The node counts of a growing tree are easily maintained—whenever a new node

is added an appropriate counter can be incremented, and when activating or

deactivating leaves the counters are appropriately adjusted.

The size estimation procedure requires that actual measurements be per-

formed every so often to establish and refine the parameters used for future

estimation. The actual byte size in memory is measured (trueSize), along with

the average byte size of individual active nodes (activeSize) and inactive nodes

(inactiveSize). From this an extra parameter is calculated:

overhead =
trueSize

active× activeSize + inactive× inactiveSize
(3.3)

To increase the precision of the estimate the number of internal nodes

in the tree, of similar size to inactive nodes, could also be included in the

calculation. The implementation did not do this however, as the procedure

described worked sufficiently well.

The estimated overhead is designed to account for the internal nodes of

the tree, small inaccuracies in the node estimation procedure and any other

structure associated with the tree that has otherwise not been accounted for,

3.5. SUMMARY 63

bringing the final estimate closer to the true value. Once these values are

established, the actual byte size of the tree can be quickly estimated based

solely on the number of active and inactive nodes in the tree:

size = (active× activeSize + inactive× inactiveSize)× overhead (3.4)

This calculation can be quickly performed whenever the number of inac-

tive or active leaves changes, sparing the need to do a complete rescan and

measurement of the tree after every change.

3.5 Summary

Representing one of the current best techniques for learning to classify ex-

amples in data streams, the basic algorithm for inducing decision trees from

data streams via Hoeffding bounds has been described, and various parameter

settings discussed. The challenge of memory management has been described,

and some issues with the actual implementation in Java examined. Two im-

portant aspects of Hoeffding trees have not been covered, as they are studied

in the following chapters. Creating decisions based on continuous numeric at-

tributes is studied in Chapter 4. How the tree forms predictions is studied in

Chapter 5.

64 CHAPTER 3. HOEFFDING TREES

Chapter 4

Numeric Attributes

The ability to learn from numeric attributes is very useful because many at-

tributes needed to describe real-world problems are most naturally expressed

by continuous numeric values. The decision tree learners C4.5 and CART

successfully handle numeric attributes. Doing so is straightforward, because

in the batch setting every numeric value is present in memory and available

for inspection. A learner that is unable to deal with numeric attributes cre-

ates more burden for users. The data must first be pre-processed so that all

numeric attributes are transformed into discrete attributes, a process referred

to as discretization. Traditionally discretization requires an initial pass of the

data prior to learning, which is undesirable for data streams.

The original Hoeffding tree algorithm demonstrated only how discrete at-

tribute values could be handled. Domingos and Hulten [32] claim that the

extension to numeric attributes:

...is immediate, following the usual method of allowing tests of the

form “(Xi < xij)?” and computing G for each allowed threshold

xij.

While this statement is true, the practical implications warrant serious

investigation. The storage of sufficient statistics needed to exactly determine

every potential numeric threshold, and the result of splitting on each threshold,

grows linearly with the number of unique numeric values. A high speed data

stream potentially has an infinite number of numeric values, and it is possible

that every value in the stream is unique. Essentially this means that the

storage required to precisely track numeric attributes is unbounded and can

grow rapidly.

65

66 CHAPTER 4. NUMERIC ATTRIBUTES

For a Hoeffding tree learner to handle numeric attributes, it must track

them in every leaf it intends to split. An effective memory management strat-

egy will deactivate some leaves in favour of more promising ones when facing

memory shortages, such as discussed in Section 3.3. This may reduce the

impact of leaves with heavy storage requirements but may also significantly

hinder growth. Instead it could be more beneficial to save space via some form

of approximation of numeric distributions.

Section 4.1 looks at common methods used in batch learning. Several

approaches for handling numeric attributes during Hoeffding tree induction

have been suggested before, and are discussed in Section 4.2. Prior to this

study the methods have not been compared, so Section 4.3 explores the tradeoff

of accuracy versus size by empirical comparison.

4.1 Batch Setting Approaches

Strategies for handling continuous attribute values have been extensively stud-

ied in the batch setting. Some algorithms, for example support vector ma-

chines [22], naturally take continuous values as input due to the way they op-

erate. Other algorithms are more naturally suited to discrete inputs, but have

common techniques for accepting continuous values, Naive Bayes and C4.5 for

example. It is useful in the batch setting to separate the numeric attribute

problem entirely from the learning algorithm—a discretization algorithm can

transform all inputs in the data to discrete values as a pre-processing step that

is independent from the learning algorithm. This way, any learning algorithm

that accepts discrete attributes can process data that originally contained con-

tinuous numeric attributes, by learning from a transformed version of the data.

In fact, it has been claimed that in some cases, algorithms with built-in numeric

handling abilities can improve when learning from pre-discretized data [34].

Methods for discretizing data in the batch setting are surveyed by Dougherty

et al. [34]. They introduce three axes to categorize the various methods: global

vs local, supervised vs unsupervised and static vs dynamic.

Methods that are global work over an entire set of examples, as opposed

to local methods that work on smaller subsets of examples at a time. C4.5

is categorized as a local method, due to the example space being divided into

smaller regions with every split of the tree, and discretization performed on

increasingly smaller sets. Some methods can be either global or local depending

on how they are applied, for example Dougherty et al. [34] categorize the k-

4.1. BATCH SETTING APPROACHES 67

Table 4.1: Summary of batch discretization methods, categorized in four axes.
global/ supervised/ static/ parametric/

method local unsupervised dynamic non-parametric
equal width global unsupervised static parametric
equal frequency global unsupervised static parametric
k-means clustering either unsupervised either parametric
Fayyad & Irani either supervised static non-parametric
C4.5 local supervised static non-parametric

means clustering method as local, while Gama and Pinto [51] say it is global.

Discretization that is supervised is influenced by the class labels of the

examples, whereas unsupervised discretization is not. Methods that are super-

vised can exploit class information to improve the effectiveness of discretization

for classification algorithms.

Dougherty et al. also believe that the distinction between static and

dynamic methods is important (otherwise known as uni-variate and multi-

variate), although they do not consider dynamic methods in their survey,

which are much less common than static ones. A static discretization treats

each attribute independently. A dynamic discretization considers dependen-

cies between attributes, for example a method that optimizes a parameter by

searching for the best setting over all attributes simultaneously.

Gama and Pinto [51] add a fourth useful distinction: parametric vs non-

parametric. Methods considered parametric require extra parameters from the

user to operate, and non-parametric methods use the data alone.

The following subsections detail several well-known approaches to batch

discretization. Table 4.1 summarizes the properties of each. All methods

are static, apart from k-means clustering which is also capable of dynamic

discretization.

4.1.1 Equal Width

This global unsupervised parametric method divides the continuous numeric

range into k bins of equal width. There is no overlap between bins, so that

any given value will lie in exactly one bin. Once the boundaries of the bins

are determined, which is possible knowing only the minimum and maximum

values, a single scan of the data can count the frequency of observations for

each bin. This is perhaps the simplest method of approximating a distribu-

tion of numeric values, but is highly susceptible to problems caused by skewed

68 CHAPTER 4. NUMERIC ATTRIBUTES

distributions and outliers. A single outlier has potential to influence the ap-

proximation, as an extreme value can force a distribution that is otherwise

reasonably approximated into representation with many values in a single bin,

where most of the remaining bins are empty.

4.1.2 Equal Frequency

This method is similar to equal width, it is also a global unsupervised parametric

method that divides the range of values into k bins. The difference is that the

bin boundaries are positioned so that the frequency of values in each bin is

equal. With n values, the count in each bin should be n/k, or as close to

this as possible if duplicate values and uneven divisions cause complications.

Computing the placement of bins is more costly than the equal width method

because a straightforward algorithm needs the values to be sorted first.

4.1.3 k-means Clustering

This method is unsupervised, parametric, and can be either local or global. It

is based on the well-known k-means clustering algorithm [64]. The clustering

algorithm can work on multi-dimensional data and aims to minimize the dis-

tance within clusters while maximizing the distance between clusters. With

an arbitrary starting point of k centers, the algorithm proceeds iteratively by

assigning each point to its nearest center based on Euclidean distance, then re-

computing the central points of each cluster. This continues until convergence,

where every cluster assignment has stabilized. When used for static discretiza-

tion the clustering will be performed on a single attribute at a time. Dynamic

discretization is possible by clustering several attributes simultaneously.

4.1.4 Fayyad and Irani

This method [37] is quite different from those described above as it is supervised

and non-parametric. The algorithm is categorized [34] as capable of both global

and local operation. The values of an attribute are first sorted, then a cut-

point between every adjacent pair of values is evaluated, with n values and

no repeated values this involves n − 1 evaluations. The counts of class labels

to either side of each split candidate determine the information gain in the

same way that attributes are chosen during tree induction (Section 3.1). The

information gain has been found to be a good heuristic for dividing values

4.1. BATCH SETTING APPROACHES 69

while taking class labels into consideration. The cut-point with the highest

gain is used to divide the range into two sets, and the procedure continues by

recursively cutting both sets. Fayyad and Irani show [37] that this procedure

will never choose a cut-point between consecutive examples of the same class,

leading to an optimization of the algorithm that avoids evaluation of such

points.

A stopping criterion is necessary to avoid dividing the range too finely,

failure to terminate the algorithm could potentially continue division until

there is a unique interval per value. If an interval is pure, that is, has values all

of the same class, then there is no reason to continue splitting. If an interval

has a mixture of labels, Fayyad and Irani apply the principle of minimum

description length (MDL) [106] to estimate when dividing the numeric range

ceases to provide any benefit.

4.1.5 C4.5

The procedure for discretizing numeric values in Quinlan’s C4.5 [104] decision

tree learner is local, supervised and non-parametric. It essentially uses the same

procedure described in Fayyad and Irani’s method, only it is not recursively

applied in the same manner. For the purposes of inducing a decision tree,

a single two-way split is chosen and evaluated for every numeric attribute.

The cut-points are decided locally on the respective subset of every node, in

the same way as described above—scanning through the values in order and

calculating the information gain of candidate cut-points to determine the point

with the highest gain. The difference is that the scan is carried out only once

per numeric attribute to find a single split into two subsets, and no further

recursion is performed on those subsets at that point. The recursive nature of

decision tree induction means however that numeric ranges can be cut again

further down the tree, but it all depends on which attributes are selected during

tree growth. Splits on different attributes will affect the subsets of examples

that are subsequently evaluated.

Responding to results in [34] showing that global pre-discretization of data

using Fayyad and Irani’s method could produce better C4.5 trees than using

C4.5’s local method, Quinlan improved the method in C4.5 release 8 [105] by

removing some bias in the way that numeric cut-points were chosen.

70 CHAPTER 4. NUMERIC ATTRIBUTES

4.2 Data Stream Approaches

The first thing to consider are ways in which the batch methods from the

previous section could be applied to the data stream setting.

The equal width method is simple to perform in a single pass and limited

memory provided that the range of values is known in advance. This require-

ment could easily violate the requirements of a data stream scenario because

unless domain knowledge is provided by the user the only way to determine

the true range is to do an initial pass of the data, turning the solution into a

two-pass operation. This thesis only considers solutions that work in a single

pass. Conceivably an adaptive single-pass version of the algorithm could be

used, such as described by Gama and Pinto [51], where any values outside of

the known range would trigger a reorganization of the bins. However, even if

a single-pass solution were available, it would still be prone to the problem of

outliers.

Equal frequency appears more difficult to apply to data streams than equal

width because the most straightforward implementation requires the data to

be sorted. The field of database optimization has studied methods for con-

structing equal frequency intervals, or equivalently equi-depth histograms or

computation of quantiles, from a single pass. The literature related to this is

surveyed in Section 4.2.3.

A method similar to k-means discretization for data streams would require

a clustering algorithm that is capable of working on a stream. Data stream

clustering is outside the scope of this thesis, but the problem has been worked

on by several researchers such as Guha et al. [59, 58].

Fayyad and Irani’s discretization algorithm and the similar method built

into C4.5 require the data to be sorted in order to search for the best cut-point.

A rare example of a discretization method specifically intended to operate

on data streams for machine learning purposes is presented by Gama and

Pinto [51]. It works by maintaining two layers—the first layer simplifies the

data with an equal width summary that is incrementally updated and the

second layer builds the final histogram, either equal width or equal frequency,

and is only updated as needed.

Methods that are global are applied as a separate pre-processing step before

learning begins, while local methods are integrated into a learning algorithm,

where discretization happens during learning as needed. Since only single-pass

solutions to learning are considered, straightforward implementation of global

4.2. DATA STREAM APPROACHES 71

discretization is not viable, as this would require an initial pass to discretize

the data, to be followed by a second pass for learning. Unfortunately this

discounts direct application of all global solutions looked at thus far, leaving

few options apart from C4.5. The attractive flexibility afforded in the batch

setting by separating discretization as a pre-processing step does not transfer

to the demands of the data stream setting.

For Hoeffding tree induction the discretization can be integrated with learn-

ing by performing local discretization on the subsets of data found at active

leaves, those in search of splits. The number of examples that contribute to

growth decisions at any one time are limited, depending on the total number

of active leaves in the tree. A brute-force approach stores every example in a

leaf until a split decision is made. Without memory management the number

of active leaves in the tree can grow without bound, making it impossible to

use brute force without a suitable memory management scheme.

The methods discussed in the following subsections represent various pro-

posals from the literature for handling numeric values during Hoeffding tree

induction. At a higher level they are all trying to reproduce the C4.5 discretiza-

tion method in the stream setting, so in this sense they are all supervised meth-

ods. The difference between them is that they approximate the C4.5 process in

different ways. The exhaustive binary tree approach (Section 4.2.2) represents

the brute-force approach of remembering all values, thus is a recreation of the

batch technique. Awareness of space-efficiency as a critical concern in pro-

cessing data streams has led to other methods applying a two-stage approach.

Discretization methods at the first stage are used to reduce space costs, in-

tended to capture the sorted distribution of class label frequencies. These are

then used as input for the second stage, which makes a supervised C4.5-style

two-way split decision.

In addition to the distinctions introduced earlier, a final dimension is in-

troduced to help distinguish between the methods: all-class vs per-class. The

all-class methods produce a single approximation of the distribution of exam-

ples, such as a single set of boundaries, recording the frequency of all classes

over one approximation. In contrast, the per-class methods produce a differ-

ent approximation per class, so for example each class is represented by an

independent set of boundaries. The per-class methods are supervised in the

sense that the class labels influence the amount of attention given to certain

details—by allocating the same amount of space to the approximation of each

class the per-class methods studied here enforce equal attention to each class.

72 CHAPTER 4. NUMERIC ATTRIBUTES

Table 4.2: Summary of stream discretization methods. All methods are local,
static, and involve two stages, the second of which is supervised.

per-class all-class
parametric quantile summaries VFML

Gaussian approx. (2nd stage)
non-parametric Gaussian approx. (1st stage) exhaustive binary tree

The discretization methods for Hoeffding trees are discussed next, with

properties summarized in Table 4.2.

4.2.1 VFML Implementation

Although Domingos and Hulten have not published any literature describing

a method for handling numeric attributes, they have released working source

code in the form of their VFML package [72]. VFML is written in C and

includes an implementation of VFDT that is capable of learning from streams

with numeric attributes.

This method is all-class and parametric, although the original implementa-

tion hides the single parameter. Numeric attribute values are summarized by a

set of ordered bins, creating a histogram. The range of values covered by each

bin is fixed at creation and does not change as more examples are seen. The

hidden parameter is a limit on the total number of bins allowed—in the VFML

implementation this is hard-coded to allow a maximum of one thousand bins.

Initially, for every new unique numeric value seen, a new bin is created. Once

the fixed number of bins have been allocated, each subsequent value in the

stream updates the counter of the nearest bin.

There are two potential issues with the approach. The first is that the

method is sensitive to data order. If the first one thousand examples seen in

a stream happen to be skewed to one side of the total range of values, then

the final summary will be incapable of accurately representing the full range

of values.

The other issue is estimating the optimal number of bins. Too few bins

will mean the summary is small but inaccurate, and many bins will increase

accuracy at the cost of space. In the experimental comparison the maximum

number of bins is varied to test this effect.

4.2. DATA STREAM APPROACHES 73

4.2.2 Exhaustive Binary Tree

This method represents the case of achieving perfect accuracy at the necessary

expense of storage space. It is non-parametric and all-class. The decisions

made are the same that a batch method would make, because essentially it is

a batch method—no information is discarded other than the observed order of

values.

Gama et al. present this method in their VFDTc system [52]. It works by

incrementally constructing a binary tree structure as values are observed. The

path a value follows down the tree depends on whether it is less than, equal

to or greater than the value at a particular node in the tree. The values are

implicitly sorted as the tree is constructed.

This structure saves space over remembering every value observed at a leaf

when a value that has already been recorded reappears in the stream. In

most cases a new node will be introduced to the tree. If a value is repeated

the counter in the binary tree node responsible for tracking that value can be

incremented. Even then, the overhead of the tree structure will mean that

space can only be saved if there are many repeated values. If the number of

unique values were limited, as is the case in some data sets, then the storage

requirements will be less intensive. In all of the synthetic data sets used for this

study the numeric values are generated randomly across a continuous range,

so the chance of repeated values is almost zero.

The primary function of the tree structure is to save time. It lowers the

computational cost of remembering every value seen, but does little to re-

duce the space complexity. The computational considerations are important,

because a slow learner can be even less desirable than one that consumes a

large amount of memory. The impact of the space cost is measured in the

experimental comparison (Section 4.3).

Beside memory cost, this method has other potential issues. Because every

value is remembered, every possible threshold is also tested when the informa-

tion gain of split points is evaluated. This makes the evaluation process more

costly than more approximate methods.

This method is also prone to data order issues. The layout of the tree is

established as the values arrive, such that the value at the root of the tree will

be the first value seen. There is no attempt to balance the tree, so data order is

able to affect the efficiency of the tree. In the worst case, an ordered sequence

of values will cause the binary tree algorithm to construct a list, which will

74 CHAPTER 4. NUMERIC ATTRIBUTES

lose all the computational benefits compared to a well balanced binary tree.

4.2.3 Quantile Summaries

The field of database research is also concerned with the problem of sum-

marizing the numeric distribution of a large data set in a single pass and

limited space. The ability to do so can help to optimize queries over massive

databases [110].

Researchers in the field of database research are concerned with accuracy

guarantees associated with quantile estimates, helping to improve the quality

of query optimizations. Random sampling is often considered as a solution to

this problem. Vitter [120] shows how to randomly sample from a data stream,

but the non-deterministic nature of random sampling and the lack of accuracy

guarantees motivate search for other solutions. Munro and Paterson [98] show

how an exact quantile can be deterministically computed from a single scan of

the data, but that this requires memory proportional to the number of elements

in the data. Using less memory means that quantiles must be approximated.

Early work in quantile approximation includes the P 2 algorithm proposed by

Jain and Chlamtac [76], which tracks five markers and updates them as values

are observed via piecewise fitting to a parabolic curve. The method does not

provide guarantees on the accuracy of the estimates. Agrawal and Swami [3]

propose a method that adaptively adjusts the boundaries of a histogram, but

it too fails to provide strong accuracy guarantees. More recently, the method

of Alsabti et al. [5] provides guaranteed error bounds, continued by Manku et

al. [92] who demonstrate an improved method with tighter bounds.

The quantile estimation algorithm of Manku et al. [92] was the best known

method until Greenwald and Khanna [56] proposed a quantile summary method

with even stronger accuracy guarantees, thus representing the best current

known solution. The method works by maintaining an ordered set of tuples,

each of which records a value from the input stream, along with implicit bounds

for the range of each value’s true rank. An operation for compressing the quan-

tile summary is defined, guaranteeing that the error of the summary is kept

within a desired bound. The quantile summary is said to be ε-approximate,

after seeing N elements of a sequence any quantile estimate returned will not

differ from the exact value by more than εN . The worst-case space requirement

is shown by the authors to be O(1
ε log(εN)), with empirical evidence showing

it to be even better than this in practice.

4.2. DATA STREAM APPROACHES 75

Greenwald and Khanna mention two variants of the algorithm. The adap-

tive variant is the basic form of the algorithm, that allocates more space only

as error is about to exceed the desired ε. The other form, used by this thesis,

is referred to as the pre-allocated variant, which imposes a fixed limit on the

amount of memory used. Both variants are parametric—for adaptive the pa-

rameter is ε, for pre-allocated the parameter is a tuple limit. The pre-allocated

method was chosen because it guarantees stable approximation sizes through-

out the tree, and is consistent with the majority of other methods by placing

upper bounds on the memory used per leaf.

When used to select numeric split points in Hoeffding trees, a per-class

approach is used where a separate quantile summary is maintained per class

label. When evaluating split decisions, all values stored in the tuples are tested

as potential split points. Different limits on the maximum number of tuples

per summary are examined later in Section 4.3.

4.2.4 Gaussian Approximation

This method approximates a numeric distribution on a per-class basis in small

constant space, using a Gaussian (commonly known as normal) distribution.

Such a distribution can be incrementally maintained by storing only three

numbers in memory, and is completely insensitive to data order. A Gaussian

distribution is essentially defined by its mean value, which is the center of the

distribution, and standard deviation or variance, which is the spread of the

distribution. The shape of the distribution is a classic bell-shaped curve that

is known by scientists and statisticians to be a good representation of certain

types of natural phenomena, such as the weight distribution of a population

of organisms.

Algorithm 3 describes a method for incrementally computing the mean

and variance of a stream of values. It is a method that can be derived from

standard statistics textbooks. The method only requires three numbers to

be remembered, but is susceptible to rounding errors that are a well-known

limitation of computer number representation.

A more robust method that is less prone to numerical error is given as

Algorithm 4. It also requires only three values in memory, but maintains them

in a way that is less vulnerable to rounding error. This method was derived

from the work of Welford [123], and its advantages are studied in [24]. This is

the method used in the experimental implementation.

76 CHAPTER 4. NUMERIC ATTRIBUTES

Algorithm 3 Textbook incremental Gaussian.
weightSum = 0
valueSum = 0
valueSqSum = 0
for all data points (value, weight) do

weightSum = weightSum + weight
valueSum = valueSum + value× weight
valueSqSum = valueSqSum + value× value× weight

end for

anytime output:
return mean = valuesSum

weightSum

return variance = valueSqSum−mean×valueSum
weightSum−1

Algorithm 4 Numerically robust incremental Gaussian.
weightSum = weightfirst

mean = valuefirst

varianceSum = 0
for all data points (value, weight) after first do

weightSum = weightSum + weight
lastMean = mean
mean = mean + value−lastMean

weightSum

varianceSum = varianceSum + (value− lastMean)× (value−mean)
end for

anytime output:
return mean = mean
return variance = varianceSum

weightSum−1

4.2. DATA STREAM APPROACHES 77

Figure 4.1: Gaussian approximation of 2 classes.

For each numeric attribute the numeric approximation procedure maintains

a separate Gaussian distribution per class label. A method similar to this is

described by Gama et al. in their UFFT system [50]. To handle more than

two classes, the system builds a forest of trees, one tree for each possible pair

of classes. When evaluating split points in that case, a single optimal point

is computed as derived from the crossover point of two distributions. It is

possible to extend the approach, however, to search for split points, allowing

any number of classes to be handled by a single tree. The possible values

are reduced to a set of points spread equally across the range, between the

minimum and maximum values observed. The number of evaluation points is

determined by a parameter, so the search for split points is parametric, even

though the underlying Gaussian approximations are not. For each candidate

point the weight of values to either side of the split can be approximated for

each class, using their respective Gaussian curves, and the information gain is

computed from these weights.

The process is illustrated in Figures 4.1-4.3. At the top of each figure are

Gaussian curves, each curve approximates the distribution of values seen for

a numeric attribute and labeled with a particular class. The curves can be

described using three values; the mean value, the standard deviation or vari-

ance of values, and the total weight of examples. For example, in Figure 4.1

the class shown to the left has a lower mean, higher variance and higher ex-

78 CHAPTER 4. NUMERIC ATTRIBUTES

Figure 4.2: Gaussian approximation of 3 classes.

Figure 4.3: Gaussian approximation of 4 classes.

4.2. DATA STREAM APPROACHES 79

ample weight (larger area under the curve) than the other class. Below the

curves the range of values has been divided into ten split points, labeled A to

J. The horizontal bars show the proportion of values that are estimated to lie

on either side of each split, and the vertical bar at the bottom displays the

relative amount of information gain calculated for each split. For the two-class

example (Figure 4.1), the split point that would be chosen as the best is point

E, which according to the evaluation has the highest information gain. In

the three-class example (Figure 4.2) the preferred split point is point D. In

the four-class example (Figure 4.3) the split point C is chosen which nicely

separates the first class from the others.

A refinement to this method, found to increase precision at low additional

cost in early experiments, is used in the final implementation. It involves also

tracking the minimum and maximum values of each class. This requires storing

an extra two counts per class, but precisely maintaining these values is simple

and fast. When evaluating split points the per-class minimum and maximum

information is exploited to determine when class values lie completely to one

side of a split, eliminating the small uncertainty otherwise present in the tails

of the Gaussian curves. From the per-class minimum and maximum, the min-

imum and maximum of the entire range of values can be established, which

helps to determine the position of split points to evaluate.

Intuitively it may seem that split points will only occur between the lowest

and highest class mean, but this is not true. Consider searching for a split

on the age attribute of the genF1 data stream. The function is defined on

page 38, where the first class has age values that are less than 40 and greater

than 60, and the second class has age values between 40 and 60. Obviously

either 40 or 60 are the optimal split points, but the means of both class dis-

tributions will lie somewhere between 40 and 60—the first class will have a

large variance estimate, and the second will be much narrower. This moti-

vates searching across the entire range of values for a split. Using the absolute

minimum and maximum value makes the procedure susceptible to outliers

similar to the weakness of equal width discretization. A more robust search

may instead consider each mean plus or minus several standard deviations to

determine the potential splitting range. This possibility is reserved for future

work.

Simple Gaussian approximation will almost certainly not capture the full

detail of an intricate numeric distribution, but is highly efficient in both compu-

tation and memory. Where the binary tree method uses extreme memory costs

80 CHAPTER 4. NUMERIC ATTRIBUTES

to be as accurate as possible, this method employs the opposite approach—

using gross approximation to use as little memory as possible.

This simplified view of numeric distributions is not necessarily harmful to

the accuracy of the trees it produces. There will be further opportunities to

refine split decisions on a particular attribute by splitting again further down

the tree. All methods have multiple attempts at finding values, where each

subsequent attempt will be in a more focused range of values thus based on

increasingly confident information. The more approximate Gaussian method

relies on this more than the less approximate approaches. Also, the Gaussian

approximation may prove more robust and resistant to noisy values than more

complicated methods, which concentrate on finer details.

4.2.5 Numerical Interval Pruning

Another contribution is the work of Jin and Agrawal [77] who present an ap-

proach called numerical interval pruning (NIP). The authors claim it is an

efficient method “which significantly reduces the processing time for numeri-

cal attributes, without loss in accuracy.” Unfortunately insufficient details for

reproducing the technique are provided in the paper. The numeric attribute

range is divided into equal width intervals, and the intervals are then pruned

if statistical tests determine that they are not likely to contain the best split

point. Information is maintained in three ways—small class histograms, con-

cise class histograms and detailed information (which can be in one of two

formats, depending on which is most efficient). Without access to an actual

implementation of their approach it is hard to be sure that any attempted

reproduction of the technique, based on information provided in their paper,

will be sufficiently faithful to the original. In their experimental evaluation,

they found that the NIP method had more impact on computational cost than

memory, in which they saw an average 39% reduction in runtime compared

to an exhaustive search for split points. Based on these findings, it should be

possible to relate NIP performance to that of the binary tree. Judging by the

reports, both methods are highly accurate, but in terms of memory NIP would

be more efficient than the binary tree by a small amount. The experimental

results will show that even if a method is several times more space efficient

than the exhaustive method it is still unlikely to compete with methods that

use small and constant space per node.

4.3. EXPERIMENTAL COMPARISON OF METHODS 81

4.3 Experimental Comparison of Methods

The numeric summarization methods could be evaluated several ways, for

example, the amount of error in each approximation could be directly measured

for several sample distributions, and the computational and memory costs

compared. While such a study may be interesting, it does not necessarily give

an overall impression of how the methods work inside Hoeffding tree induction.

So instead of studying small individual cases, the methods are tested to see

how well they perform in the final role of interest—how efficiently they help

to produce Hoeffding trees and how accurate the resulting trees are.

The experiment is conducted as previously set out in Chapter 2. Note that

the led data set is omitted from this analysis because it does not contain

numeric attributes. The tree induction algorithm has the following properties,

with only the method for handling numeric attributes varied:

• split confidence δ = 10−7 (Section 3.2.1)

• grace period nmin = 200 (Section 3.2.3)

• pre-pruning enabled (Section 3.2.4)

• tie-breaking τ = 0.05 (Section 3.2.5)

• skewed split prevention pmin = 0.01 (Section 3.2.6)

• memory managed with mem-period=10,000 for 100KB environment, and

mem-period=100,000 for 32MB/400MB environments (Section 3.3)

• poor attribute removal enabled (Section 3.3.1)

• majority class prediction (Section 5.1)

These are the same basic settings used by htmc in Chapter 5. The nu-

meric method employed will also affect the behaviour of Naive Bayes enhanced

predictions described in Chapter 5, which is avoided here by using majority

class prediction to compare methods.

The numeric handling methods compared are listed in Table 4.3, including

the memory limits imposed per numeric attribute per leaf, and with reference

to the text explaining each method.

Table 4.4 lists the final results averaged over all 18 data sources, sorted by

memory-limited environment. Detailed results per data source are available in

Appendix A.1. The meaning of each column in the table is elaborated below:

82 CHAPTER 4. NUMERIC ATTRIBUTES

Table 4.3: Final numeric methods compared.
name description memory limit section

vfml10 VFML binning method 10 bins 4.2.1
vfml100 VFML binning method 100 bins 4.2.1
vfml1000 VFML binning method 1000 bins 4.2.1
bintree exhaustive binary tree none 4.2.2
gk100 Greenwald-Khanna 100 tuples 4.2.3

quantile summary per class
gk1000 Greenwald-Khanna 1000 tuples 4.2.3

quantile summary per class
gauss10 Gaussian approximation 5 values 4.2.4

evaluating 10 split points per class
gauss100 Gaussian approximation 5 values 4.2.4

evaluating 100 split points per class

accuracy the percentage of examples that the tree was able to correctly pre-

dict from the one million examples reserved for testing

training examples the total number of examples that were used to train the

tree before evaluation was complete

active leaves the number of active leaves in the tree (those that are capable

of further splitting)

inactive leaves the number of leaves that have been deactivated by the mem-

ory management scheme (these are no longer capable of splitting)

total nodes the total number of nodes in the tree, including internal decision

nodes

tree depth the depth of the tree—the length of the longest path from the

root to a leaf

training speed the speed that the tree was able to train, expressed as a

percentage of the maximum speed that examples can be generated from

the data source, as measured in Section 2.6

prediction speed the speed with which the tree could make predictions on

the test data, again expressed as a percentage of maximum stream speed

The speeds achievable are quoted as percentages of the maximum speed

that the streams can be generated by the experimental software/hardware. To

4.3. EXPERIMENTAL COMPARISON OF METHODS 83

complement the tables, Figures 4.5 and 4.6 display learning curves for most

problems in the 32MB/handheld environment, which contains the most inter-

esting results of the three environments. The results for genF3 and genF10

are omitted from the figures because these graphs are the least interesting,

showing little visible separation between methods.

Reviewing the average accuracies, the four different approaches are easily

ranked from best to worst. In all three memory environments, vfml10 is the

most accurate on average over all data sources. The second most accurate

method in every environment is gauss10. The gkx methods are generally

third, and bintree is consistently the least accurate of the methods on aver-

age.

The default number of 1000 bins hard-coded in the original vfml imple-

mentation turns out to be the worst performer of the three vfml configurations

tested. The trend is that smaller approximations, in this case smaller numbers

of bins, that sacrifice accuracy for space per leaf, lead to more accurate trees

overall. Requesting more space for numeric approximation reduces the num-

bers of active tree nodes that can reside in memory, slowing tree growth in a

way that harms final tree accuracy.

The Gaussian method follows this trend, in that it is the smallest approx-

imation tested, translating into the fastest tree growth and correspondingly

accurate trees. Comparing the number of split evaluations tested, it is ap-

parent that the finer grained exploration of gauss100 can be harmful. The

gauss100 trees are on average much deeper than any of the other methods,

suggesting that splits on certain numeric attributes are being repeated more

often, because in many cases the tree depth exceeds the number of attributes

available for splitting. These additional splits are probably very small and un-

necessary refinements to previous split choices, and they may be very skewed.

The skewed split parameter (Section 3.2.6) aims to reduce spurious splitting,

but in this case the default setting is not enough to prevent poor choices. This

is a symptom of trying to divide the range too finely based on approxima-

tion by a single smooth curve. The gauss10 method uses a suitably matched

coarse division of only ten possibilities, which is far less susceptible to the same

problem.

Comparing the quantile summary methods gk100 and gk1000, having

1000 tuples is helpful in the higher memory environments but harmful in

100KB of memory. Lower numbers of tuples can severely hinder the quan-

tile summary method—a parameter setting of ten was tested but found to

84 CHAPTER 4. NUMERIC ATTRIBUTES

Table 4.4: Final results averaged over all data sources comparing eight methods
for handling numeric attributes.

method ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

100KB memory limit / sensor
vfml10 87.70 25 0 8.29 10.8 11 70 83

vfml100 79.47 41 0 3.81 4.71 7 76 85
vfml1000 76.06 1 0 0.09 0.14 3 81 88

bintree 74.45 1 0 0.07 0.11 3 76 89
gk100 82.92 29 0 4.31 5.35 9 71 84

gk1000 74.65 1 0 0.08 0.13 3 59 88
gauss10 86.16 27 0 8.96 12.2 12 69 81

gauss100 85.33 28 0 8.33 11.9 20 64 79
32MB memory limit / handheld

vfml10 91.53 901 31.8 674 1009 22 16 72
vfml100 90.97 941 5.98 480 703 24 17 73

vfml1000 90.97 952 4.28 412 604 27 17 73
bintree 90.48 835 3.67 373 541 22 15 73

gk100 89.96 962 6.88 531 777 34 17 73
gk1000 90.94 961 2.70 403 581 27 16 75

gauss10 91.35 892 94.8 683 1167 24 14 69
gauss100 90.91 853 92.6 639 1167 50 14 65

400MB memory limit / server
vfml10 91.41 293 320 80.4 591 24 4 73

vfml100 91.19 142 73.9 143 316 23 4 74
vfml1000 91.12 108 19.0 127 206 22 3 78

bintree 90.50 60 13.7 92.9 147 19 2 80
gk100 89.88 158 84.0 145 346 32 4 75

gk1000 91.03 91 17.6 122 197 21 3 79
gauss10 91.21 518 540 26.8 891 28 6 73

gauss100 90.75 538 566 38.7 998 63 6 66

4.3. EXPERIMENTAL COMPARISON OF METHODS 85

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTS - sampled every 50 million examples

GK10
GK100

GK1000

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTC - sampled every 20 million examples

GK10
GK100

GK1000

Figure 4.4: Examples of poor accuracy achieved by gk10 in 32MB.

be much worse than any other method, so is omitted from the final results.

Figure 4.4 shows some examples of how much worse the ten-tuple summary

can perform. In particular, the graph on rts shows other settings getting

very close to 100% accuracy in contrast to the ten-tuple variant achieving less

than 65%. Like gauss100, gk10 suffers from symptoms of excessively deep

trees which strongly indicates poor numeric split decisions. Larger quantile

summaries perform well but the tradeoff between space and accuracy is not as

effective as for the gaussx and vfmlx methods. The performance of gk1000

is similar to bintree in several situations, suggesting that it is highly accu-

rate, while at the same time it manages to build larger trees, suggesting that

it is more space efficient than bintree.

The poor performance of bintree shows that in limited memory situa-

tions, striving for perfect accuracy at the local level can result in lower accu-

racy globally. The problem is most pronounced in the 100KB sensor network

environment, where tree growth for every data source was halted before the

first evaluation took place, some time before one million training examples.

Similar behaviour is evident in the other two most memory-intensive methods

vfml1000 and gk1000, but bintree has the highest memory requirements

of all, thus suffers the most in tree growth and accuracy. The method is simply

too memory-hungry to support reasonable tree induction in this environment.

In the other environments it fares better, but is not as successful on average

as the more approximate methods.

Table 4.5 compares the individual final accuracies of the best two methods,

vfml10 and gauss10. Bold figures indicate a better result, in this case both

methods win 20 times each. gauss10 loses to vfml10 by a wide margin on

rtcn in 400MB, although on this data set some of the other methods are not

much better than gauss10 and some are worse still. Some of the worst losses

86 CHAPTER 4. NUMERIC ATTRIBUTES

Table 4.5: vfml10 vs gauss10 accuracy (%).
method→ vfml10 gauss10

memory limit memory limit
dataset 100KB 32MB 400MB 100KB 32MB 400MB

rts 96.49 99.99 99.98 96.95 99.99 99.99
rtsn 75.80 78.54 78.53 75.20 78.48 78.45
rtc 61.37 83.58 83.87 62.49 83.00 83.02

rtcn 53.63 64.95 66.06 53.63 62.45 61.87
rrbfs 87.69 93.13 92.43 88.56 93.27 92.93
rrbfc 87.84 98.61 97.41 91.36 98.72 98.21

wave21 80.80 84.20 83.50 81.21 84.37 84.01
wave40 80.28 84.00 83.31 81.20 84.21 83.80
genF1 95.07 95.07 95.07 95.07 95.07 95.07
genF2 93.94 94.10 94.10 78.46 94.03 94.00
genF3 97.52 97.52 97.52 97.50 97.52 97.52
genF4 94.46 94.67 94.66 93.68 94.67 94.65
genF5 92.45 92.89 92.84 71.73 92.36 92.15
genF6 89.70 93.35 93.28 91.89 93.31 93.28
genF7 96.41 96.82 96.79 96.51 96.81 96.79
genF8 99.40 99.42 99.42 99.41 99.42 99.42
genF9 95.80 96.81 96.72 96.07 96.78 96.74

genF10 99.89 99.89 99.89 99.88 99.89 99.89
average 87.70 91.53 91.41 86.16 91.35 91.21

4.3. EXPERIMENTAL COMPARISON OF METHODS 87

 99.8
 99.82
 99.84
 99.86
 99.88

 99.9
 99.92
 99.94
 99.96
 99.98

 100

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTS - sampled every 50 million examples

VFML10
VFML100

VFML1000
BINTREE

GK100
GK1000

GAUSS10
GAUSS100

 76.8
 77

 77.2
 77.4
 77.6
 77.8

 78
 78.2
 78.4
 78.6

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTSN - sampled every 20 million examples

VFML10
VFML100

VFML1000
BINTREE

GK100
GK1000

GAUSS10
GAUSS100

 60

 65

 70

 75

 80

 85

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTC - sampled every 20 million examples

 52

 54

 56

 58

 60

 62

 64

 66

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTCN - sampled every 10 million examples

 91

 91.5

 92

 92.5

 93

 93.5

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RRBFS - sampled every 50 million examples

 96

 96.5

 97

 97.5

 98

 98.5

 99

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RRBFC - sampled every 50 million examples

 82.4
 82.6
 82.8

 83
 83.2
 83.4
 83.6
 83.8

 84
 84.2
 84.4

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

WAVE21 - sampled every 50 million examples

 82.2
 82.4
 82.6
 82.8

 83
 83.2
 83.4
 83.6
 83.8

 84
 84.2
 84.4

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

WAVE40 - sampled every 50 million examples

Figure 4.5: Part 1 of learning curves for numeric methods in 32MB memory
limit.

88 CHAPTER 4. NUMERIC ATTRIBUTES

 95.03
 95.035

 95.04
 95.045

 95.05
 95.055

 95.06
 95.065

 95.07
 95.075

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF1 - sampled every 50 million examples

VFML10
VFML100

VFML1000
BINTREE

GK100
GK1000

GAUSS10
GAUSS100

 93.1
 93.2
 93.3
 93.4
 93.5
 93.6
 93.7
 93.8
 93.9

 94
 94.1
 94.2

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF2 - sampled every 50 million examples

VFML10
VFML100

VFML1000
BINTREE

GK100
GK1000

GAUSS10
GAUSS100

 94.25
 94.3

 94.35
 94.4

 94.45
 94.5

 94.55
 94.6

 94.65
 94.7

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF4 - sampled every 50 million examples

VFML10
VFML100

VFML1000
BINTREE

GK100
GK1000

GAUSS10
GAUSS100

 89

 89.5

 90

 90.5

 91

 91.5

 92

 92.5

 93

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF5 - sampled every 50 million examples

VFML10
VFML100

VFML1000
BINTREE

GK100
GK1000

GAUSS10
GAUSS100

 92.4
 92.5
 92.6
 92.7
 92.8
 92.9

 93
 93.1
 93.2
 93.3
 93.4

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF6 - sampled every 50 million examples

VFML10
VFML100

VFML1000
BINTREE

GK100
GK1000

GAUSS10
GAUSS100

 96.7

 96.72

 96.74

 96.76

 96.78

 96.8

 96.82

 96.84

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF7 - sampled every 50 million examples

VFML10
VFML100

VFML1000
BINTREE

GK100
GK1000

GAUSS10
GAUSS100

 99.4

 99.405

 99.41

 99.415

 99.42

 99.425

 99.43

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF8 - sampled every 50 million examples

VFML10
VFML100

VFML1000
BINTREE

GK100
GK1000

GAUSS10
GAUSS100

 96.55

 96.6

 96.65

 96.7

 96.75

 96.8

 96.85

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF9 - sampled every 50 million examples

VFML10
VFML100

VFML1000
BINTREE

GK100
GK1000

GAUSS10
GAUSS100

Figure 4.6: Part 2 of learning curves for numeric methods in 32MB memory
limit.

4.3. EXPERIMENTAL COMPARISON OF METHODS 89

for gauss10 occur on genF2 and genF5 in 100KB, where it is outperformed

by all other methods. Referring back to the functions generating the underlying

concept of these data streams (Figure 2.4, page 38), these functions are very

similar. The function of genF2 relies on the two numeric attributes salary

and age, and genF5 adds another layer of complexity by including dependency

on a third numeric attribute, loan. From an inspection of the learning curves

at the top right of Figure 4.6 it is clear that the Gaussian methods struggle

with these concepts more than any of the other methods. The trees induced

by the Gaussian method were inspected to find the cause of the problem. In

this case the trees make the mistake of choosing a discrete attribute with many

possible values that is completely irrelevant, car. After making this mistake the

example space is highly segmented, so a lot of extra effort is required to correct

the mistake further down the tree. The Gaussian methods slowly recover

to come within reasonably close accuracy, besides the 100KB environment

where the differences are exaggerated due to lack of space limiting opportunity

to recover. This demonstrates a limitation of the Gaussian method, where

the high level of approximation causes the best attributes to be underrated,

although the true underlying cause of the issue is unknown, perhaps relating

to an unintentional bias towards certain split types that could potentially be

corrected in similar style to Quinlan’s correction in [105]. This is reserved for

future work.

Conversely, there are situations where the high level of approximation gives

the Gaussian method an advantage over all others. The clearest cases of this

are on the data sources rrbfs, rrbfc, wave21 and wave40. Such a bias

may not be surprising when the generators responsible for these streams use

numeric values drawn from random Gaussian distributions.

Analysing space complexity, the amount of memory required per leaf to

track n numeric attributes and c classes is 10n + 10nc for vfml10 and 5nc

for gauss10. For vfml10 the 10n term accounts for storage of the boundary

positions, while the 10nc term accounts for the frequency counts. This simpli-

fied analysis underestimates the true cost of the vfml implementation, which

also retains information about the class and frequency of values that lie ex-

actly on the lower boundary of each bin, increasing the precision of decisions.

For gauss10 the multiplying constant is five values per attribute and class

because there are three values tracking the Gaussian curve and and additional

two numbers tracking the minimum and maximum values. Clearly gauss10

requires the least memory.

90 CHAPTER 4. NUMERIC ATTRIBUTES

 70

 75

 80

 85

 90

 95

 0 5 10 15 20 25 30

ac
cu

ra
cy

 o
n

te
st

 s
et

 (%
)

training instances processed (millions)

GENF2 unsorted

GAUSS10
VFML10

 70

 75

 80

 85

 90

 95

 0 5 10 15 20 25 30

ac
cu

ra
cy

 o
n

te
st

 s
et

 (%
)

training instances processed (millions)

GENF2 sorted

GAUSS10
VFML10

Figure 4.7: Effect that example ordering has on learning accuracy in 32MB on
the genF2 data. Left hand side: default random order. Right hand side: mod-
ified stream where every consecutive sequence of one million training examples
has been sorted on the value of the salary attribute.

In theory, at the local level vfml10 should be very sensitive to data order,

whereas gauss10 should not be sensitive at all. Whether this can trans-

late into poorer global decisions during tree induction is not tested by the

benchmark generators because all examples are randomly drawn somewhat

uniformly from the space of possible examples. The right hand side of Fig-

ure 4.7 shows a constructed example where data order has been manipulated

to expose vfml10’s weakness. genF2 has been modified so that every se-

quence of one million examples drawn from the stream has been sorted by the

salary attribute. In this case the accuracy of gauss10 has improved while

the early accuracy of vfml10 has dropped markedly. The ability of vfml10

to slowly recover may be partly due to additional tree structure increasing the

dispersion of examples down different paths of the tree, reducing the degree to

which values encountered at leaves are sorted.

The gauss10 method is highly competitive on most data sets besides being

outperformed by vfml10 in a few cases. It uses less memory than vfml10

and is less susceptible to data order. For these reasons gauss10 is used as

the default numeric handling method for the remainder of the thesis, used in

the htmc method of Section 5.4. Even though htmc and gauss10 refer to

the same algorithm they are kept separate for comparison purposes because

the numeric experiments exclude the led data source, causing the average of

reported accuracies to differ.

On average, gauss10 trees reach much larger sizes than the other numeric

methods in the same time and space, with many more active leaves. The lack

of information during local decisions is made up for by increased tree structure,

4.4. SUMMARY 91

leading to trees that are more accurate overall. The general conclusion of this

study of numeric handling techniques is that the most accurate methods for

data streams are those that use very little space, but make up for loss of local

accuracy by enabling tree growth to be much more productive.

4.4 Summary

This chapter studied the difficult challenge of managing continuous numeric

attributes in data streams for the purposes of inducing decision trees. Five

main approaches from the literature were discussed, and eight final configura-

tions of algorithm were tested, ranging from perfectly accurate and memory

intensive to highly approximate and lightweight. In experimental comparison,

the most lightweight methods produced the most accurate trees, by virtue of

being the lowest impediment to tree growth. The smallest approximation of

all, the gauss10 method, was selected as the default numeric handling tech-

nique for the rest of the thesis. It is based on simple Gaussian approximation,

similar to the method suggested by Gama et al. [50] but selects split points in

a way that accommodates multiple class labels.

Before this investigation, vfml1000 was considered the default numeric

handling strategy, as it is the strategy used by the public implementation

of VFDT [72]. Averaged over all data sets and environments, and including

accuracy on led for consistency with the studies that follow, the accuracy of

vfml1000 is 85.41%. The accuracy of gauss10, which will be referred to

as htmc in the next chapter, is 88.75%. The relative average improvement

in accuracy, gained by selecting a more efficient numeric handling method, is

3.91%. This comes with an overall average training speed reduction of 11.88%,

and an average prediction speed reduction of 6.75%.

Most of the accuracy gains were in the 100KB environment with a relative

gain of 12.59%. In this environment training and prediction speed reduced

by 13.75% and 7.95% respectively. In 32MB the relative accuracy gain was

0.41%, with training and prediction speed reducing by 17.65% and 4.17%.

In 400MB where more expensive methods were able to compete better, the

relative accuracy gain was only 0.10% on average. The training speed actually

increased by half in this environment, while the prediction speed reduced by

7.79%.

92 CHAPTER 4. NUMERIC ATTRIBUTES

Chapter 5

Prediction Strategies

The previous chapters have considered the induction of Hoeffding trees. Chap-

ter 3 covered the basic induction of Hoeffding trees, followed by Chapter 4

which investigated the handling of continuous numeric attributes in the train-

ing data. This chapter focuses on the use of models once they have been

induced—how predictions are made by the trees. Section 5.1 describes the

standard majority class prediction method. Attempts to outperform this

method are described in Section 5.2 and 5.3. The chapter concludes with

an experiment in Section 5.4 to determine which method is best in practice.

5.1 Majority Class

Prediction using decision trees is straightforward. Examples with unknown

label are filtered down the tree to a leaf, and the most likely class label retrieved

from the leaf. An obvious and straightforward way of assigning labels to leaves

is to determine the most frequent class of examples that were observed there

during training. This method is used by the batch methods C4.5/CART and is

naturally replicated in the stream setting by Hoeffding trees. If the likelihood

of all class labels is desired, an immediate extension is to return a probability

distribution of class labels, once again based on the distribution of classes

observed from the training examples.

Table 5.1 is used to illustrate different prediction schemes throughout the

chapter. In the case of majority class, the leaf will always predict class C2

for every example, because most examples seen before have been of that class.

There have been 60 examples of class C2 versus 40 examples of class C1, so

the leaf will estimate for examples with unknown class that the probability of

93

94 CHAPTER 5. PREDICTION STRATEGIES

Table 5.1: Example sufficient statistics in a leaf after 100 examples have been
seen. There are two class labels: C1 has been seen 40 times, and C2 has been
seen 60 times. There are three attributes: A1 can either have value A or B, A2

can be C, D or E, and A3 can be F, G, H or I. The values in the table track
how many times each of the values have been seen for each class label.

A1 A2 A3

A B C D E F G H I class total
12 28 5 10 25 13 9 3 15 C1 40
34 26 21 8 31 11 21 19 9 C2 60

class C2 is 0.6, and the probability of C1 is 0.4.

5.2 Naive Bayes Leaves

There is more information available during prediction in the leaves of a Hoeffd-

ing tree than is considered using majority class classification. The attribute

values determine the path of each example down the tree, but once the appro-

priate leaf has been established it is possible to use the same attribute values to

further refine the classification. Gama et al. call this enhancement functional

tree leaves [50, 52].

If P (C) is the probability of event C occurring, and P (C|X) is the proba-

bility of event C given that X occurs, then from Bayes’ theorem:

P (C|X) =
P (X|C)P (C)

P (X)
(5.1)

This rule is the foundation of the Naive Bayes classifier [87]. The classifier

is called ‘naive’ because it assumes independence of the attributes. The inde-

pendence assumption means that for each example the value of any attribute

will not have a bearing on the value of any other attribute. It is not realistic

to expect such simplistic attribute relationships to be common in practice, but

despite this the classifier works surprisingly well in general [33, 66].

By collecting the probabilities of each attribute value with respect to the

class label from training examples, the probability of the class for unlabeled

examples can be computed. Fortunately, the sufficient statistics being main-

tained in leaves of a Hoeffding tree for the purpose of choosing split tests are

also the statistics required to perform Naive Bayes classification.

Returning to the example in Table 5.1, if an example being classified by

the leaf has attribute values A1=B, A2=E and A3=I then the likelihood of the

5.2. NAIVE BAYES LEAVES 95

class labels is calculated using Equation 5.1:

P (C1|X) =
P (X|C1)P (C1)

P (X)

=
[P (B|C1)× P (E|C1)× P (I|C1)]× P (C1)

P (X)

=
28
40 ×

25
40 ×

15
40 ×

40
100

P (X)

=
0.065625

P (X)

P (C2|X) =
P (X|C2)P (C2)

P (X)

=
[P (B|C2)× P (E|C2)× P (I|C2)]× P (C2)

P (X)

=
26
60 ×

31
60 ×

9
60 ×

60
100

P (X)

=
0.02015

P (X)

Normalizing the likelihoods means that the common P (X) denominator is

eliminated to reach the final probabilities:

probability of C1 =
0.065625

0.065625 + 0.02015
= 0.77

probability of C2 =
0.02015

0.065625 + 0.02015
= 0.23

So in this case the Naive Bayes prediction chooses class C1, contrary to the

majority class.

A technicality omitted from the example is the zero frequency problem that

occurs if one of the counts in the table is zero. The Naive Bayes calculation

cannot be performed with a probability of zero, so the final implementation

overcomes this by using a Laplace estimator of 1. This adjustment, based on

Laplace’s Law of Succession, means for example that the class prior probabil-

ities in the example above are instead treated as 41
102 and 61

102 .

In batch learning the combination of decision trees and Naive Bayes clas-

sification has been explored by Kohavi in his work on NBTrees [83]. Kohavi’s

NBTrees are induced by specifically choosing tests that give an accuracy ad-

vantage to Naive Bayes leaves. In that setting he found that the hybrid trees

96 CHAPTER 5. PREDICTION STRATEGIES

could often outperform both single decision trees and single Naive Bayes mod-

els. He noted that the method performs well on large data sets, although the

meaning of large in the batch setting can differ greatly from the modern stream

context—most of the training sets he tested had less than 1,000 examples, with

the largest set having under 50,000 examples.

Use of Naive Bayes models in Hoeffding tree induction has implications for

the memory management strategy. Firstly, the act of deactivating leaf nodes

is more significant, because throwing away the sufficient statistics will also

eliminate a leaf’s ability to make a Naive Bayes prediction. The heuristic used

to select the most promising nodes does not take this into account, as it does

not consider the possibility that a leaf may be capable of yielding better accu-

racy than majority class. For simplicity and consistency in the experimental

implementation, the memory management strategy is not changed when Naive

Bayes leaves are enabled. This makes sense if the use of Naive Bayes leaves

are considered as a prediction-time enhancement to Hoeffding trees. Other-

wise changes to memory management behaviour intended to better suit Naive

Bayes prediction will significantly impact on overall tree induction, making it

harder to interpret direct comparisons with majority class trees.

The outcome of this approach is that when memory gets tight and fewer of

the leaves are allowed to remain active, then fewer of the leaves will be capable

of Naive Bayes prediction. The fewer the active leaves, the closer the tree will

behave to a tree that uses majority class only. By the time the tree is frozen

and can no longer afford to hold any active leaves in memory then the tree

will have completely reverted to majority class prediction. This behaviour is

noted when looking at the experimental results.

The other issue is the secondary memory management strategy of removing

poor attributes (Section 3.3.1). This too will alter the effectiveness of Naive

Bayes models, because removing information about attributes removes some

of the power that the Naive Bayes models use to predict, regardless of whether

the attributes are deemed a poor candidate for splitting or not. As the removal

strategy has been shown to not have a large bearing on final tree accuracy,

whenever Naive Bayes leaves are employed the attribute removal strategy is

not used.

Memory management issues aside, the Naive Bayes enhancement adds no

cost to the induction of a Hoeffding tree, neither to the training speed nor

memory usage. All of the extra work is done at prediction time. The amount

of prediction-time overhead is quantified in the experimental comparison.

5.2. NAIVE BAYES LEAVES 97

Early experimental work confirmed that Naive Bayes predictions are capa-

ble of increasing accuracy as Gama et al. observed [50, 52], but also exposed

cases where Naive Bayes prediction fares worse than majority class. The first

response to this problem was to suspect that some of the leaf models are im-

mature. In the early stages of a leaf’s development the probabilities estimated

may be unreliable because they are based on very few observations. If that is

the case then there are two possible remedies; either (1) give them a jump-start

to make them more reliable from the beginning, or (2) wait until the models

are more reliable before using them.

Previous work [68] has covered several attempts at option (1) of ‘priming’

new leaves with better information. One such attempt, suggested by Gama

et al. [50] is to remember a limited number of the most recent examples from

the stream, for the purposes of training new leaves as soon as they are cre-

ated. A problem with this idea is that the number of examples able to be

retrieved that apply to a particular leaf will diminish as the tree gets progres-

sively deeper. Other attempts at priming involved trying to inject more of

the information known prior to splitting into the resulting leaves of the split.

Neither of these attempts were successful at overcoming the problem so are

omitted from consideration.

The experimental results in Section 5.4 test two variations of option (2),

waiting before trusting Naive Bayes models. The first is very simple—a fixed

minimum number of examples are required at a leaf before Naive Bayes pre-

diction is employed. The higher the threshold, the longer the tree will wait

and the more often majority class prediction will be used. Setting it too high

will not see any change from exclusive use of majority class, and setting it

too low will permit premature use of Naive Bayes. The threshold used in the

presented results is one thousand examples, which is not overly successful at

solving the problem but was found in preliminary experimentation to be the

best compromise.

It appears that a single fixed threshold is simply not sufficient to overcome

the problem, motivating further exploration of methods. This led to the de-

velopment and contribution of a second more sophisticated waiting strategy

discussed next.

98 CHAPTER 5. PREDICTION STRATEGIES

5.3 Adaptive Hybrid

Cases where Naive Bayes decisions are less accurate than majority class are a

concern because more effort is being put in to improve predictions and instead

the opposite occurs. In those cases it is better to use the standard majority

class method, making it harder to recommend the use of Naive Bayes leaf

predictions in all situations.

The method described here tries to make the use of Naive Bayes models

more reliable, by only trusting them on a per-leaf basis when there is evi-

dence that there is a true gain to be made. The adaptive method works by

monitoring the error rate of majority class and Naive Bayes decisions in every

leaf, and choosing to employ Naive Bayes decisions only where they have been

more accurate in past cases. Unlike pure Naive Bayes prediction, this process

does introduce an overhead during training. Extra time is spent per training

example generating both prediction types and updating error estimates, and

extra space per leaf is required for storing the estimates.

Algorithm 5 Adaptive prediction algorithm.
for all training examples do

Sort example into leaf l using HT
if majorityClassl "= true class of example then

increment mcErrorl

end if
if NaiveBayesPredictionl(example) "= true class of example then

increment nbErrorl

end if
Update sufficient statistics in l
...

end for

for all examples requiring label prediction do
Sort example into leaf l using HT
if nbErrorl < mcErrorl then

return NaiveBayesPredictionl(example)
else

return majorityClassl

end if
end for

The pseudo-code listed in Algorithm 5 makes the process explicit. During

training, once an example is filtered to a leaf but before the leaf is updated,

both majority class prediction and Naive Bayes prediction are performed and

5.4. EXPERIMENTAL COMPARISON OF METHODS 99

both are compared with the true class of the example. Counters are incre-

mented in the leaf to reflect how many errors the respective methods have

made. At prediction time, a leaf will use majority class prediction unless the

counters suggest that Naive Bayes prediction has made fewer errors, in which

case Naive Bayes prediction is used instead.

In terms of the example in Table 5.1, the class predicted for new examples

will depend on extra information. If previous training examples were more

accurately classified by majority class than Naive Bayes then class C2 will be

returned, otherwise the attribute values will aid in Naive Bayes prediction as

described in the previous subsection.

The accuracy gains afforded by this method and the extra costs involved

are empirically quantified next.

5.4 Experimental Comparison of Methods

This section uses the testing framework established in Chapter 2 to compare

four strategies for Hoeffding tree prediction. To ease reference to these meth-

ods in the text, each has been assigned a short name—the methods are called

htmc, htnb, htnb1k and htnba. Several elements to Hoeffding tree induc-

tion have been covered previously, so the following list summarizes the final

properties of each method including references to explanatory text:

1. htmc algorithm, properties:

• split confidence δ = 10−7 (Section 3.2.1)

• grace period nmin = 200 (Section 3.2.3)

• pre-pruning enabled (Section 3.2.4)

• tie-breaking τ = 0.05 (Section 3.2.5)

• skewed split prevention pmin = 0.01 (Section 3.2.6)

• memory managed with mem-period=10,000 for 100KB environment,

and mem-period=100,000 for 32MB/400MB environments

(Section 3.3)

• poor attribute removal enabled (Section 3.3.1)

• numeric attributes handled with Gaussian approximation using 10

split evaluations (Section 4.2.4)

• majority class prediction (Section 5.1)

100 CHAPTER 5. PREDICTION STRATEGIES

2. htnb algorithm, properties that differ from htmc:

• poor attribute removal disabled (Section 3.3.1 and 5.2)

• Naive Bayes prediction (Section 5.2)

3. htnb1k algorithm, properties that differ from htnb:

• majority class prediction in each leaf until 1000 examples seen, then

Naive Bayes prediction afterwards (Section 5.2)

4. htnba algorithm, properties that differ from htnb:

• adaptive hybrid majority class/Naive Bayes prediction decided per

leaf (Section 5.3)

htmc is a re-implementation that for the most part is equivalent to the

VFDT system, and as such can be considered the base Hoeffding tree method.

Following the findings from the previous chapter, numeric attributes are han-

dled using a Gaussian approximation that evaluates ten split points. In the

current comparison the modifications tested involve changing the prediction

strategies used by the tree, with htmc representing the default majority class

method.

Table 5.2 summarizes behaviour of the four methods for each of the three

environments. The numbers have been averaged over all data sources. For a

more detailed breakdown of the results per data source refer to the tables in

Appendix A.2.

Recall from Chapter 2 that each method is allowed a total of ten hours

training time. The results reported in the tables represent the final result

recorded when ten hours of training were complete or earlier if the tree be-

came frozen. Excessive evaluation overhead was avoided by only measuring

and recording the properties of the trees after every ten million training ex-

amples in the 32MB/400MB environments, and more frequently in the 100KB

environment where changes happen more rapidly, every one million examples.

First, looking at the properties of the trees besides accuracy, it is clear that

the 100KB sensor environment strongly limits what the algorithms can achieve.

In this environment fewer training examples are processed than possible in

higher memory environments. This happened on every data set, and was

caused by tree growth halting after all leaves have been deactivated well before

the ten hour training limit. In fact, the training times in 100KB did not

5.4. EXPERIMENTAL COMPARISON OF METHODS 101

Table 5.2: Final results averaged over all data sources comparing four methods
for Hoeffding tree prediction.

method ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

100KB memory limit / sensor
htmc 85.51 27 0 8.64 11.9 12 69 81
htnb 85.48 27 0 8.69 11.9 12 68 81

htnb1K 85.48 27 0 8.69 11.9 12 68 81
htnba 85.44 29 0 8.65 11.9 12 67 82

32MB memory limit / handheld
htmc 90.44 902 92.3 659 1134 24 14 69
htnb 90.48 825 75.1 643 1063 24 14 63

htnb1K 90.48 905 72.5 691 1136 24 14 63
htnba 90.51 871 73.4 670 1106 24 14 65

400MB memory limit / server
htmc 90.30 525 522 25.4 864 28 6 71
htnb 90.24 464 471 49.1 802 28 6 40

htnb1K 90.34 450 494 49.1 847 28 6 42
htnba 90.70 463 489 46.7 828 28 6 53

102 CHAPTER 5. PREDICTION STRATEGIES

exceed 30 minutes in any run. Because the final trees have been stripped of

their active nodes they are effectively only capable of majority class prediction.

This explains why the prediction speeds attained by the final trees hardly differ

between prediction methods in this environment. One positive effect that the

highly constrained memory limit has compared to the other environments is

that it allows much higher training speeds to be attained, but this provides

little consolation when only limited training is possible.

Looking at environments with higher memory, differences between the four

methods begin to show and are the most pronounced in the server environment.

It is interesting to see that the server environment is not capable of processing

as many examples in the ten hour period as the 32MB handheld environment,

neither is it able to grow as many nodes. This can be explained by looking

at the extra amount of work involved in maintaining the trees in the largest

memory environment. The trees are deeper and have many more active leaves

to evaluate, slowing computation and limiting the number of examples that

can be handled in a given time.

The average training speed is not significantly affected by the prediction

method utilized, which is to be expected in the first three methods as they

do not alter the amount of work performed during training, but this is a

very positive sign for htnba which does in fact do some extra computation

per training example. An explanation for this is that the extra processing is

integrated with the induction process. The overhead of computing the local

prediction accuracy is small when the appropriate data structures are already

being updated.

The average prediction speeds of the trees seem to be related to their

reliance on Naive Bayes leaves, a result that is understandable given that

more computation is involved in making a Naive Bayes prediction than simply

returning the majority class in a leaf. For this reason, htnb and htnb1k are

the slowest at prediction because they respectively use Naive Bayes exclusively

and almost exclusively, besides the 100KB case which as already explained is

incapable of Naive Bayes at the final point. htnba lies between htmc and the

other two in terms of prediction speed, because it uses a mix of both prediction

methods.

With regard to accuracy, based on the average results it appears that the

prediction enhancements have little merit in the 100KB environment. Enabling

Naive Bayes leaves in various forms has actually caused a decline in accuracy

overall. The trees are quickly starved of memory and forced to revert fully to

5.4. EXPERIMENTAL COMPARISON OF METHODS 103

Table 5.3: Modified htnba accuracy compared to htmc, where htnba growth
stops as soon as memory is full in 100KB, retaining all Naive Bayes models at
the expense of tree size.

fully active
dataset htmc htnba

rts 96.95 80.77
rtsn 75.20 70.11
rtc 62.49 58.41

rtcn 53.63 54.34
rrbfs 88.56 83.26
rrbfc 91.36 73.76

led 73.94 73.99
wave21 81.21 83.08
wave40 81.20 83.39
genF1 95.07 94.80
genF2 78.46 74.84
genF3 97.50 97.52
genF4 93.68 89.80
genF5 71.73 71.03
genF6 91.89 90.75
genF7 96.51 96.42
genF8 99.41 99.40
genF9 96.07 96.08

genF10 99.88 99.87
average 85.51 82.72

majority class prediction. It is possible that Naive Bayes leaves could provide

an advantage prior to deactivation.

To investigate this further, an experiment was conducted to test what would

happen if Naive Bayes models are never deactivated. The only way to achieve

this in limited memory is to stop growing the tree as soon as memory is full.

As a result the trees end up being significantly smaller (in terms of average

numbers of nodes, measured at over 24 times smaller), but the models in the

leaves can continue to learn and refine their statistics with more examples.

Each run was allowed to train for an hour, as experiments with this version of

htnba showed that any benefit of additional learning after growth had ceased

would level out very early, well before an hour of training was complete. Ta-

ble 5.3 shows the resulting accuracy, which is on average worse than htmc

and also worse than the standard memory-managed htnba. Figures in bold

represent superior accuracy on a particular data set. There are a few examples

where a much smaller but Naive Bayes enhanced tree is more accurate than a

104 CHAPTER 5. PREDICTION STRATEGIES

 79

 79.5

 80

 80.5

 81

 81.5

 0 20 40 60 80 100 120 140 160

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (seconds)

WAVE21

HTMC
HTNB

HTNB1K
HTNBA

 93.4
 93.45

 93.5
 93.55

 93.6
 93.65

 93.7
 93.75

 93.8
 93.85

 93.9

 0 5 10 15 20 25 30

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (seconds)

GENF4

HTMC
HTNB

HTNB1K
HTNBA

Figure 5.1: Two exceptional cases where Naive Bayes leaves perform better
than majority class prediction in 100KB of memory.

larger tree relying on majority class prediction. It is not surprising that led

is one of those cases, as a single Naive Bayes model is capable of solving this

particular problem very well. This and other cases demonstrate that more

powerful leaf predictions can sometimes provide more benefit than additional

tree structure. However, the cases where Naive Bayes models do not compen-

sate for tree structure are more numerous, and some of the differences are very

large.

In the main set of results where Naive Bayes nodes are being deactivated to

allow further tree expansion, it looks as though the memory limit is too severe

to see much evidence of an accuracy advantage from the Naive Bayes models

prior to their deactivation. Figure 5.1 shows two cases against the trend where

there are hints of this happening. On wave21 the Naive Bayes methods reach

reasonable accuracy levels earlier than htmc, but they all converge by the time

the trees are frozen. genF4 is a rare case where htnba actually looks best

throughout in 100KB of memory, although the differences are only fractions of

a percent. The fact that the final trees still differ in accuracy despite them all

using majority class at that point suggests that another, stronger effect exists.

The reason why the final trees using alternate prediction methods do not

behave the same as htmc in the 100KB sensor environment despite them all

being theoretically equivalent comes down to differences in memory manage-

ment. htmc saves memory via poor attribute removal where the other meth-

ods do not, and in this environment even the slightest difference in available

memory can have a large effect on the final tree induced. This is reflected in

htnba performing even worse still than htnb/htnb1k overall, which is due

to it further increasing the storage requirements of active leaves by a small

amount.

5.4. EXPERIMENTAL COMPARISON OF METHODS 105

Table 5.4: htmc vs htnb accuracy (%).
method→ htmc htnb

memory limit memory limit
dataset 100KB 32MB 400MB 100KB 32MB 400MB

rts 96.95 99.99 99.99 96.87 99.99 99.99
rtsn 75.20 78.48 78.45 75.21 78.41 78.07
rtc 62.49 83.00 83.02 61.22 83.16 83.78

rtcn 53.63 62.45 61.87 53.63 62.32 62.50
rrbfs 88.56 93.27 92.93 88.51 93.60 93.52
rrbfc 91.36 98.72 98.21 91.24 98.85 98.44

led 73.94 73.99 73.96 73.94 74.02 73.99
wave21 81.21 84.37 84.01 81.28 84.82 85.21
wave40 81.20 84.21 83.80 81.20 84.55 84.89
genF1 95.07 95.07 95.07 95.07 94.99 94.80
genF2 78.46 94.03 94.00 78.84 94.01 93.72
genF3 97.50 97.52 97.52 97.49 97.48 97.36
genF4 93.68 94.67 94.65 93.83 94.65 94.27
genF5 71.73 92.36 92.15 71.84 92.27 91.67
genF6 91.89 93.31 93.28 92.08 93.26 92.18
genF7 96.51 96.81 96.79 96.52 96.77 95.49
genF8 99.41 99.42 99.42 99.41 99.36 99.26
genF9 96.07 96.78 96.74 95.97 96.77 95.64

genF10 99.88 99.89 99.89 99.89 99.84 99.84
average 85.51 90.44 90.30 85.48 90.48 90.24

106 CHAPTER 5. PREDICTION STRATEGIES

Table 5.5: htnb vs htnb1k accuracy (%).
method→ htnb htnb1k

memory limit memory limit
dataset 100KB 32MB 400MB 100KB 32MB 400MB

rts 96.87 99.99 99.99 96.87 99.99 99.99
rtsn 75.21 78.41 78.07 75.21 78.39 78.36
rtc 61.22 83.16 83.78 61.22 83.16 83.53

rtcn 53.63 62.32 62.50 53.63 62.24 62.49
rrbfs 88.51 93.60 93.52 88.51 93.61 93.53
rrbfc 91.24 98.85 98.44 91.24 98.84 98.15

led 73.94 74.02 73.99 73.94 74.01 73.99
wave21 81.28 84.82 85.21 81.28 84.80 85.20
wave40 81.20 84.55 84.89 81.20 84.49 84.92
genF1 95.07 94.99 94.80 95.07 95.02 94.80
genF2 78.84 94.01 93.72 78.84 94.01 93.81
genF3 97.49 97.48 97.36 97.49 97.47 97.37
genF4 93.83 94.65 94.27 93.83 94.65 94.38
genF5 71.84 92.27 91.67 71.84 92.37 92.00
genF6 92.08 93.26 92.18 92.08 93.26 92.74
genF7 96.52 96.77 95.49 96.52 96.77 95.97
genF8 99.41 99.36 99.26 99.41 99.37 99.30
genF9 95.97 96.77 95.64 95.97 96.78 96.10

genF10 99.89 99.84 99.84 99.89 99.85 99.86
average 85.48 90.48 90.24 85.48 90.48 90.34

5.4. EXPERIMENTAL COMPARISON OF METHODS 107

Table 5.6: htmc vs htnba accuracy (%).
method→ htmc htnba

memory limit memory limit
dataset 100KB 32MB 400MB 100KB 32MB 400MB

rts 96.95 99.99 99.99 96.92 99.99 99.99
rtsn 75.20 78.48 78.45 74.91 78.49 78.44
rtc 62.49 83.00 83.02 61.22 83.10 83.84

rtcn 53.63 62.45 61.87 53.60 62.26 63.19
rrbfs 88.56 93.27 92.93 88.43 93.60 93.84
rrbfc 91.36 98.72 98.21 91.19 98.85 98.95

led 73.94 73.99 73.96 73.96 74.02 73.98
wave21 81.21 84.37 84.01 81.23 84.80 85.66
wave40 81.20 84.21 83.80 81.20 84.52 85.52
genF1 95.07 95.07 95.07 95.07 95.06 95.05
genF2 78.46 94.03 94.00 78.30 94.05 94.05
genF3 97.50 97.52 97.52 97.49 97.52 97.51
genF4 93.68 94.67 94.65 93.86 94.68 94.65
genF5 71.73 92.36 92.15 72.10 92.41 92.40
genF6 91.89 93.31 93.28 92.09 93.31 93.29
genF7 96.51 96.81 96.79 96.53 96.82 96.80
genF8 99.41 99.42 99.42 99.41 99.42 99.42
genF9 96.07 96.78 96.74 95.98 96.81 96.78

genF10 99.88 99.89 99.89 99.89 99.89 99.89
average 85.51 90.44 90.30 85.44 90.51 90.70

108 CHAPTER 5. PREDICTION STRATEGIES

The final accuracy results are compared in Tables 5.4–5.6. Figures in bold

indicate that a particular accuracy is higher for that method than its competi-

tor. The larger memory limits allow active leaves to survive and bring with

them results demonstrating a positive gain for the Naive Bayes methods. The

trends are most evident in the 400MB case, where many active leaves expose

the true merit of the alternative approaches to prediction.

Figures 5.2 & 5.3 show learning curves for most data sources in the 400MB

environment. The rate of sampling the points for purposes of plotting has

been varied to aid the readability of the graphs. The three cases missing from

the graphs (genF8, genF10 and led) add little information to that already

shown—genF8 looks similar to genF7, and apart from many more examples

being processed on genF10 the relative accuracies look similar also. led is

not a good source of accuracy comparison because all of the methods fluctuate

very close to the optimal Bayes accuracy, so that the methods are hard to

visually separate when plotting accuracy over time.

Of the graphs displayed, rtcn, rrbfs, rrbfc, wave21, wave40, genF2,

genF5 and genF9 are all convincing cases for htnba, where the adaptive

method dominates in accuracy across the entire evaluation. In the case of

genF1 and genF3, htmc emerges as the superior variant, but in these cases

the difference between htmc and htnba is much less significant than the poor

performance of htnb. There are in fact no convincing wins to htnb.

Table 5.4 compares the final accuracy of htmc with that of htnb. In the

32MB case there are more data sets for which htmc is more accurate, but

despite this the overall average looks better for htnb. In the 400MB case

htnb looks less accurate in both the number of wins and the overall average.

These losses serve as examples of the problems that Naive Bayes models can

have.

Comparing htnb with htnb1k in Table 5.5 looks at the difference afforded

by waiting a fixed period before trusting Naive Bayes models. There is ab-

solutely no difference to be noted in the 100KB case, and even in the 32MB

environment it is difficult to determine a superior method from the results.

Only the 400MB environment is able to expose a slight advantage to htnb1k,

although looking at the learning curves in Figures 5.2 & 5.3, for example on

rtsn, genF4, genF6, genF7 and genF9, some of the gains do look signifi-

cant. On rrbfc, the fixed threshold appears to have a detrimental effect.

htnba is a more convincing improvement over htnb. In Table 5.6 its

accuracy is compared with the base method htmc. In the larger memory en-

5.4. EXPERIMENTAL COMPARISON OF METHODS 109

 99.8
 99.82
 99.84
 99.86
 99.88

 99.9
 99.92
 99.94
 99.96
 99.98

 100

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTS - sampled every 50 million examples

HTMC
HTNB

HTNB1K
HTNBA

 77.4

 77.6

 77.8

 78

 78.2

 78.4

 78.6

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTSN - sampled every 10 million examples

HTMC
HTNB

HTNB1K
HTNBA

 76

 77

 78

 79

 80

 81

 82

 83

 84

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTC - sampled every 10 million examples

HTMC
HTNB

HTNB1K
HTNBA

 58.5
 59

 59.5
 60

 60.5
 61

 61.5
 62

 62.5
 63

 63.5

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTCN - sampled every 10 million examples

HTMC
HTNB

HTNB1K
HTNBA

 90.5

 91

 91.5

 92

 92.5

 93

 93.5

 94

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RRBFS - sampled every 20 million examples

HTMC
HTNB

HTNB1K
HTNBA

 95

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 99

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RRBFC - sampled every 10 million examples

HTMC
HTNB

HTNB1K
HTNBA

 81.5
 82

 82.5
 83

 83.5
 84

 84.5
 85

 85.5
 86

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

WAVE21 - sampled every 10 million examples

HTMC
HTNB

HTNB1K
HTNBA

 81.5
 82

 82.5
 83

 83.5
 84

 84.5
 85

 85.5
 86

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

WAVE40 - sampled every 10 million examples

HTMC
HTNB

HTNB1K
HTNBA

Figure 5.2: Part 1 of learning curves for prediction methods in 400MB memory
limit.

110 CHAPTER 5. PREDICTION STRATEGIES

 94.4

 94.5

 94.6

 94.7

 94.8

 94.9

 95

 95.1

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF1 - sampled every 20 million examples

HTMC
HTNB

HTNB1K
HTNBA

 90.5

 91

 91.5

 92

 92.5

 93

 93.5

 94

 94.5

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF2 - sampled every 20 million examples

HTMC
HTNB

HTNB1K
HTNBA

 97.25

 97.3

 97.35

 97.4

 97.45

 97.5

 97.55

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF3 - sampled every 50 million examples

 93.4

 93.6

 93.8

 94

 94.2

 94.4

 94.6

 94.8

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF4 - sampled every 20 million examples

 86

 87

 88

 89

 90

 91

 92

 93

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF5 - sampled every 20 million examples

 91.2
 91.4
 91.6
 91.8

 92
 92.2
 92.4
 92.6
 92.8

 93
 93.2
 93.4

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF6 - sampled every 20 million examples

 94.8
 95

 95.2
 95.4
 95.6
 95.8

 96
 96.2
 96.4
 96.6
 96.8

 97

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF7 - sampled every 20 million examples

 95
 95.2
 95.4
 95.6
 95.8

 96
 96.2
 96.4
 96.6
 96.8

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF9 - sampled every 20 million examples

Figure 5.3: Part 2 of learning curves for prediction methods in 400MB memory
limit.

5.5. SUMMARY 111

vironments it makes a noticeable difference, outperforming all other methods

on average. From these results, aside from its performance in 100KB of mem-

ory, the htnba method is the superior method of the four. A broad conclusion

to be made is that the more memory available, the more benefit able to be

provided by htnba. This is a sensible result considering how htnba’s theo-

retical capacity to lift accuracy is directly impacted by deactivation of leaves,

the direct consequence of limited memory. Due to this section concluding that

htnba is an improvement on htmc, it is the htnba algorithm, not htmc,

that is carried forward to the investigation in Chapter 7.

5.5 Summary

With an established induction method, a study of approaches to prediction was

conducted. With the standard method of majority class prediction offering

sometimes lower but more reliable accuracy compared to the enhancement of

Naive Bayes leaves, a hybrid approach was introduced that adaptively chooses

between the methods, and is shown to be the most accurate method overall

when sufficient working memory is available.

The average accuracy of the base method htmc, across all environments

and data sets, was established at the end of the previous chapter as 88.75%.

htnba has an average accuracy of 88.88%, representing an average relative

improvement of 0.15%. Although not as significant overall as the numeric

method, improving the prediction strategy has demonstrated improvement

when sufficient memory is available. The improvement comes with an overall

average training speed reduction of 2.25%, and an average prediction speed

reduction of 9.50%.

In 100KB of memory the relative accuracy actually dropped by 0.08%,

accompanied by a training speed reduction of 2.90%. In this environment

htmc is the recommended algorithm. In 32MB of memory htnba gained

0.08% accuracy relative to htmc, with no change in training speed on average,

and predictions that are 5.80% slower. htnba is marginally superior in this

environment. The most accuracy gains were seen in 400MB, where the average

relative gain was 0.44%. This also was without any training speed reduction

on average, although it comes with a significant prediction speed reduction of

25.35% relative to htmc. The best method in this environment is a choice

between the faster predictions of htmc or the more accurate predictions of

htnba.

112 CHAPTER 5. PREDICTION STRATEGIES

Chapter 6

Hoeffding Tree Ensembles

In machine learning classification, an ensemble of classifiers is a collection of

several models combined together. Algorithm 6 lists a generic procedure for

creating ensembles that is commonly used in batch learning.

Algorithm 6 Generic ensemble training algorithm.
1: Given a set of training examples S
2: for all models hm in the ensemble of M models, m ∈ {1, 2, ...,M} do
3: Assign a weight to each example in S to create weight distribution Dm

4: Call base learner, providing it with S modified by weight distribution
Dm to create hypothesis hm

5: end for

This procedure requires three elements to create an ensemble:

1. A set S of training examples

2. A base learning algorithm

3. A method of assigning weights to examples (line 3 of the pseudo-code)

The third requirement, the weighting of examples, forms the major differ-

ence between ensemble methods. Another potential difference is the voting

procedure. Typically each member of the ensemble votes towards the predic-

tion of class labels, where voting is either weighted or unweighted. In weighted

voting individual classifiers have varying influence on the final combined vote,

the models that are believed to be more accurate will be trusted more than

those that are less accurate on average. In unweighted voting all models have

equal weight, and the final predicted class is the label chosen by the majority of

ensemble members. Ensemble algorithms, algorithms responsible for inducing

113

114 CHAPTER 6. HOEFFDING TREE ENSEMBLES

an ensemble of models, are sometimes known as meta-learning schemes. They

perform a higher level of learning that relies on lower-level base methods to

produce the individual models.

Ensemble methods are attractive because they can often be more accurate

than a single classifier alone. The best ensemble methods are modular, capable

of taking any base algorithm and improving its performance—any method

can be taken off the shelf and ‘plugged in’. Besides the added memory and

computational cost of sustaining multiple models, the main drawback is loss

of interpretability. A single decision tree may be easily interpreted by humans,

whereas the combined vote of several trees will be difficult to interpret.

In batch learning, cases where the base model is already difficult to inter-

pret or a black-box solution is acceptable, the potential for improved accuracy

easily justifies the use of ensembles where possible. In the data stream set-

ting, the memory and time requirements of multiple models need more serious

consideration. The demands of a data stream application will be sensitive to

the additive effect of introducing more models, and there will be limits to the

numbers of models that can be supported. In limited memory learning—which

is better, a single large model or many smaller models of equivalent combined

size?

An ensemble of classifiers will be more accurate than any of its individual

members if two conditions are met [63, 116]. Firstly, the models must be accu-

rate, that is, they must do better than random guessing. Secondly, they must

be diverse, that is, their errors should not be correlated. If these conditions

are satisfied Hansen and Salamon [63] show that as the number of ensemble

members increase, the error of the ensemble will tend towards zero in the limit.

The accuracy of an ensemble in practice will fall short of the improvement that

is theoretically possible, mostly because the members which have been trained

on variations of the same training data will never be completely independent.

Dietterich surveys ensemble methods for machine learning classification [28].

He mentions three possible reasons for the success of ensemble methods in

practice: statistical, computational and representational. The statistical con-

tribution to success is that the risk of incorrect classification is shared among

multiple members, so that the average risk is lower than relying on a single

member alone. The computational contribution is that more than one attempt

is made to learn what could be a computationally intractable problem, where

each attempt guided by heuristics could get stuck in local minima, but the

average of several different attempts could better solve the problem than any

115

individual attempt. The representational contribution is that an ensemble of

models may be more capable of representing the true function in the data than

any single model in isolation.

Decision trees are the basic machine learning model being investigated by

this thesis, and they make an excellent base for ensemble methods, for several

reasons given below. This is verified in practice, where ensembles of decision

trees are ranked among the best known methods in contemporary machine

learning [23].

The statistical reasoning and the uncorrelated errors theories both suggest

that member diversity is crucial to good ensemble performance. Ensemble

methods typically exploit the lack of stability of a base learner to increase

diversity, thus achieve the desired effect of better accuracy in combination.

Breiman [12] defines stable methods as those not sensitive to small changes

in training data—the more sensitive a method is to data changes the more

unstable it is said to be. Decision trees are good candidates for ensembles

because they are inherently unstable. The greedy local decisions can easily

be influenced by only slight differences in training data, and the effect of a

single change will be propagated to the entire subtree below. Naive Bayes in

contrast is stable as it takes substantial differences in training data to modify

its outcome.

In the stream setting, the nature of the Hoeffding bound decision might

suggest that Hoeffding trees may not exhibit such instability. However, the

bound only guides local per-split decisions—Domingos and Hulten [32] prove

that overall the algorithm approximates the batch induction of decision trees,

which is known to be unstable, so it follows that Hoeffding trees should also be

unstable. Furthermore, the empirical results of bagged Hoeffding tree ensem-

bles and Hoeffding option trees in the next chapter demonstrate that Hoeffding

trees are indeed unstable.

Decision trees also suit the computational argument. Computing an op-

timal decision tree is an NP-complete problem [74], so out of necessity the

algorithm performs a greedy local search. Several decision trees can approach

the problem based on different searches involving local greedy decisions, which

on average may form a better approximation of the true target than any single

search.

It is interesting to consider the representational argument applied to en-

sembles of decision trees, especially where memory is limited. In theory an

ensemble of decision trees can be represented by a single standard decision

116 CHAPTER 6. HOEFFDING TREE ENSEMBLES

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14

nu
m

be
r o

f l
ea

ve
s

memory size

1 tree
2 trees
3 trees
4 trees
5 trees

Figure 6.1: A simple model of the leaf count of combinations of decision trees
as a function of total memory size.

tree, but the cost of constructing such a tree is expensive. Consider the pro-

cess of combining two trees, A and B. This can be achieved by replacing every

leaf of A with a subtree that is a complete copy of tree B, where the leaves

copied from B are merged with the leaf of A that was replaced. Quinlan [103]

shows that the procedure is multiplicative, with only limited opportunity to

simplify the resulting combined tree in most cases.

Each leaf of a decision tree represents a particular region of the example

space. The more leaves a tree has, the more regions are isolated by the tree,

and the more potential it has to reduce error. So the number of leaves in a tree

is in some way related to its “representational power”. The tree multiplication

argument above suggests that the effective number of leaves in an ensemble

of n trees, each having l leaves, should be approximately ln. Assume that the

number of leaves that can be supported is a linear function of memory size

m. Given that m is fixed, the average number of leaves in individual trees in

an ensemble of n trees is at least two, and at most m/n. Combining these

simplifying assumptions, the relative number of leaves in an ensemble of n

trees can be modeled by the function (m/n)n, where m/n ≥ 2. Figure 6.1

plots this function for ensemble sizes one to five. The figure shows for example

that at memory size ten, an ensemble of three or four trees will effectively have

117

more leaves than an ensemble of five trees, providing superior representation

capacity.

These assumptions are unlikely to hold in practice. The leaf count of a

tree is unlikely to be a perfect linear function of m, and it is also questionable

whether the leaf count of tree combinations is perfectly multiplicative. The

number of leaves will not directly translate into accuracy, which is obviously

bounded and influenced by other factors. Despite these flaws the exercise

demonstrates something useful about the expected behaviour of tree ensem-

bles in limited memory—that a given number of combined trees will only be

beneficial when sufficient memory is available, and the more trees involved,

the more memory required. Empirical evidence for this is found in Chapter 7.

A useful way to analyze ensemble behaviour is to consider the implications

of bias and variance [55, 86]. The typical formulation breaks the error of an

algorithm into three parts:

error = bias2 + variance + noise (6.1)

Given a fixed learning problem, the first component of error is the bias of the

machine learning algorithm, that is, how closely it matches the true function

of the data on average over all theoretically possible training sets of a given

size. The second error component is the variance, that is, how much the

algorithm varies its model on different training sets of the given size. The

third component of error is the intrinsic noise of the data, which an algorithm

will not be able to overcome, thus setting an upper bound on the achievable

accuracy. There is often a tradeoff between bias and variance, where reducing

one can come at the expense of the other. Bias-variance decomposition [86]

is a tool that can help with understanding the behaviour of machine learning

methods, and is discussed where appropriate throughout the chapter. The

discussion of results in Chapter 7 uses empirical estimation of bias and variance

to help with analysis.

The most common ensemble methods work like Algorithm 6, producing

different models by manipulating the weight of each training example. This is

why the stability of the base learner is significant. Other approaches that fall

outside of this general model are not studied in this thesis. They include re-

moving attributes, such as attempted by Tumer and Ghosh [116]; manipulating

the class labels, as used by Dietterich and Bakiri [30] in their error-correcting

output codes technique; and introducing randomness to the base model inducer,

118 CHAPTER 6. HOEFFDING TREE ENSEMBLES

such as Breiman’s popular random forest approach [17].

The following sections look at promising methods for improving accuracy,

first in the batch setting (Section 6.1), followed by application to data streams

(Section 6.2). First bagging (Sections 6.1.1 & 6.2.1) and boosting (Section 6.1.2

& 6.2.2) are investigated, then a third alternative, option trees (Section 6.1.3

& 6.2.3) are explored which offer a compromise between a single model and an

ensemble of models. Section 6.3 considers the numbers of ensemble members

that can be supported in the batch and stream settings.

6.1 Batch Setting

6.1.1 Bagging

Bagging (bootstrap aggregating) was introduced by Breiman [12]. The pro-

cedure is simple—it combines the unweighted vote of multiple classifiers, each

of which is trained on a different bootstrap replicate of the training set. A boot-

strap replicate is a set of examples drawn randomly with replacement from the

original training data, to match the size of the original training data. The

probability that any particular example in the original training data will be

chosen for a random bootstrap replicate is 0.632, so each model in the en-

semble will be trained on roughly 63.2% of the full training set, and typically

some examples are repeated several times to make the training size match the

original.

Viewed in terms of the generic ensemble algorithm (Algorithm 6), in de-

termining the weight distribution of examples for a particular model Dm the

weights will correspond to the number of times that an example is randomly

drawn—those examples that are out-of-bag will have a weight of zero, while

the majority are likely to have a pre-normalized weight of one, with those ex-

amples randomly selected more than once having a pre-normalized weight of

more than one.

Bagging works best when the base algorithm is unstable, because the mod-

els produced will differ greatly in response to only minor changes in the train-

ing data, thus increasing the diversity of the ensemble. In terms of bias and

variance, bagging greatly reduces the variance of a method, by averaging the

diverse models into a single result. It does not directly target the bias at all,

so methods whose variance is a significant component of error have the most

to gain from this method.

6.1. BATCH SETTING 119

6.1.2 Boosting

Boosting emerged from the field of Computational Learning Theory, a field

that attempts to do mathematical analysis of learning. It tries to extract

and formalize the essence of machine learning endeavours, with the hope of

producing mathematically sound proofs about learning algorithms. The dis-

covery and success of boosting shows that such efforts can positively impact

the practical application of learning algorithms.

A framework that has become one of the main influences in the field is PAC

Learning (Probably Approximately Correct), proposed by Valiant [119]. Two

concepts were defined by Kearns and Valiant [80], the strong learner and the

weak learner. A strong learner is one that is highly accurate. Formally, this

is defined as a learner that given training examples drawn randomly from a

binary concept space is capable of outputting a hypothesis with error no more

than ε, where ε > 0, and does so with probability of at least 1 − δ, where

δ > 0. The defining requirement is that this must be achieved in runtime

that is polynomial in all of 1/ε, 1/δ, and complexity of the target concept. A

weak learner has the same requirements except that informally it needs only

do slightly better than chance. Formally this means that in the weak case

ε ≤ 1/2− γ where 0 < γ < 1/2.

When these two notions of learning strength were introduced it was un-

known whether the two are in fact equivalent, that is, whether a weak learner

is also capable of strong learning. Schapire’s paper “The Strength of Weak

Learnability” [107] was the breakthrough that confirmed that this is indeed

so. The paper shows that in the PAC framework weak learners are equivalent

to strong learners by presenting an algorithm that is capable of “boosting” a

weak learner in order to achieve high accuracy. Henceforth, the formal def-

inition of a boosting algorithm is one that transforms a weak learner into a

strong one.

Schapire’s original hypothesis boosting algorithm works by combining many

weak learners into a strong ensemble, as follows:

1. induce weak learner h1 as normal

2. train weak learner h2 with filtered examples, half of which h1 predicts

correctly and the other half which h1 predicts incorrectly

3. train weak learner h3 only with examples that h1 and h2 disagree on

120 CHAPTER 6. HOEFFDING TREE ENSEMBLES

M

M M

M M

M M

Figure 6.2: Left hand side: recursive tree structure used by original hypothesis
boosting. Right hand side: flat structure of boost-by-majority and AdaBoost.

4. combine the predictions of h1, h2 and h3 by majority vote; if h1 and h2

agree then output the agreed upon class, otherwise output h3’s prediction

Schapire proves with certain guarantees in the PAC framework that the

combined vote of the hypotheses will be more accurate than h1 alone. By

recursively applying this process, effectively creating a tree of hypotheses with

three-way branches that are combined by majority vote (see left hand side

of Figure 6.2), the weak learners can be progressively improved to form a

classifier of combined weak hypotheses that is just as powerful as a single

strong hypothesis.

Schapire’s work was improved by Freund [41], who presented an algorithm

that is more efficient than Schapire’s. In fact, Freund shows that the number

of hypotheses needed for his boost-by-majority algorithm to reach a given ac-

curacy is the smallest number possible. In this algorithm, the hypotheses are

generated in a single flat level in sequence (see right hand side of Figure 6.2),

as opposed to Schapire’s recursive tree structure. The number of boosting

iterations are fixed before induction begins, and there are two variants of the

algorithm described, boosting by sampling and boosting by filtering.

Boosting by sampling is a method that suits the batch learning scenario.

The first step of this process is to collect a training set from the concept space

by requesting an entire batch of training examples, thus generating the set S.

The goal of the process is then to create a hypothesis that is correct on all

examples in S. To do so, the most straightforward approach is to retain the

entire set of S in memory.

6.1. BATCH SETTING 121

Boosting by filtering is a scenario that is more suited to incremental pro-

cessing of data streams. There are interesting parallels between the theoretical

learning situation proposed in the PAC framework and the challenges of data

stream classification. This version of the algorithm works by selectively filter-

ing the examples that are passed to the weak learners. The filter will either

reject examples and discard them, or accept an example and pass it on to

the appropriate weak learner. This variant has theoretical advantages over

the sampling approach. In the filtering setting it is easier to analyze the ex-

pected amount of generalization that can be achieved, and the method can

have superior space complexity due to not storing an entire training set.

The main problem with the boost-by-majority algorithm is that for it to

work correctly the error (γ) of the weak learner must be known in advance.

That is, how much better the base learner will perform over random guessing

needs to be known before learning begins. This problem is serious enough to

prevent the algorithm from being successful in practice.

The next advance in boosting algorithms was a combined effort of both Fre-

und and Schapire [44]. The AdaBoost algorithm adjusts adaptively to the er-

rors of weak hypotheses, thus overcoming the problem of boosting by majority.

The algorithm was introduced by taking an online allocation algorithm named

Hedge, generalized from the weighted majority algorithm [91], and transform-

ing it into a boosting algorithm. AdaBoost is a boosting by sampling method,

and unfortunately a complementary filtering variant was not proposed. Lim-

ited to the sampling setting, it is shown that AdaBoost will drive training error

exponentially towards zero in the number of iterations performed. AdaBoost

is the most well known and successful boosting algorithm in practice. This is

mostly due to it showing empirical evidence of accurately generalizing to data

not included in the training set. Another reason for its popularity is that the

algorithm is simple and intuitive. Freund and Schapire were awarded the 2003

Gödel Prize for their work in recognition of the significant influence AdaBoost

has had on the machine learning field and science in general.

Algorithm 7 lists the AdaBoost pseudo-code. The intuitive understanding

is that each new model in sequence will concentrate more on correctly clas-

sifying the examples that the previous models misclassified, and concentrate

less on those that are already correct. To start with, all examples have equal

weight (line 1). T is the number of boosting iterations preformed. Every iter-

ation starts by inducing a model on the data based on the weights currently

assigned to examples, and the error, ε, of the new model is estimated on the

122 CHAPTER 6. HOEFFDING TREE ENSEMBLES

Algorithm 7 AdaBoost. Input is a sequence of m examples, WeakLearn is
the base weak learner and T is the number of iterations.
1: Initialize D1(i) = 1/m for all i ∈ {1, 2, ...,m}
2: for t = 1,2,...T do
3: Call WeakLearn, providing it with distribution Dt

4: Get back hypothesis ht : X → Y
5: Calculate error of ht : εt =

∑
i:ht(xi) !=yi

Dt(i)
6: if εt ≥ 1/2 then
7: Set T = t− 1
8: Abort
9: end if

10: Set βt = εt/(1− εt)

11: Update distribution Dt : Dt+1(i) = Dt(i)
Zt
×

{
βt if ht(xi) = yi

1 otherwise
where Zt is a normalization constant (chosen so Dt+1 is a probabilty
distribution)

12: end for
13: return final hypothesis: hfin(x) = arg maxy∈Y

∑
t:ht(x)=y log 1/βt

training data (lines 3-5). Lines 6-9 handle the special case where the error of

the weak learner is worse than random guessing. A situation like this will con-

fuse the weighting process so the algorithm aborts to avoid invalid behaviour.

Lines 10-11 reweight the examples—those that are incorrectly classified retain

their weight relative to correctly classified examples whose weight is reduced

by ε
1−ε , and the weights of all examples are normalized. The process repeats

until a sequence of T models have been induced. To predict the class label of

examples (line 13), each model in the final boosted sequence votes towards a

classification, where each model’s vote is weighted by − log ε
1−ε so that models

with lower error have higher influence on the final result.

The weak learner is influenced either by reweighting or resampling the train-

ing examples. Reweighting the examples requires that the weak learner re-

spond to different continuous weights associated with each example. Common

learners such as C4.5 and Naive Bayes have this capability. Resampling in-

volves randomly sampling a new training set from the original according to

the weight distribution. The advantage of resampling is that the weak learner

need not handle continuous example weights, but the resampling approach in-

troduces a random element to the process. When Breiman [13] compared the

approaches he found that accuracy did not significantly differ between the two.

Breiman looked at AdaBoost from a different perspective [13]. He intro-

duced his own terminology, describing the procedure as arcing (adaptively

6.1. BATCH SETTING 123

resample and combine), and refers to AdaBoost as arc-fs (for Freund and

Schapire). He found arc-fs to be very promising and capable of significantly

outperforming bagging. As an exercise to test his theory that AdaBoost’s suc-

cess is due to the general adaptive resampling approach and not dependent

on the precise formulation of arc-fs, he introduced a simpler ad-hoc algorithm,

arc-x4, listed in Algorithm 8. The main differences from AdaBoost are:

1. A simpler weight update step. Each example is relatively weighted by

1 + e4 where e is the number of misclassifications made on the example

by the existing ensemble.

2. Voting is unweighted.

In experimental comparison [13], arc-x4 performed on a comparable level to

arc-fs. Both were often more successful than bagging at reducing test set error.

Algorithm 8 Arc-x4, Breiman’s ad-hoc boosting algorithm.
1: Initialize D1(i) = 1/m for all i ∈ {1, 2, ...,m}
2: for t = 1,2,...T do
3: Call WeakLearn, providing it with distribution Dt

4: Get back hypothesis ht : X → Y
5: Count misclassifications: ei =

∑t
n=1 I(hn(xi) '= yi)

6: Update distribution Dt : Dt+1(i) = 1+e4
i∑m

n=1
1+e4

n

7: end for
8: return final hypothesis: hfin(x) = arg maxy∈Y

∑T
t=1 I(ht(x) = y)

Breiman [13] employs bias and variance analysis as a tool to help explain

how boosting works. Whereas bagging reduces mostly variance, boosting has

the ability to reduce both bias and variance. An intuitive understanding of

boosting’s ability to reduce bias is that subsequent boosting iterations have an

opportunity to correct the bias of previous models in the ensemble. Breiman

was still puzzled by some aspects of the behaviour of boosting, prompting

deeper investigation by Freund and Schapire [45].

It is accepted and understood how AdaBoost reduces error on the train-

ing set, but uncertainty remains as to why error on test examples, the gen-

eralization error, continues to decrease after training set error reaches zero.

Researchers including Breiman were surprised at AdaBoost’s ability to gener-

alize well beyond any theoretical explanations and seemingly in contradiction

to Occam’s razor, which suggests that simpler solutions should be preferred

over more complex ones. Schapire and Freund et al. [108] tried to explain

124 CHAPTER 6. HOEFFDING TREE ENSEMBLES

this phenomenon in their paper “Boosting the Margin: A New Explanation

for the Effectiveness of Voting Methods”. They suggest that the margin of

the predictions, the difference between the confidence of the true class and

the confidence of the highest other class, continues to improve with additional

boosting iterations, explaining the ability to improve generalization. However

the uncertainty continues, as Breiman [14, 16] provides contrary evidence and

claims that the margin explanation is incomplete. The true explanation for

AdaBoost’s generalization ability remains uncertain, but this of course does

not prevent its use in practice.

The statisticians Friedman, Hastie and Tibshirani [46] point out the simi-

larities between AdaBoost and additive logistic regression, a more established

and commonly understood statistical technique. From an optimization point

of view they show that AdaBoost performs gradient descent in function space

that aims to minimise the following exponential loss function:

exp

(

−yi

T∑

t=1

αht(xi)

)

(6.2)

Friedman et al. question why exponential loss is used, suggesting other possi-

bilities, and propose a boosting variant named LogitBoost. Their insight has

provided another perspective on AdaBoost, which further aids researchers in

understanding its workings. Another contribution they provide is the idea of

weight trimming—after several boosting iterations there can exist examples

with very low weight, so low in fact that ignoring them will not harm accuracy

while reducing computation.

Schapire and Singer [109] make further improvements to AdaBoost. The

original formulation only used binary votes of ensemble members to reweight

examples. The improved formulation generalizes the algorithm to make use

of confidences output by base members, potentially improving performance.

They show how to handle multiple class labels and also study how to best

devise algorithms to output confidences suiting the improved AdaBoost. Ad-

ditionally, they propose an alternative gain criterion, so that for example,

decision trees can be induced that aim to directly improve boosting perfor-

mance.

Early enthusiasm for AdaBoost sometimes overlooked its shortcomings.

Observing its spectacular ability to generalize on many data sets it was some-

times suggested that AdaBoost is resistant to overfitting. Dietterich [29] ad-

dressed such claims by demonstrating that AdaBoost can suffer from problems

6.1. BATCH SETTING 125

with noise. In fact, his experiments show that with substantial classification

noise, bagging is much better than boosting. The explanation for this be-

haviour is that AdaBoost will inevitably give higher weight to noisy examples,

because they will consistently be misclassified.

An interesting piece of follow-up work was conducted by Freund [42], who

revisited his boost-by-majority algorithm to make it adaptive like AdaBoost.

The result is the BrownBoost algorithm. BrownBoost considers the limit in

which each boosting iteration makes an infinitesimally small contribution to

the whole process, which can be modelled with Brownian motion. As with

the original boost-by-majority, the number of iterations, T , is fixed in advance.

The algorithm is optimized to minimize the training error in the pre-assigned

number of iterations—as the final iteration draws near, the algorithm gives up

on examples that are consistently misclassified. This offers hope of overcoming

the problems with noise that are suffered by AdaBoost. In fact, Freund shows

that AdaBoost is a special case of BrownBoost, where T → ∞. Despite the

theoretical benefits of BrownBoost it has failed to draw much attention from

the community, perhaps because it is much more complicated and less intuitive

than AdaBoost. The study [95] found that BrownBoost is more robust than

AdaBoost in class noise, but that LogitBoost performs at a comparable level.

6.1.3 Option Trees

Standard decision trees have only a single path that each example can follow1,

so any given example will apply to only one leaf in the tree. Option trees,

introduced by Buntine [21] and further explored by Kohavi and Kunz [84], are

more general, making it possible for an example to travel down multiple paths

and arrive at multiple leaves. This is achieved by introducing the possibility of

option nodes to the tree, alongside the standard decision nodes and leaf nodes.

An option node splits the decision path several ways—when an option node

is encountered several different subtrees are traversed, which could themselves

contain more option nodes, thus the potential for reaching different leaves is

multiplied by every option. Making a decision with an option tree involves

combining the predictions of the applicable leaves into a final result.

Option trees are a single general structure that can represent anything

from a single standard decision tree to an ensemble of standard decision trees

1For simplicity, this statement ignores missing value approaches such as C4.5 that send
examples down several paths when testing on unknown attribute values.

126 CHAPTER 6. HOEFFDING TREE ENSEMBLES

to an even more general tree containing options within options. An option

tree without any option nodes is clearly the same as a standard decision tree.

An option tree with only a single option node at the root can represent an

ensemble of standard trees. Option nodes below other option nodes take this

a step further and have the combinational power to represent many possible

decision trees in a single compact structure.

A potential benefit of option trees over a traditional ensemble is that the

more flexible representation can save space—consider as an extreme example

an ensemble of one hundred mostly identical large trees, where the only differ-

ence between each tree lies at a single leaf node, in the same position in each

tree. The standard ensemble representation would require one hundred whole

copies of the tree where only the leaf would differ. Efficiently represented as

an option tree this would require almost a hundred times less space, where

the varying leaf could be replaced by an option node splitting one hundred

ways leading to the one hundred different leaf variants. The drive for diverse

ensembles will of course make such a scenario unlikely, but the illustration

serves the point that there are savings to be made by combining different tree

permutations into a single structure. Essentially every path above an option

node can be saved from repetition in memory, compared to explicitly storing

every individual tree found in combination.

Another possible benefit offered by option trees is retention of interpretabil-

ity. An accepted disadvantage of ensemble methods is that users will lose the

ability to understand the models produced. An option tree is a single struc-

ture, and in some situations this can aid in interpreting the decision process,

much more so than trying to determine the workings of several completely

separate models in combination. An option tree containing many options at

many levels can be complex, but humans may not be as confused by a limited

number of option nodes in small and simple option trees. Arguments for the

interpretability of option trees can be found in [84, 43].

In terms of accuracy, an option tree is just as capable of increasing accu-

racy as any ensemble technique. Depending on how it is induced, an option

tree could represent the result of bagging or boosting trees, or something else

entirely. An example application of boosting to option tree induction is the al-

ternating decision tree (ADTree) learning algorithm by Freund and Mason [43].

The option tree induction approach by Kohavi and Kunz [84] seeks to ex-

plore and average additional split possibilities that a tree could make. Their

approach is closer to bagging than boosting, because bagging also draws out

6.1. BATCH SETTING 127

different possibilities from the trees, but operates in a random and less direct

fashion. It is less like boosting because it does not utilize classification perfor-

mance as feedback for improving on previous decisions, but blindly tries out

promising-looking paths that have previously not been explored. They provide

two main reasons why such trees should outperform a single decision tree, sta-

bility and limited lookahead. The stability argument has already been discussed

with other ensemble methods—a single tree can differ wildly on small changes

in training data, but an option tree that combines several possibilities would

vary less on average. The limited lookahead argument refers to the fact that

standard decision trees make greedy local decisions, and do not consider better

decisions that could be made if the search looked ahead before committing.

Looking ahead is expensive and studies suggest that looking ahead a few steps

is futile [99], but when the tree considers attributes in isolation it will be un-

aware of potential interactions between attributes that could greatly increase

accuracy. By exploring several alternative options, an option tree increases the

chance of utilizing rewarding attribute combinations.

A significant difficulty with inducing option trees is that they will grow

very rapidly if not controlled. This is due to their powerful combinatorial

nature which gives them high representational power, but which can also easily

explore too many options if left unchecked. Kohavi and Kunz employ several

strategies to prevent a combinatorial explosion of possibilities. Firstly, they

set a parameter that controls how close other tests must be to the best test

to be considered as extra options. The larger the option factor, the more

potential there is for additional options to be explored. Secondly, they impose

an arbitrary limit of five options per node. Because this is enforced locally per

node, it will slow down but not completely prevent excessive combinations.

Thirdly, they experimented with restricting splits to certain depths of the

tree, either the lowest three levels or the top two levels, and also tried altering

the frequency of options as a function number of supporting examples or tree

depth.

Kohavi and Kunz [84] compared their option trees to bagged trees in ex-

periments, showing that option trees are superior. Their hypothesis was that

options nearer the root are more useful than options further down the tree,

which was confirmed in their experiments. Interestingly, this opinion differs

from that of Buntine [21], who argued that options are more effective nearer

the leaves.

128 CHAPTER 6. HOEFFDING TREE ENSEMBLES

6.2 Data Stream Setting

6.2.1 Bagging

Bagging as formulated by Breiman does not seem immediately applicable to

data streams, because it appears that the entire data set is needed in order to

construct bootstrap replicates. Oza and Russell [102] show how the process

of sampling bootstrap replicates from training data can be simulated in a

data stream context. They observe that the probability that any individual

example will be chosen for a replicate is governed by a Binomial distribution,

so the sampling process can be approximated by considering each example

in turn and randomly deciding with a Binomial probability distribution how

many times to include the example in the formation of a replicate set. The

difficulty with this solution is that the number of examples, N , needs to be

known in advance. Oza and Russell get around this by considering what

happens when N → ∞, which is a reasonable assumption to make with data

streams of arbitrary length, and conclude that the Binomial distribution tends

to a Poisson(1) distribution. Following these observations the algorithm is

straightforward to implement, listed in Algorithm 9. It requires a base learner

that is also capable of processing data streams.

Algorithm 9 Oza and Russell’s Online Bagging. M is the number of models
in the ensemble and I(·) is the indicator function.

1: Initialize base models hm for all m ∈ {1, 2, ...,M}
2: for all training examples do
3: for m = 1, 2, ...,M do
4: Set k = Poisson(1)
5: for n = 1, 2, ..., k do
6: Update hm with the current example
7: end for
8: end for
9: end for

10: anytime output:
11: return hypothesis: hfin(x) = arg maxy∈Y

∑T
t=1 I(ht(x) = y)

Oza and Russell construct proofs to demonstrate that their “online” bag-

ging algorithm converges towards the original batch algorithm [102], and have

collected experimental evidence to show this [101]. One issue they have not

addressed is memory management, a consideration that is paramount in this

thesis. Assuming that a memory-limited base algorithm is available, such

6.2. DATA STREAM SETTING 129

as the Hoeffding tree algorithm studied in Chapter 3, then the memory re-

quirements of an ensemble of trees can be controlled by limits on individual

members. The experimental implementation of bagged Hoeffding trees takes a

simple approach to controlling total memory usage—with an overall memory

limit of m and a total of n trees, each tree is limited to a maximum size of

m/n.

6.2.2 Boosting

Existing literature for the problem of applying boosting to data stream clas-

sification has mainly focussed on modifying AdaBoost, and often under the

guise of online learning [102, 36]. The term “online” is slightly ambiguous, as

researchers have used it in the past to refer to varying goals. Typically the

focus is on processing a single example at a time, but sometimes without em-

phasis on other factors believed important in this thesis such as memory and

time requirements. For the most part however the online methods reviewed

here are directly applicable to the data stream setting. Attempts at modi-

fying boosting to work in an “online” fashion can be divided into two main

approaches: block boosting and parallel boosting.

Block boosting involves collecting data from the stream into sequential

blocks, reweighting the examples in each block in the spirit of AdaBoost, and

then training a batch learner to produce new models for inclusion in the en-

semble. An advantage of this approach is that specialized data stream based

learners are not required, the boosting “wrapper” algorithm handles the data

stream. Memory management by such a method can be achieved by discarding

weaker models, but this raises interesting questions—traditional AdaBoost de-

pends on the previous set of ensemble members remaining constant, the effect

of removing arbitrary models from an ensemble during learning is unknown.

Margineantu and Dietterich [93] look at pruning models from AdaBoost en-

sembles and find it effective, although they do this after learning is complete.

A significant difficulty with block boosting is deciding how large the blocks

should be. A demanding batch learner and/or overly large block sizes will

limit the rate at which examples can be processed, and block sizes that are

too small will limit accuracy. Examples of block boosting include Breiman’s

pasting of ‘bites’ [15], and the study by Fan et al. [36].

Parallel boosting involves feeding examples as they arrive into a base data

stream algorithm that builds each ensemble member in parallel. A difficulty

130 CHAPTER 6. HOEFFDING TREE ENSEMBLES

is that AdaBoost was conceived as a sequential process. Sequential weighting

of training examples can be simulated by feeding and reweighting examples

through each member in sequence. This does not directly emulate the strictly

sequential process of AdaBoost, as models further down the sequence will start

learning from weights that depend on earlier models that are also evolving

over time, but the hope is that in time the models will converge towards an

AdaBoost-like configuration. An advantage of using data stream algorithms

as base learners is that the ensemble algorithm can inherit the ability to ade-

quately handle data stream demands.

Examples of parallel boosting include Fern and Givan’s [38] online adap-

tation of arc-x4, and Domingo and Watanabe’s [31] MadaBoost. Domingo

and Watanabe describe difficulties with correctly weighting examples when

applying AdaBoost to the online setting. Their solution is essentially to put a

limit on the highest weight that can be assigned to an example. They try to

prove that their modification is still boosting in the formal PAC-learning sense

but face theoretical problems that prevent them from providing a full proof.

Bshouty and Gavinsky [20] present a more theoretically sound solution to the

problem, performing polynomially smooth boosting, but the result is far less

intuitive than most AdaBoost-like algorithms.

The data stream boosting approach adopted by this thesis is a parallel

boosting algorithm that was developed by Oza and Russell [102], who compli-

ment their online bagging algorithm (Section 6.2.1) with a similar approach to

online boosting. The pseudo-code is listed in Algorithm 10. Oza and Russell

note that the weighting procedure of AdaBoost actually divides the total ex-

ample weight into two halves—half of the weight is assigned to the correctly

classified examples, and the other half goes to the misclassified examples. As

the ensemble gets more accurate the number of misclassified examples should

progressively get less and less relative to the number of correct classifications.

In turn, the misclassified set gets more weight per example than the correctly

classified set. This motivates the weight update procedure in lines 9-15, which

is intended to simulate the batch weight behaviour in a streaming environment,

much like the online bagging algorithm is designed to simulate the creation of

bootstrap replicates. Once again they utilize the Poisson distribution for decid-

ing the random probability that an example is used for training, only this time

the parameter (λd) changes according to the boosting weight of the example

as it is passed through each model in sequence. The use of random Poisson is

well founded for bagging, but motivation for it in the boosting situation is less

6.2. DATA STREAM SETTING 131

Algorithm 10 Oza and Russell’s Online Boosting. N is the number of exam-
ples seen.
1: Initialize base models hm for all m ∈ {1, 2, ...,M}, λsc

m = 0, λsw
m = 0

2: for all training examples do
3: Set “weight” of example λd = 1
4: for m = 1, 2, ...,M do
5: Set k = Poisson(λd)
6: for n = 1, 2, ..., k do
7: Update hm with the current example
8: end for
9: if hm correctly classifies the example then

10: λsc
m ← λsc

m + λd

11: λd ← λd

(
N

2λsc
m

)

12: else
13: λsw

m ← λsw
m + λd

14: λd ← λd

(
N

2λsw
m

)

15: end if
16: end for
17: end for
18: anytime output:
19: Calculate εm = λsw

m
λsc

m+λsw
m

and βm = εm/(1− εm) for all m ∈ {1, 2, ...,M}
20: return hypothesis: hfin(x) = arg maxy∈Y

∑
m:hm(x)=y log 1/βm

clear. Preliminary experimental work for this thesis involved testing several

boosting algorithms, including a modification of Oza and Russell’s boosting

algorithm that applied example weights directly instead of relying on random

drawings from Poisson. Overall the algorithm performed better with the ran-

dom Poisson element than without it, so it seems to be a worthwhile approach

even if the theoretical underpinning is weak.

Of the boosting strategies tested in preliminary experimentation, Oza and

Russell’s approach represents the best found. More discussion about the per-

formance of boosting in data streams is reserved for Section 7.2. As with

bagging, the memory management strategy tested in Chapter 7 uses the sim-

ple approach of controlling total ensemble size by enforcing uniform memory

limits to each base tree.

6.2.3 Option Trees

A new algorithm for inducing option trees from data streams was devised

for this thesis. It is based on the Hoeffding tree induction algorithm, but

generalized to explore additional options in a manner similar to the option

132 CHAPTER 6. HOEFFDING TREE ENSEMBLES

trees of Kohavi and Kunz [84]. The pseudo-code is listed in Algorithm 11. The

algorithm is an extension of the basic decision tree inducer listed in Algorithm 2

on page 47. The differences are, firstly, that each training example can update

a set of option nodes rather than just a single leaf, and secondly, lines 20-32

constitute new logic that applies when a split has already been chosen but

extra options are still being considered.

A minor point of difference between Kohavi and Kunz’s option tree and

the Hoeffding option trees implemented for this study is that the Hoeffding

option tree uses the class confidences in each leaf to help form the majority

decision. The observed probabilities of each class are added together, rather

than the binary voting process used by Kohavi and Kunz where each leaf votes

completely towards the local majority in determining the overall majority label.

Preliminary experiments suggested that using confidences in voting can slightly

improve accuracy.

Just as Kohavi and Kunz needed to restrict the growth of their option trees

in the batch setting, strategies are required to control the growth of Hoeffding

option trees. Without any restrictions the tree will try to explore all possible

tree configurations simultaneously which is clearly not feasible.

The first main approach to controlling growth involves the initial decision of

when to introduce new options to the tree. Kohavi and Kunz have an option

factor parameter that controls the inducer’s eagerness to add new options.

The Hoeffding option tree algorithm has a similar parameter, δ′, which can

be thought of as a secondary Hoeffding bound confidence. The δ′ parameter

controls the confidence of secondary split decisions much like δ influences the

initial split decision, only for additional splits the test is whether the informa-

tion gain of the best candidate exceeds the information gain of the best split

already present in the tree. For the initial split, the decision process searches

for the best attribute overall, but for subsequent splits, the search is for at-

tributes that are superior to existing splits. It is very unlikely that any other

attribute could compete so well with the best attribute already chosen that it

could beat it by the same initial margin. Recall, the original Hoeffding bound

decision is designed to guarantee that the other attributes should not be any

better. For this reason, the secondary bound δ′ needs to be much looser than

the initial bound δ for there to be any chance of additional attribute choices.

It seems a contradiction to require other attributes to be better when the

Hoeffding bound has already guaranteed with high confidence that they are

not as good, but the guarantees are much weaker when tie breaking has been

6.2. DATA STREAM SETTING 133

Algorithm 11 Hoeffding option tree induction algorithm. δ′ is the confidence
for additional splits and maxOptions is the maximum number of options that
should be reachable by any single example.
1: Let HOT be an option tree with a single leaf (the root)
2: for all training examples do
3: Sort example into leaves/option nodes L using HOT
4: for all option nodes l of the set L do
5: Update sufficient statistics in l
6: Increment nl, the number of examples seen at l
7: if nl mod nmin = 0 and examples seen at l not all of same class then
8: if l has no children then
9: Compute Gl(Xi) for each attribute

10: Let Xa be attribute with highest Gl

11: Let Xb be attribute with second-highest Gl

12: Compute Hoeffding bound ε =
√

R2ln(1/δ)
2nl

13: if Xa '= X∅ and (Gl(Xa)−Gl(Xb) > ε or ε < τ) then
14: Add a node below l that splits on Xa

15: for all branches of the split do
16: Add a new option leaf with initialized sufficient statistics
17: end for
18: end if
19: else
20: if optionCountl < maxOptions then
21: Compute Gl(Xi) for existing splits and (non-used) attributes
22: Let S be existing child split with highest Gl

23: Let X be (non-used) attribute with highest Gl

24: Compute Hoeffding bound ε =
√

R2ln(1/δ′)
2nl

25: if Gl(X)−Gl(S) > ε then
26: Add an additional child option to l that splits on X
27: for all branches of the split do
28: Add a new option leaf with initialized sufficient statistics
29: end for
30: end if
31: else
32: Remove attribute statistics stored at l
33: end if
34: end if
35: end if
36: end for
37: end for

134 CHAPTER 6. HOEFFDING TREE ENSEMBLES

employed, and setting a sufficiently loose secondary bound does indeed create

further split options. δ′ can be expressed in terms of a multiplication factor α,

specifying a fraction of the original Hoeffding bound:

δ′ = eα2 ln(δ) (6.3)

Or equivalently:

α =

√√√√ ln(δ′)

ln(δ)
(6.4)

For example, with the default parameter settings of δ = 10−7 and δ′ = 0.999

then from Equation 6.4, α ≈ 0.0079, that is, decisions to explore additional

attributes are approximately 126 times more eager than the initial choice of

attribute. Preliminary experiments found that a setting of δ′ = 0.999 works

well in combination with the second overriding growth strategy discussed next.

The second main approach to controlling tree growth involves directly lim-

iting the number of options that the tree will explore. Kohavi and Kunz tried

a local limit, where they would not allow an option node to split more than five

different ways. This thesis introduces a global limiting strategy that instead of

limiting options per node it limits options per example. A combinatorial explo-

sion is still possible with a locally applied limit, whereas a global limit prevents

it altogether. Doing so requires more work to compute how many leaves are

reachable at a particular point in the tree, and only allowing more options if it

does not exceed the maximum allowed. Line 20 of Algorithm 11 performs the

test that determines whether more options are possible, and assumes that the

maximum reachability count (optionCountl) of the node is available. Com-

puting maximum reachability counts in an option tree is complicated—it not

only depends on the descendants of a node but also on its ancestors, and their

descendants too. To solve this problem an incremental algorithm was devised

to keep track of maximum counts in each option node in the tree, listed in

Algorithm 12. The worst-case complexity of this algorithm is linear in the

number of nodes in the tree, as it could potentially visit every node once. All

nodes start with an optionCount of 1. The operation for updating counts is

employed every time the tree grows. Nodes are not removed from the tree, as

pruning is not considered in this thesis. However, an operation for removing

option nodes, that would be needed if the option trees were pruned, is included

for completeness.

Interestingly, the arbitrary local limit of five options employed by Kohavi

6.2. DATA STREAM SETTING 135

Algorithm 12 Option counter update, for adding and removing options.
ProcedureAddOption(node, newOption):
max← node.optionCount
if node has children then

max← max + 1
end if
for all children of newOption do

child.optionCount← max
end for
add newOption as child of node
call UpdateOptionCount(node,newOption)

ProcedureRemoveOption(node, index):
while there are options below node do

remove deepest option
end while
remove child at index from node
call UpdateOptionCountBelow(node,-1)
if node has parent then

call UpdateOptionCount(parent,node)
end if

ProcedureUpdateOptionCount(node, source):
max← maximum optionCount of node children
δ ← max− node.optionCount
if δ '= 0 then

node.optionCount← node.optionCount + δ
for all children of node such that child '= source do

call UpdateOptionCountBelow(child,δ)
end for
if node has parent then

call UpdateOptionCount(parent,node)
end if

end if

ProcedureUpdateOptionCountBelow(node, δ):
node.optionCount← node.optionCount + δ
for all children of node do

call UpdateOptionCountBelow(child, δ)
end for

136 CHAPTER 6. HOEFFDING TREE ENSEMBLES

 86.4

 86.6

 86.8

 87

 87.2

 87.4

 87.6

 87.8

 88

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

av
er

ag
e

ac
cu

ra
cy

 (%
 c

or
re

ct
)

maximum options per example

Figure 6.3: Average accuracy of Hoeffding option tree over many data sets ver-
sus the maximum number of options per example. Accuracies were estimated
in unbounded memory.

and Kunz also seems to be a good choice for the global limit suggested here, at

least when memory restrictions are not considered. Early experiments looked

at the effect of the maxOptions parameter on smaller scale runs in unbounded

memory. The average accuracy across many data sets is plotted in Figure 6.3,

showing that prior to a maximum of five options there are significant accuracy

gains, but after that point the accuracy gains diminish. The computational

demands continue to rise with each additional option.

Other design decisions also help to limit tree growth. When searching for

additional options, ties are not broken in the same manner as during the initial

decision. Doing so would inevitably force options to be introduced when the

bound is sufficiently small. Instead, this cuts down excessive options by only

considering genuine contenders that emerge, those with positive gains. Another

restriction is that an attribute will only be used once per option node, which

reduces the possibility of multiple redundant splits, especially where numeric

attributes are concerned.

Having internal nodes that also act like active leaves because they record

sufficient statistics has serious implications for memory management. To re-

duce the memory requirements of internal nodes, they are deactivated as soon

as further options are prohibited (line 32 of Algorithm 11). The memory man-

6.3. REALISTIC ENSEMBLE SIZES 137

agement strategy needs to be adapted to cope with these costly nodes when

memory is exhausted. Recall from Section 3.3 that each leaf has a measure

of ‘promise’. The least promising nodes are deactivated first, while the most

promising are retained in memory the longest. The ‘promise’ is measured by

the numbers of examples seen by the node since creation that are not correctly

classified by the majority observed class. Three straightforward approaches

were compared to decide the final method for experimental comparison:

1. Each active node is treated equally, regardless of whether it is internal or

a leaf. This has the most potential to stall growth because too many in-

ternal leaves that are highly promising will prevent the tree from growing

at the leaves. Also, nodes near the top of the tree such as the root node

are likely to always look promising due to high numbers of misclassified

examples at that point.

2. Internal nodes are penalized by dividing their promise by the number of

local options. This reduces focus on areas that have already explored

several options.

3. Leaf nodes are always more promising than internal nodes. This means

that when reclaiming memory the internal nodes are always the first to

be removed, in order of promise. Once all internal nodes are removed, the

leaf nodes will start being deactivated, in the same manner as standard

Hoeffding trees.

The third option fared the best, and is the strategy used in experiments. It

appears that seeking more options at the expense of pursuing the existing ones

is harmful overall to tree accuracy.

The maxOptions parameter plays a significant role overall when memory is

limited, because it adjusts the tradeoff between the numbers of options that

are explored and the depth at which they can be explored. For the final exper-

iments in Chapter 7 maxOptions was altered to be consistent in comparison

to the other methods, where a setting of m is functionally equivalent to an

ensemble of m distinct trees.

6.3 Realistic Ensemble Sizes

In the batch setting, a typical ensemble may consist of one hundred or more

base models. This is because the primary goal is increasing accuracy, and

138 CHAPTER 6. HOEFFDING TREE ENSEMBLES

the more models combined the greater the potential for this to occur. The

memory and computational implications of combining this many models in

the batch setting are not a major concern, as typically training sizes are small,

and prolonged training and testing times are acceptable. If it were too de-

manding, there is always the option to use a simpler base algorithm or reduce

the ensemble size.

In the data stream setting the extra demands of combining models must

be carefully considered. If a particular algorithm is barely able to cope with

a high-speed stream, then even adding a second model in parallel will not

be feasible. For every additional model included, the gains must be weighed

against the cost of supporting them. An ensemble of one hundred models

would process examples approximately one hundred times slower, and memory

restrictions would require each model to be one hundred times as small. In

100KB of memory this would rely heavily on memory management, which

would endeavour to keep each model under 1KB in size. If sensible models can

be induced in such conditions, the simplistic models may not work as effectively

in combination than more sophisticated ones. For these reasons, the ensemble

sizes experimented with in the next chapter are restricted to smaller values of

ten, five or three models.

Such small ensemble sizes are not necessarily a hindrance to ensemble per-

formance. The preliminary investigation into restricting the effective number

of models in option trees, Figure 6.3, suggested that anything on the order of

five models is close to optimal, and that higher numbers of models show lim-

ited improvement. This was without considering the added pressure of memory

limits, which in some conditions may favour even smaller combinations. The

ensemble size of three especially will be an interesting study of whether small

combinations can show a useful effect.

6.4 Summary

The theory behind successful methods of improving accuracy in the batch set-

ting have been reviewed—the ensemble methods bagging and boosting, and a

generalized tree representation offering similar benefits, the option tree. Ap-

plication of these methods to the data stream setting has been considered.

The following chapter compares three methods experimentally, to see whether

they can outperform a single Hoeffding tree. Bagging and boosting have been

implemented as suggested by Oza and Russell [102], and are compared to a

6.4. SUMMARY 139

novel algorithm for inducing option trees using Hoeffding bounds. Three en-

semble configurations have been chosen for testing each method; three, five or

ten trees in combination.

140 CHAPTER 6. HOEFFDING TREE ENSEMBLES

Chapter 7

Ensemble Evaluation

The same evaluation methodology from Chapter 2 used throughout the thesis

is employed to compare the candidate methods of improving decision tree

accuracy. A total of ten algorithm variations are compared:

htnba Single Hoeffding tree with adaptive Naive Bayes prediction (Section 5.4).

Used as the base method for bagging and boosting.

bag3/5/10 Oza and Russell’s online bagging (Section 6.2.1).

Ensemble of three, five or ten htnba trees.

boost3/5/10 Oza and Russell’s online boosting (Section 6.2.2).

Ensemble of three, five or ten htnba trees.

hot3/5/10 Hoeffding option tree (Section 6.2.3).

Maximum of three, five or ten options per example.

Settings same as htnba including adaptive Naive Bayes prediction.

Secondary split confidence δ′ = 0.999

As previously, there are three memory-limited environments (100KB/sensor,

32MB/handheld, 400MB/server), 19 synthetic data sets, a limit of ten hours

per training run, and testing via one million test examples. Training and

testing speeds are listed as percentages of the full generation speeds unique to

each data set as measured in Section 2.6.

7.1 Results

Detailed per-data set results of the experiments are available in Appendix A.3.

To simplify comparison, averages across all data sets are compiled in Table 7.1.

141

142 CHAPTER 7. ENSEMBLE EVALUATION

Table 7.1: Final results averaged over all data sources comparing ensemble
methods.

method ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

(a
ve

ra
ge

)
tr

ee
d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

100KB memory limit / sensor
htnba 85.44 29 0 8.65 11.9 12 67 82
bag3 85.82 6 0 7.66 10.4 7.8 54 67
bag5 84.02 4 0 6.78 9.10 6.3 45 60

bag10 78.34 2 0 5.49 7.40 4.6 37 52
boost3 84.63 7 0 7.61 10.4 8.0 46 61
boost5 83.67 4 0 6.82 9.30 6.5 37 53

boost10 77.14 2 0 6.97 9.20 4.6 31 44
hot3 86.34 15 0 8.83 11.5 12 54 68
hot5 86.28 14 0 9.15 11.8 11 52 65

hot10 85.90 14 0 9.60 12.1 11 52 63
32MB memory limit / handheld

htnba 90.51 871 73.4 670 1106 24 14 65
bag3 90.48 1025 34.1 1714 2539 20.0 16 50
bag5 90.33 998 21.2 2064 3017 18.9 15 41

bag10 90.34 825 13.0 2380 3458 17.6 16 30
boost3 89.38 948 15.9 1994 3085 21.3 14 43
boost5 89.60 1015 6.07 2240 3500 20.9 15 34

boost10 89.33 814 1.81 2445 3774 19.4 14 23
hot3 90.66 792 64.0 944 1481 23 13 55
hot5 90.72 750 61.5 1005 1575 23 12 51

hot10 90.70 691 59.6 1081 1687 22 11 49
400MB memory limit / server

htnba 90.70 463 489 46.7 828 28 6 53
bag3 90.73 332 917 252 1772 23.7 5 34
bag5 90.68 257 998 672 2482 22.2 4 27

bag10 90.79 173 1046 1476 3678 20.6 3 19
boost3 89.77 156 985 869 2987 24.8 4 34
boost5 90.01 109 1062 1492 4188 23.2 3 25

boost10 89.93 79 1077 2994 6550 21.3 3 18
hot3 90.85 377 580 73.9 1028 26 5 40
hot5 90.94 344 608 86.1 1092 25 4 37

hot10 90.96 292 609 133 1177 25 4 34

7.1. RESULTS 143

The general differences between memory environments follow the same trends

seen in previous experiments—the most training examples are processed in

32MB of memory because once again the 100KB environment stops early once

there is insufficient memory to continue growth, and the 400MB environment

is slower due to deeper trees with many more active nodes to maintain.

The average accuracy figures clearly separate the methods. The hot meth-

ods are the most accurate on average across all three environments, followed

by the bag methods. The boost methods are the least accurate on average,

in all cases worse than the average accuracy of a single htnba tree.

It is interesting to study the accuracy trends when the number of trees,

or equivalently the number of options, is increased in fixed memory limits.

In the 100KB/sensor environment, higher ensemble sizes tend to be lower in

accuracy, with ensembles of three trees being the most accurate size regardless

of ensemble type. This trend is perhaps reflective of the size/accuracy tradeoff

predicted in very limited memory. The 100KB is simply not enough to support

accurate combinations of more than just a few trees. In the 32MB/handheld

environment the middle of the range size of five trees tends to be best, the

most accurate size for boosted and option trees, and of the bag methods only

marginally worse than ten bagged trees. In the 400MB/server environment the

generous memory allowance creates opportunities for the ten tree ensembles to

do best, apart from boosting where boost5 is more accurate than boost10

on average.

In the 32MB and 400MB environments, the hot methods tend to have

smaller models than the other ensemble methods, with fewer tree nodes in

total than either bagged or boosted trees. This is a positive result for the

option tree representation. Boosted trees tend to have the most nodes on

average.

The average accuracy figures do not, however, convey the whole situation.

Tables 7.2-7.4 give a detailed per-data set accuracy breakdown of a single

htnba tree against the mid-range ensembles (five trees/options). In Table 7.2

the bag5 method does not compete well in 100KB of memory, but wins many

times in the other environments. In Table 7.3 the boost5 method struggles

to show any gain over a single tree. In Table 7.4, hot5 generally outperforms

htnba, but is not so convincing in the 100KB environment.

Table 7.5 directly compares bag5 with hot5. In 100KB of memory the

option tree method is clearly superior. In the higher memory environments,

hot5 is actually worse than bag5 in most cases. The main exception is the

144 CHAPTER 7. ENSEMBLE EVALUATION

Table 7.2: htnba vs bag5 accuracy (%).
method→ htnba bag5

memory limit memory limit
dataset 100KB 32MB 400MB 100KB 32MB 400MB

rts 96.92 99.99 99.99 84.84 100.00 99.99
rtsn 74.91 78.49 78.44 69.82 78.48 78.49
rtc 61.22 83.10 83.84 54.13 79.66 81.90

rtcn 53.60 62.26 63.19 52.96 60.06 62.29
rrbfs 88.43 93.60 93.84 87.68 93.93 94.29
rrbfc 91.19 98.85 98.95 76.66 99.47 99.56

wave21 81.23 84.80 85.66 81.01 85.19 86.14
wave40 81.20 84.52 85.52 80.30 85.06 85.98

led 73.96 74.02 73.98 73.35 73.98 73.97
genF1 95.07 95.06 95.05 95.07 95.07 95.03
genF2 78.30 94.05 94.05 92.18 94.11 94.09
genF3 97.49 97.52 97.51 97.51 97.51 97.50
genF4 93.86 94.68 94.65 91.61 94.68 94.66
genF5 72.10 92.41 92.40 78.36 92.83 92.83
genF6 92.09 93.31 93.29 90.64 93.34 93.32
genF7 96.53 96.82 96.80 96.18 96.84 96.83
genF8 99.41 99.42 99.42 99.40 99.43 99.42
genF9 95.98 96.81 96.78 94.86 96.82 96.83

genF10 99.89 99.89 99.89 99.88 99.89 99.89
average 85.44 90.51 90.70 84.02 90.33 90.68

7.1. RESULTS 145

Table 7.3: htnba vs boost5 accuracy (%).
method→ htnba boost5

memory limit memory limit
dataset 100KB 32MB 400MB 100KB 32MB 400MB

rts 96.92 99.99 99.99 88.38 99.99 99.98
rtsn 74.91 78.49 78.44 68.59 78.39 78.34
rtc 61.22 83.10 83.84 59.23 82.39 84.24

rtcn 53.60 62.26 63.19 53.55 59.27 60.12
rrbfs 88.43 93.60 93.84 87.13 93.01 93.30
rrbfc 91.19 98.85 98.95 79.87 99.19 99.30

wave21 81.23 84.80 85.66 80.93 84.49 85.37
wave40 81.20 84.52 85.52 80.48 84.32 85.06

led 73.96 74.02 73.98 73.87 73.97 73.92
genF1 95.07 95.06 95.05 93.72 90.93 93.23
genF2 78.30 94.05 94.05 86.18 92.01 92.48
genF3 97.49 97.52 97.51 96.40 95.47 96.41
genF4 93.86 94.68 94.65 93.26 93.17 93.31
genF5 72.10 92.41 92.40 68.72 91.80 91.66
genF6 92.09 93.31 93.29 89.24 92.19 92.07
genF7 96.53 96.82 96.80 95.93 96.14 96.02
genF8 99.41 99.42 99.42 99.36 99.34 99.28
genF9 95.98 96.81 96.78 94.93 96.43 96.21

genF10 99.89 99.89 99.89 99.88 99.87 99.87
average 85.44 90.51 90.70 83.67 89.60 90.01

146 CHAPTER 7. ENSEMBLE EVALUATION

Table 7.4: htnba vs hot5 accuracy (%).
method→ htnba hot5

memory limit memory limit
dataset 100KB 32MB 400MB 100KB 32MB 400MB

rts 96.92 99.99 99.99 95.85 99.99 99.99
rtsn 74.91 78.49 78.44 73.71 78.48 78.38
rtc 61.22 83.10 83.84 64.79 84.22 84.92

rtcn 53.60 62.26 63.19 54.64 63.88 65.61
rrbfs 88.43 93.60 93.84 87.93 93.83 94.18
rrbfc 91.19 98.85 98.95 78.63 99.20 99.22

wave21 81.23 84.80 85.66 81.23 85.12 86.03
wave40 81.20 84.52 85.52 81.14 84.95 85.86

led 73.96 74.02 73.98 73.91 73.96 73.94
genF1 95.07 95.06 95.05 95.06 95.06 95.05
genF2 78.30 94.05 94.05 93.47 94.09 94.06
genF3 97.49 97.52 97.51 97.48 97.51 97.50
genF4 93.86 94.68 94.65 93.80 94.67 94.63
genF5 72.10 92.41 92.40 84.25 92.71 92.80
genF6 92.09 93.31 93.29 91.95 93.33 93.28
genF7 96.53 96.82 96.80 96.38 96.83 96.79
genF8 99.41 99.42 99.42 99.40 99.42 99.42
genF9 95.98 96.81 96.78 95.77 96.82 96.79

genF10 99.89 99.89 99.89 99.88 99.89 99.89
average 85.44 90.51 90.70 86.28 90.74 90.97

7.1. RESULTS 147

Table 7.5: bag5 vs hot5 accuracy (%).
method→ bag5 hot5

memory limit memory limit
dataset 100KB 32MB 400MB 100KB 32MB 400MB

rts 84.84 100.00 99.99 95.85 99.99 99.99
rtsn 69.82 78.48 78.49 73.71 78.48 78.38
rtc 54.13 79.66 81.90 64.79 84.22 84.92

rtcn 52.96 60.06 62.29 54.64 63.88 65.61
rrbfs 87.68 93.93 94.29 87.93 93.83 94.18
rrbfc 76.66 99.47 99.56 78.63 99.20 99.22

wave21 81.01 85.19 86.14 81.23 85.12 86.03
wave40 80.30 85.06 85.98 81.14 84.95 85.86

led 73.35 73.98 73.97 73.91 73.96 73.94
genF1 95.07 95.07 95.03 95.06 95.06 95.05
genF2 92.18 94.11 94.09 93.47 94.09 94.06
genF3 97.51 97.51 97.50 97.48 97.51 97.50
genF4 91.61 94.68 94.66 93.80 94.67 94.63
genF5 78.36 92.83 92.83 84.25 92.71 92.80
genF6 90.64 93.34 93.32 91.95 93.33 93.28
genF7 96.18 96.84 96.83 96.38 96.83 96.79
genF8 99.40 99.43 99.42 99.40 99.42 99.42
genF9 94.86 96.82 96.83 95.77 96.82 96.79

genF10 99.88 99.89 99.89 99.88 99.89 99.89
average 84.02 90.33 90.68 86.28 90.74 90.97

148 CHAPTER 7. ENSEMBLE EVALUATION

rtc/rtcn data sets where hot5 is ahead by such a margin that overall the

average accuracy is higher (see Section 7.2 for detailed analysis). This is a case

where the average values are misleading. On the whole bag and hot are fairly

similar with different strengths and weaknesses. One of the option trees clear

strengths is memory efficiency—it is better than bagging in the most limited

memory environment, and in general it uses fewer tree nodes while achieving

similar accuracy.

Learning curves for all methods in 400MB are plotted on the left side of

Figures 7.1-7.5. The poor performance of boosting stands out most on the

genF1-genF10 data.

Alongside each learning curve plot are three plots displaying the distribu-

tion of extra options present in the final option trees. Plotted on the y-axis is

the number of additional options introduced, and on the x-axis is the depth of

the options. The depth of zero represents the root of the tree, and the x-axis

is scaled to accommodate the full depth of the tree. There are several cases

where options were added at the root: rtc, rtcn, led, wave21 and wave40.

In all other cases there were no additional options at the root. It is uncertain

why this is the case, the maximum number of options are exceeded at the root

before it is ready to introduce options. This may suggest that estimation at

the root tends to be more reliable, or is perhaps due to the data sets having

only a single attribute that splits well at the root.

Recall that Kohavi and Kunz [84] concluded that options nearer the root are

more valuable. In general the option trees induced had their options present

in the upper half of the tree. This is a side effect of the option limits and

memory management. Options are allowed during early growth while the tree

is shallow, but later when option limits and memory management prohibit

introduction of further options the trees will continue to deepen, so it is not

surprising that they tend to occur nearer the root of the tree.

7.2 Discussion

Some of the results are puzzling—why does boosting do so poorly, and why

does the option tree stand out against bagging on the rtcn data source?

To help gain greater understanding of differences between the methods, a

bias/variance decomposition analysis is employed. The bias and variance com-

ponents of the error were estimated on two selected data sets in 400MB of mem-

ory. This involved training the algorithms ten times on independent streams of

7.2. DISCUSSION 149

 99.89
 99.9

 99.91
 99.92
 99.93
 99.94
 99.95
 99.96
 99.97
 99.98
 99.99

 100

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTS - sampled every 50 million examples

HTNBA
BAG3
BAG5

BAG10
BOOST3
BOOST5

BOOST10
HOT3
HOT5

HOT10

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16

maxOptions=3

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16

maxOptions=5

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16

RTS maxOptions=10

 77.7

 77.8

 77.9

 78

 78.1

 78.2

 78.3

 78.4

 78.5

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTSN - sampled every 10 million examples

 0
 2
 4
 6
 8

 0 5 10 15 20 25

maxOptions=3

 0
 2
 4
 6
 8

 0 5 10 15 20 25

maxOptions=5

 0
 2
 4
 6
 8

 0 5 10 15 20 25

RTSN maxOptions=10

 74

 76

 78

 80

 82

 84

 86

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTC - sampled every 10 million examples

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12

maxOptions=3

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12

maxOptions=5

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12

RTC maxOptions=10

 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RTCN - sampled every 10 million examples

 0
 2
 4
 6
 8

 0 2 4 6 8 10

maxOptions=3

 0
 2
 4
 6
 8

 0 2 4 6 8 10

maxOptions=5

 0
 2
 4
 6
 8

 0 2 4 6 8 10

RTCN maxOptions=10

Figure 7.1: Part 1 of learning curves for ensemble methods (left) and hot
option distribution (right) in 400MB memory limit.

150 CHAPTER 7. ENSEMBLE EVALUATION

 92.4
 92.6
 92.8

 93
 93.2
 93.4
 93.6
 93.8

 94
 94.2
 94.4
 94.6

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RRBFS - sampled every 20 million examples

HTNBA
BAG3
BAG5

BAG10
BOOST3
BOOST5

BOOST10
HOT3
HOT5

HOT10

 0
 2
 4
 6
 8

 0 10 20 30 40 50 60

maxOptions=3

 0
 2
 4
 6
 8

 0 10 20 30 40 50 60

maxOptions=5

 0
 2
 4
 6
 8

 0 10 20 30 40 50 60

RRBFS maxOptions=10

 97.5

 98

 98.5

 99

 99.5

 100

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

RRBFC - sampled every 10 million examples

 0
 2
 4
 6
 8

 0 5 10 15 20 25 30 35 40 45

maxOptions=3

 0
 2
 4
 6
 8

 0 5 10 15 20 25 30 35 40 45

maxOptions=5

 0
 2
 4
 6
 8

 0 5 10 15 20 25 30 35 40 45

RRBFC maxOptions=10

 73.9

 73.92

 73.94

 73.96

 73.98

 74

 74.02

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

LED - sampled every 20 million examples

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16

maxOptions=3

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16

maxOptions=5

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16

LED maxOptions=10

 85

 85.2

 85.4

 85.6

 85.8

 86

 86.2

 86.4

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

WAVE21 - sampled every 10 million examples

 0
 2
 4
 6
 8

 0 10 20 30 40 50 60

maxOptions=3

 0
 2
 4
 6
 8

 0 10 20 30 40 50 60

maxOptions=5

 0
 2
 4
 6
 8

 0 10 20 30 40 50 60

WAVE21 maxOptions=10

Figure 7.2: Part 2 of learning curves for ensemble methods (left) and hot
option distribution (right) in 400MB memory limit.

7.2. DISCUSSION 151

 84.6

 84.8

 85

 85.2

 85.4

 85.6

 85.8

 86

 86.2

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

WAVE40 - sampled every 10 million examples

 0
 2
 4
 6
 8

 0 10 20 30 40 50

maxOptions=3

 0
 2
 4
 6
 8

 0 10 20 30 40 50

maxOptions=5

 0
 2
 4
 6
 8

 0 10 20 30 40 50

WAVE40 maxOptions=10

 93

 93.5

 94

 94.5

 95

 95.5

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF1 - sampled every 20 million examples

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

maxOptions=3

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

maxOptions=5

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

GENF1 maxOptions=10

 92

 92.5

 93

 93.5

 94

 94.5

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF2 - sampled every 20 million examples

 0
 2
 4
 6
 8

 0 5 10 15 20 25

maxOptions=3

 0
 2
 4
 6
 8

 0 5 10 15 20 25

maxOptions=5

 0
 2
 4
 6
 8

 0 5 10 15 20 25

GENF2 maxOptions=10

 96.2

 96.4

 96.6

 96.8

 97

 97.2

 97.4

 97.6

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF3 - sampled every 50 million examples

HTNBA
BAG3
BAG5

BAG10
BOOST3
BOOST5

BOOST10
HOT3
HOT5

HOT10

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16

maxOptions=3

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16

maxOptions=5

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16

GENF3 maxOptions=10

Figure 7.3: Part 3 of learning curves for ensemble methods (left) and hot
option distribution (right) in 400MB memory limit.

152 CHAPTER 7. ENSEMBLE EVALUATION

 93
 93.2
 93.4
 93.6
 93.8

 94
 94.2
 94.4
 94.6
 94.8

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF4 - sampled every 20 million examples

 0
 2
 4
 6
 8

 0 5 10 15 20 25 30

maxOptions=3

 0
 2
 4
 6
 8

 0 5 10 15 20 25 30

maxOptions=5

 0
 2
 4
 6
 8

 0 5 10 15 20 25 30

GENF4 maxOptions=10

 88
 88.5

 89
 89.5

 90
 90.5

 91
 91.5

 92
 92.5

 93

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF5 - sampled every 20 million examples

HTNBA
BAG3
BAG5

BAG10
BOOST3
BOOST5

BOOST10
HOT3
HOT5

HOT10

 0
 2
 4
 6
 8

 0 5 10 15 20 25 30 35 40

maxOptions=3

 0
 2
 4
 6
 8

 0 5 10 15 20 25 30 35 40

maxOptions=5

 0
 2
 4
 6
 8

 0 5 10 15 20 25 30 35 40

GENF5 maxOptions=10

 91.8

 92

 92.2

 92.4

 92.6

 92.8

 93

 93.2

 93.4

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF6 - sampled every 20 million examples

 0
 2
 4
 6
 8

 0 5 10 15 20 25

maxOptions=3

 0
 2
 4
 6
 8

 0 5 10 15 20 25

maxOptions=5

 0
 2
 4
 6
 8

 0 5 10 15 20 25

GENF6 maxOptions=10

 96
 96.1
 96.2
 96.3
 96.4
 96.5
 96.6
 96.7
 96.8
 96.9

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF7 - sampled every 20 million examples

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

maxOptions=3

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

maxOptions=5

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

GENF7 maxOptions=10

Figure 7.4: Part 4 of learning curves for ensemble methods (left) and hot
option distribution (right) in 400MB memory limit.

7.2. DISCUSSION 153

 99.26
 99.28

 99.3
 99.32
 99.34
 99.36
 99.38

 99.4
 99.42
 99.44

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF8 - sampled every 50 million examples

HTNBA
BAG3
BAG5

BAG10
BOOST3
BOOST5

BOOST10
HOT3
HOT5

HOT10

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

maxOptions=3

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

maxOptions=5

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

GENF8 maxOptions=10

 96.1

 96.2

 96.3

 96.4

 96.5

 96.6

 96.7

 96.8

 96.9

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF9 - sampled every 20 million examples

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

maxOptions=3

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

maxOptions=5

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

GENF9 maxOptions=10

 99.855

 99.86

 99.865

 99.87

 99.875

 99.88

 99.885

 99.89

 99.895

 0 2 4 6 8 10

%
 o

f t
es

t s
et

 c
or

re
ct

ly
pr

ed
ict

ed

training time (hours)

GENF10 - sampled every 100 million examples

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

maxOptions=3

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

maxOptions=5

 0
 2
 4
 6
 8

 0 2 4 6 8 10 12 14 16 18

GENF10 maxOptions=10

Figure 7.5: Part 5 of learning curves for ensemble methods (left) and hot
option distribution (right) in 400MB memory limit.

154 CHAPTER 7. ENSEMBLE EVALUATION

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

HTNBA

BAG3
BAG5

BAG10

BOOST3

BOOST5

BOOST10

HOT3
HOT5

HOT10

bias variance total error

Figure 7.6: Bias variance decomposition on rtcn.

ten million examples each, and testing on ten thousand held-out test examples.

From this procedure the bias and variance were computed according to Kohavi

and Wolpert [86]. A smaller scale experiment was required to collect these re-

sults. Although not training each model as much as in the final experiments,

repeating the procedure ten times makes it a time demanding process. Even

though the results are based on smaller training sets they are still expected to

expose meaningful differences between the methods.

Figure 7.6 shows the bias/variance decomposition estimates on the rtcn

data. On this particular data set in Section 7.1, bag did substantially worse

than hot. The bias of bag and hot is similar on this problem, close to

the bias of a single tree, although the bias is relatively constant between the

hot sizes whereas it noticeably increases with the size of the bag ensembles.

The main difference lies in the estimated variance, which is reduced the most

by hot and also substantially reduces with larger bag ensembles while not

dropping quite as low. The combined effect of the components of error leads

to an overall error in favour of hot, which has the lowest error of all methods.

bag error falls closer to that of a single htnba tree as more trees are combined,

but as reflected in the final accuracy figures in Table 7.2 it is not as accurate.

On this particular data set, which is one of the most complex benchmark data

sets tested, bagging has high variance with three trees and high bias with

7.2. DISCUSSION 155

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

HTNBA

BAG3
BAG5

BAG10

BOOST3

BOOST5

BOOST10

HOT3
HOT5

HOT10

bias variance total error

Figure 7.7: Bias variance decomposition on wave21.

ten. Either way it does not compete with the Hoeffding option tree which

maintains a steady variance, and significantly lower bias that reduces slightly

with additional options. Boosting manages to substantially reduce bias, much

more than the other methods, but has consistently high variance, with overall

error that is worse than the other methods.

Figure 7.7 displays the estimated bias/variance on the wave21 data. In

experiments involving 32 and 400 megabytes of memory, bag was generally

superior to hot on this problem (Table 7.5). Once again the bias of bag

increases with extra trees compared to the steady bias of hot, both of which

have more bias than a single tree. This time as the number of trees in the

bag increases, bag manages to reduce variance more than any other method,

which results in the lowest errors overall when five or ten trees are combined.

hot is competitive but does not reduce the variance as significantly. Boosting

excels at reducing bias, the lowest of the methods, but is less accurate again

due to high variance.

Bias/variance decomposition analysis on these two data sets suggests the

following trends:

1. Both bagging and option trees are successful at reducing variance, which

explains their ability to reduce error beyond a single tree.

156 CHAPTER 7. ENSEMBLE EVALUATION

2. In terms of differences between bagging and option trees, adding trees

to bagging tends to have stronger effects on bias and variance, whereas

option trees are much more steady as additional options are introduced.

On certain data sets, option trees can reduce the variance considerably

more than bagging, but the majority of the time bagging has slightly

outperformed option trees in this regard.

3. Boosting performs poorly due to high variance.

The boosting result is disappointing considering that it offers so much

promise in the batch setting. Transferring the generalization power of boosting

from the batch setting to the data stream setting does not appear to be as

trivial as one might think. The intuitive understanding of getting models to

concentrate more on examples that are harder for previous models to classify

gives the impression that it should be reproducible in the stream setting. After

all, Breiman [13] set out to prove with arc-x4 that the “magic” of boosting

does not lie in specific details.

The study of Brain and Webb [11] suggests that management of bias may

be more important than managing variance on large data sets. Reducing bias

is a difficult problem, boosting is the most successful of the tested methods at

reducing bias, but fails to also reduce variance, so fails at reducing error more

than the other methods. Boosting trees in the batch setting has a tendency to

produce large trees, but in this setting growth has been restricted. Therefore,

the failure may partly be due to lack of space, and also since the hypothesis

space is enlarged, there is increased risk of choosing a poorer hypothesis.

Preliminary experimentation suggesting that boosting was not competing

well with other methods motivated a search for an adaptation of boosting

that is more successful. Attempted implementations included several direct

parallel boosting adaptations of AdaBoost [44], including its confidence-rated

version [109]. For example, following the half correct/half incorrect weight-

ing observation exploited by Oza and Russell [102] and inspired by Schapire’s

original hypothesis boosting algorithm [107], one attempt was to boost by

filtering examples—subsequent models in sequence would get a correctly clas-

sified example followed by an incorrectly classified one, with any examples not

conforming to the desired pattern being discarded. Other attempts included

arc-x4 [13], MadaBoost [31] and stream adaptations of the alternating decision

tree algorithm [43]. A few block boosting approaches were also investigated.

Successful application in the data stream setting was difficult to find despite

7.2. DISCUSSION 157

Breiman’s suggestion that the essential formula lies only in the adapting, re-

sampling and combining process.

Oza and Russell’s algorithm was chosen as the boosting representative be-

cause it performed among the best, it compliments the online bagging im-

plementation and has literature to support it as a successful method. Un-

fortunately, when Oza and Russell demonstrate the ability of their method

they do so without mention of fixed memory limits. Their experimental re-

sults [102, 101] using Utgoff’s ITI decision tree algorithm [118] as the base

learner exhibit similar tendencies of online boosting competing poorly with

online bagging. To improve the situation they try to bolster online boosting

via “priming”, which helps, but is not a solution explored by this thesis because

it deviates from a purely stream-based solution. In their case they combine

100 trees, but note that in using ITI they are restricted to small data sets due

to its poor scalability.

Deeper analysis of where the boosting attempts failed would often point

towards problems with the example weighting process. Without a normaliza-

tion step, it was observed that weights on particular examples in the stream

grow uncontrollably, to the point where their magnitude exceeded the repre-

sentational capacity of the machine. This problem is believed to represent

a fundamental shortcoming of AdaBoost in streams. Domingo and Watan-

abe [31] made a similar observation, which is why their MadaBoost algorithm

limits the magnitude of example weights. Experimenting with simple solutions

such as this removed the symptoms but also diluted the boosting procedure,

and did not show signs of the spectacular generalization promised by boosting.

Why does this weighting problem occur on streamed data and not in the

batch case? In the batch setting the weights are calculated over a known

and fixed set of examples. In a stream, new examples are being continually

introduced, potentially representing areas of the concept space that have not

been encountered before. It is difficult to estimate sensible weights for these

examples in relation to previous examples and previous weights.

AdaBoost was conceived as a boosting by sampling method, but what is

really needed for successful data stream application is a boosting by filtering

method. As reviewed in Section 6.1.2, several researchers have attempted

to supply such a method [31, 20], but the proposals so far have lacked the

simplicity and elegance of AdaBoost. Intuitive and successful boosting in the

data stream setting, that is on par with AdaBoost in the batch setting, remains

an open problem.

158 CHAPTER 7. ENSEMBLE EVALUATION

The question of whether several models can provide benefit over a single

model of the same size has been answered affirmatively, although the evidence

suggests that plenty of memory is required to make ensembles worthwhile. In

the highly restrictive 100KB environment a single tree is difficult to compete

with, although the memory efficient option tree shows the most promise.

7.3 Summary

This experimental study looked at limited memory induction of decision tree

ensembles from data streams. Three main methods were explored—bagging

and boosting, two ensemble methods that are very popular in batch learning,

and the third a powerful tree representation known as option trees. In empirical

comparison bagging and option trees both showed ability to outperform a single

tree, by significantly reducing the variance of individual trees, with varying

strengths depending on the situation. Option trees were the most efficient in

memory usage, showing the best ensemble performance in 100KB of memory,

and showing significant improvement over bagging in a few 32MB/400MB

cases. Overall bagging was able to outperform option trees in many other

cases, a more consistent performer when sufficient memory is available. The

general finding is that the more trees to be combined in an ensemble, the

more memory needed to gain an advantage. No successful implementation of

boosting for data streams was found. Boosting, or more specifically, AdaBoost,

is perhaps the most powerful ensemble method known in batch learning. It is

concluded that a truly successful and straightforward translation of AdaBoost

to the data stream setting has yet to be discovered.

The change from a single htnba tree to a Hoeffding option tree with five op-

tions per example, hot5, caused an increase in average accuracy from 88.88%

to 89.31%, which is a relative improvement of 0.48%. This improvement re-

duced training speeds across all environments by an average of 21.84% and

reduced prediction speeds by an average of 23.50%.

Within each environment the largest relative accuracy improvement was

in 100KB, with a gain of 0.98%, which reduced training speed by 22.39% and

prediction speed by 20.73%. In 32MB the relative accuracy gain was 0.23%,

with speed reductions of 14.29% during training and 21.54% during prediction.

In 400MB accuracy was increased by an average of 0.26%, which happens to

be a larger gain for this environment than the 0.10% improvement found in

the numeric attribute study. Training speed reduced by a third in 400MB, and

7.3. SUMMARY 159

prediction speed reduced by 23.50%.

160 CHAPTER 7. ENSEMBLE EVALUATION

Chapter 8

Conclusions

A central argument of this thesis is that the improvement of data stream classi-

fication algorithms requires a complete evaluation framework. The framework

should train and test on sufficiently large amounts of data for realistic mea-

surement, and should account for all three dimensions that are critical aspects

of behaviour—error, space and time.

Evaluation will benefit from diverse and challenging benchmark data sets.

Researchers need to be aware that there is a shortage of suitable real-world data

sets for evaluating classification of streamed examples. The only alternative

is artificial data generation, until realistically large and public real-world data

sets become freely available.

The framework developed here is used to improve Hoeffding trees, a par-

ticular class of algorithm that is known to perform well. Improvements to the

basic algorithm are quantified. The benefits of an extensive evaluation process

are demonstrated for example in the findings relating to tree prediction. The

smaller-scale studies of Gama et al. [50, 52] concluded that permanent use

of Naive Bayes prediction in the leaves of decision trees provides general im-

provement. The broader evaluation performed by this thesis discovered cases

where it actually performs worse. This was found by testing on more diverse

data sources, with differing memory limits and involving substantially more

examples. The findings enabled the proposal of a new adaptive algorithm that

is shown to outperform other prediction approaches.

The demands of data stream problems will differ depending on circum-

stance. Nevertheless, data stream problems generally share four common de-

mands. Algorithms demonstrated to best meet these demands will most easily

apply to a wide range of data stream scenarios. The demands are:

161

162 CHAPTER 8. CONCLUSIONS

1. The algorithm must process examples in a single pass, accepting each

example in the order that it arrives. This capability can be tested by a

framework that supplies training examples one-by-one to the algorithm,

perhaps inspecting the model in between. A desirable property of an

algorithm is low sensitivity to the order of examples. The sensitivity of

an algorithm to example ordering can be tested by observing the variance

in behaviour between training runs as order is manipulated.

2. The algorithm must work within limited memory. Algorithms that lack

guaranteed bounds on memory usage are troublesome for data stream

problems because they could fail. The most simple strategy available to

any algorithm is to cease learning once memory is exhausted, however

empirical evidence collected for this thesis suggests that it is worthwhile

to find strategies enabling the algorithm to continue working, thus learn

as much as possible in a more limited capability from further examples

once memory is full. An evaluation framework can enforce this by moni-

toring the amount of memory that the algorithm uses, possibly aborting

if the requirement is violated.

3. The algorithm must work in a limited amount of time, both per training

example and per test example. As with Hoeffding trees, the time per

example may be directly related to the size in memory, where a maxi-

mum size directly translates into maximum time needed to update and

predict. This requirement is not as well defined as the others, because

the acceptability of a solution is heavily dependent on the time demands

of the intended application. A testing framework can measure the speed

at which examples are processed, and could be told to abort if a target

speed is not attained or start to drop excess examples.

4. The algorithm should be able to provide predictions for new examples at

any point between training examples. A framework can test this ability

by periodically requesting predictions, and can use this procedure to

monitor performance over time.

The evaluation framework developed in Chapter 2 is capable of measuring

how well an algorithm can meet the four demands of data stream classification.

Practitioners facing a known problem can use the framework to help decide

the best algorithm for their needs. They will be able to specify the hardware

speed and memory limit before testing competing solutions.

163

To conduct a general study of algorithm behaviour and avoid having a spe-

cific scenario in mind, the range of deployment scenarios has been divided into

three general cases: sensor/100KB, handheld/32MB and server/400MB. The

base algorithm described in Chapter 3, the Hoeffding tree induction algorithm,

is shown via the framework to be capable of meeting the demands, thus it is

generally applicable to data stream problems.

Having such an appropriate framework enables:

1. Empirical results to be produced that are of a depth and scale beyond

anything previously reported.

2. Algorithm varieties to be directly compared in terms of how well they

perform at classifying data streams in the three dimensions of interest—

error, space and time.

3. Production of interesting and sometimes surprising results that were pre-

viously unknown. The insight gained can motivate more algorithm de-

velopment.

Having the sensor/handheld/server environment breakdown creates the op-

portunity to observe how algorithm suitability can differ depending on appli-

cation. For example, a single Hoeffding tree with majority class prediction

is hard to improve when only 100KB of memory is available. Any enhance-

ment that increases the rate of memory consumption, such as functional leaf

predictions or inducing ensembles of trees, rarely proved worthwhile in this en-

vironment. In contrast, the same enhancements would demonstrate significant

improvement when more memory was available.

Having a state-of-the-art base algorithm and a means to quantify poten-

tial modifications has allowed the demonstration of improvements to Hoeffding

tree induction. Chapter 3 looked at several minor improvements to the general

algorithm. Chapter 4 studied the important but previously unresolved issue of

how to best deal with continuous numeric attributes. The study in Chapter 5

tried improving the prediction strategy of the trees. Following the background

investigated in Chapter 6, Chapter 7 concluded experimentation by measur-

ing the performance implications of combining multiple Hoeffding trees into

classifier ensembles.

The studies demonstrate progressive improvement of decision tree induc-

tion. The study of numeric approximation showed that small local approxi-

mation will globally outperform methods that are locally more accurate but

164 CHAPTER 8. CONCLUSIONS

Table 8.1: Average accuracy gains, relative % change from previous.
enhancement 100KB 32MB 400MB average
numeric 12.59% 0.41% 0.10% 3.91%
prediction -0.08% 0.08% 0.44% 0.15%
ensemble 0.98% 0.23% 0.26% 0.48%

combined 13.60% 0.72% 0.81% 4.57%

Table 8.2: Average training speed losses, relative % change from previous.
enhancement 100KB 32MB 400MB average
numeric -13.75% -17.65% 50.00% -11.88%
prediction -2.90% 0.00% 0.00% -2.25%
ensemble -22.39% -14.29% -33.33% -21.84%

combined -35.00% -29.41% 0.00% -32.67%

Table 8.3: Average prediction speed losses, relative % change from previous.
enhancement 100KB 32MB 400MB average
numeric -7.95% -4.17% -7.79% -6.75%
prediction 1.23% -5.80% -25.35% -9.50%
ensemble -20.73% -21.54% -30.19% -23.50%

combined -26.14% -29.17% -51.95% -35.44%

consume more memory. The study of prediction methods at the tree leaves

looked at the standard and robust method versus a method that can signifi-

cantly improve accuracy but that is also worse in several cases—experiments

showed that adapting the leaves based on previous local performance can form

a hybrid method that outperforms either approach on average. The study of

further improvements to classification accuracy, involving ensembles and op-

tion trees, demonstrated that combinations of trees can outperform a single

tree, but with the proviso that memory restrictions must be carefully consid-

ered.

Table 8.1 lists the three relative accuracy gains from the main improve-

ments in isolation, and also the improvement when all three enhancements are

combined. Note that the average column does not form a direct average of

the three other columns due to the values being a relative change—in the case

of the average it is a relative change from the previous average over the envi-

ronments. Improving the numeric method increased average accuracy across

all three environments by 3.91%, relative to before. Improving the prediction

strategy increased relative accuracy by a further 0.15%, and using an option

tree added an additional relative improvement of 0.48%. The total relative im-

8.1. CONTRIBUTIONS 165

provement of all enhancements combined is 4.57%. As this is averaged across

all data sets and environments, there are individual cases where the improve-

ment was more significant, such as wave21, where the accuracy improved by

a relative percentage of 10.03%. Tables 8.2 and 8.3 show the speed costs of

the enhancements. Improving the prediction method had the least average im-

pact on training speed, while ensemble methods caused the largest reduction

of both training and prediction speeds. Combining all of the enhancements

reduced training speed by 32.67% on average and prediction speed by 35.44%

on average.

In 100KB of memory, the total relative accuracy improvement was 13.60%,

due mostly to the 12.59% gain by improved numeric approach. In this envi-

ronment, the prediction enhancement decreased accuracy by 0.08%, while the

option tree introduced an accuracy gain of 0.98%. The combined enhance-

ments reduced training speed by an average of 35% and reduced prediction

speed by an average of 26.14%.

In 32MB of memory, the total relative gain was 0.72% with the largest

improvement also coming from the choice of numeric strategy. Training speed

reduced due to the numeric and ensemble improvements, when all improve-

ments were combined the speed reduction was 29.41%, along with a relative

prediction speed reduction of 29.17%.

In 400MB, the total relative accuracy improvement was 0.81%, with the

best gain coming from the prediction strategy enhancement. The numeric im-

provement managed to increase training speed in large memory, which counter-

acted the speed reduction of ensembles on average, meaning that the training

speed remained constant on average when all of the enhancements were com-

bined. The prediction speed, however, reduced by half.

A lesson to be learned from the studies is that when memory resources are

limited it is often better to take a simple and less demanding approach, one

that sacrifices accuracy at the local level, because it is likely that in causing

less interruption to the global induction process that a more accurate model

overall will be produced.

8.1 Contributions

The contributions of this thesis to the field of data stream classification can

be divided into several significant areas:

166 CHAPTER 8. CONCLUSIONS

1. Evaluation Framework

Although the basic procedure is not new, similar in process to Dominogs

and Hulten [32], the survey of work in Section 2.1 suggests that such

rigorous evaluation is rare in practice. In particular, the crucial element

of memory management is often overlooked. The framework suggested by

this thesis is motivated by ensuring practical and realistic measurement of

data stream classification algorithms. The usefulness of the framework is

clearly demonstrated by the outputs reported in this thesis. Besides the

general procedure, the framework includes a suggested division into three

representative usage scenarios, and a suite of synthetic data generators.

The hope is that progress in the field can be made by adopting similar

practices.

2. Algorithm Development

The Hoeffding tree induction algorithm is enhanced in several ways not

suggested before.

• Multi-class Gaussian approach to numeric approximation

(Section 4.2.4).

• Adaptively chosen majority class/Naive Bayes prediction strategy

(Section 5.3).

• Hoeffding Option Tree induction algorithm, including a novel ap-

proach to limiting options globally in a tree (Section 6.2.3).

• Memory management implementation details (Section 3.3), includ-

ing speed optimizations (Section 3.4.1).

• Universal skewed-split prevention (Section 3.2.6).

3. Empirical evidence

The results reported in this thesis represent a scale—in numbers of train-

ing examples, testing examples, memory limits and data sources—that

is beyond anything else previously reported. Direct comparisons are

provided between many competing methods that have not been experi-

mentally compared before.

• Comparison of numeric methods (Chapter 4)

8.1. CONTRIBUTIONS 167

– An exhaustive binary tree method that retains all information

in memory in order to make a precise decision is often outper-

formed by methods that deliberately lose information to con-

serve space.

– The methods using the smallest amount of space perform the

best. In particular the smallest method of all, a Gaussian ap-

proximation that explores ten local split possibilities, is found

to be among the most competitive while being less susceptible

to data order than other approaches.

• Comparison of prediction methods (Chapter 5)

– Naive Bayes prediction used permanently, or after waiting for

a fixed number of observations, sometimes performs worse than

majority class prediction.

– Adaptively choosing between Naive Bayes and majority class

prediction per leaf, based on estimated accuracy, is shown to

perform better on average than either method alone.

• Comparison of ensemble methods (Chapter 7)

– Adaptations of AdaBoost to the data stream setting perform

poorly.

– An adaption of bagging and a novel Hoeffding option tree algo-

rithm are both shown to be capable of outperforming a single

Hoeffding tree. They do so by successfully reducing the vari-

ance of the trees.

– Trends between memory limits and ensemble sizes suggest that

as more trees are included in combination, more memory is

needed to earn accuracy gains.

• Two previously suggested enhancements to Hoeffding tree induc-

tion were found to be mostly ineffective at raising accuracy—they

are pre-pruning (Section 3.2.4) and poor attribute removal (Sec-

tion 3.3.1).

• General differences between memory-restricted environments

– In 100KB of memory the simplest/smallest methods fared best.

Apart from simplifying the numeric approximation method it

was difficult to find any enhancement that demonstrates a con-

168 CHAPTER 8. CONCLUSIONS

vincing improvement over the basic algorithm of a single Ho-

effding tree using majority class prediction.

– In 32MB of memory, accuracy was improved by adaptive Naive

Bayes predictions, and improved further with bagging or option

trees. More training examples could be processed in ten hours

than in the other environments. The 100KB trees terminated

early due to exhausting memory until no more growth was pos-

sible. The 400MB trees were slower at processing examples due

to actively exploring many more possibilities for growth.

– In 400MB of memory the accuracy gains of more memory-

intensive methods were most evident, such as ten trees/options

combined via bagging or option trees. Despite being trained

on less examples than the 32MB environment, the models were

more complex and often the most accurate.

4. MOA (Section 3.4), an open-source Java software implementation of all

algorithms and the evaluation framework—freely available at:

http://sourceforge.net/projects/moa-datastream/

8.2 Future Work

Classification of high speed streams of examples is a discipline that is a very

recent branch of machine learning, which itself is a field of research that is still

in its infancy, so there is much left to explore. Avenues for future work have

already been mentioned in several places in the thesis.

Chapter 1 explained that concept drift in data streams is beyond the scope

of this thesis. For streams that occur over a substantial period there could be

factors that cause the underlying concept to shift, rendering previous observa-

tions less relevant and causing the model to become outdated. The evaluation

framework could be extended to test how well an algorithm responds to con-

cept drift, by using synthetic generators that shift a concept and a test set that

changes accordingly over time. Getting algorithms to successfully cope with

concept drift is a very active area of research and typically involves revising

old hypotheses formed by the model and focussing more on the most recent

examples. In terms of decision trees this entails appropriate and adaptive

pruning of the tree. CVFDT [73] is an extension of Hoeffding tree induction

8.2. FUTURE WORK 169

that is designed to manage concept drift. In terms of ensemble methods, the

base members of the ensemble could be pruned to favour the models that best

predict the recent trends in the stream, such as suggested by Chu and Zan-

iolo [25]. As soon as memory management becomes active it creates a bias

towards certain areas of knowledge within a model. This bias could be tuned

to treat more recent information as more valuable than older observations. In

terms of option trees, each option can potentially explore concepts of varying

relevance, so it may be possible to assign weights to options to adapt to shifting

concepts, or prune the options that are estimated to be the least relevant.

Chapter 2 settled on an evaluation procedure that does not produce esti-

mates of the significance between observed differences. One method of produc-

ing confidence intervals is to perform multiple runs and measure the variance.

This is costly to perform when each run already requires substantial time to

complete. A possible compromise may be the use of another less costly es-

timate of statistical significance, such as McNemar’s test [26] which can be

computed simply by looking at the agreement between competing algorithms

on each test example. Chapter 2 also mentioned that it may be possible to use

an exponentially decaying interleaved evaluation procedure, which may help to

overcome the interleaved method’s problem of over-penalizing early mistakes.

Chapter 3 raised issues about pre-pruning, as it did not appear to make

a significant difference to experimental results. More investigation is needed

to determine if and when pre-pruning is a worthwhile component of Hoeffding

tree induction.

Chapter 4 revealed difficulties with the Gaussian numeric approximation

method on two particular synthetic data sources, both of which are very similar

in nature, genF2 and genF5. Other numeric approximation methods do

not appear to be affected. The problem is overcome by ensemble methods,

and interestingly, will also disappear if other conditions are changed, such as

the splitting criterion or restricting the tree to two-way splits only. The tree

does poorly because it favours splitting on an irrelevant multi-way nominal

split over a relevant two-way numeric split. This result detracts from the

otherwise competent performance of gauss10. The problem could be related

to the problems seen with gauss100 which also makes poor split decisions on

other data sets. It is speculated that these problems could be due to some

unintentional bias being present in the split decisions, and perhaps a solution

exists similar to the bias correction demonstrated by Quinlan [105].

Another suggestion relating to Gaussian numeric approximation is that the

170 CHAPTER 8. CONCLUSIONS

process could be made less susceptible to outliers by not tracking the absolute

minimum and maximum values. Instead, considering points in the range that

are several standard deviations away from the class approximations may be a

more robust solution. It will also significantly save memory by storing only

three values per attribute and class instead of five.

Chapter 5 did not explore the tailoring of memory management to Naive

Bayes leaf predictions. It is possible that better decisions could be made by

taking the accuracy of Naive Bayes models in account when computing the

‘promise’ of leaves. This information is recorded by the adaptive method but

was not used when deciding which leaves to deactivate first. Interaction be-

tween poor attribute removal and Naive Bayes prediction could also be further

investigated.

A significant result of Chapter 7 is that attempts at getting competitive

results from AdaBoost in data streams were not successful. It is observed

that the origins of AdaBoost lie in the boosting by sampling adaption of the

PAC-learning framework, and as such is more suitable to the batch setting.

It is believed that a boosting by filtering method is more likely to succeed in

the data stream setting. The solution needed may be an adaptive boosting

algorithm, that adapts to the errors of the base hypotheses like AdaBoost,

but one that is expressed as a boosting by filtering method. The work of

Domingo and Watanabe [31] and Bshouty and Gavinsky [20] claim to offer

such a solution, although the former did not perform well when tested, and

the latter lacks the simplicity and intuitive appeal of AdaBoost, while also

lacking empirical evidence of performance.

Beyond the suggestions that have already been mentioned there are plenty

of possibilities for further investigation. The evaluation framework was de-

signed to test classification algorithms. Perhaps there are ways that it could

be improved, with more efficient use of time or even more useful comparison

between the behaviour of algorithms. Apart from classification, other machine

learning problems face similar challenges from data streams. These include re-

gression, predicting continuous numeric outputs, and clustering, learning from

examples without guidance from class labels.

This thesis has focussed on evaluating and improving decision tree methods.

There could be further enhancements that improve decision tree induction.

Future research directions include the study of other classification algorithms

besides decision trees. There are plenty of other machine learning methods

that are successful in batch learning, some of which researchers have already

8.2. FUTURE WORK 171

tried to adapt to data streams, and others that are yet to be investigated. Use

of a common evaluation framework will enable diverse methods to be compared

and expose their relative strengths and weaknesses.

172 CHAPTER 8. CONCLUSIONS

Appendix A

Detailed Result Tables

173

174 APPENDIX A. DETAILED RESULT TABLES

The figures in the following tables represent the final value that was mea-

sured at the completion of evaluation. The meaning of each table column is

described below:

accuracy the percentage of examples that the tree was able to correctly pre-

dict from the one million examples reserved for testing

training examples the total number of examples that were used to train the

tree before evaluation was complete

examples to full memory the number of training examples needed by the

algorithm to grow the size of the tree to the memory limit (if the limit

was in fact hit)

active leaves the number of active leaves in the tree (those that are capable

of further splitting and Naive Bayes prediction)

inactive leaves the number of leaves that have been deactivated by the mem-

ory management scheme (these are no longer capable of splitting or Naive

Bayes prediction)

total nodes the total number of nodes in the tree, including internal decision

nodes

tree depth the depth of the tree—the length of the longest path from the

root to a leaf

training speed the speed that the tree was able to train, expressed as a

percentage of the maximum speed that examples can be generated from

the data source, as measured in Section 2.6

prediction speed the speed with which the tree could make predictions on

the test data, again expressed as a percentage of maximum stream speed

A.1. NUMERIC METHODS 175

A.1 Numeric Methods

176 APPENDIX A. DETAILED RESULT TABLES

Table A.1: vfml10 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 96.49 17 <1 0 8.12 11.4 8 76 84
rtsn 75.80 8 <1 0 8.47 11.5 8 83 87
rtc 61.37 3 <1 0 3.88 5.05 5 96 97

rtcn 53.63 3 <1 0 3.96 5.09 6 100 100
rrbfs 87.69 15 <1 0 4.99 9.97 18 69 84
rrbfc 87.84 6 <1 0 2.68 5.35 15 76 86

wave21 80.80 14 <1 0 4.00 7.99 14 86 91
wave40 80.28 9 <1 0 2.87 5.73 13 93 97
genF1 95.07 15 <1 0 11.5 13.5 9 49 76
genF2 93.94 10 <1 0 11.8 13.4 13 58 73
genF3 97.52 55 <1 0 12.5 13.9 8 61 80
genF4 94.46 5 <1 0 11.3 13.3 13 59 74
genF5 92.45 5 <1 0 10.9 13.1 13 58 73
genF6 89.70 11 <1 0 8.55 11.9 12 60 73
genF7 96.41 10 <1 0 10.9 13.1 15 59 75
genF8 99.40 46 <1 0 11.8 13.5 11 61 79
genF9 95.80 13 <1 0 9.39 12.4 12 59 71

genF10 99.89 203 <1 0 11.7 13.5 14 65 85
average 87.70 25 - 0 8.29 10.8 11 70 83

A.1. NUMERIC METHODS 177

Table A.2: vfml10 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1030 30 28.0 51.7 150 19 10 54
rtsn 78.54 400 <10 14.9 1397 1948 17 11 76
rtc 83.58 370 <10 4.29 638 884 14 57 85

rtcn 64.95 190 <10 4.18 705 931 13 59 76
rrbfs 93.13 1000 20 24.4 570 1188 32 6 53
rrbfc 98.61 910 <10 17.3 216 467 34 21 78

wave21 84.20 900 <10 11.7 426 875 28 22 84
wave40 84.00 730 <10 6.89 324 662 27 37 88
genF1 95.07 690 40 59.2 390 752 19 4 73
genF2 94.10 1040 30 45.0 979 1382 21 5 68
genF3 97.52 1230 190 61.0 314 689 17 7 74
genF4 94.67 1070 20 44.8 936 1288 23 6 71
genF5 92.89 980 <10 37.6 1281 1693 24 5 68
genF6 93.35 1020 20 37.8 1151 1656 29 5 64
genF7 96.82 1080 20 36.9 1244 1560 24 6 65
genF8 99.42 1290 60 46.9 171 293 15 7 74
genF9 96.81 1100 20 39.1 1298 1603 23 6 69

genF10 99.89 1180 380 52.1 47.4 140 18 5 80
average 91.53 901 - 31.8 674 1009 22 16 72

178 APPENDIX A. DETAILED RESULT TABLES

Table A.3: vfml10 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.98 610 ? 68.6 0 128 16 6 70
rtsn 78.53 120 60 351 386 1017 18 4 81
rtc 83.87 90 <10 86.1 474 781 15 14 92

rtcn 66.06 80 20 71.7 474 738 14 24 99
rrbfs 92.43 180 180 418 16.0 867 45 1 40
rrbfc 97.41 70 50 110 38.8 297 45 2 70

wave21 83.50 110 100 185 19.0 409 41 3 79
wave40 83.31 80 60 99.5 40.0 279 35 5 87
genF1 95.07 430 ? 393 0 646 18 2 77
genF2 94.10 300 ? 553 0 732 20 2 71
genF3 97.52 620 ? 259 0 457 14 3 84
genF4 94.66 260 ? 542 0 681 20 1 72
genF5 92.84 210 ? 644 0 865 23 1 62
genF6 93.28 230 ? 570 0 849 31 1 58
genF7 96.79 160 ? 414 0 571 21 1 59
genF8 99.42 470 ? 216 0 293 19 2 74
genF9 96.72 190 ? 683 0 883 23 1 64

genF10 99.89 1060 ? 98.8 0 138 17 5 77
average 91.41 293 - 320 80.4 591 24 4 73

A.1. NUMERIC METHODS 179

Table A.4: vfml100 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 69.96 1 <1 0 0.41 0.51 3 82 89
rtsn 56.87 1 <1 0 0.05 0.06 1 94 95
rtc 54.24 1 <1 0 0.06 0.08 2 98 98

rtcn 53.32 1 <1 0 0.06 0.08 2 100 100
rrbfs 75.28 1 <1 0 0.18 0.35 6 90 98
rrbfc 54.91 1 <1 0 0.03 0.05 2 89 93

wave21 62.48 1 <1 0 0.03 0.05 2 97 98
wave40 58.97 1 <1 0 0.03 0.05 2 98 99
genF1 95.07 26 <1 0 7.38 9.01 9 55 77
genF2 93.92 12 <1 0 7.64 9.08 12 61 73
genF3 97.47 29 <1 0 7.90 8.83 7 65 79
genF4 94.40 5 <1 0 7.65 8.94 10 64 77
genF5 82.81 7 <1 0 4.37 6.78 10 65 76
genF6 89.98 8 <1 0 7.25 8.90 15 64 76
genF7 96.27 9 <1 0 6.52 7.99 13 54 77
genF8 99.38 42 <1 0 7.36 8.51 10 65 76
genF9 95.34 16 <1 0 5.48 7.58 12 65 75

genF10 99.88 583 <1 0 6.10 7.86 13 66 79
average 79.47 41 - 0 3.81 4.71 7 76 85

180 APPENDIX A. DETAILED RESULT TABLES

Table A.5: vfml100 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 100.00 1170 <10 5.22 45.1 91.8 32 12 62
rtsn 78.54 660 <10 2.78 909 1366 22 19 63
rtc 78.51 380 <10 0.99 351 474 13 58 84

rtcn 61.38 240 <10 0.88 309 427 15 71 88
rrbfs 92.94 1160 <10 3.35 402 811 35 7 56
rrbfc 98.16 950 <10 0.88 130 262 45 22 76

wave21 83.89 940 <10 1.67 317 636 31 23 82
wave40 83.66 720 <10 0.84 222 446 31 36 84
genF1 95.06 1130 <10 10.4 463 807 24 6 75
genF2 94.11 1130 <10 9.95 754 1075 21 6 70
genF3 97.51 1240 20 11.0 258 467 16 7 78
genF4 94.69 1160 <10 9.16 753 994 21 6 71
genF5 92.86 1090 <10 9.19 922 1280 24 6 65
genF6 93.32 1070 <10 9.12 927 1272 28 6 65
genF7 96.81 1170 <10 8.72 919 1095 24 6 69
genF8 99.42 1300 20 7.63 177 224 16 7 82
genF9 96.81 710 <10 8.40 748 881 22 4 65

genF10 99.89 710 50 7.37 30.6 52.2 15 3 73
average 90.97 941 - 5.98 480 703 24 17 73

A.1. NUMERIC METHODS 181

Table A.6: vfml100 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 180 ? 34.0 0 59.6 13 2 67
rtsn 78.52 100 <10 45.1 456 746 20 3 80
rtc 81.26 90 <10 13.5 390 539 12 14 92

rtcn 64.64 80 <10 11.0 373 522 14 24 100
rrbfs 92.23 110 20 51.2 106 315 40 1 49
rrbfc 97.72 100 <10 32.8 58.0 182 38 3 81

wave21 83.53 110 20 20.8 89.5 221 28 3 84
wave40 83.40 100 <10 11.8 74.8 173 26 5 92
genF1 95.07 160 130 126 29.1 230 16 1 77
genF2 94.10 140 70 133 108 316 25 1 68
genF3 97.52 210 ? 116 0 172 13 1 83
genF4 94.67 130 70 119 158 345 17 1 72
genF5 92.84 130 60 120 158 441 28 1 56
genF6 93.21 120 40 120 212 456 30 1 60
genF7 96.79 120 50 113 130 319 26 1 60
genF8 99.42 160 ? 93.2 0 113 16 1 79
genF9 96.70 120 40 126 227 477 29 1 58

genF10 99.89 400 ? 43.9 0 60.6 18 2 77
average 91.19 142 - 73.9 143 316 23 4 74

182 APPENDIX A. DETAILED RESULT TABLES

Table A.7: vfml1000 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 71.00 1 <1 0 0.42 0.53 3 77 91
rtsn 56.87 1 <1 0 0.05 0.06 1 88 93
rtc 54.65 1 <1 0 0.07 0.10 3 91 96

rtcn 53.32 1 <1 0 0.06 0.08 2 97 100
rrbfs 59.95 1 <1 0 0.04 0.07 3 82 100
rrbfc 55.23 1 <1 0 0.03 0.05 2 64 95

wave21 62.37 1 <1 0 0.03 0.05 2 92 98
wave40 64.48 1 <1 0 0.03 0.05 2 95 100
genF1 94.81 1 <1 0 0.06 0.11 5 76 80
genF2 93.09 1 <1 0 0.14 0.27 6 74 77
genF3 97.35 1 <1 0 0.19 0.34 4 72 81
genF4 84.13 1 <1 0 0.13 0.19 4 78 83
genF5 71.27 1 <1 0 0.04 0.07 3 79 82
genF6 76.13 1 <1 0 0.07 0.13 5 79 82
genF7 88.63 1 <1 0 0.06 0.11 3 79 82
genF8 98.68 1 <1 0 0.08 0.12 3 76 81
genF9 87.35 1 <1 0 0.06 0.11 3 78 82

genF10 99.77 1 <1 0 0.04 0.07 3 76 82
average 76.06 1 - 0 0.09 0.14 3 81 88

A.1. NUMERIC METHODS 183

Table A.8: vfml1000 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 100.00 1080 <10 3.40 53.9 104 44 11 62
rtsn 78.52 690 <10 2.25 799 1226 23 20 61
rtc 79.99 380 <10 0.50 270 369 15 58 85

rtcn 60.49 230 <10 0.98 259 365 17 70 95
rrbfs 92.78 1150 <10 3.22 359 724 54 7 53
rrbfc 98.01 960 <10 0.60 118 237 46 22 78

wave21 83.73 950 <10 1.30 287 577 36 23 81
wave40 83.51 730 <10 0.84 200 402 34 37 87
genF1 95.06 730 <10 6.47 302 508 23 4 74
genF2 94.10 1110 <10 7.38 662 953 22 6 66
genF3 97.51 1210 <10 6.81 240 421 17 6 78
genF4 94.67 1190 <10 7.88 694 934 20 6 69
genF5 92.87 710 <10 6.77 674 866 23 4 67
genF6 93.30 1110 <10 8.51 845 1176 29 6 66
genF7 96.81 1180 <10 5.38 704 854 23 6 68
genF8 99.42 1270 <10 3.71 140 172 15 7 77
genF9 96.77 1210 <10 7.04 777 923 22 6 70

genF10 99.89 1250 20 3.97 40.4 53.6 15 6 73
average 90.97 952 - 4.28 412 604 27 17 73

184 APPENDIX A. DETAILED RESULT TABLES

Table A.9: vfml1000 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.98 100 <10 12.8 18.2 53.1 20 1 67
rtsn 78.50 90 <10 10.8 329 523 24 3 81
rtc 82.07 80 <10 34.3 195 309 13 13 93

rtcn 63.36 70 <10 7.29 240 344 15 22 99
rrbfs 92.02 100 <10 9.07 83.0 184 38 1 64
rrbfc 97.60 100 <10 12.2 57.3 139 38 3 82

wave21 83.29 110 <10 4.01 60.7 129 24 3 90
wave40 83.06 90 <10 1.69 48.2 99.8 23 5 95
genF1 95.06 110 20 21.8 85.6 157 18 1 78
genF2 94.10 110 20 25.4 143 213 18 1 72
genF3 97.52 120 40 15.4 49.3 78.2 13 1 83
genF4 94.66 110 20 27.6 170 244 16 1 74
genF5 92.84 110 <10 23.8 218 309 22 1 71
genF6 93.23 110 <10 23.8 219 319 28 1 65
genF7 96.79 110 20 23.0 161 233 27 1 64
genF8 99.41 130 70 41.3 35.0 93.0 17 1 79
genF9 96.70 100 <10 22.3 168 258 22 1 71

genF10 99.89 200 ? 25.6 0 31.0 16 1 76
average 91.12 108 - 19.0 127 206 22 3 78

A.1. NUMERIC METHODS 185

Table A.10: bintree method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 66.81 1 <1 0 0.33 0.41 3 70 94
rtsn 56.87 1 <1 0 0.05 0.06 1 82 94
rtc 54.23 1 <1 0 0.06 0.08 2 85 97

rtcn 53.31 1 <1 0 0.06 0.08 2 94 100
rrbfs 59.72 1 <1 0 0.04 0.07 3 68 100
rrbfc 55.27 1 <1 0 0.03 0.05 2 43 95

wave21 62.84 1 <1 0 0.03 0.05 2 82 99
wave40 57.60 1 <1 0 0.02 0.03 1 89 100
genF1 94.79 1 <1 0 0.06 0.11 4 65 81
genF2 77.23 1 <1 0 0.08 0.15 5 75 81
genF3 97.08 1 <1 0 0.10 0.16 2 76 85
genF4 82.24 1 <1 0 0.15 0.20 3 77 84
genF5 71.23 1 <1 0 0.04 0.07 3 75 83
genF6 77.06 1 <1 0 0.04 0.07 3 79 85
genF7 88.63 1 <1 0 0.06 0.11 3 73 81
genF8 98.00 1 <1 0 0.04 0.07 2 71 80
genF9 87.40 1 <1 0 0.06 0.11 3 76 82

genF10 99.77 1 <1 0 0.04 0.07 3 80 86
average 74.45 1 - 0 0.07 0.11 3 76 89

186 APPENDIX A. DETAILED RESULT TABLES

Table A.11: bintree method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 850 <10 2.44 52.2 97.2 21 9 52
rtsn 78.49 610 <10 2.26 709 1065 20 18 66
rtc 73.08 350 <10 0.69 257 347 14 53 83

rtcn 59.14 220 <10 0.35 238 328 15 67 87
rrbfs 92.63 960 <10 2.24 301 607 33 6 59
rrbfc 97.88 790 <10 0.49 98.5 198 33 18 81

wave21 83.70 820 <10 1.26 245 492 31 20 83
wave40 83.41 650 <10 0.51 172 344 33 32 89
genF1 95.06 960 <10 8.21 371 628 23 5 74
genF2 94.09 610 <10 6.69 407 576 20 3 68
genF3 97.51 1070 <10 4.89 212 373 17 6 78
genF4 94.66 1010 <10 6.60 620 817 19 5 68
genF5 92.86 960 <10 6.40 846 1093 23 5 68
genF6 93.27 950 <10 7.38 742 1014 25 5 65
genF7 96.80 1030 <10 5.03 590 721 22 5 67
genF8 99.43 1040 <10 3.89 122 149 15 6 76
genF9 96.74 1050 <10 5.69 685 825 21 6 70

genF10 99.89 1100 <10 0.98 47.9 59.2 17 5 79
average 90.48 835 - 3.67 373 541 22 15 73

A.1. NUMERIC METHODS 187

Table A.12: bintree method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.97 70 <10 11.7 18.2 50.9 15 1 69
rtsn 78.49 70 <10 9.36 263 411 19 2 98
rtc 76.15 60 <10 3.30 172 234 11 10 93

rtcn 61.84 50 <10 2.55 199 279 15 17 99
rrbfs 91.29 40 <10 7.88 36.9 89.5 31 0 68
rrbfc 96.83 40 <10 7.32 31.0 76.6 26 1 86

wave21 82.28 20 <10 1.41 14.0 30.8 19 1 94
wave40 82.18 20 <10 1.02 14.0 30.1 20 2 95
genF1 95.05 80 20 61.6 23.8 121 16 0 80
genF2 94.06 80 <10 14.2 129 188 19 0 71
genF3 97.52 80 20 11.3 44.3 68.4 12 0 82
genF4 94.66 80 <10 20.1 125 177 18 0 74
genF5 92.81 80 <10 37.2 177 262 20 0 70
genF6 93.23 80 <10 12.5 218 286 23 0 67
genF7 96.75 50 <10 13.8 89.3 134 20 0 65
genF8 99.40 10 <10 4.31 2.89 11.3 14 0 78
genF9 96.65 70 <10 15.4 110 176 19 0 71

genF10 99.89 100 30 11.3 4.99 21.6 16 0 80
average 90.50 60 - 13.7 92.9 147 19 2 80

188 APPENDIX A. DETAILED RESULT TABLES

Table A.13: gk100 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 90.34 3 <1 0 3.09 4.25 6 74 88
rtsn 72.81 2 <1 0 2.66 3.63 7 83 90
rtc 53.78 1 <1 0 0.08 0.12 4 94 97

rtcn 52.96 1 <1 0 0.08 0.12 4 100 100
rrbfs 85.74 4 <1 0 2.01 4.01 14 59 88
rrbfc 53.11 1 <1 0 0.05 0.09 4 72 90

wave21 63.72 1 <1 0 0.04 0.07 2 90 98
wave40 72.21 1 <1 0 0.09 0.17 4 93 99
genF1 95.07 19 <1 0 7.17 8.26 9 56 78
genF2 85.94 10 <1 0 6.05 7.72 12 62 75
genF3 97.47 43 <1 0 7.94 9.07 7 64 79
genF4 94.29 5 <1 0 7.15 8.41 9 63 78
genF5 92.37 4 <1 0 7.93 9.12 11 59 76
genF6 92.05 5 <1 0 7.15 8.71 15 60 76
genF7 96.23 10 <1 0 6.62 8.19 13 54 77
genF8 99.35 39 <1 0 7.02 8.24 10 65 78
genF9 95.21 16 <1 0 5.48 7.83 12 63 74

genF10 99.88 361 <1 0 6.95 8.24 17 68 79
average 82.92 29 - 0 4.31 5.35 9 71 84

A.1. NUMERIC METHODS 189

Table A.14: gk100 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 100.00 1170 <10 9.91 42.6 92.4 44 12 64
rtsn 78.54 580 <10 5.35 1035 1613 39 17 62
rtc 67.14 390 <10 1.18 500 695 39 59 85

rtcn 53.96 230 <10 1.52 394 572 46 70 92
rrbfs 93.13 1160 <10 5.96 476 965 40 7 56
rrbfc 98.23 970 <10 1.94 168 340 45 23 75

wave21 83.98 920 <10 2.98 346 698 41 22 81
wave40 83.75 690 <10 1.66 253 508 38 34 87
genF1 95.06 1190 <10 9.80 537 920 48 6 71
genF2 94.09 1150 <10 9.81 777 1126 32 6 68
genF3 97.51 720 30 11.6 203 348 34 4 79
genF4 94.66 1160 <10 10.2 771 1049 24 6 68
genF5 92.86 1140 <10 9.37 1016 1367 31 6 66
genF6 93.36 700 <10 8.94 775 983 26 4 66
genF7 96.82 1200 <10 8.38 962 1154 23 6 68
genF8 99.42 1370 30 8.22 182 233 19 7 79
genF9 96.80 1210 <10 8.63 1063 1252 24 7 68

genF10 99.89 1360 110 8.34 49.2 71.3 18 6 80
average 89.96 962 - 6.88 531 777 34 17 73

190 APPENDIX A. DETAILED RESULT TABLES

Table A.15: gk100 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 280 ? 36.8 0 62.7 13 3 70
rtsn 78.50 90 20 63.1 365 738 50 3 74
rtc 68.51 90 <10 14.6 415 602 49 14 91

rtcn 53.93 70 <10 14.6 281 486 47 22 99
rrbfs 92.31 120 40 72.9 125 397 55 1 52
rrbfc 97.59 100 <10 47.9 63.4 223 43 2 79

wave21 83.41 100 20 31.3 90.7 244 43 3 87
wave40 83.36 90 20 17.6 78.8 193 34 5 94
genF1 95.05 180 160 149 44.0 312 33 1 72
genF2 94.08 130 80 133 101 328 24 1 68
genF3 97.50 230 ? 132 0 204 22 1 82
genF4 94.64 130 80 123 138 348 23 1 68
genF5 92.83 120 50 118 198 440 26 1 60
genF6 93.31 130 50 120 290 517 27 1 64
genF7 96.79 140 60 121 170 394 27 1 61
genF8 99.42 240 ? 126 0 152 22 1 82
genF9 96.68 130 60 140 242 530 23 1 59

genF10 99.89 480 ? 51.4 0 64.4 20 2 80
average 89.88 158 - 84.0 145 346 32 4 75

A.1. NUMERIC METHODS 191

Table A.16: gk1000 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 69.96 1 <1 0 0.41 0.51 3 58 88
rtsn 56.87 1 <1 0 0.05 0.06 1 76 94
rtc 54.64 1 <1 0 0.07 0.10 3 75 98

rtcn 53.32 1 <1 0 0.06 0.08 2 89 100
rrbfs 59.91 1 <1 0 0.04 0.07 3 40 100
rrbfc 55.21 1 <1 0 0.03 0.05 2 26 95

wave21 61.83 1 <1 0 0.04 0.07 2 58 97
wave40 57.60 1 <1 0 0.02 0.03 1 66 100
genF1 94.81 1 <1 0 0.06 0.11 5 59 80
genF2 77.78 1 <1 0 0.07 0.13 5 55 81
genF3 97.18 1 <1 0 0.11 0.18 3 69 84
genF4 82.45 1 <1 0 0.12 0.17 3 64 83
genF5 70.95 1 <1 0 0.04 0.07 3 55 82
genF6 76.40 1 <1 0 0.07 0.13 5 48 82
genF7 88.98 1 <1 0 0.06 0.11 3 67 82
genF8 98.72 1 <1 0 0.08 0.12 3 55 81
genF9 87.30 1 <1 0 0.06 0.11 3 64 82

genF10 99.85 1 <1 0 0.10 0.16 4 45 83
average 74.65 1 - 0 0.08 0.13 3 59 88

192 APPENDIX A. DETAILED RESULT TABLES

Table A.17: gk1000 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 100.00 1120 <10 3.05 44.6 83.7 49 11 70
rtsn 78.53 680 <10 2.17 758 1165 24 20 69
rtc 80.44 360 <10 0.58 267 363 15 55 92

rtcn 59.41 240 <10 0.55 261 370 18 71 96
rrbfs 92.80 1120 <10 2.41 342 688 49 6 56
rrbfc 97.94 930 <10 0.55 113 227 50 22 77

wave21 83.78 840 <10 1.22 263 528 34 20 84
wave40 83.48 630 <10 0.64 180 360 35 32 86
genF1 95.07 1190 <10 4.04 407 696 25 6 76
genF2 94.11 1120 <10 3.98 581 833 25 6 71
genF3 97.51 1190 <10 4.38 239 411 17 6 77
genF4 94.68 1190 <10 3.98 664 867 21 6 68
genF5 92.88 830 <10 4.06 691 877 23 4 71
genF6 93.36 1100 <10 3.77 780 1017 29 6 65
genF7 96.81 1170 <10 3.82 698 833 22 6 69
genF8 99.42 1240 <10 3.11 140 170 15 7 78
genF9 96.77 1200 <10 3.88 786 928 23 6 72

genF10 99.89 1140 20 2.32 38.4 48.7 15 5 79
average 90.94 961 - 2.70 403 581 27 16 75

A.1. NUMERIC METHODS 193

Table A.18: gk1000 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.97 60 <10 17.6 8.00 42.2 10 1 69
rtsn 78.50 90 <10 18.7 351 574 20 3 81
rtc 81.85 70 <10 7.10 192 267 12 11 94

rtcn 62.60 60 <10 5.17 223 316 20 19 100
rrbfs 92.08 100 <10 17.5 89.1 213 42 1 64
rrbfc 97.57 90 <10 16.5 55.1 143 46 2 82

wave21 82.94 50 <10 4.73 35.3 80.1 22 1 95
wave40 82.78 40 <10 3.16 27.0 60.3 20 2 95
genF1 95.06 100 20 25.0 79.4 152 17 1 77
genF2 94.10 100 20 18.3 138 204 19 1 71
genF3 97.52 110 50 17.6 45.8 76.6 13 1 85
genF4 94.67 100 <10 23.6 133 193 16 1 76
genF5 92.86 100 <10 22.9 209 290 19 1 72
genF6 93.34 100 <10 18.8 249 326 27 1 69
genF7 96.80 110 20 18.4 156 222 28 1 67
genF8 99.41 110 70 37.9 28.0 80.0 16 1 80
genF9 96.67 100 <10 23.0 178 275 23 1 65

genF10 99.89 150 ? 19.8 0 24.3 16 1 80
average 91.03 91 - 17.6 122 197 21 3 79

194 APPENDIX A. DETAILED RESULT TABLES

Table A.19: gauss10 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 96.95 11 <1 0 9.05 12.6 8 74 82
rtsn 75.20 6 <1 0 9.35 12.7 11 81 85
rtc 62.49 10 <1 0 8.32 10.6 6 95 96

rtcn 53.63 10 <1 0 8.57 10.7 5 100 100
rrbfs 88.56 8 <1 0 5.44 10.9 19 64 79
rrbfc 91.36 12 <1 0 4.92 9.83 29 74 83

wave21 81.21 12 <1 0 4.92 9.83 16 81 87
wave40 81.20 13 <1 0 4.62 9.23 16 91 95
genF1 95.07 11 <1 0 11.4 13.8 11 47 76
genF2 78.46 4 <1 0 9.90 13.0 10 56 72
genF3 97.50 35 <1 0 12.2 14.1 7 59 79
genF4 93.68 6 <1 0 11.3 13.7 12 57 74
genF5 71.73 4 <1 0 8.75 12.5 11 56 72
genF6 91.89 5 <1 0 11.0 13.6 11 57 75
genF7 96.51 9 <1 0 10.5 13.2 13 59 75
genF8 99.41 36 <1 0 11.6 13.9 10 61 76
genF9 96.07 12 <1 0 8.69 12.4 12 57 70

genF10 99.88 281 <1 0 10.6 13.4 13 64 82
average 86.16 27 - 0 8.96 12.2 12 69 81

A.1. NUMERIC METHODS 195

Table A.20: gauss10 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1110 1000 89.0 3.78 176 16 11 62
rtsn 78.48 350 20 34.6 1890 2509 23 10 67
rtc 83.00 300 <10 11.6 729 1001 13 45 67

rtcn 62.45 220 <10 12.5 849 1103 11 67 92
rrbfs 93.27 730 60 97.5 576 1346 53 4 36
rrbfc 98.72 770 <10 67.0 227 588 35 18 76

wave21 84.37 730 40 44.4 505 1098 37 18 78
wave40 84.21 620 20 26.9 391 835 32 31 89
genF1 95.07 1000 190 144 504 1175 20 5 73
genF2 94.03 900 60 120 988 1643 23 5 60
genF3 97.52 1170 470 168 253 787 17 6 79
genF4 94.67 920 80 139 824 1372 25 5 65
genF5 92.36 720 50 99.6 966 1804 36 4 49
genF6 93.31 840 40 108 1152 1727 21 4 63
genF7 96.81 1010 60 109 1151 1593 21 5 62
genF8 99.42 1350 690 161 169 467 17 7 79
genF9 96.78 990 50 120 1120 1560 19 5 70

genF10 99.89 2320 ? 156 0 229 20 11 83
average 91.35 892 - 94.8 683 1167 24 14 69

196 APPENDIX A. DETAILED RESULT TABLES

Table A.21: gauss10 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1170 ? 94.2 0 178 16 12 71
rtsn 78.45 170 ? 1114 0 1450 23 5 82
rtc 83.02 80 20 218 442 928 14 13 92

rtcn 61.87 50 40 190 40.6 309 12 17 99
rrbfs 92.93 350 ? 752 0 1503 57 2 37
rrbfc 98.21 200 ? 300 0 601 50 5 67

wave21 84.01 250 ? 485 0 969 57 6 76
wave40 83.80 180 ? 346 0 691 59 9 88
genF1 95.07 480 ? 405 0 696 19 3 77
genF2 94.00 430 ? 817 0 1269 23 2 61
genF3 97.52 1020 ? 388 0 722 17 5 83
genF4 94.65 460 ? 743 0 1028 27 3 70
genF5 92.15 350 ? 984 0 1767 39 2 48
genF6 93.28 370 ? 932 0 1309 24 2 61
genF7 96.79 290 ? 654 0 868 19 2 65
genF8 99.42 810 ? 199 0 280 17 4 82
genF9 96.74 360 ? 952 0 1250 19 2 66

genF10 99.89 2310 ? 155 0 228 20 11 82
average 91.21 518 - 540 26.8 891 28 6 73

A.1. NUMERIC METHODS 197

Table A.22: gauss100 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 98.00 15 <1 0 8.97 12.5 7 74 79
rtsn 70.84 4 <1 0 8.01 12.0 31 73 83
rtc 63.38 10 <1 0 8.04 10.5 6 95 96

rtcn 52.99 5 <1 0 7.40 10.1 15 100 100
rrbfs 87.86 8 <1 0 5.44 10.9 20 54 75
rrbfc 84.95 8 <1 0 4.92 9.83 118 57 74

wave21 81.30 12 <1 0 4.91 9.81 16 75 92
wave40 81.05 12 <1 0 4.67 9.33 22 86 95
genF1 95.00 11 <1 0 10.1 13.1 13 45 74
genF2 71.53 4 <1 0 7.30 11.8 14 47 68
genF3 97.52 29 <1 0 13.1 14.5 8 59 79
genF4 88.75 4 <1 0 7.84 12.1 11 50 72
genF5 82.80 5 <1 0 9.44 12.8 14 51 72
genF6 88.15 7 <1 0 8.11 12.2 15 53 72
genF7 96.53 10 <1 0 10.5 13.3 14 56 74
genF8 99.41 36 <1 0 11.3 13.7 10 58 75
genF9 96.00 11 <1 0 8.83 12.4 12 55 70

genF10 99.88 311 <1 0 10.9 13.5 14 61 79
average 85.33 28 - 0 8.33 11.9 20 64 79

198 APPENDIX A. DETAILED RESULT TABLES

Table A.23: gauss100 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1310 ? 73.8 0 136 15 13 61
rtsn 78.06 260 20 43.6 1150 2029 109 8 52
rtc 83.27 340 <10 10.8 805 1115 16 52 83

rtcn 54.68 190 <10 9.92 840 1329 94 57 89
rrbfs 93.32 780 60 95.2 620 1431 62 4 48
rrbfc 98.49 700 <10 64.2 268 664 197 16 66

wave21 84.34 670 40 45.9 491 1074 47 16 79
wave40 84.18 560 20 28.2 379 814 37 28 86
genF1 95.06 930 190 142 516 1200 28 5 69
genF2 94.04 810 60 119 867 1577 47 4 49
genF3 97.52 1170 430 165 285 846 19 6 79
genF4 94.65 840 80 129 769 1408 51 5 50
genF5 92.64 770 40 98.4 1126 1843 51 4 54
genF6 93.17 790 50 104 1005 1716 42 4 52
genF7 96.82 940 60 107 1131 1595 22 5 58
genF8 99.42 1300 610 161 168 476 21 7 72
genF9 96.78 990 50 119 1089 1533 21 5 62

genF10 99.89 2000 ? 152 0 226 24 9 68
average 90.91 853 - 92.6 639 1167 50 14 65

A.1. NUMERIC METHODS 199

Table A.24: gauss100 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1350 ? 74.4 0 137 15 14 70
rtsn 78.02 170 ? 1018 0 1670 107 5 58
rtc 82.94 80 20 217 433 916 20 12 93

rtcn 54.30 70 30 185 263 693 193 22 96
rrbfs 92.95 350 ? 753 0 1506 70 2 35
rrbfc 97.75 180 ? 328 0 656 205 4 59

wave21 83.99 240 ? 469 0 939 80 6 79
wave40 83.79 170 ? 333 0 666 66 9 88
genF1 95.07 640 ? 571 0 1031 29 3 71
genF2 93.99 410 ? 829 0 1418 56 2 49
genF3 97.52 960 ? 392 0 731 19 5 83
genF4 94.62 430 ? 810 0 1317 61 2 48
genF5 92.61 350 ? 987 0 1576 57 2 51
genF6 93.10 370 ? 910 0 1515 47 2 48
genF7 96.79 400 ? 892 0 1235 28 2 54
genF8 99.42 1110 ? 302 0 441 22 6 74
genF9 96.75 350 ? 953 0 1290 31 2 55

genF10 99.89 2050 ? 156 0 231 24 9 70
average 90.75 538 - 566 38.7 998 63 6 66

200 APPENDIX A. DETAILED RESULT TABLES

A.2. PREDICTION METHODS 201

A.2 Prediction Methods

202 APPENDIX A. DETAILED RESULT TABLES

Table A.25: htmc method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 96.95 11 <1 0 9.05 12.6 8 74 82
rtsn 75.20 6 <1 0 9.35 12.7 11 81 85
rtc 62.49 10 <1 0 8.32 10.6 6 95 96

rtcn 53.63 10 <1 0 8.57 10.7 5 100 100
rrbfs 88.56 8 <1 0 5.44 10.9 19 64 79
rrbfc 91.36 12 <1 0 4.92 9.83 29 74 83

led 73.94 28 <1 0 2.98 5.95 11 76 81
wave21 81.21 12 <1 0 4.92 9.83 16 81 87
wave40 81.20 13 <1 0 4.62 9.23 16 91 95
genF1 95.07 11 <1 0 11.4 13.8 11 47 76
genF2 78.46 4 <1 0 9.90 13.0 10 56 72
genF3 97.50 35 <1 0 12.2 14.1 7 59 79
genF4 93.68 6 <1 0 11.3 13.7 12 57 74
genF5 71.73 4 <1 0 8.75 12.5 11 56 72
genF6 91.89 5 <1 0 11.0 13.6 11 57 75
genF7 96.51 9 <1 0 10.5 13.2 13 59 75
genF8 99.41 36 <1 0 11.6 13.9 10 61 76
genF9 96.07 12 <1 0 8.69 12.4 12 57 70

genF10 99.88 281 <1 0 10.6 13.4 13 64 82
average 85.51 27 - 0 8.64 11.9 12 69 81

A.2. PREDICTION METHODS 203

Table A.26: htmc method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1110 1000 89.0 3.78 176 16 11 62
rtsn 78.48 350 20 34.6 1890 2509 23 10 67
rtc 83.00 300 <10 11.6 729 1001 13 45 67

rtcn 62.45 220 <10 12.5 849 1103 11 67 92
rrbfs 93.27 730 60 97.5 576 1346 53 4 36
rrbfc 98.72 770 <10 67.0 227 588 35 18 76

led 73.99 1080 200 45.8 219 529 18 12 52
wave21 84.37 730 40 44.4 505 1098 37 18 78
wave40 84.21 620 20 26.9 391 835 32 31 89
genF1 95.07 1000 190 144 504 1175 20 5 73
genF2 94.03 900 60 120 988 1643 23 5 60
genF3 97.52 1170 470 168 253 787 17 6 79
genF4 94.67 920 80 139 824 1372 25 5 65
genF5 92.36 720 50 99.6 966 1804 36 4 49
genF6 93.31 840 40 108 1152 1727 21 4 63
genF7 96.81 1010 60 109 1151 1593 21 5 62
genF8 99.42 1350 690 161 169 467 17 7 79
genF9 96.78 990 50 120 1120 1560 19 5 70

genF10 99.89 2320 ? 156 0 229 20 11 83
average 90.44 902 - 92.3 659 1134 24 14 69

204 APPENDIX A. DETAILED RESULT TABLES

Table A.27: htmc method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1170 ? 94.2 0 178 16 12 71
rtsn 78.45 170 ? 1114 0 1450 23 5 82
rtc 83.02 80 20 218 442 928 14 13 92

rtcn 61.87 50 40 190 40.6 309 12 17 99
rrbfs 92.93 350 ? 752 0 1503 57 2 37
rrbfc 98.21 200 ? 300 0 601 50 5 67

led 73.96 650 ? 188 0 375 17 7 56
wave21 84.01 250 ? 485 0 969 57 6 76
wave40 83.80 180 ? 346 0 691 59 9 88
genF1 95.07 480 ? 405 0 696 19 3 77
genF2 94.00 430 ? 817 0 1269 23 2 61
genF3 97.52 1020 ? 388 0 722 17 5 83
genF4 94.65 460 ? 743 0 1028 27 3 70
genF5 92.15 350 ? 984 0 1767 39 2 48
genF6 93.28 370 ? 932 0 1309 24 2 61
genF7 96.79 290 ? 654 0 868 19 2 65
genF8 99.42 810 ? 199 0 280 17 4 82
genF9 96.74 360 ? 952 0 1250 19 2 61

genF10 99.89 2310 ? 155 0 228 20 11 82
average 90.30 525 - 522 25.4 864 28 6 71

A.2. PREDICTION METHODS 205

Table A.28: htnb method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 96.87 11 <1 0 9.15 12.6 8 73 80
rtsn 75.21 6 <1 0 9.34 12.6 12 81 85
rtc 61.22 10 <1 0 8.41 10.7 6 97 98

rtcn 53.63 10 <1 0 8.57 10.7 5 100 100
rrbfs 88.51 8 <1 0 5.44 10.9 18 63 78
rrbfc 91.24 14 <1 0 4.92 9.83 30 80 84

led 73.94 30 <1 0 2.96 5.91 11 76 81
wave21 81.28 13 <1 0 4.93 9.85 16 83 87
wave40 81.20 14 <1 0 4.67 9.33 18 91 96
genF1 95.07 11 <1 0 11.3 13.7 11 47 75
genF2 78.84 4 <1 0 9.77 12.9 11 56 72
genF3 97.49 33 <1 0 12.3 14.2 7 61 79
genF4 93.83 6 <1 0 11.6 13.8 12 47 74
genF5 71.84 4 <1 0 8.63 12.4 10 57 72
genF6 92.08 5 <1 0 10.8 13.4 12 58 76
genF7 96.52 9 <1 0 10.7 13.4 13 47 75
genF8 99.41 40 <1 0 11.6 13.8 11 60 78
genF9 95.97 12 <1 0 9.16 12.6 12 58 73

genF10 99.89 266 <1 0 10.9 13.5 14 65 82
average 85.48 27 - 0 8.69 11.9 12 68 81

206 APPENDIX A. DETAILED RESULT TABLES

Table A.29: htnb method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 670 ? 81.0 0 152 16 7 30
rtsn 78.41 370 20 31.6 1928 2557 23 11 68
rtc 83.16 350 <10 10.8 822 1119 14 53 83

rtcn 62.32 220 <10 11.0 847 1096 11 68 92
rrbfs 93.60 780 60 87.0 600 1374 53 5 43
rrbfc 98.85 790 <10 24.8 202 454 33 19 60

led 74.02 1090 100 21.0 195 431 18 12 44
wave21 84.82 760 40 41.0 512 1106 37 18 76
wave40 84.55 410 20 26.2 281 614 32 21 78
genF1 94.99 630 190 121 323 775 19 3 65
genF2 94.01 910 50 92.7 989 1597 23 5 57
genF3 97.48 1240 280 121 286 760 17 7 72
genF4 94.65 1010 60 99.6 935 1450 25 5 65
genF5 92.27 520 40 94.1 733 1425 33 3 48
genF6 93.26 870 40 85.4 1351 1868 20 5 58
genF7 96.77 1020 60 89.1 1333 1758 21 5 65
genF8 99.36 1320 510 133 179 431 18 7 74
genF9 96.77 620 50 112 696 1025 20 3 63

genF10 99.84 2100 ? 145 0 210 20 10 47
average 90.48 825 - 75.1 643 1063 24 14 63

A.2. PREDICTION METHODS 207

Table A.30: htnb method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1120 ? 92.9 0 176 16 11 41
rtsn 78.07 150 140 912 66.8 1274 23 5 50
rtc 83.78 80 20 178 462 897 14 13 78

rtcn 62.50 80 40 180 404 778 13 25 88
rrbfs 93.52 250 ? 552 0 1104 56 1 21
rrbfc 98.44 180 ? 279 0 558 48 4 27

led 73.99 330 ? 93.8 0 188 16 4 15
wave21 85.21 250 ? 484 0 968 57 6 38
wave40 84.89 180 ? 345 0 691 59 10 44
genF1 94.80 430 ? 365 0 618 19 2 42
genF2 93.72 400 ? 768 0 1196 22 2 33
genF3 97.36 910 ? 350 0 648 16 5 43
genF4 94.27 430 ? 720 0 975 27 2 36
genF5 91.67 230 ? 703 0 1272 39 1 27
genF6 92.18 220 ? 710 0 937 23 1 31
genF7 95.49 390 ? 889 0 1173 19 2 33
genF8 99.26 1080 ? 280 0 388 18 6 45
genF9 95.64 350 ? 933 0 1225 19 2 31

genF10 99.84 1750 ? 123 0 177 19 11 42
average 90.24 464 - 471 49.1 802 28 6 40

208 APPENDIX A. DETAILED RESULT TABLES

Table A.31: htnb1k method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 96.87 11 <1 0 9.15 12.6 8 74 80
rtsn 75.21 6 <1 0 9.34 12.6 12 81 86
rtc 61.22 10 <1 0 8.41 10.7 6 96 96

rtcn 53.63 10 <1 0 8.57 10.7 5 100 100
rrbfs 88.51 8 <1 0 5.44 10.9 18 52 80
rrbfc 91.24 14 <1 0 4.92 9.83 30 74 83

led 73.94 30 <1 0 2.96 5.91 11 76 82
wave21 81.28 13 <1 0 4.93 9.85 16 81 87
wave40 81.20 14 <1 0 4.67 9.33 18 91 95
genF1 95.07 11 <1 0 11.3 13.7 11 47 76
genF2 78.84 4 <1 0 9.77 12.9 11 57 72
genF3 97.49 33 <1 0 12.3 14.2 7 62 81
genF4 93.83 6 <1 0 11.6 13.8 12 56 72
genF5 71.84 4 <1 0 8.63 12.4 10 57 72
genF6 92.08 5 <1 0 10.8 13.4 12 58 75
genF7 96.52 9 <1 0 10.7 13.4 13 59 75
genF8 99.41 40 <1 0 11.6 13.8 11 61 77
genF9 95.97 12 <1 0 9.16 12.6 12 58 72

genF10 99.89 266 <1 0 10.9 13.5 14 45 77
average 85.48 27 - 0 8.69 11.9 12 68 81

A.2. PREDICTION METHODS 209

Table A.32: htnb1k method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1010 830 84.6 5.42 170 16 10 32
rtsn 78.39 360 20 32.6 1884 2500 23 11 65
rtc 83.16 350 <10 10.8 822 1119 14 53 83

rtcn 62.24 190 <10 11.1 817 1058 11 57 75
rrbfs 93.61 810 60 85.9 616 1404 53 5 43
rrbfc 98.84 810 <10 24.7 205 460 33 19 75

led 74.01 1100 100 20.5 197 436 18 12 47
wave21 84.80 770 40 40.9 517 1115 37 19 77
wave40 84.49 630 20 24.4 387 822 32 31 85
genF1 95.02 1030 190 106 532 1156 20 5 68
genF2 94.01 910 50 92.7 989 1597 23 5 55
genF3 97.47 1220 280 122 281 751 17 6 72
genF4 94.65 980 60 101 913 1416 25 5 63
genF5 92.37 770 40 79.6 1007 1819 34 4 49
genF6 93.26 880 40 85.0 1362 1882 20 5 62
genF7 96.77 1000 60 89.7 1316 1738 21 5 61
genF8 99.37 1330 510 133 180 433 18 7 74
genF9 96.78 1030 50 96.6 1104 1506 20 6 61

genF10 99.85 2010 ? 139 0 200 20 9 43
average 90.48 905 - 72.5 691 1136 24 14 63

210 APPENDIX A. DETAILED RESULT TABLES

Table A.33: htnb1k method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1120 ? 92.9 0 176 16 11 41
rtsn 78.36 150 140 912 66.8 1274 23 5 56
rtc 83.53 80 20 178 462 897 14 13 82

rtcn 62.49 80 40 180 404 778 13 25 89
rrbfs 93.53 350 ? 750 0 1501 57 2 21
rrbfc 98.15 180 ? 279 0 558 48 4 31

led 73.99 330 ? 93.8 0 188 16 4 15
wave21 85.20 250 ? 484 0 968 57 6 39
wave40 84.92 180 ? 345 0 691 59 9 45
genF1 94.80 640 ? 520 0 923 20 3 42
genF2 93.81 400 ? 768 0 1196 22 2 35
genF3 97.37 630 ? 251 0 451 16 3 44
genF4 94.38 430 ? 720 0 975 27 2 38
genF5 92.00 340 ? 960 0 1728 39 2 29
genF6 92.74 330 ? 981 0 1309 24 2 34
genF7 95.97 280 ? 631 0 839 19 2 34
genF8 99.30 740 ? 196 0 265 18 4 46
genF9 96.10 340 ? 916 0 1202 19 2 33

genF10 99.86 1700 ? 118 0 171 19 12 42
average 90.34 450 - 494 49.1 847 28 6 42

A.2. PREDICTION METHODS 211

Table A.34: htnba method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 96.92 10 <1 0 9.15 12.6 8 73 84
rtsn 74.91 6 <1 0 9.45 12.7 11 80 86
rtc 61.22 10 <1 0 8.41 10.7 6 95 95

rtcn 53.60 10 <1 0 8.57 10.7 5 100 100
rrbfs 88.43 8 <1 0 5.44 10.9 17 58 79
rrbfc 91.19 13 <1 0 4.92 9.83 31 77 84

led 73.96 30 <1 0 2.96 5.91 11 71 81
wave21 81.23 13 <1 0 4.93 9.85 16 77 88
wave40 81.20 14 <1 0 4.67 9.33 18 87 96
genF1 95.07 11 <1 0 11.2 13.7 11 46 75
genF2 78.30 4 <1 0 9.76 13.0 12 51 72
genF3 97.49 37 <1 0 12.2 14.1 7 61 79
genF4 93.86 6 <1 0 11.7 13.8 12 54 74
genF5 72.10 4 <1 0 8.41 12.3 10 52 73
genF6 92.09 5 <1 0 10.7 13.3 11 55 77
genF7 96.53 10 <1 0 10.7 13.3 13 46 74
genF8 99.41 40 <1 0 11.6 13.8 11 59 76
genF9 95.98 13 <1 0 8.97 12.5 12 57 73

genF10 99.89 303 <1 0 10.7 13.4 14 65 84
average 85.44 29 - 0 8.65 11.9 12 67 82

212 APPENDIX A. DETAILED RESULT TABLES

Table A.35: htnba method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 940 820 84.2 3.84 166 16 10 37
rtsn 78.49 400 20 29.0 2043 2704 23 12 78
rtc 83.10 340 <10 11.0 798 1087 14 52 83

rtcn 62.26 180 <10 11.2 805 1042 11 56 74
rrbfs 93.60 770 60 87.0 594 1361 53 4 43
rrbfc 98.85 830 <10 24.6 208 466 33 19 78

led 74.02 980 100 24.0 142 333 17 11 49
wave21 84.80 720 40 41.5 494 1071 37 17 77
wave40 84.52 600 20 24.6 373 794 32 30 85
genF1 95.06 1030 190 105 532 1154 20 5 72
genF2 94.05 920 50 91.9 994 1603 23 5 58
genF3 97.52 1210 270 121 279 746 17 6 74
genF4 94.68 970 60 101 905 1404 25 5 65
genF5 92.41 770 40 79.1 1009 1820 34 4 49
genF6 93.31 870 40 84.8 1352 1867 20 5 64
genF7 96.82 1010 60 88.8 1325 1747 21 5 63
genF8 99.42 1300 500 132 175 424 18 7 78
genF9 96.81 620 50 111 697 1025 20 3 66

genF10 99.89 2080 ? 144 0 208 20 10 44
average 90.51 871 - 73.4 670 1106 24 14 65

A.2. PREDICTION METHODS 213

Table A.36: htnba method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1040 ? 90.9 0 172 16 11 51
rtsn 78.44 150 140 908 70.2 1274 23 5 81
rtc 83.84 80 20 178 463 897 14 13 85

rtcn 63.19 70 40 180 355 712 13 24 96
rrbfs 93.84 340 ? 731 0 1462 57 2 27
rrbfc 98.95 170 ? 268 0 536 48 4 41

led 73.98 400 ? 111 0 221 17 4 22
wave21 85.66 180 ? 347 0 694 54 4 58
wave40 85.52 170 ? 326 0 652 58 9 66
genF1 95.05 620 ? 508 0 899 20 3 54
genF2 94.05 400 ? 768 0 1196 22 2 48
genF3 97.51 890 ? 343 0 634 16 5 59
genF4 94.65 420 ? 708 0 958 27 2 54
genF5 92.40 230 ? 703 0 1272 39 1 38
genF6 93.29 320 ? 959 0 1279 24 2 47
genF7 96.80 390 ? 889 0 1173 19 2 49
genF8 99.42 1050 ? 271 0 376 18 6 48
genF9 96.78 330 ? 899 0 1179 19 2 46

genF10 99.89 1540 ? 108 0 157 19 11 42
average 90.70 463 - 489 46.7 828 28 6 53

214 APPENDIX A. DETAILED RESULT TABLES

A.3. ENSEMBLE METHODS 215

A.3 Ensemble Methods

216 APPENDIX A. DETAILED RESULT TABLES

Table A.37: bag3 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 89.01 2 <1 0 8.53 11.5 5.3 55 66
rtsn 71.45 2 <1 0 8.99 11.7 6.0 70 77
rtc 60.33 1 <1 0 3.45 4.38 4.0 93 99

rtcn 53.22 1 <1 0 3.56 4.48 3.0 99 100
rrbfs 88.16 2 <1 0 5.19 10.4 10.7 38 58
rrbfc 85.51 2 <1 0 3.63 7.23 9.0 61 73

led 73.94 6 <1 0 2.04 4.05 8.0 56 64
wave21 81.42 4 <1 0 4.32 8.61 10.0 64 75
wave40 81.17 3 <1 0 3.47 6.91 9.7 78 90
genF1 95.07 8 <1 0 11.7 13.5 7.0 44 57
genF2 92.61 2 <1 0 10.0 12.7 8.3 38 55
genF3 97.51 2 <1 0 11.9 13.6 7.0 40 59
genF4 93.44 2 <1 0 10.3 12.8 7.7 38 54
genF5 86.83 2 <1 0 9.05 12.2 8.3 39 54
genF6 89.90 2 <1 0 8.85 12.1 8.3 38 52
genF7 96.35 3 <1 0 9.54 12.5 9.0 40 51
genF8 99.39 12 <1 0 10.9 13.2 8.7 45 60
genF9 95.45 3 <1 0 8.78 12.1 8.3 41 53

genF10 99.88 49 <1 0 11.2 13.2 9.0 46 69
average 85.82 6 - 0 7.66 10.4 7.8 54 67

A.3. ENSEMBLE METHODS 217

Table A.38: bag3 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 100.00 780 <10 65.5 214 514 18.0 8 42
rtsn 78.49 630 <10 1.39 3294 4332 15.7 18 64
rtc 83.17 370 <10 6.11 1931 2574 12.0 56 82

rtcn 59.75 190 <10 6.70 1926 2453 9.7 57 75
rrbfs 93.86 930 20 23.1 1501 3048 34.7 5 21
rrbfc 99.32 1010 <10 19.1 579 1197 28.3 24 52

led 73.94 1230 30 16.1 418 868 17.0 13 37
wave21 85.07 850 20 18.1 1197 2430 33.0 21 57
wave40 85.02 700 <10 14.5 942 1913 27.7 35 74
genF1 95.06 1200 40 42.1 1562 2778 16.7 6 49
genF2 94.11 1130 20 23.5 2734 3676 17.7 6 40
genF3 97.51 1470 30 74.7 968 1907 16.3 8 55
genF4 94.68 1110 20 30.7 2402 3380 19.7 6 41
genF5 92.83 950 <10 6.44 2987 4095 22.0 5 29
genF6 93.33 1000 <10 9.48 3001 4050 18.3 5 34
genF7 96.83 1180 20 33.4 2706 3452 19.3 6 41
genF8 99.42 1650 90 105 770 1200 17.0 9 60
genF9 96.79 1190 20 21.0 3236 3933 18.0 6 38

genF10 99.89 1910 590 131 191 445 18.3 9 64
average 90.48 1025 - 34.1 1714 2539 20.0 16 50

218 APPENDIX A. DETAILED RESULT TABLES

Table A.39: bag3 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 560 ? 259 0 474 14.3 6 29
rtsn 78.44 80 50 891 620 2021 14.0 3 61
rtc 84.54 100 <10 175 1364 2149 12.3 15 79

rtcn 61.63 80 20 173 1681 2389 11.0 26 92
rrbfs 94.17 230 ? 1621 0 3242 46.3 1 10
rrbfc 99.39 130 60 346 249 1190 35.3 3 29

led 73.98 270 ? 276 0 551 17.0 3 10
wave21 85.92 170 130 743 226 1938 53.3 4 32
wave40 85.78 130 70 398 282 1359 52.0 7 45
genF1 95.04 420 ? 1108 0 1815 15.3 2 29
genF2 94.04 300 ? 1735 0 2340 20.3 2 27
genF3 97.50 610 ? 722 0 1273 14.0 3 32
genF4 94.61 200 ? 1281 0 1735 20.0 1 26
genF5 92.77 170 ? 1471 0 2315 22.0 1 19
genF6 93.26 250 240 1786 82.2 2745 20.3 1 24
genF7 96.80 270 ? 1750 0 2275 21.7 2 23
genF8 99.42 740 ? 602 0 846 19.7 4 22
genF9 96.79 220 190 1805 289 2616 21.3 1 30

genF10 99.89 1370 ? 283 0 392 19.7 6 26
average 90.73 332 - 917 252 1772 23.7 5 34

A.3. ENSEMBLE METHODS 219

Table A.40: bag5 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 84.84 1 <1 0 7.99 10.5 4.4 45 62
rtsn 69.82 1 <1 0 8.05 10.5 5.0 62 75
rtc 54.13 1 <1 0 0.35 0.44 1.4 94 99

rtcn 52.96 1 <1 0 0.39 0.49 1.6 99 100
rrbfs 87.68 1 <1 0 4.95 9.85 9.6 28 45
rrbfc 76.66 1 <1 0 2.39 4.73 7.0 50 72

led 73.35 2 <1 0 1.27 2.49 5.6 42 59
wave21 81.01 2 <1 0 3.67 7.29 8.2 53 69
wave40 80.30 1 <1 0 2.26 4.47 7.0 64 85
genF1 95.07 3 <1 0 11.8 13.2 6.4 35 47
genF2 92.18 1 <1 0 8.84 11.7 6.4 29 43
genF3 97.51 2 <1 0 11.2 13.0 6.0 34 50
genF4 91.61 1 <1 0 10.2 12.4 7.0 30 44
genF5 78.36 1 <1 0 9.64 12.2 6.0 30 47
genF6 90.64 1 <1 0 8.81 11.7 7.4 31 46
genF7 96.18 2 <1 0 7.97 11.2 8.2 31 41
genF8 99.40 9 <1 0 9.88 12.2 7.6 36 49
genF9 94.86 2 <1 0 8.72 11.8 7.4 32 43

genF10 99.88 43 <1 0 10.5 12.6 8.2 38 56
average 84.02 4 - 0 6.78 9.10 6.3 45 60

220 APPENDIX A. DETAILED RESULT TABLES

Table A.41: bag5 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 100.00 1240 <10 57.3 436 905 20.4 13 36
rtsn 78.48 740 <10 0.05 3340 4402 14.6 21 51
rtc 79.66 300 <10 4.56 2329 3055 11.2 46 77

rtcn 60.06 190 <10 5.98 2119 2694 9.8 58 74
rrbfs 93.93 830 <10 5.73 1744 3499 31.2 5 12
rrbfc 99.47 640 <10 17.6 673 1382 26.6 15 41

led 73.98 760 20 16.2 447 927 16.0 8 26
wave21 85.19 820 <10 4.95 1580 3170 28.2 20 43
wave40 85.06 650 <10 8.20 1287 2591 25.0 33 62
genF1 95.07 1160 30 12.1 2115 3582 16.4 6 39
genF2 94.11 1170 <10 1.17 3299 4346 17.8 6 27
genF3 97.51 1370 30 48.1 1384 2583 15.2 7 45
genF4 94.68 1160 <10 3.03 3161 4236 18.6 6 27
genF5 92.83 1130 <10 0.01 3041 4234 20.6 6 21
genF6 93.34 1180 <10 0.06 3298 4358 18.0 6 28
genF7 96.84 1220 <10 3.29 3555 4415 18.2 6 30
genF8 99.43 1590 40 86.3 1255 1780 16.4 8 50
genF9 96.82 1290 <10 0.44 3889 4618 17.6 7 29

genF10 99.89 1530 220 127 266 540 17.4 7 55
average 90.33 998 - 21.2 2064 3017 18.9 15 41

A.3. ENSEMBLE METHODS 221

Table A.42: bag5 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 380 ? 394 0 711 14.2 4 20
rtsn 78.49 100 30 850 2479 4445 14.2 3 47
rtc 81.90 90 <10 171 2113 3107 11.6 15 76

rtcn 62.29 70 <10 170 2635 3607 10.8 23 88
rrbfs 94.29 160 140 1603 314 3833 41.4 1 7
rrbfc 99.56 120 30 342 423 1532 31.4 3 24

led 73.97 200 ? 278 0 555 17.0 2 7
wave21 86.14 130 80 734 425 2319 45.6 3 22
wave40 85.98 110 50 392 466 1716 45.8 6 34
genF1 95.03 320 ? 1529 0 2437 15.2 2 19
genF2 94.09 230 190 1771 362 2902 20.2 1 22
genF3 97.50 450 ? 939 0 1604 13.4 2 23
genF4 94.66 220 170 1782 499 3046 19.4 1 22
genF5 92.83 170 120 1707 720 3878 22.2 1 14
genF6 93.32 190 120 1726 689 3451 19.4 1 17
genF7 96.83 210 160 1743 554 2993 21.4 1 20
genF8 99.42 560 ? 744 0 1009 19.6 3 15
genF9 96.82 170 100 1732 1096 3523 20.0 1 19

genF10 99.89 1010 ? 360 0 493 18.8 5 16
average 90.68 257 - 998 672 2482 22.2 4 27

222 APPENDIX A. DETAILED RESULT TABLES

Table A.43: bag10 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 77.75 1 <1 0 6.99 9.14 3.2 36 57
rtsn 65.29 1 <1 0 6.17 7.80 3.0 54 69
rtc 56.31 1 <1 0 1.82 2.28 2.1 84 96

rtcn 52.96 1 <1 0 1.51 1.90 1.9 93 100
rrbfs 85.87 1 <1 0 4.33 8.56 7.7 20 31
rrbfc 64.87 1 <1 0 0.70 1.30 3.3 44 70

led 10.00 1 <1 0 0.10 0.10 0.0 43 63
wave21 79.45 1 <1 0 2.29 4.48 5.6 40 64
wave40 69.71 1 <1 0 0.38 0.66 1.9 66 88
genF1 95.03 1 <1 0 10.4 11.8 5.9 22 35
genF2 93.22 1 <1 0 7.17 9.96 5.6 21 33
genF3 97.51 1 <1 0 8.35 10.5 5.1 23 38
genF4 86.02 1 <1 0 9.02 11.1 4.9 21 33
genF5 78.47 1 <1 0 8.87 11.0 5.4 22 34
genF6 87.55 1 <1 0 7.90 10.4 5.7 22 33
genF7 95.54 1 <1 0 5.53 8.98 7.0 21 31
genF8 99.37 4 <1 0 7.20 9.88 6.7 24 38
genF9 93.73 1 <1 0 7.22 10.1 6.0 21 31

genF10 99.88 19 <1 0 8.35 10.6 7.2 27 43
average 78.34 2 - 0 5.49 7.40 4.6 37 52

A.3. ENSEMBLE METHODS 223

Table A.44: bag10 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1070 <10 44.5 815 1551 19.3 11 26
rtsn 78.43 410 <10 0 3328 4396 13.6 20 38
rtc 79.82 360 <10 2.35 2833 3704 10.6 54 71

rtcn 60.07 230 <10 3.00 2823 3582 9.2 68 87
rrbfs 93.92 790 <10 0.15 1821 3642 29.0 5 7
rrbfc 99.64 740 <10 10.1 1170 2359 28.6 17 23

led 73.96 990 <10 3.96 970 1948 16.0 11 15
wave21 85.14 760 <10 0.20 1711 3423 24.1 18 29
wave40 85.09 610 <10 1.64 1627 3257 22.3 30 48
genF1 95.07 1260 <10 0.73 2585 4009 15.3 7 26
genF2 94.11 770 <10 0 3444 4431 16.4 6 16
genF3 97.52 1360 20 7.67 2084 3637 14.3 7 32
genF4 94.67 690 <10 0 3367 4387 17.0 6 15
genF5 92.79 510 <10 0 3025 4223 18.8 5 11
genF6 93.33 630 <10 0 3246 4329 16.9 4 14
genF7 96.84 960 <10 0 3773 4574 17.3 6 18
genF8 99.43 1380 20 55.5 2097 2753 14.9 7 34
genF9 96.82 630 <10 0 4000 4675 16.2 6 17

genF10 99.89 1520 80 117 497 822 15.3 7 39
average 90.34 825 - 13.0 2380 3458 17.6 16 30

224 APPENDIX A. DETAILED RESULT TABLES

Table A.45: bag10 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 130 ? 613 0 1073 13.5 1 10
rtsn 78.48 80 20 810 4262 6772 13.8 3 32
rtc 82.83 80 <10 165 3558 5019 11.0 13 68

rtcn 62.77 70 <10 162 4701 6229 10.3 21 82
rrbfs 94.43 110 70 1546 960 5012 39.3 1 3
rrbfc 99.71 100 <10 338 702 2079 29.6 3 15

led 73.99 130 120 321 104 849 16.0 1 5
wave21 86.22 100 40 714 852 3131 41.1 3 13
wave40 86.03 90 30 380 821 2402 40.0 5 21
genF1 95.05 210 190 1763 471 3363 14.6 1 22
genF2 94.10 170 80 1720 1343 4076 18.3 1 12
genF3 97.51 290 ? 1433 0 2329 12.7 2 13
genF4 94.66 160 80 1723 1615 4589 18.1 1 11
genF5 92.86 130 50 1632 1954 5655 20.0 1 7
genF6 93.36 140 40 1658 1879 5137 18.2 1 8
genF7 96.85 160 70 1677 1788 4401 19.5 1 11
genF8 99.42 340 ? 1047 0 1358 19.0 2 8
genF9 96.84 150 40 1646 3033 5703 18.8 1 11

genF10 99.89 650 ? 526 0 699 16.8 3 9
average 90.79 173 - 1046 1476 3678 20.6 3 19

A.3. ENSEMBLE METHODS 225

Table A.46: boost3 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 90.74 2 <1 0 8.55 11.5 5.3 49 63
rtsn 69.30 2 <1 0 9.22 11.8 5.7 65 76
rtc 56.23 1 <1 0 3.47 4.39 3.7 87 93

rtcn 53.55 1 <1 0 3.55 4.46 3.0 95 100
rrbfs 87.49 2 <1 0 5.19 10.4 11.3 28 48
rrbfc 86.85 2 <1 0 3.63 7.23 8.7 50 72

led 73.88 6 <1 0 2.13 4.23 8.7 42 58
wave21 81.06 3 <1 0 4.28 8.53 9.7 51 73
wave40 81.08 3 <1 0 3.52 7.01 9.3 68 87
genF1 93.61 8 <1 0 11.8 13.6 9.0 35 50
genF2 88.27 2 <1 0 9.21 12.3 7.3 33 48
genF3 96.70 2 <1 0 10.7 12.9 8.3 37 51
genF4 87.85 2 <1 0 10.6 12.9 8.0 31 48
genF5 79.86 2 <1 0 9.81 12.6 7.3 32 48
genF6 91.03 2 <1 0 10.2 12.7 9.0 32 48
genF7 96.14 3 <1 0 9.27 12.4 9.3 35 47
genF8 99.38 11 <1 0 10.5 13.2 9.3 37 49
genF9 95.12 4 <1 0 9.11 12.3 8.3 33 45

genF10 99.87 77 <1 0 9.89 12.9 11.3 43 53
average 84.63 7 - 0 7.61 10.4 8.0 46 61

226 APPENDIX A. DETAILED RESULT TABLES

Table A.47: boost3 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 100.00 1410 <10 50.8 857 1496 25.0 14 41
rtsn 78.43 550 <10 1.54 2992 4176 17.0 16 56
rtc 78.37 250 <10 6.48 1880 2475 11.7 39 64

rtcn 58.34 200 <10 6.73 1931 2459 10.0 62 83
rrbfs 93.24 540 <10 20.2 1540 3120 31.7 3 18
rrbfc 98.98 840 <10 12.1 1070 2165 30.7 20 48

led 73.95 1140 30 11.9 593 1210 17.7 12 33
wave21 84.46 690 <10 12.0 1380 2783 28.3 17 52
wave40 84.28 590 <10 10.7 1151 2323 26.7 30 70
genF1 91.98 1190 <10 14.7 2247 3593 19.0 6 43
genF2 92.13 1080 <10 8.57 2485 3815 19.3 6 29
genF3 95.44 1410 <10 26.2 2161 3341 20.0 7 48
genF4 93.00 1020 <10 12.5 2434 3718 20.0 5 31
genF5 91.62 950 <10 2.28 2534 3950 21.0 5 27
genF6 92.11 970 <10 3.91 2720 4008 19.0 5 31
genF7 96.13 1120 <10 13.1 2769 3854 20.7 6 31
genF8 99.35 1350 <10 37.0 2143 3119 22.3 7 41
genF9 96.49 1150 <10 7.54 3045 4090 19.7 6 30

genF10 99.88 1570 20 44.5 1956 2911 25.7 7 50
average 89.38 948 - 15.9 1994 3085 21.3 14 43

A.3. ENSEMBLE METHODS 227

Table A.48: boost3 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 370 160 668 254 1486 20.3 4 31
rtsn 78.39 130 50 864 1247 3176 17.3 4 44
rtc 80.82 100 <10 174 1545 2370 12.3 15 79

rtcn 59.55 80 20 174 1595 2279 10.7 25 88
rrbfs 93.43 130 70 1354 676 4059 42.0 1 10
rrbfc 99.08 150 40 346 505 1701 36.3 4 34

led 73.96 210 ? 200 0 399 17.0 2 14
wave21 85.39 160 110 741 297 2076 52.0 4 30
wave40 85.16 130 60 395 390 1571 47.3 7 45
genF1 92.97 150 60 1258 900 3507 19.3 1 33
genF2 92.24 150 80 1402 842 3791 20.7 1 25
genF3 96.18 140 60 1207 1050 3513 19.0 1 39
genF4 93.13 130 70 1393 886 3768 20.0 1 23
genF5 91.65 130 70 1529 748 3944 21.7 1 18
genF6 91.97 120 60 1517 841 3828 20.7 1 21
genF7 96.11 100 50 1384 1227 3948 22.3 1 22
genF8 99.32 180 110 1262 801 3122 24.7 1 30
genF9 96.34 90 40 1488 1487 4380 21.0 1 22

genF10 99.87 310 200 1369 1222 3830 26.0 1 35
average 89.77 156 - 985 869 2987 24.8 4 34

228 APPENDIX A. DETAILED RESULT TABLES

Table A.49: boost5 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 88.38 1 <1 0 7.89 10.4 4.8 38 56
rtsn 68.59 1 <1 0 8.24 10.6 4.4 55 70
rtc 59.23 1 <1 0 0.76 0.96 2.0 87 94

rtcn 53.55 1 <1 0 1.01 1.28 2.0 93 100
rrbfs 87.13 1 <1 0 5.07 10.1 9.2 19 37
rrbfc 79.87 1 <1 0 2.39 4.73 6.8 37 65

led 73.87 1 <1 0 1.17 2.29 5.8 20 54
wave21 80.93 2 <1 0 3.72 7.39 8.4 40 64
wave40 80.48 1 <1 0 2.35 4.65 7.4 51 82
genF1 93.72 1 <1 0 11.1 13.2 8.4 24 39
genF2 86.18 1 <1 0 9.00 11.8 6.2 22 38
genF3 96.40 5 <1 0 9.66 12.3 6.0 29 40
genF4 93.26 1 <1 0 9.95 12.4 5.6 24 38
genF5 68.72 1 <1 0 10.4 12.5 5.6 23 40
genF6 89.24 1 <1 0 8.91 11.8 7.0 24 40
genF7 95.93 2 <1 0 9.57 13.3 8.6 25 35
genF8 99.36 7 <1 0 9.73 12.4 8.2 30 39
genF9 94.93 2 <1 0 9.08 12.0 7.6 25 35

genF10 99.88 42 <1 0 9.58 12.8 9.6 34 45
average 83.67 4 - 0 6.82 9.30 6.5 37 53

A.3. ENSEMBLE METHODS 229

Table A.50: boost5 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 1270 <10 27.1 1673 2730 23.4 13 31
rtsn 78.39 680 <10 0.06 2996 4231 17.0 19 47
rtc 82.39 350 <10 4.14 2354 3144 12.4 53 76

rtcn 59.27 190 <10 5.88 2135 2718 9.8 57 76
rrbfs 93.01 600 <10 3.37 1776 3559 29.6 3 9
rrbfc 99.19 800 <10 6.64 1420 2854 30.0 19 31

led 73.97 930 20 7.94 785 1586 17.6 10 24
wave21 84.49 670 <10 2.69 1644 3294 27.6 16 38
wave40 84.32 570 <10 4.27 1496 3000 27.6 29 61
genF1 90.93 1460 <10 1.11 2490 3948 19.4 8 31
genF2 92.01 1190 <10 0.19 2485 3965 18.4 6 18
genF3 95.47 1520 <10 8.12 2270 3718 19.2 8 30
genF4 93.17 1240 <10 0.45 2606 4015 18.4 7 21
genF5 91.80 1100 <10 0 2408 3929 19.8 6 17
genF6 92.19 1180 <10 0.02 2594 4017 18.4 6 18
genF7 96.14 1330 <10 0.35 3137 4264 20.4 7 23
genF8 99.34 1710 <10 16.8 2679 3746 22.8 9 29
genF9 96.43 1280 <10 0.09 3256 4326 20.2 7 21

genF10 99.87 1220 <10 26.0 2362 3449 25.4 6 36
average 89.60 1015 - 6.07 2240 3500 20.9 15 34

230 APPENDIX A. DETAILED RESULT TABLES

Table A.51: boost5 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.98 260 30 816 1231 3172 20.8 3 22
rtsn 78.34 100 30 846 1760 4029 17.8 3 31
rtc 84.24 90 <10 170 2177 3295 12.8 14 74

rtcn 60.12 50 <10 176 1229 1823 10.0 16 81
rrbfs 93.30 80 40 1432 1152 5168 37.4 1 6
rrbfc 99.30 100 20 345 775 2238 30.6 2 25

led 73.92 190 ? 306 0 611 17.0 2 10
wave21 85.37 130 60 723 721 2888 41.8 3 21
wave40 85.06 110 40 384 741 2250 43.4 6 35
genF1 93.23 80 30 1374 1762 5184 19.6 0 20
genF2 92.48 80 40 1487 1393 5083 19.2 0 14
genF3 96.41 80 30 1381 1719 5170 19.2 0 22
genF4 93.31 80 30 1487 1672 5362 19.2 0 15
genF5 91.66 80 40 1562 1456 5448 21.0 0 11
genF6 92.07 80 40 1574 1618 5510 19.6 0 12
genF7 96.02 60 20 1499 2110 5364 21.0 0 14
genF8 99.28 140 50 1438 2123 5348 24.0 1 22
genF9 96.19 60 20 1573 2547 6021 20.4 0 15

genF10 99.86 230 110 1600 2168 5602 26.0 1 27
average 90.01 109 - 1062 1492 4188 23.2 3 25

A.3. ENSEMBLE METHODS 231

Table A.52: boost10 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 78.61 1 <1 0 6.25 8.08 3.6 28 44
rtsn 67.94 1 <1 0 6.31 8.05 3.4 47 62
rtc 57.63 1 <1 0 1.15 1.45 1.6 81 92

rtcn 55.70 1 <1 0 0.75 0.95 1.5 93 100
rrbfs 86.36 1 <1 0 4.43 8.76 7.7 13 25
rrbfc 62.93 1 <1 0 0.56 1.02 2.6 36 61

led 9.99 1 <1 0 0.10 0.10 0.0 32 61
wave21 80.19 1 <1 0 2.21 4.32 5.7 31 57
wave40 75.39 1 <1 0 0.42 0.74 2.2 55 85
genF1 93.96 1 <1 0 16.8 20.7 7.1 14 23
genF2 71.77 1 <1 0 9.45 11.6 3.9 17 29
genF3 95.91 1 <1 0 10.5 13.8 5.6 17 26
genF4 85.44 1 <1 0 10.5 12.6 4.4 16 26
genF5 65.92 1 <1 0 9.22 11.1 4.4 16 29
genF6 88.64 1 <1 0 8.84 11.1 5.2 16 26
genF7 95.57 1 <1 0 12.9 17.8 7.6 14 21
genF8 99.36 5 <1 0 12.8 16.2 6.9 18 23
genF9 94.46 1 <1 0 9.19 12.6 6.6 15 23

genF10 99.87 15 <1 0 10.0 13.8 7.8 22 31
average 77.14 2 - 0 6.97 9.20 4.6 31 44

232 APPENDIX A. DETAILED RESULT TABLES

Table A.53: boost10 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 860 <10 7.96 2315 3640 23.0 9 15
rtsn 78.34 390 <10 0 2975 4219 15.9 17 33
rtc 76.14 330 <10 2.00 2990 3845 10.4 51 71

rtcn 61.09 210 <10 3.12 2792 3544 9.5 65 80
rrbfs 92.75 630 <10 0.06 1821 3643 26.4 4 6
rrbfc 99.32 610 <10 2.51 1664 3334 26.4 14 19

led 73.92 710 <10 0.98 1065 2133 16.9 8 21
wave21 84.44 610 <10 0.07 1713 3426 25.4 15 27
wave40 84.32 490 <10 0.74 1674 3350 27.3 25 41
genF1 90.83 1300 <10 0.06 2593 4014 18.6 7 15
genF2 92.07 780 <10 0 2439 3944 17.6 5 10
genF3 95.49 1760 <10 0.29 2780 4095 18.9 9 21
genF4 92.88 610 <10 0 2594 4017 16.3 5 11
genF5 91.75 470 <10 0 2375 3912 17.6 4 8
genF6 92.26 570 <10 0 2601 4019 16.8 5 9
genF7 96.15 870 <10 0 3118 4260 19.3 6 11
genF8 99.31 1310 <10 5.98 2983 4092 21.5 7 12
genF9 96.40 600 <10 0 3213 4306 18.0 5 11

genF10 99.87 2360 <10 10.6 2753 3909 23.4 11 24
average 89.33 814 - 1.81 2445 3774 19.4 14 23

A.3. ENSEMBLE METHODS 233

Table A.54: boost10 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

av
er

ag
e

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 200 <10 827 3304 6317 20.9 2 15
rtsn 78.36 80 20 803 3152 6240 17.7 2 20
rtc 80.11 70 <10 163 4111 5671 11.3 12 64

rtcn 61.73 60 <10 166 3766 5055 10.7 20 79
rrbfs 93.30 50 20 1454 2163 7234 34.4 0 3
rrbfc 99.52 140 <10 330 2304 5267 26.5 3 15

led 73.90 120 100 318 71.0 778 16.0 1 6
wave21 85.42 70 30 710 931 3281 32.6 2 12
wave40 85.03 80 20 369 1281 3300 28.9 4 24
genF1 93.51 40 <10 1468 2910 7247 19.9 0 11
genF2 92.65 50 20 1515 2961 7882 19.5 0 7
genF3 96.60 40 <10 1505 3494 7624 19.8 0 16
genF4 93.40 50 20 1508 3274 8098 17.9 0 7
genF5 91.68 50 20 1563 2860 7872 19.2 0 6
genF6 92.15 50 20 1546 3316 8238 18.8 0 6
genF7 96.08 40 <10 1523 3986 8262 20.5 0 7
genF8 99.23 90 30 1510 3905 8060 25.0 1 12
genF9 96.14 40 <10 1573 4455 8883 19.8 0 7

genF10 99.85 180 50 1613 4643 9139 25.2 1 17
average 89.93 79 - 1077 2994 6550 21.3 3 18

234 APPENDIX A. DETAILED RESULT TABLES

Table A.55: hot3 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 95.85 7 <1 0 10.1 12.8 8 67 77
rtsn 73.71 4 <1 0 10.2 12.8 10 77 86
rtc 64.79 3 <1 0 8.90 10.8 5 89 78

rtcn 53.82 1 <1 0 4.80 6.07 5 64 82
rrbfs 87.77 4 <1 0 5.06 10.1 18 41 63
rrbfc 79.84 1 <1 0 3.49 6.96 42 35 76

led 73.91 21 <1 0 4.11 6.16 11 83 89
wave21 81.23 4 <1 0 6.95 10.4 11 100 100
wave40 81.14 4 <1 0 6.63 9.94 12 21 25
genF1 95.06 8 <1 0 11.7 13.7 10 45 61
genF2 93.47 3 <1 0 11.2 13.5 12 37 52
genF3 97.48 27 <1 0 12.5 14.1 7 49 67
genF4 93.80 4 <1 0 11.9 13.8 12 45 63
genF5 85.09 2 <1 0 9.34 12.4 8 37 58
genF6 91.95 5 <1 0 11.3 13.5 11 43 59
genF7 96.40 5 <1 0 8.86 11.5 12 46 60
genF8 99.40 20 <1 0 11.0 13.7 9 50 63
genF9 95.85 9 <1 0 8.66 12.0 11 54 66

genF10 99.88 146 <1 0 11.2 13.5 14 50 63
average 86.34 15 - 0 8.83 11.5 12 54 68

A.3. ENSEMBLE METHODS 235

Table A.56: hot3 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 920 200 80.8 44.4 230 16 10 55
rtsn 78.48 380 20 26.1 2127 2813 23 9 71
rtc 84.09 290 <10 9.15 1162 1582 12 50 88

rtcn 63.06 160 <10 7.27 1741 2218 10 51 92
rrbfs 93.61 680 40 73.4 749 1645 51 3 21
rrbfc 99.13 730 <10 21.6 392 826 37 17 56

led 73.95 810 50 19.2 202 442 17 16 62
wave21 85.07 550 20 32.5 728 1521 34 29 100
wave40 84.91 470 <10 20.8 555 1152 30 7 20
genF1 95.06 900 40 86.7 800 1564 19 4 53
genF2 94.09 820 30 70.6 1489 2180 22 4 45
genF3 97.52 1210 250 116 332 835 17 6 68
genF4 94.67 960 50 93.7 1031 1557 26 5 55
genF5 92.62 470 20 46.2 1626 2647 32 2 26
genF6 93.31 860 30 73.0 1597 2169 20 4 45
genF7 96.83 930 30 67.8 1870 2365 21 4 42
genF8 99.42 1240 410 131 186 436 18 6 65
genF9 96.82 1070 40 88.3 1292 1720 20 5 49

genF10 99.89 1590 1500 152 13.9 243 19 7 28
average 90.66 792 - 64.0 944 1481 23 13 55

236 APPENDIX A. DETAILED RESULT TABLES

Table A.57: hot3 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 770 ? 120 0 219 16 9 46
rtsn 78.45 140 110 904 239 1489 23 4 76
rtc 84.53 60 <10 177 649 1167 13 11 77

rtcn 64.23 50 20 178 454 846 11 19 80
rrbfs 93.93 280 ? 932 0 1864 56 1 14
rrbfc 99.21 90 80 354 50.2 809 43 2 30

led 73.97 260 ? 170 0 340 16 5 19
wave21 85.96 160 ? 668 0 1337 53 9 75
wave40 85.80 100 100 402 12.4 830 50 2 13
genF1 95.04 280 ? 514 0 840 18 1 43
genF2 94.07 300 ? 980 0 1449 22 1 30
genF3 97.51 840 ? 368 0 676 16 4 52
genF4 94.65 400 ? 759 0 1024 27 2 40
genF5 92.71 190 ? 1519 0 2650 38 1 15
genF6 93.29 290 ? 1074 0 1452 24 1 32
genF7 96.79 200 ? 726 0 968 18 1 27
genF8 99.42 1000 ? 286 0 394 18 5 36
genF9 96.77 190 ? 724 0 936 19 1 33

genF10 99.89 1570 ? 164 0 240 19 7 28
average 90.85 377 - 580 73.9 1028 26 5 40

A.3. ENSEMBLE METHODS 237

Table A.58: hot5 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 95.85 7 <1 0 10.1 12.8 8 68 78
rtsn 73.71 4 <1 0 10.2 12.8 10 77 86
rtc 64.79 3 <1 0 8.90 10.8 5 74 75

rtcn 54.64 1 <1 0 6.09 7.65 3 79 84
rrbfs 87.93 2 <1 0 4.97 9.90 15 30 51
rrbfc 78.63 1 <1 0 4.16 8.26 26 33 73

led 73.91 21 <1 0 4.11 6.16 11 87 97
wave21 81.23 4 <1 0 6.95 10.4 11 100 100
wave40 81.14 4 <1 0 6.63 9.94 12 21 26
genF1 95.06 8 <1 0 11.7 13.7 10 45 59
genF2 93.47 3 <1 0 11.2 13.5 12 37 54
genF3 97.48 27 <1 0 12.5 14.1 7 49 64
genF4 93.80 4 <1 0 11.9 13.8 12 44 59
genF5 84.25 1 <1 0 10.4 13.1 10 29 46
genF6 91.95 5 <1 0 11.3 13.5 11 42 56
genF7 96.38 6 <1 0 10.5 13.1 11 42 55
genF8 99.40 16 <1 0 11.3 13.5 9 41 50
genF9 95.77 8 <1 0 9.81 12.7 12 43 54

genF10 99.88 146 <1 0 11.2 13.5 14 50 64
average 86.28 14 - 0 9.15 11.8 11 52 65

238 APPENDIX A. DETAILED RESULT TABLES

Table A.59: hot5 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 910 190 80.2 46.7 233 16 10 49
rtsn 78.47 380 <10 25.1 2170 2867 23 10 74
rtc 84.10 280 <10 9.12 1160 1580 12 47 82

rtcn 63.83 140 <10 7.43 1723 2196 10 44 83
rrbfs 93.83 530 20 63.6 883 1893 46 2 15
rrbfc 99.19 640 <10 19.6 518 1076 33 15 41

led 73.96 730 40 18.3 226 489 17 15 59
wave21 85.13 500 20 28.6 854 1765 31 26 100
wave40 84.95 450 <10 19.4 632 1302 29 7 20
genF1 95.07 860 40 83.4 858 1649 19 4 51
genF2 94.08 810 30 68.9 1530 2228 22 4 42
genF3 97.51 1220 230 112 389 934 17 6 66
genF4 94.67 980 50 90.0 1103 1659 25 5 55
genF5 92.70 350 <10 35.6 1983 3009 31 2 22
genF6 93.33 810 30 72.3 1591 2177 20 4 45
genF7 96.83 850 30 67.1 1883 2384 20 4 41
genF8 99.42 1290 320 129 223 484 18 6 62
genF9 96.82 1040 40 87.1 1315 1752 20 5 43

genF10 99.89 1480 1390 152 14.4 244 19 7 27
average 90.72 750 - 61.5 1005 1575 23 12 51

A.3. ENSEMBLE METHODS 239

Table A.60: hot5 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 780 ? 122 0 224 16 9 46
rtsn 78.38 90 ? 856 0 1114 21 2 72
rtc 84.58 60 <10 177 657 1180 13 11 77

rtcn 65.61 50 <10 176 878 1418 11 16 73
rrbfs 94.16 210 ? 1123 0 2247 56 1 9
rrbfc 99.15 40 40 361 6.60 734 40 1 15

led 73.91 170 ? 106 0 213 15 4 19
wave21 86.03 130 ? 739 0 1478 49 7 65
wave40 85.86 100 90 399 95.1 989 46 2 12
genF1 95.06 420 ? 719 0 1211 19 2 42
genF2 94.07 180 ? 704 0 1044 21 1 28
genF3 97.51 780 ? 386 0 706 16 4 51
genF4 94.64 230 ? 567 0 743 25 1 39
genF5 92.78 140 ? 1749 0 2922 36 1 12
genF6 93.28 180 ? 779 0 1054 21 1 29
genF7 96.79 290 ? 1129 0 1508 19 1 22
genF8 99.42 910 ? 288 0 396 18 4 33
genF9 96.78 290 ? 1004 0 1327 19 1 28

genF10 99.89 1490 ? 168 0 245 19 7 27
average 90.94 344 - 608 86.1 1092 25 4 37

240 APPENDIX A. DETAILED RESULT TABLES

Table A.61: hot10 method with 100KB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 95.85 7 <1 0 10.1 12.8 8 68 78
rtsn 73.71 4 <1 0 10.2 12.8 10 77 86
rtc 64.79 3 <1 0 8.90 10.8 5 74 80

rtcn 54.64 2 <1 0 8.92 10.8 3 90 88
rrbfs 87.33 2 <1 0 7.81 11.7 13 26 42
rrbfc 71.98 1 <1 0 7.07 10.6 24 34 49

led 73.91 21 <1 0 4.11 6.16 11 87 93
wave21 81.23 4 <1 0 6.95 10.4 11 100 100
wave40 81.14 4 <1 0 6.63 9.94 12 21 26
genF1 95.06 8 <1 0 11.7 13.7 10 45 61
genF2 93.47 3 <1 0 11.2 13.5 12 37 51
genF3 97.48 27 <1 0 12.5 14.1 7 49 65
genF4 93.80 4 <1 0 11.9 13.8 12 43 63
genF5 84.25 1 <1 0 10.4 13.1 10 30 46
genF6 91.95 5 <1 0 11.3 13.5 11 41 57
genF7 96.38 6 <1 0 10.5 13.1 11 39 50
genF8 99.40 16 <1 0 11.3 13.5 9 41 49
genF9 95.77 8 <1 0 9.81 12.7 12 45 57

genF10 99.88 146 <1 0 11.2 13.5 14 39 63
average 85.90 14 - 0 9.60 12.1 11 52 63

A.3. ENSEMBLE METHODS 241

Table A.62: hot10 method with 32MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 880 190 80.5 45.9 232 16 10 57
rtsn 78.48 370 <10 24.5 2194 2901 23 9 75
rtc 83.99 250 <10 8.34 1495 1894 12 43 81

rtcn 63.54 150 <10 6.75 1872 2381 9 47 89
rrbfs 93.80 420 20 59.2 943 2005 44 2 11
rrbfc 99.20 470 <10 16.3 723 1479 32 11 27

led 73.97 620 20 19.9 333 706 16 13 43
wave21 85.13 380 <10 26.2 922 1896 30 20 97
wave40 84.93 400 <10 17.3 752 1538 28 6 19
genF1 95.07 840 40 82.8 872 1669 19 4 53
genF2 94.08 750 30 69.2 1523 2216 22 4 41
genF3 97.51 1180 200 106 473 1074 17 5 66
genF4 94.67 930 40 86.1 1177 1760 25 4 48
genF5 92.72 270 <10 34.6 2003 3032 31 1 16
genF6 93.34 780 30 65.6 1756 2379 20 4 41
genF7 96.83 840 30 65.1 1933 2444 20 4 34
genF8 99.42 1210 260 129 225 488 18 6 61
genF9 96.82 970 30 89.3 1246 1677 20 5 40

genF10 99.89 1420 1180 145 44.0 276 19 6 38
average 90.70 691 - 59.6 1081 1687 22 11 49

242 APPENDIX A. DETAILED RESULT TABLES

Table A.63: hot10 method with 400MB memory limit.

dataset ac
cu

ra
cy

(%
)

tr
ai

n
in

g
ex

am
p
le

s
(m

il
li
on

s)

ex
am

p
le

s
to

fu
ll

m
em

or
y

(m
il
li
on

s)

ac
ti

ve
le

av
es

(h
u
n
d
re

d
s)

in
ac

ti
ve

le
av

es
(h

u
n
d
re

d
s)

to
ta

l
n
od

es
(h

u
n
d
re

d
s)

tr
ee

d
ep

th

tr
ai

n
in

g
sp

ee
d

(%
)

p
re

d
ic

ti
on

sp
ee

d
(%

)

rts 99.99 750 ? 122 0 223 16 8 46
rtsn 78.45 120 90 903 289 1553 22 3 74
rtc 84.61 60 <10 177 668 1194 13 11 77

rtcn 65.31 40 <10 176 957 1523 11 14 71
rrbfs 94.20 180 ? 1326 0 2653 55 1 6
rrbfc 99.36 60 20 342 348 1381 38 1 16

led 73.95 150 ? 217 0 434 15 3 10
wave21 86.12 110 100 751 134 1770 46 6 52
wave40 85.95 80 60 402 138 1080 43 1 10
genF1 95.06 400 ? 734 0 1234 19 2 40
genF2 94.07 180 ? 757 0 1125 21 1 28
genF3 97.51 470 ? 287 0 495 14 2 51
genF4 94.65 350 ? 862 0 1152 27 2 30
genF5 92.76 80 ? 1396 0 2326 32 0 10
genF6 93.31 250 ? 1193 0 1639 23 1 24
genF7 96.80 180 ? 758 0 1022 18 1 19
genF8 99.42 550 ? 215 0 287 18 3 31
genF9 96.76 170 ? 769 0 1007 19 1 25

genF10 99.89 1360 ? 182 0 265 19 6 24
average 90.96 292 - 609 133 1177 25 4 34

References

[1] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. On

demand classification of data streams. In Knowledge Discovery and Data

Mining, pages 503–508, 2004.

[2] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Database mining:

A performance perspective. IEEE Transactions on Knowledge and Data

Engineering, 5(6):914–925, 1993.

[3] Rakesh Agrawal and Arun Swami. A one-pass space-efficient algorithm

for finding quantiles. In International Conference on Management of

Data, 1995.

[4] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal

Cayirci. A survey on sensor networks. IEEE Communications Magazine,

40(8):102–116, 2002.

[5] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. A one-pass algorithm

for accurately estimating quantiles for disk-resident data. In Interna-

tional Conference on Very Large Databases, pages 346–355, 1997.

[6] S. Ansari, S.G. Rajeev, and H.S. Chandrashekar. Packet sniffing: A brief

introduction. IEEE Potentials, 21(5):17–19, 2002.

[7] A. Asuncion and D. J. Newman. UCI Machine Learning Repository

[http://www.ics.uci.edu/∼mlearn/mlrepository.html]. University of Cal-

ifornia, Irvine, School of Information and Computer Sciences, 2007.

[8] Jürgen Beringer and Eyke Hüllermeier. An efficient algorithm for

instance-based learning on data streams. In Industrial Conference on

Data Mining, pages 34–48, 2007.

243

244 REFERENCES

[9] Remco R. Bouckaert. Choosing between two learning algorithms based

on calibrated tests. In International Conference on Machine Learning,

pages 51–58, 2003.

[10] Remco R. Bouckaert. Voting massive collections of bayesian network

classifiers for data streams. In Australian Joint Conference on Artificial

Intelligence, pages 243–252, 2006.

[11] Damien Brain and Geoffrey I. Webb. The need for low bias algorithms

in classification learning from large data sets. In European Conference

on Principles and Practice of Knowledge Discovery in Databases, pages

62–73, 2002.

[12] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140,

1996.

[13] Leo Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–824,

1998.

[14] Leo Breiman. Rejoinder to discussion of the paper “arcing classifiers”.

The Annals of Statistics, 26(3):841–849, 1998.

[15] Leo Breiman. Pasting bites together for prediction in large data sets and

on-line. Machine Learning, 36(1/2):85–103, 1999.

[16] Leo Breiman. Prediction games and arcing algorithms. Neural Compu-

tation, 11(7):1493–1517, 1999.

[17] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[18] Leo Breiman, Jerome Friedman, R. Olshen, and Charles J. Stone. Clas-

sification and Regression Trees. Wadsworth and Brooks, Monterey, CA,

1984.

[19] S Terry Brugger. KDD Cup ’99 dataset (Network Intrusion) con-

sidered harmful, KDnuggets newsletter, 07(18), 15 September 2007

[http://www.kdnuggets.com/news/2007/n18/4i.html].

[20] Nader H. Bshouty and Dmitry Gavinsky. On boosting with polynomially

bounded distributions. Journal of Machine Learning Research, 3:483–

506, 2002.

REFERENCES 245

[21] Wray Buntine. Learning classification trees. Statistics and Computing,

2(2):63–73, 1992.

[22] Christopher J. C. Burges. A tutorial on support vector machines for

pattern recognition. Data Mining and Knowledge Discovery, 2(2):121–

167, 1998.

[23] Rich Caruana and Alexandru Niculescu-Mizil. An empirical compari-

son of supervised learning algorithms. In International Conference on

Machine Learning, pages 161–168, 2006.

[24] Tony F. Chan and John Gregg Lewis. Computing standard deviations:

Accuracy. Communications of the ACM, 22(9):526–531, 1979.

[25] Fang Chu and Carlo Zaniolo. Fast and light boosting for adaptive mining

of data streams. In Pacific-Asia Conference on Knowledge Discovery and

Data Mining, pages 282–292, 2004.

[26] Thomas G. Dietterich. Approximate statistical test for comparing

supervised classification learning algorithms. Neural Computation,

10(7):1895–1923, 1998.

[27] Thomas G. Dietterich. Machine learning research: Four current direc-

tions. The AI Magazine, 18(4):97–136, 1998.

[28] Thomas G. Dietterich. Ensemble methods in machine learning. Lecture

Notes in Computer Science, 1857:1–15, 2000.

[29] Thomas G. Dietterich. An experimental comparison of three methods

for constructing ensembles of decision trees: Bagging, boosting, and ran-

domization. Machine Learning, 40(2):139–157, 2000.

[30] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning

problems via error-correcting output codes. Journal of Artificial Intelli-

gence Research, 2:263–286, 1995.

[31] Carlos Domingo and Osamu Watanabe. MadaBoost: A modification

of AdaBoost. In ACM Annual Workshop on Computational Learning

Theory, pages 180–189, 2000.

[32] Pedro Domingos and Geoff Hulten. Mining high-speed data streams.

In International Conference on Knowledge Discovery and Data Mining,

pages 71–80, 2000.

246 REFERENCES

[33] Pedro Domingos and Michael J. Pazzani. On the optimality of the simple

bayesian classifier under zero-one loss. Machine Learning, 29(2/3):103–

130, 1997.

[34] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and

unsupervised discretization of continuous features. In International Con-

ference on Machine Learning, pages 194–202, 1995.

[35] Bradley Efron. Estimating the error rate of a prediction rule: Improve-

ment on cross-validation. Journal of the American Statistical Associa-

tion, 78(382):316–330, 1983.

[36] Wei Fan, Salvatore J. Stolfo, and Junxin Zhang. The application of

adaboost for distributed, scalable and on-line learning. In International

Conference on Knowledge Discovery and Data Mining, pages 362–366,

1999.

[37] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of

continuous-valued attributes for classification learning. In International

Joint Conference on Artificial Intelligence, pages 1022–1027, 1993.

[38] Alan Fern and Robert Givan. Online ensemble learning: An empirical

study. Machine Learning, 53(1/2):71–109, 2003.

[39] Francisco Ferrer-Troyano, Jesús S. Aguilar-Ruiz, and José C. Riquelme.

Discovering decision rules from numerical data streams. In ACM Sym-

posium on Applied computing, pages 649–653, 2004.

[40] Francisco Ferrer-Troyano, Jesús S. Aguilar-Ruiz, and José C. Riquelme.

Data streams classification by incremental rule learning with parameter-

ized generalization. In ACM Symposium on Applied Computing, pages

657–661, 2006.

[41] Yoav Freund. Boosting a weak learning algorithm by majority. Infor-

mation and Computation, 121(2):256–285, 1995.

[42] Yoav Freund. An adaptive version of the boost by majority algorithm.

Machine Learning, 43(3):293–318, 2001.

[43] Yoav Freund and Llew Mason. The alternating decision tree learning

algorithm. In International Conference on Machine Learning, pages 124–

133, 1999.

REFERENCES 247

[44] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization

of on-line learning and an application to boosting. Journal of Computer

and System Sciences, 55(1):119–139, 1997.

[45] Yoav Freund and Robert E. Schapire. Discussion of the paper “arcing

classifiers” by Leo Breiman. The Annals of Statistics, 26(3):824–832,

1998.

[46] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logis-

tic regression: a statistical view of boosting. The Annals of Statistics,

28:337–374, 2000.

[47] Mohamed Medhat Gaber, Shonali Krishnaswamy, and Arkady Zaslavsky.

On-board mining of data streams in sensor networks. In Sanghamitra

Bandyopadhyay, Ujjwal Maulik, Lawrence B. Holder, and Diane J. Cook,

editors, Advanced Methods for Knowledge Discovery from Complex Data,

pages 307–335. Springer, Berlin Heidelberg, 2005.

[48] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy.

A survey of classification methods in data streams. In Charu C. Aggar-

wal, editor, Data Streams: Models and Algorithms, chapter 3. Springer,

New York, 2007.

[49] João Gama and Mohamed Medhat Gaber, editors. Learning from Data

Streams: Processing Techniques in Sensor Networks. Springer, 2007.

[50] João Gama, Pedro Medas, and Ricardo Rocha. Forest trees for on-line

data. In ACM Symposium on Applied Computing, pages 632–636, 2004.

[51] João Gama and Carlos Pinto. Discretization from data streams: Appli-

cations to histograms and data mining. In ACM Symposium on Applied

Computing, pages 662–667, 2006.

[52] João Gama, Ricardo Rocha, and Pedro Medas. Accurate decision trees

for mining high-speed data streams. In International Conference on

Knowledge Discovery and Data Mining, pages 523–528, 2003.

[53] João Gama and Pedro Pereira Rodrigues. Stream-based electricity load

forecast. In European Conference on Principles and Practice of Knowl-

edge Discovery in Databases, pages 446–453, 2007.

248 REFERENCES

[54] Johannes Gehrke, Raghu Ramakrishnan, and Venkatesh Ganti. Rain-

Forest - a framework for fast decision tree construction of large datasets.

Data Mining and Knowledge Discovery, 4(2/3):127–162, 2000.

[55] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks

and the bias/variance dilemma. Neural Computation, 4(1):1–58, 1992.

[56] Michael Greenwald and Sanjeev Khanna. Space-efficient online compu-

tation of quantile summaries. In ACM Special Interest Group on Man-

agement Of Data Conference, pages 58–66, 2001.

[57] Robert L. Grossman, Chandrika Kamath, Philip Kegelmeyer, Vipin Ku-

mar, and Raju R. Namburu, editors. Data Mining for Scientific and

Engineering Applications. Kluwer Academic Publishers, 2001.

[58] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and

Liadan O’Callaghan. Clustering data streams: Theory and practice.

IEEE Transactions on Knowledge and Data Engineering, 15(3):515–528,

2003.

[59] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan.

Clustering data streams. In IEEE Symposium on Foundations of Com-

puter Science, pages 359–366, 2000.

[60] Sule Gündüz and M. Tamer Özsu. A web page prediction model based

on click-stream tree representation of user behavior. In International

Conference on Knowledge Discovery and Data Mining, pages 535–540,

2003.

[61] Jiawei Han and Kevin Chang. Data mining for web intelligence. IEEE

Computer, 35(11):64–70, 2002.

[62] David J. Hand. Mining personal banking data to detect fraud. In Paula

Brito, Guy Cucumel, Patrice Bertrand, and Francisco de Carvalho, ed-

itors, Selected Contributions in Data Analysis and Classification, pages

377–386. Springer, 2007.

[63] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12(10):993–

1001, 1990.

REFERENCES 249

[64] J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Applied

Statistics, 28(1):100–108, 1979.

[65] S. Hettich and S. D. Bay. The UCI KDD archive

[http://kdd.ics.uci.edu/]. University of California, Irvine, School of

Information and Computer Sciences, 1999.

[66] J. Hilden. Statistical diagnosis based on conditional independence does

not require it. Computers in Biology and Medicine, 14(4):429–435, 1984.

[67] Wassily Hoeffding. Probability inequalities for sums of bounded random

variables. Journal of the American Statistical Association, 58(301):13–

30, 1963.

[68] Geoffrey Holmes, Richard Kirkby, and Bernhard Pfahringer. Stress-

testing hoeffding trees. In European Conference on Principles and Prac-

tice of Knowledge Discovery in Databases, pages 495–502, 2005.

[69] Osnat Horovitz, Shonali Krishnaswamy, and Mohamed Medhat Gaber.

A fuzzy approach for interpretation of ubiquitous data stream clustering

and its application in road safety. Intelligent Data Analysis, 11(1):89–

108, 2007.

[70] Wolfgang Hoschek, Francisco Javier Janez, Asad Samar, Heinz

Stockinger, and Kurt Stockinger. Data management in an international

data grid project. In International Workshop on Grid Computing, pages

77–90, 2000.

[71] Geoff Hulten and Pedro Domingos. Mining complex models from arbi-

trarily large databases in constant time. In International Conference on

Knowledge Discovery and Data Mining, pages 525–531, 2002.

[72] Geoff Hulten and Pedro Domingos. VFML – a

toolkit for mining high-speed time-changing data streams

[http://www.cs.washington.edu/dm/vfml/]. 2003.

[73] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-

changing data streams. In International Conference on Knowledge Dis-

covery and Data Mining, pages 97–106, 2001.

250 REFERENCES

[74] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary de-

cision trees is np-complete. Information Processing Letters, 5(1):15–17,

1976.

[75] Tomasz Imielinski and Badri Nath. Wireless graffiti – data, data ev-

erywhere. In International Conference on Very Large Databases, pages

9–19, 2002.

[76] Raj Jain and Imrich Chlamtac. The P2 algorithm for dynamic calculation

of quantiles and histograms without storing observations. Communica-

tions of the ACM, 28(10):1076–1085, 1985.

[77] Ruoming Jin and Gagan Agrawal. Efficient decision tree construction

on streaming data. In Knowledge Discovery and Data Mining, pages

571–576, 2003.

[78] Hillol Kargupta, Ruchita Bhargava, Kun Liu, Michael Powers, Patrick

Blair, Samuel Bushra, James Dull, Kakali Sarkar, Martin Klein, Mitesh

Vasa, and David Handy. VEDAS: A mobile and distributed data stream

mining system for real-time vehicle monitoring. In SIAM International

Conference on Data Mining, 2004.

[79] Hillol Kargupta, Byung-Hoon Park, Sweta Pittie, Lei Liu, Deepali

Kushraj, and Kakali Sarkar. MobiMine: Monitoring the stock market

from a PDA. SIGKDD Explorations, 3(2):37–46, 2002.

[80] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning

boolean formulae and finite automata. Journal of the ACM, 41(1):67–95,

1994.

[81] Maleq Khan, Qin Ding, and William Perrizo. k-nearest neighbor classifi-

cation on spatial data streams using p-trees. In Pacific-Asia Conference

on Knowledge Discovery and Data Mining, pages 517–518, 2002.

[82] Ron Kohavi. A study of cross-validation and bootstrap for accuracy

estimation and model selection. In International Joint Conference on

Artificial Intelligence, pages 1137–1145, 1995.

[83] Ron Kohavi. Scaling up the accuracy of Naive-Bayes classifiers: a

decision-tree hybrid. In International Conference on Knowledge Dis-

covery and Data Mining, pages 202–207, 1996.

REFERENCES 251

[84] Ron Kohavi and Clayton Kunz. Option decision trees with majority

votes. In International Conference on Machine Learning, pages 161–

169, 1997.

[85] Ron Kohavi and Foster J. Provost. Applications of data mining to elec-

tronic commerce. Data Mining and Knowledge Discovery, 5(1/2):5–10,

2001.

[86] Ron Kohavi and David H. Wolpert. Bias plus variance decomposition for

zero-one loss functions. In International Conference on Machine Learn-

ing, pages 275–283, 1996.

[87] Pat Langley, Wayne Iba, and Kevin Thompson. An analysis of bayesian

classifiers. In National Conference on Artificial Intelligence, pages 223–

228, 1992.

[88] Mark Last. Online classification of nonstationary data streams. Intelli-

gent Data Analysis, 6(2):129–147, 2002.

[89] Yan-Nei Law and Carlo Zaniolo. An adaptive nearest neighbor classifica-

tion algorithm for data streams. In European Conference on Principles

and Practice of Knowledge Discovery in Databases, pages 108–120, 2005.

[90] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok. Mining in a data-flow

environment: experience in network intrusion detection. In International

Conference on Knowledge Discovery and Data Mining, pages 114–124,

1999.

[91] Nick Littlestone and Manfred K. Warmuth. The weighted majority al-

gorithm. Information and Computation, 108(2):212–261, 1994.

[92] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay.

Approximate medians and other quantiles in one pass and with limited

memory. In ACM Special Interest Group on Management Of Data Con-

ference, pages 426–435, 1998.

[93] Dragos D. Margineantu and Thomas G. Dietterich. Pruning adaptive

boosting. In International Conference on Machine Learning, pages 211–

218, 1997.

252 REFERENCES

[94] J. Kent Martin and D. S. Hirschberg. On the complexity of learning

decision trees. In International Symposium on Artificial Intelligence and

Mathematics, pages 112–115, 1996.

[95] Ross A. McDonald, David J. Hand, and Idris A. Eckley. An empirical

comparison of three boosting algorithms on real data sets with artificial

class noise. In International Workshop on Multiple Classifier Systems,

pages 35–44, 2003.

[96] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. SLIQ: A fast

scalable classifier for data mining. In Extending Database Technology,

pages 18–32, 1996.

[97] Edmond Mesrobian, Richard Muntz, Eddie Shek, Siliva Nittel, Mark La

Rouche, Marc Kriguer, Carlos Mechoso, John Farrara, Paul Stolorz, and

Hisashi Nakamura. Mining geophysical data for knowledge. IEEE Expert:

Intelligent Systems and Their Applications, 11(5):34–44, 1996.

[98] J. Ian Munro and Mike Paterson. Selection and sorting with limited

storage. Theoretical Computer Science, 12:315–323, 1980.

[99] Sreerama K. Murthy and Steven Salzberg. Lookahead and pathology in

decision tree induction. In International Joint Conference on Artificial

Intelligence, pages 1025–1033, 1995.

[100] Michael K. Ng, Zhexue Huang, and Markus Hegland. Data-mining mas-

sive time series astronomical data sets - a case study. In Pacific-Asia

Conference on Knowledge Discovery and Data Mining, pages 401–402,

1998.

[101] Nikunj C. Oza and Stuart Russell. Experimental comparisons of online

and batch versions of bagging and boosting. In International Conference

on Knowledge Discovery and Data Mining, pages 359–364, 2001.

[102] Nikunj C. Oza and Stuart Russell. Online bagging and boosting. In

Artificial Intelligence and Statistics, pages 105–112, 2001.

[103] J. Ross Quinlan. Miniboosting decision trees,

submitted for publication 1998, available at

http://citeseer.ist.psu.edu/quinlan99miniboosting.html.

REFERENCES 253

[104] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kauf-

mann, San Francisco, 1993.

[105] J. Ross Quinlan. Improved use of continuous attributes in C4.5. Journal

of Artificial Intelligence Research, 4:77–90, 1996.

[106] Jorma Rissanen. A universal prior for integers and estimation by mini-

mum description length. The Annals of Statistics, 11(2):416–431, 1983.

[107] Robert E. Schapire. The strength of weak learnability. Machine Learning,

5(2):197–227, 1990.

[108] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee.

Boosting the margin: A new explanation for the effectiveness of voting

methods. In International Conference on Machine Learning, pages 322–

330, 1997.

[109] Robert E. Schapire and Yoram Singer. Improved boosting using

confidence-rated predictions. Machine Learning, 37(3):297–336, 1999.

[110] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,

and T. G. Price. Access path selection in a relational database manage-

ment system. In ACM Special Interest Group on Management Of Data

Conference, pages 23–34, 1979.

[111] John Shafer, Rakesh Agrawal, and Manish Mehta. SPRINT: A scalable

parallel classifier for data mining. In International Conference on Very

Large Databases, pages 544–555, 1996.

[112] Myra Spiliopoulou. The laborious way from data mining to web log

mining. International Journal of Computer Systems Science and Engi-

neering, 14(2):113–125, 1999.

[113] Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning

Tan. Web usage mining: Discovery and applications of usage patterns

from web data. SIGKDD Explorations, 1(2):12–23, 2000.

[114] W. Nick Street and YongSeog Kim. A streaming ensemble algorithm

(SEA) for large-scale classification. In International Conference on

Knowledge Discovery and Data Mining, pages 377–382, 2001.

254 REFERENCES

[115] Nadeem Ahmed Syed, Huan Liu, and Kah Kay Sung. Handling concept

drifts in incremental learning with support vector machines. In Inter-

national Conference on Knowledge Discovery and Data Mining, pages

317–321, 1999.

[116] Kagan Tumer and Joydeep Ghosh. Error correlation and error reduction

in ensemble classifiers. Connection Science, 8(3/4):385–403, 1996.

[117] Paul E. Utgoff. Incremental induction of decision trees. Machine Learn-

ing, 4(2):161–186, 1989.

[118] Paul E. Utgoff, Neil C. Berkman, and Jeffery A. Clouse. Decision tree in-

duction based on efficient tree restructuring. Machine Learning, 29(1):5–

44, 1997.

[119] Leslie G. Valiant. A theory of the learnable. Communications of the

ACM, 27(11):1134–1142, 1984.

[120] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Transactions

on Mathematical Software, 11(1):37–57, 1985.

[121] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-

drifting data streams using ensemble classifiers. In International Con-

ference on Knowledge Discovery and Data Mining, pages 226–235, 2003.

[122] Gary M. Weiss. Data mining in telecommunications. In Oded Maimon

and Lior Rokach, editors, The Data Mining and Knowledge Discovery

Handbook, pages 1189–1201. Springer, 2005.

[123] B. P. Welford. Note on a method for calculating corrected sums of squares

and products. Technometrics, 4(3):419–420, 1962.

[124] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, San Francisco, 2nd edition,

2005.

