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Abstract. An artificial neural network (ANN) was devel-
oped to predict the depth-integrated alongshore suspended
sediment transport rate using 4 input variables (water depth,
wave height and period, and alongshore velocity). The ANN
was trained and validated using a dataset obtained on the in-
tertidal beach of Egmond aan Zee, the Netherlands. Root-
mean-square deviation between observations and predictions
was calculated to show that, for this specific dataset, the
ANN (εrms=0.43) outperforms the commonly used Bailard
(1981) formula (εrms=1.63), even when this formula is cal-
ibrated (εrms=0.66). Because of correlations between input
variables, the predictive quality of the ANN can be improved
further by considering only 3 out of the 4 available input
variables (εrms=0.39). Finally, we use the partial derivatives
method to “open and lighten” the generated ANNs with the
purpose of showing that, although specific to the dataset in
question, they are not “black-box” type models and can be
used to analyze the physical processes associated with along-
shore sediment transport. In this case, the alongshore com-
ponent of the velocity, by itself or in combination with other
input variables, has the largest explanatory power. Moreover,
the behaviour of the ANN indicates that predictions can be
unphysical and therefore unreliable when the input lies out-
side the parameter space over which the ANN has been de-
veloped. Our approach of combining the strong predictive
power of ANNs with “lightening” the black box and testing
its sensitivity, demonstrates that the use of an ANN approach
can result in the development of generalized models of sus-
pended sediment transport.

Correspondence to:B. van Maanen
(b.vanmaanen@niwa.co.nz)

1 Introduction

Alongshore sediment transport can have large-scale and
long-term effects on coastal evolution and plays therefore
a key role in nearshore studies and is of interest to scien-
tists, managers, and engineers. Understanding and predict-
ing sediment transport in the surfzone has proven to be ex-
tremely difficult because of the energetic environment and
the complexity of nearshore systems and sediment transport
itself. Both observational and theoretical approaches have
been used to study sediment transport. From an observational
point of view, obtaining accurate measurements of suspended
sediment concentrations remains a challenge primarily be-
cause of its sensitivity to air bubbles (Puleo et al., 2006) and
mixtures of sediments (Green and Boon, 1993), or the un-
certain vertical position of the sensors with respect to the
seabed. Semi-empirical (or semi-theoretical) models (e.g.
Bailard, 1981) that account for the effect of waves and cur-
rents have also been developed but their application to natural
conditions has shown only limited success (e.g. van Maanen
et al., 2009). Practically, all of the theoretical approaches
need a specific field calibration to tune the many parameters
present in the models so that essentially, despite decades of
research, making reliable predictions of sediment transport
remains a difficult task.

A commonly adopted alongshore transport equation has
been developed by Bailard (1981) who suggested that the
work done in transporting the sediment is a fixed portion
of the total energy dissipated by the flow. Depth-integrated
alongshore suspended sediment (kg/m/s) is given by:〈
qysB(t)

〉
= ρsks

(
< |U(t)|3v >+ < |U(t)|3v∗ >

)
(1)
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where the angle brackets indicate time-averaging over many
waves,U(t) represents the instantaneous velocity vector,v is
the time-averaged alongshore velocity,v* is the alongshore
orbital velocity, and

ks =
ρ

(ρs −ρ)g
cf

εs

ws
(2)

wherecf is the bed drag coefficient,εs is an efficiency factor,
andws is the settling speed of the characteristic grain size.
Similar predictors have been proposed by other authors (see
Bayram et al., 2001, for a thorough review) but their success
is limited, especially during storms, and a specific calibration
is often required (Bayram et al., 2001).

A different approach is provided by data-driven models.
The simplest example of a data-driven model is provided
by a linear regression where a single input variable (e.g.
wave height) is used to provide an estimate of the predicted
variable (e.g. sediment transport rate). Many different (and
more complicated) data-driven algorithms have been devel-
oped and Artificial Neural Networks (ANNs) are an excel-
lent example of such algorithms. ANNs have been applied to
several fields of science (see for example Gardner and Dor-
ling, 1998; Dayhoff and DeLeo, 2001) and several applica-
tions exist also in the field of ocean and coastal engineering.
For example, ANNs have been applied to develop forecasts
of hydrodynamics at different scales ranging from nearshore
waves (Browne et al., 2007) to tides (Tsai and Lee, 1999) and
storms (Sztobryn, 2003). Furthermore, for the case of unidi-
rectional flow, ANNs have also been successfully used to pre-
dict sediment concentrations in laboratory (Lin and Namin,
2005) and field (Nagy et al., 2002) studies. ANNs are also
beginning to be applied to the study of sandbar dynamics
(Kingston et al., 2000) and beach profile evolution (Tsai et
al., 2000). These studies have all treated ANNs as a black-
box focusing primarily on its predictive capability with little
emphasis on increasing understanding of the driving physi-
cal processes. In few cases, ANNs have also been success-
fully used to explore the role of nonlinearities of a system
including time-lag and scale effects (Pape et al., 2007). Fi-
nally, ANNs have also been applied in the field of geophysics
and oceanography (Krasnopolsky, 2007) to develop hybrid
models that combine ANNs and partial differential equations
based on first principles (e.g. mass and momentum conser-
vation). Overall, it appears that ANNs are becoming more
and more common tools in geophysical and oceanographic
studies but clearly they are still not used to fulfill their whole
potential.

In this contribution we use field observations to train
ANNs and show that, for the present dataset, ANNs can
provide better predictions of alongshore suspended sediment
transport rate than the commonly used Bailard (1981) for-
mula. We also “open and lighten” the black-box to show that
ANNs can be used to analyze the physical processes asso-
ciated with suspended sediment transport. This approach is
valuable because the usefulness of ANNs beyond their pre-

dictive power has often been the subject of discussion (Mc-
Cann, 1992; Gardner and Dorling, 1998) and also because it
demonstrates that using an ANN approach can result in the
development of generalized models of suspended sediment
transport.

2 Methods

2.1 Field measurements

A field experiment was conducted at Egmond aan Zee (the
Netherlands), a sandy (median size equal to 0.3 mm) beach
characterized during the field experiment by one intertidal
and two subtidal sandbars. Four tripods were deployed
shoreward of the intertidal sandbar and each tripod included
an electromagnetic flow velocity meter (EMF), a pressure
sensor, and three optical backscatter (OBS) sensors. While
tripods were submerged, timeseries were recorded continu-
ously and subsequently split in 15 min bursts. Sampling fre-
quency for all instruments was 2Hz. A detailed description of
the field experiment including collection and analysis tech-
niques of hydrodynamic and suspended sediment data has
been presented previously (van Maanen et al., 2009).

Data from the pressure sensors were used to obtain spec-
tral wave heightHm0, peak periodTp, and water depthh.
Timeseries collected using the EMF were used to derive the
burst- and depth-averaged alongshore velocityV (for details
see van Maanen et al., 2009). With respect to the suspended
sediment concentrations, OBSs were calibrated using sand
collected at the field site and data were used to construct
the vertical profiles of suspended sediment concentration (for
details see van Maanen et al., 2009). Finally, the depth-
integrated suspended load was derived by integrating over
the water depth, for each burst, the product between veloc-
ity and suspended sediment concentration profiles. The data
used throughout this study are shown in Fig. 1.

2.2 Artificial Neural Network background and
architecture

Over the last few decades, development and continuous im-
provement of ANNs have resulted in a powerful predictive
tool. A major advancement was achieved by Werbos (1974)
who expanded the applicability of ANNs to nonlinear sys-
tems and this development formed the basis of many ANNs
used today. An ANN consists of input, hidden, and output
nodes arranged in layers (Fig. 2). The input layer is usually
“non-neural” in the sense that it only serves to feed the input
data to the network. Each input is connected to a number of
neurons, which altogether constitute the hidden layer. Here,
information from input variables is condensed after perform-
ing operations of the type

hj = f ·

(
aj +

n∑
i=1

wixi

)
(3)
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Fig. 1. Tripod observations:(A) Depth-integrated suspended sediment transport (a log-scale is employed),(B) water depth,(C) significant
wave height,(D) peak wave period,(E) alongshore velocity. The vertical dashed lines separate data obtained from different tripods (tripods
were measuring simultaneously, but each dataset is characterized by a different length because of the different time that each tripod was
submerged). The vertical solid lines at observation 1522 indicate the difference between the “training” (first 66% of the data) and the
“testing” (last 33% of the data) datasets.

wherexi is thei-th input variable,hj represents the response
of the j -th neuron in the hidden layer,f is the activation
function (a sigmoid has been used throughout this study sim-
ilar for example to Rumelhart et al., 1986),wi is the con-
nection weight betweenxi andhj , aj is the bias for thej -th
hidden neuron, and there aren input variables. A further
combination of hidden nodes, which is achieved by means
of a new activation function (again a sigmoid) and new con-
nection weights and biases, results in the output layer (in this
study the output layer corresponds to one single value, the
depth-integrated suspended sediment load).

The biases and connection weights of the ANN are evalu-
ated through an optimization process that starts by splitting
the dataset into two parts: the training dataset and the vali-
dation dataset. Training data are used by the ANN to learn
how the system behaves, a process which ultimately results
in the specification of biases and weights. Validation data
are used to assess the performance of the ANN in making
predictions. We used 66% (corresponding to 1522 obser-
vations) of the dataset to train the ANN, and the remain-
ing part (784 observations) for validation. For this study,
we used the most common type of feed-forward ANN that
consists of one hidden layer with training performed using
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Fig. 2. An idealized feed-forward ANN characterized byn input
nodes (the predictors or independent variables),m hidden nodes and
one output node (the prediction or dependent variable).

the Levenberg-Marquardt backpropagation algorithm (other
backpropagation algorithms have been tried but none of them
resulted in a statistically significant improvement). Training
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algorithms, especially for the backpropagation case (Kolen
and Pollack, 1990), can be extremely sensitive to the initial
values assigned to biases and weights. In trying to determine
the biases and weights resulting in the global minimum of the
difference between observations and ANN predictions, local
minima may be encountered (whose presence depends on the
initial values assigned to biases and weights) which halt the
optimization process. There is no clear solution to this prob-
lem, which is why most authors prefer to train ANNs using
different random seeds to generate initial weights and then
analyze the best ANN (Faraway and Chatfield, 1998). For
this study we adopted this approach and generated 10 000
ANNs with different initial random seeds. Results presented
in this contribution refer to the ANN that displayed the low-
est error herein defined as the root-mean-square deviation
(Bayram et al., 2001; van Maanen et al., 2009):

εrms=

[∑N
1

(
log(qysP )− log(qysF )

)2
N −1

]0.5

(4)

where the subscriptsP andF , respectively, refer to the val-
ues predicted by the ANN (the same parameter is used to
evaluate the goodness of fit of the Bailard, 1981, formula)
and the values measured in the field. Also, to avoid over-
fitting of the training dataset, we have used a typical early-
stopping technique such that if the performance of the train-
ing parameters (weights and biases) on the validation dataset
does not improve, the optimization process is stopped and no
new weights and biases are generated.

In this study, we have considered ANNs with the simplest
structure: a number of hidden nodes ranging from 2 to 8 and
only one hidden layer. Faraway and Chatfield (1998) showed
that increasing the number of nodes can sometimes cause
ANN performance to decay (overtraining). The likelihood
of overtraining is obviously related to the ratio between the
number of free parameters in the model (biases and weights)
and the number of training samples. As each dataset has dif-
ferent characteristics, no clear guideline exists on how many
samples are needed to avoid overtraining. The general rule
(valid also for multiple linear regression) is that the number
of training samples (1522 in the present study) should be at
least 10 times the number of free parameters (Burnham and
Anderson, 2002), so that the present training dataset should
not be prone to overtraining issues.

The sigmoid activation function, defined as:

f (x) =
1

1+e−x
(5)

requires transforming the dependent variable (the prediction
target or output) in both the training and validation datasets
into a value inside the range [0 1] (the sigmoid function con-
tracts any input inside this range). Variable transformation
has been achieved by:

y∗

k =
yk −min(y)

max(y)−min(y)
(6)

wherey∗

k is the transform ofyk which, in turn, is thek-th ob-
servation of the dependent variabley. min(y) and max(y) are
the minimum and maximum values ofy, respectively. When
evaluating the error associated with the ANN predictions,
the dependent variable is transformed back into original val-
ues. Input variables vary over different ranges and need to
be standardized to facilitate post-processing of the ANN and
analysis of variable importance. Following Dimopoulos et
al. (1999), this is achieved by:

x∗

k = (xk −xmean)/σx (7)

wherex∗

k is the standardized value of independent variable
xk, which, in turn, is thek-th observation of independent vari-
ablex. xmeanandσx are the mean and standard deviation of
x, respectively. Subsequently, the standardized values of the
input variables are also normalized according to Eq. (6).

2.3 Opening and lightening the “black box”

Despite the presence of studies showing how ANNs can be
used to increase understanding of physical processes (e.g.
Pape et al., 2007), ANNs are often considered to be “black
boxes” with little, if any, capacity to provide insight on the
dataset from which they have been constructed. However, for
more than a decade techniques have been suggested that al-
low detailed analysis of connection weights and estimation of
the role of each input variable (Vaughn, 1996; Benı́tez, 1997;
Dimopoulos et al., 1999; Olden, 2000; Olden and Jackson,
2002). Recently, some of the techniques available have also
been reviewed (Gevrey et al., 2003; Olden et al., 2004) and
the partial derivatives (PaD) method has been shown to have
the best explanatory power. The PaD approach was origi-
nally proposed by Dimopoulos et al. (1995) and recently ex-
tended by Gevrey et al. (2006). Assuming the use of a sig-
moid activation function for all connections between nodes
(as in the present study) and considering a network consti-
tuted byn input variables, one single hidden layer withm

nodes and one output, the sensitivity of the ANN output to
the input variablexi is evaluated through the sum of the
squared partial derivatives SSD (Dimopoulos et al., 1995):

SSDi =

N∑
k=1

d2
ki (8)

where the indexi refers to the input variable, the indexk
refers to theN available observations of the testing dataset.
Assumingm hidden nodes, the derivative of output nodek

with respect to input variablei is evaluated as:

dki = Sk

m∑
j=1

wjoIjk

(
1−Ijk

)
wij (9)

wherewij is the weight connecting thei-th input node and
thej -th hidden node,wjo is the weight connecting the output
and thej -th hidden node,Sk is the derivative of the output
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Fig. 3. Comparison of measured and predicted (using the Bailard
formula) values of depth-integrated suspended sediment transport.
The solid line indicates equality and the dashed lines indicate a fac-
tor 5 difference between the predicted and observed values.

node with respect to its input, andIjk is the response of the
j -th hidden node for thek-th input (for more details see Di-
mopoulos et al., 1995). Once SSDi has been calculated for
each input variable, one can compare values and establish
which variable is relatively the most important. The larger
the value of SSDi , the more influence input variablexi has
on the output.

Using a similar approach, the importance of pair-wise
combinations of input variables has also been evaluated
(Gevrey et al., 2006):

dk12 = Sk

[
sk

m∑
j=1

w1jwjoIjk

(
1−Ijk

)
m∑

j=1
w2jwjoIjk

(
1−Ijk

)
+

m∑
j=1

w1jw2jwjoIjk

(
1−Ijk

)(
1−2Ijk

)]
(10)

where all symbols have been previously indicated apart from
sk which is the second derivative of the output node with re-
spect to its input. As for the case of individual variables, the
relative contribution of pairs of variables to the ANN expli-
catory power can be evaluated as:

SSD12=

N∑
k=1

d2
k12 (11)

Fig. 4. Comparison of measured and predicted (using a calibrated
version of the Bailard formula) values of depth-integrated sus-
pended sediment transport. The solid line indicates equality and
the dashed lines indicate a factor 5 difference between the predicted
and observed values.

3 Results

For the present study we decided to compare the predictive
capability of ANNs and the Bailard model since van Maanen
et al. (2009) found that the Bailard model outperformed an-
other commonly used alongshore transport model (van Rijn,
1984) when the entire dataset was being evaluated. Also,
the Bailard formula allows for an easy calibration proce-
dure. We initially evaluated the performance of the Bailard
model on the testing dataset (Fig. 3) which was not satisfac-
tory given the large scatter of the data and the overall under-
prediction of depth-integrated suspended sediment transport
(εrms= 1.63). The Bailard formula (Eqs. 1 and 2) involves
two coefficients, the drag coefficient and the efficiency factor,
whose values are difficult to establish unequivocally. In this
study we used 0.003 and 0.02, respectively, following van
Maanen et al. (2009). We then decided, consistently with the
ANN approach, to calibrate the Bailard formula on the train-
ing dataset and then apply the calibration coefficient to the
testing dataset. Best agreement between measurements and
predictions was obtained after multiplying the uncalibrated
Bailard predictions by a factor of 35.47. This factor is ex-
tremely large especially because it can only be attributed to
the drag coefficient or the efficiency factor. Obviously, mea-
surement errors and the assumptions made during the com-
putation of the measured sediment transport could also have
contributed to the large difference between observations and
predictions (see van Maanen et al., 2009, for more details).
Nevertheless, the calibrated predictions are shown in Fig. 4
and the associated root-mean-square deviation,εrms, using
the testing dataset is equal to 0.66.
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Fig. 5. Comparison of measured and predicted values of depth-
integrated suspended sediment transport. Predictions have been
made using an ANN with 4 inputs (H , h, Tp, V ) and 4 nodes in 1
hidden layer. The solid line indicates equality and the dashed lines
indicate a factor 5 difference between the predicted and observed
values.

Figure 5 shows typical ANN predictions when using the 4
available input variables (water depth, wave height and pe-
riod, alongshore velocity) and 4 nodes in the hidden layer.
There is a clear improvement (εrms has decreased to 0.43)
compared to the calibrated Bailard predictions. Despite the
improvement, the ANN struggles to predict the highest and
lowest measured values. This problem is likely to arise from
different effects. The low values of depth-integrated sus-
pended sediment flux are so low that measurements might
be close to the limits resulting from intrinsic instrument ac-
curacy. In fact, although the performance of the Bailard
model also decreases for low values of measured suspended
sediment transport, the real problem might simply be the
relatively small number of measurements available below
10−3 kg/m/s. Had the dataset included many more of these
low measured values (with an instrument-accuracy problem),
the ANN could have learnt about the instrument-accuracy
problem and resulted in good (in the sense that they are close
to the measured values) predictions. Overall, it is worth
noticing that the low asymptotic limit for the ANN (10−3)

is at least one order of magnitude higher than the lowest
sediment flux measured and predicted according to Bailard
(see Fig. 4). The highest values are not particularly well-
predicted by the ANN and we suspect this effect is again
related to predicting the tails of the distribution of the avail-
able measurements. Only a small number of large values
of suspended sediment flux are present in the overall dataset
with no more than 53 values out of 2306 measurements that
exceed 1 kg/m/s. This affects the training of the ANN and

Table 1. Percentage of the contribution of single variables for the 3
best-performing models presented in Fig. 6.

V Hm0 h Tp

Model 1:V −h−Tp 97.3 0.4 2.3
Model 2:V −Hm0−Tp 89.4 7.2 3.4
Model 3:V −Hm0−h 90.1 8.8 1.1

the εrms evaluated over these high values of measured sed-
iment transport amounts to 0.51. This reflects a problem of
ANNs (and data-driven models in general) which are difficult
to train for extreme conditions while producing an accurate
prediction of extreme values is of specific interest to coastal
engineers and scientists. In general, similar predictive results
have been obtained when changing the number of nodes in
the hidden layer (changing the number of hidden nodes from
2 to 6 corresponded to changes inεrms from 0.49 to 0.51, the
minimum value being 0.43 for 4 nodes).

ANN results tend to be sensitive to correlations in the input
variables. Some of the four variables are certainly charac-
terized by some level of correlation. Correlation effects are
likely to become particularly evident as a result of specific
conditions encountered in the field (e.g. for saturated wave-
breaking conditions, wave height and water depth become
strongly correlated). To test the sensitivity to the choice of
available input variables, we have built (following the same
methodology described for the case with 4 input variables)
ANNs characterized by only 3 inputs and 3 hidden nodes
(Fig. 6). When one variable betweenHm0, h, and Tp is
dropped out of the ANN, there is an improvement in the over-
all prediction skill of the ANN. Although results do not allow
to distinguish which input variable (betweenHm0, h, andTp)

is the most relevant, it is evident (see Fig. 6d) that the along-
shore component of the velocity plays a major role in the pre-
diction of suspended sediment fluxes. Removing the along-
shore component of the velocity from the input variables
causes a strong decay in the prediction power of the ANN.
The lowest error (defined using Eq. 4) was obtained usingV ,
h andTp as input variables. For the 3 best-performing mod-
els presented in Fig. 6 we have analyzed the importance of
individual variables and of their interactions using the PaD
approach (see previous section). Analysis of the contribu-
tion of single variables (Table 1) shows that, for all models
considered, the alongshore component of the velocity is the
input variable with the largest explanatory power. For each
of the models presented in Table 1 we have run 10 000 ad-
ditional ANNs with different initial weights. We have then
analyzed the weights of the ANNs with a predictive skill sim-
ilar to the one of the best performing ANN (difference from
the εrms shown in Fig. 6 was below 10%) and, apart from
negligible differences in the contribution of each variable,
results confirm the findings reported in Table 1. Analysis
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Fig. 6. Comparison of measured and predicted values of depth-integrated suspended sediment transport. Predictions have been made using
an ANN with 3 inputs and 3 nodes in 1 hidden layer. Inputs are:(A) h, Hm0, V ; (B) Tp, Hm0, V ; (C) Tp, h, V ; (D) h, Hm0, Tp. The solid
line indicates equality and the dashed lines indicate a factor 5 difference between the predicted and observed values.

Table 2. Percentage of the contribution of combinations of variables for the 3 best-performing models presented in Fig. 6.

h−Tp h−V Tp−V Hm0−Tp Hm0−V h−Hm0

Model 1:V −h−Tp 0.4 13.3 86.3
Model 2:V −Hm0−Tp 31.9 1.4 66.7
Model 3:V −Hm0−h 18.5 80.2 1.3

of the contribution of combinations of variables (Table 2) is
less straightforward but still provides evidence that, for all
models, the mechanism(s) leading to improved predictions of
depth-integrated sediment fluxes are related to the presence
of an alongshore current and its interaction with the other
variables. Probably because of cross-correlation between
some of the input variables, other ANNs with similar pre-
dictive skill can result in contributions that differ from those
presented in Table 2. For example, with respect to Model 2
the explanatory power can shift betweenTp−V andHm0−V

without any significant effect on the prediction skill.

4 Discussion and conclusions

A typical criticism of an ANN predictor (or any other data-
driven predictor) is that its validity is limited and intrinsically
linked to the distribution of the input variables in the training

dataset. To analyze this sensitivity and the “universality” of
the ANN, we reconstructed the predictor using the biases and
weights of the best performing ANN (Model 1 in Table 1, see
also Fig. 6c) and then examined the response to changes in
the input conditions. Figure 7 shows that the response of the
reconstructed ANN is extremely nonlinear and that extend-
ing the predictions far beyond the values considered in the
training dataset can lead to unphysical results. For example,
looking at Fig. 7a whereV is kept constant at 0.17 m/s (the
observed mean value), it is easy to notice that an increase in
depth-integrated suspended sediment transport occurs for in-
creasing values ofTp up to 6 s. The increase is smaller for
larger depths. While these aspects of the predictor are phys-
ically sound, larger increases inTp lead to a sharp decrease
in sediment transport. This behaviour is clearly unphysical
and, as shown by the white dots in Fig. 7a, is driven by the
extremely limited number of observations available for these

www.nonlin-processes-geophys.net/17/395/2010/ Nonlin. Processes Geophys., 17, 395–404, 2010
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Fig. 7. Sensitivity of the best-performing ANN (Fig. 6c. Input variables areV , h andTp) to changes in the input variables. Colour-bar
represents depth-integrated suspended sediment transport (kg/m/s). Notice the top subplots have a different colour-scale. In(A) and(B), V

is equal to 0.17 (the mean value in the observations) and 0.7 m/s, respectively. In(C) Tp is equal to 4.3 s (mean value) and in(D) h is 0.94 m
(mean value). White dots represent observations whose value of the fixed variable is within±1 standard deviation from the fixed value.

combinations ofV , h andTp. It is also worth noticing that
for these combinations ofV , h andTp only small values of
sediment transport are observed (see colour-bar of Fig. 7a
and compare to the other subplots). If the fixed value ofV is
set to 0.7 m/s (Fig. 7b), the response of the ANN to changes
in h andTp is physically sound as no reduction in sediment
transport is predicted for large values ofTp. Figure 7c and
d shows a physically correct response of the ANN when re-
spectivelyTp andh are kept constant at their mean values
(similar results are obtained for larger or smaller values of
the fixed input variable). An increase inh corresponds to a
small decrease in sediment transport (Fig. 7c) and the oppo-
site occurs for an increase inTp (Fig. 7d). The large gradient
in sediment transport with respect toV indicates again the
dominance of the alongshore velocity on ANN outcome.

A key requirement for any data-driven model, be it as sim-
ple as a linear regression or as complicated as an artificial
neural network, is that it is capable of providing predictions
that can explain the observed variability and that are phys-
ically meaningful. Because of the large number of free pa-
rameters, ANNs can create highly nonlinear functions which
relate independent and dependent variables. This capabil-
ity explains why ANNs can outperform both theoretical ap-
proaches (e.g. the Bailard model) and simple data-driven pre-
dictors (e.g. linear or multiple regressions). However, be-
cause of the complex structure of an ANN, it is difficult to
disentangle the interactions between the input variables. As

a result, despite their undeniable predictive power, ANNs
have failed to provide insight with respect to the physical
processes driving the predictions. In this contribution we
use an already established technique to open up and lighten
the ANN black box. This allows dissecting the interactions
leading to predictions of sediment transport that are a large
improvement (Fig. 6) compared to a physically based pre-
dictor (Figs. 3 and 4). The use of the PaD technique al-
lows ranking the role of each individual variable (Table 1)
and also of combinations of variables (Table 2). Physically,
our results are not unexpected, in the sense that, because
of cross-correlation effects, one variable betweenHm0, Tp
andh can be dropped without losing predictive skills. Also,
as shown by the analysis of the relative importance of vari-
ables, the dominant input variable is the alongshore compo-
nent of the velocity with a minor role played by resuspension
mechanisms related to wave processes. The small contribu-
tion to the explanatory power of wave related input variables
is likely to be related to the conditions encountered in the
field during the collection of this dataset. A limitation of the
present study is that it utilizes data collected at one beach
site. For example, the ANN predictor does not include a
grain size dependency which is clearly not physically cor-
rect. Moreover, the dataset used here encompasses only a
small range of wave conditions. Adding datasets of mea-
sured sediment transport that cover a wide range of wave,
sediment, and beach conditions during the development of
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the ANN and extensive validation could, ultimately, result in
a more universal predictor.

Overall, the results presented in this paper suggest that us-
ing an ANN approach can result in the development of a
powerful predictor and show that ANNs can be analyzed.
However, users of ANNs should always bear in mind that
when the input variables, or their combination, are different
from the parameter space over which the ANN has been de-
veloped, predictions can be unphysical and so meaningless.
On the other hand, the same ANN data-driven approach used
in this study could be extended and applied to other datasets
increasing the parameter space over which predictions are
valid and so the generality of the predictor.
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Beńıtez, J. M., Castro, J. L., and Requena, I.: Are artifical neural
networks black boxes?, IEEE Transactions on Neural Networks,
8, 1156–1164, 1997.

Browne, M., Castelle, B., Strauss, D., Tomlinson, R., Blumenstein,
M., and Lane, C.: Near-shore swell estimation from a global
wind-wave model: Spectral process, linear and artificial neural
network models, Coast. Eng., 54, 445–460, 2007.

Burnham, K. P. and Anderson, D. R.: Model Selection and Multi-
model Inference: A Practical Information-Theoretic Approach,
Springer, New York, NY, 488 pp., 2002.

Dayhoff, J. E. and DeLeo, J. M.: Artificial neural networks: Open-
ing the black box, Cancer, 91, 1615–1635, 2001.

Dimopoulos, I., Bourret, P., and Lek, S.: Use of some sensitivity
criteria for choosing networks with good generalization ability,
Neural Process. Lett., 2, 1–4, 1995.

Dimopoulos, I., Chronopoulos, J., Chronopoulos-Sereli, A., and
Lek, S.: Neural network models to study relationships between
lead concentration in grasses and permanent urban descriptors in
Athens city (Greece), Ecol. Model., 120, 157–165, 1999.

Faraway, J. and Chatfield, C.: Time series forecasting with neu-
ral networks: a comparative study using the airline data, Appl.
Statistics, 47, 231–250, 1998.

Gardner, M. W. and Dorling, S. R.: Artificial neural networks (the
multilayer perceptron) – a review of applications in the atmo-
spheric sciences, Atmos. Environ., 32, 2627–2636, 1998.

Gevrey, M., Dimopoulos, I., and Lek, S.: Review and comparison of
methods to study the contribution of variables in artificial neural
network models, Ecol. Model., 160, 249–264, 2003.

Gevrey, M., Dimopoulos, I., and Lek, S.: Two-way interaction of
input variables in the sensitivity analysis of neural network mod-
els, Ecol. Model., 195, 43–50, 2006.

Green, M. O. and Boon, J. D.: The measurement of constituent
concentration in nonhomogeneous sediment suspensions using
optical backscatter sensors, Mar. Geol., 110, 73–81, 1993.

Kingston, K. S., Ruessink, B. G., van Enckevort, I. M. J., and
Davidson, M. A.: Artificial neural network correction of re-
motely sensed sandbar location, Mar. Geol., 169, 137–160, 2000.

Kolen, J. F. and Pollack, J. B.: Back propagation is sensitive to
initial conditions, Complex Systems, 4, 269–280, 1990.

Krasnopolsky, V. M.: Neural network emulations for complex
multidimensional geophysical mappings: Applications of neu-
ral network techniques to atmospheric and oceanic satellite re-
trievals and numerical modeling, Rev. Geophys., 45, RG3009,
doi:10.1029/2006RG000200, 2007.

Lin, B. and Namin, M. M.: Modelling suspended sediment transport
using an integrated numerical and ANNs model, J. Hydraul. Res.,
43, 302–310, 2005.

McCann, D. W.: A neural network short-term forecast of significant
thunderstorms, Forecasting Techniques, 7, 525–534, 1992.

Nagy, H. M., Watanabe, K., and Hirano, M.: Prediction of sediment
load concentration in rivers using artificial neural network model,
J. Hydraulic Eng., 128, 588–595, 2002.

Olden, J. D.: An artificial neural network approach for studying
phytoplankton succession, Hydrobiologia, 436, 131–143, 2000.

Olden, J. D. and Jackson, D. A.: Illuminating the “black box”: a
randomization approach for understanding contributions in arti-
ficial neural networks, Ecol. Model., 154, 135–150 2002.

Olden, J. D., Joy, M. K., and Death, R. G.: An accurate comparison
of methods for quantifying variable importance in artificial neu-
ral networks using simulated data, Ecol. Model., 178, 389–397,
2004.

Pape, L., Ruessink, B. G., Wiering, M. A., and Turner, I. L.: Re-
current neural network modeling of nearshore sandbar behavior,
Neural Networks, 20, 509–518, 2007.

Puleo, J. A., Johnson, R. V., Butt, T., Kooney, T. N., and Holland,
K. T.: The effect of air bubbles on optical backscatter sensors,
Mar. Geol., 230, 86–96, 2006.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning rep-
resentations by back-propagating errors, Nature, 323, 533–536,
1986.

Sztobryn, M.: Forecast of storm surge by means of artificial neural
network, J. Sea Res., 49, 317–322, 2003.

Tsai, C. P. and Lee, T.: Back-propagation neural network in tidal-
level forecasting, Journal of Waterway, Port, Coastal and Ocean
Engineering, 125, 195–202, 1999.

Tsai, C. P., Hsu, J. R. C., and Pan, K. L.: Prediction of storm-built
beach profile parameters using neural networks, in Proceedings
of the 27th International Conference on Coastal Engineering,
ASCE, 3048–3061, 2000.

Van Maanen, B., de Ruiter, P. J., and Ruessink, B. G.: An evaluation
of two alongshore transport equations with field measurements,
Coast. Eng., 56, 313–319, 2009.

Van Rijn, L. C.: Sediment transport, part II: suspended load trans-
port, J. Hydraulic Engineering, 110, 1613–1641, 1984.

www.nonlin-processes-geophys.net/17/395/2010/ Nonlin. Processes Geophys., 17, 395–404, 2010



404 B. van Maanen et al.: Analyzing and predicting alongshore sediment transport

Vaughn, M. L.: Interpretation and knowledge discovery from the
multilayer perceptron network: opening the black box, Neural
Comput. Appl., 4, 72–82, 1996.

Werbos, P. J.: Beyond regression: new tools for prediction and anal-
ysis in the behavioral sciences, PhD thesis, Cambridge, (MA),
Harvard Univ., 1974.

Nonlin. Processes Geophys., 17, 395–404, 2010 www.nonlin-processes-geophys.net/17/395/2010/


