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Abstract. People from a variety of industrial domains are beginning
to realise that appropriate use of machine learning techniques for their
data mining projects could bring great benefits. End-users now have to
face the new problem of how to choose a combination of data processing
tools and algorithms for a given dataset. This problem is usually termed
the Full Model Selection (FMS) problem. Extended from our previous
work [10], in this paper, we introduce a framework for designing FMS
algorithms. Under this framework, we propose a novel algorithm com-
bining both genetic algorithms (GA) and particle swarm optimization
(PSO) named GPS (which stands for GA-PSO-FMS), in which a GA is
used for searching the optimal structure for a data mining solution, and
PSO is used for searching optimal parameters for a particular structure
instance. Given a classification dataset, GPS outputs a FMS solution
as a directed acyclic graph consisting of diverse data mining operators
that are available to the problem. Experimental results demonstrate the
benefit of the algorithm. We also present, with detailed analysis, two
model-tree-based variants for speeding up the GPS algorithm.

1 Introduction

Machine learning users now have to face the new problem of how to choose a
combination of data processing tools and algorithms. The goal is usually defined
as maximizing or minimizing a quantitative measure. In classification problems,
the goal could be optimising the classification accuracy, the Lift score or the ROC
area (AUC); in regression problems the goal could be optimising RMSE (root
mean squared error), MAE (mean absolute error), or any proper loss function.

Sometimes the final goal might be a combination of multiple goals. Tradition-
ally, these problems are addressed separately in the feature selection, model or
parameter selection and the meta-learning fields. A practical data mining prob-
lem consists of many sub-problems which presents an extremely large search
space that could be a very time-consuming task for humans to explore manu-
ally. Therefore, strategies and methods that can help people to choose, or that
could automatically suggest, an optimised data mining solution is useful. In this



paper, we propose a framework which can be used for designing new FMS algo-
rithms, and we also present a novel FMS algorithm which is a realization and
an application of the proposed framework.

1.1 Data Mining in the DMO Space and Framework

We first define the DMO space and discuss potential approaches for searching the
space. We here attempt to define a search space that consists of all data mining
actions (operators) that are available to a given dataset for a user-specified goal,
such as a set of outlier filters, a set of feature selection methods, a set of data
transformation techniques and a set of base learning algorithms. In this sense,
we call the subject of interest “the space of data mining operators (DMO)”, or
simply “the DMO space” [10].

(a) An illustration of the
DMO space

(b) A graphical representa-
tion of the DMO template
used by GPS

(c) A graphical represen-
tation of a DMO solution
template instance

Fig. 1. A full model defined by the GPS algorithm

In this search space, a data mining solution is abstracted as a directed acyclic
graph (DAG) consisting of DMOs that are connected based on some relations:
see Figure 1 (a) for an illustration. For simplicity, in Figure 1 (a) we consider
that an optimal data mining solution is given by a DAG defined by four DMOs
(A, B, C and D) for dataset T . The DMO space is represented by the largest
oval, which consists of all DMOs applicable to T . The directed arrows repre-
sent the relationships (action rules) in the DAG. If Operator A is an outlier
filter, Operator B is a feature reduction method, Operator C is a decision tree
algorithm, and Operator D is a post-processing method, the DAG can be in-
terpreted as follows: given a dataset T , in an optimal solution we first use the
outlier detection method (DMO A) to remove outliers, and then we employ the
feature selection method (DMO B) to remove useless features, and then build
a decision tree model (DMO C ), and finally, we use a probability calibration
method (DMO D) to calculate the model outputs. This is a very large search
space because in theory there exists an arbitrary number of DMOs (including an
arbitrary number of link directions, node orders and arrangements). Therefore,
the next question is how to search in this space?

In practice, due to the resources at hand, usually we do not search in an infi-
nite DMO space, and, moreover, we can make the DMO space a finite space by



defining the DMOs that are to be included. For example, given a dataset T , and
given we have one outlier detection algorithm, two feature selection methods,
three classification algorithms and that the goal is to build a model that gives
the lowest classification error on T , typically, we can define the following node
type DMO objects:
DMOfilter, DMOno−filter, DMOfeature−selection−1,

DMOfeature−selection−2, DMOno−feature−selection,

DMOalgorithm−1, DMOalgorithm−2, DMOalgorithm−3.

Given these DMOs, if we want to preprocess the data, we can define some func-
tion type DMOs that output a new data object. For example:
data⇐= DMOpreprocessing−1(DMOfilter, DMOfeature−selection−1)

data⇐= DMOpreprocessing−2(DMOno−filter, DMOfeature−selection−1)

data⇐= DMOpreprocessing−3(DMOfilter, DMOfeature−selection−2)

...

where DMOpreprocessing−1,2,3 are function type DMOs. We can also define more
complex function type DMOs which take function and node type DMOs as in-
puts and output a solution. For example:
solution⇐= DMObuild−model(DMOpreprocessing−1, DMOalgorithm−1)

solution⇐= DMObuild−model(DMOpreprocessing−2, DMOalgorithm−2)

solution⇐= DMObuild−model(DMOpreprocessing−3, DMOalgorithm−1)

...

where DMObuild−model, and DMOpreprocessing−1,2,3 are all function type DMOs.
In this way, we are free to define which, and what kind of, DMOs are to be added
to the DMO space.

To meet the data mining goal, we could simply search all the DMO function-
object relations (paths) in the space. Therefore, the solution which has the lowest
classification or regression error could be the output of a grid-search-like exhaus-
tive search. One advantage of an exhaustive search in a finite DMO space is that
the user controls the search complexity. Another advantage is that the DMO
relations can be designed by a data mining expert and then shared and reused.
For example, if an expert designed a good DMO search space for an unbalanced
binary classification problem, she can probably share it with her colleagues or
reuse it for a new project.

However, the disadvantage is also obvious because the search complexity
grows dramatically as the number of DMOs increases, with the result that if
the search space is too large, due to computational and time costs the user may
have to terminate the search before all DMOs are explored. To overcome this
problem, we may need to think about questions such as how promising DMOs
can be automatically defined/generated for a given dataset.

In the previous examples, we have defined some DMOs by hand. One could
generate DMOs simply by generating all possible DMO combinations of different
types, but doing so would create an extremely large (even infinite) search space,



and the problem becomes intractable. We here propose a semi-automatic method
to solve this problem.

Firstly, we define some DMO functions, and add these functions to the DMO
search space as we did on previous page. Secondly, we define some templates
(rules) for searching. Here are two examples:

solution⇐=

DMOchain−search(DMO[filter], DMO[feature−selection],

DMO[tree−model]) (1)

solution⇐=

DMOchain−search(DMOrandom−topology−search(DMO[filter],

DMO[feature−selection]), DMO[tree−model]) (2)

Template (1) is a chain solution. Here a chain solution means the order (such
as from left to right) of each DMO does matter. A “[...]” is a placeholder for a
certain type of DMO object: in this example, the [filter] placeholder can be sub-
stituted by any filter-type DMO. The [feature-selection] placeholder follows the
same rule, and the [tree-model] placeholder can be substituted only by a “tree”
type model. In template (2), we can see a new DMO function called “random-
topology-search”, which means that the order of the DMOs will be changed
automatically during the search. So we can see that template (1) is actually a
subset of template (2). Once we have a set of DMO objects added, and a DMO
template defined, then we have a finite DMO space.

So far, we have defined a DMO space that consists of node type DMOs,
function type DMOs and DMO templates. In the template part of the search
space, we will have to make a decision on what kind of search strategy to use
when searching for substitution DMOs for placeholders. We here consider only
cases where an exhaustive search (in the case of too many DMOs permutations) is
not feasible, and we are particularly interested in a search method that optimises
a problem by iteratively trying to improve a candidate DMO with regard to a
given measure of quality (the goal metric). These methods are usually referred
to as a “heuristic search”, such as the best-first search, the local search (using
neighborhood relation) and the population-based evolutionary algorithms.

1.2 Related Work

The PSMS system proposed in [3], is an application of Particle Swarm Opti-
mization (PSO) to the problem of full model selection for binary classification
problems. In total, 3 feature transformation objects, 13 feature selection objects
and 10 classifier objects are used in the PSMS system. A full PSMS model is
defined as a 16-dimensional particle position. For the details of the PSMS sys-
tem, we refer the reader to [3]. Based on the experimental results in [3], the
PSMS system shows promising results when it is compared with the Pattern
Search (PS) strategy [9] for the FMS problem. The system also showed com-
petitive performance compared with other search strategies in a model selection
competition.



From the system architecture point of view, PSMS assumes a full model has
three components: feature transformation, feature selection, and learning algo-
rithm. In the DMO framework, we can define the following DMO template for
the search space covered by the PSMS system:
solution⇐=

DMOchain−search(

DMOrandom−topology−search(DMO[feature−transformation],

DMO[feature−selection]),

DMO[algorithm])

We can see that the search space covered by the above DMO template is a sim-
plified presentation of a full model, because a full model may have other com-
ponents, such as data cleansing and data sampling. Extended from our previous
work [10], in the next section, we introduce a novel search strategy for the FMS
problem, which covers five data mining components, namely, data cleansing,
data sampling, feature transformation, feature selection and algorithm DMOs.

2 The GPS Search Strategy

In this section, we propose a novel algorithm for searching a FMS solution in
the DMO space. The algorithm combines both genetic algorithm (GA) [6] and
particle swarm optimization (PSO) [7], in which GA is used for searching the
optimal template instance of a DMO template, and PSO is used for searching
the optimal parameter set for a particular template instance. The motivation is
that GA is usually considered a good strategy for combinational optimization
problems, whereas PSO is usually considered good at numerical optimization.

The proposed algorithm is named as GPS (GA-PSO FMS). It can be seen
as a realization and an application of the DMO framework. Before introducing
the GPS algorithm, we first define a DMO template. Here, we assume a FMS
solution consists of five DMOs:

DMO[data−cleansing],
DMO[data−sampling],
DMO[feature−transformation],
DMO[feature−selection], and
DMO[algorithm].

Then, a DMO template for the FMS problem covered by GPS is defined as:
solution⇐=

DMOchain−search(

DMOrandom−topology−search(

DMO[data−cleansing], DMO[data−sampling],

DMO[feature−transformation], DMO[feature−selection]),

DMO[algorithm]) (3)

Graphically, this template can be represented as Figure 1 (b). The four DMOs
at the top can be performed in any order, then followed by an Algorithm DMO.
Figure 1 (c) shows a solution instance of the DMO template, which can be
interpreted as: given a dataset, we firstly apply the data sampling technique,



Algorithm 1 Pseudocode of the GPS strategy for searching a FMS solution

procedure GPS(T ,P ,M ,W ,G)
Input:
T (number of generations for GA), P (population size for GA), M (number of

evolutions for PSO), W (swarm size for PSO), G (goal metric)

Get P random template instances based on template (3).
Populate template instances with objects in the DMO pools (Table 2)
for i← 1 to T do

Use a standard PSO procedure PSO(M ,W ,G,I) to search for the optimal
parameters for each template instance I (optimising the goal metric G), and assign
an evaluation score to each template instance I. This procedure is similar to the
PSMS system [3].

Do crossover // single point crossover among the top 20% template instances.
Do mutation // randomly choose 30% template instances from the popula-

tion, and randomly change one DMO in each template instance.
Replace the worst N template instances with the N new template instances

generated in above two steps, here we use N = (20% + 30%)× P .
solutionbest ← populationbest

end for
return solutionbest

end procedure

SMOTE [2], followed by applying log-transformation, then, we do IQR out-
lier detection, and then use information gain based feature selection; finally, an
AdaBoost.M1 [4] model is built based on the transformed data. We call such a
solution a “DMO solution template instance”, shortened to “template instance”.

For each of the five DMOs we have defined in template (3), we have a pool of
data mining tools available. For this research, the filters and algorithms in the
WEKA [5] machine learning package are used. Table 2 shows the tools that are
included in the GPS system.

Algorithm 1 shows the pseudocode of the GPS algorithm. The basic steps
of the system are: firstly a initial population of DMO template instances is ran-
domly generated based on a predefined template (e.g., template (3) and Figure
1 (b)), the placeholders of each template instance are randomly populated with
the objects in the pools of DMOs (e.g., Figure 1 (c)). Then for each GA iter-
ation (generation), PSO is used for searching an optimal parameters for each
template instance (similar to the PSMS system). The population of template
instances is then sorted by their PSO-based evaluation scores. After the PSO
optimization procedures are done, typical GA operators, such as crossover and
mutation, can be applied for generating new template instances which are used
for replacing the template instances with relatively low evaluation scores. The
above procedure is repeated T times, where T is the number of GA generations.
Finally, the template instance with the best evaluation score is returned as the
GPS solution.



Table 1. Data sets: basic characteristics

Original data sets Final binary data sets

Data set with release year #Insts Atts:Classes Class distribution (#Insts)

Adult 96 48,842 14:2 23% vs 77% (10,000)
Chess 94 28,056 6:18 48% vs 52% (8,747)

Connect-4 95 67,557 42:3 26% vs 74% (10,000)
Covtype 98 581,012 54:7 43% vs 57% (10,000)

KDD09 Customer Churn 09 50,000 190:2 8% vs 92% (10,000)
Localization Person Activity 10 164,860 8:11 37% vs 63% (10,000)
MAGIC Gamma Telescope 07 19,020 11:2 35% vs 65% (10,000)

MiniBooNE Particle 10 130,065 50:2 28% vs 72% (10,000)
Poker Hand 07 1,025,010 11:10 45% vs 55% (10,000)

UCSD FICO Contest 10 130,475 334:2 9% vs 91% (10,000)

3 Comparing GPS to PSMS and Other Learning Systems

We experiment with ten classification problems. All of them are real-world
datasets which can be downloaded from the UCI repository, the UCSD data
mining contest repository and the KDD Cup repository. These data sets were
selected because they are large and come from different research and industrial
areas. To speed up the experiments, all five multi-class datasets were converted
to binary problems by retaining only the two largest classes from each. After this
conversion to binary problems, for datasets that are larger than 10,000 instances,
a subset of 10,000 instances is randomly selected for experiments. Table 1 shows
the basic properties of the original and the final datasets.

To test the performance of the GPS algorithm, we implemented a variant1 of
the PSMS system proposed in [3] with the DMO pools defined in Table 2. The
two systems are set to optimise the AUC performance2 and are tested under
30 configurations (3 experiments per dataset): for GPS, the population size for
GA and the swarm size for PSO are both set to 10, and the number of PSO
evolutions is set to 10; for PSMS, the swarm size is set to 10.

For each dataset, three experiments were conducted. Let g be the number of
GA generations for GPS; when g=10, the number of PSO evolutions for PSMS is
set to 1000; when g=20, the number of PSO evolutions for PSMS is set to 2000;
when g=30, the number of PSO evolutions for PSMS is set to 3000. So, for each
experiment, the training cost for both systems is roughly the same. The objec-
tive functions of both GPS and PSMS are based on the respective training set
AUC performance obtained from 3-fold cross validation of a particular template
instance. The AUC performance of two popular ensemble learning algorithms,
AdaBoost.M1 [4] with 1,000 decision stumps, and Random Forest [1] with 1,000
unpruned random trees are also reported as baseline performance.

Figure 2 (a) to Figure 2 (j) show the comparison results based on the AUC
performance obtained from 5 times 3-fold cross validation. Figure 2 (k) gives
a summary in terms of number of wins. Overall, on the 10 datasets, the GPS
algorithm wins 83% (25 wins) of the 30 experiments. The results demonstrate
the benefit of combining GA and PSO for the FMS problem. Also, we can see
that the best performance of both GPS and PSMS outperform AdaBoost.M1
and Random Forest on 9 out of the 10 datasets, which indicates the advantage

1 In our implementation, the dimensionality of each particle is adapted automatically
based on the number of parameters of a particular DMO

2 The balanced error rate (BER) was used in the original PSMS system



(a) Adult (b) Chess (c) Connect-4 (d) Covtype

(e) KDD Cup 09 (f) Localiz.P.Act. (g) Magic. (h) MiniBooNE.

(i) Poker (j) UCSD (k) Overall number
of wins as histogram

Fig. 2. A comparison of AUC performance between GPS and PSMS under 30 different
configurations; the number of PSO evolutions for GPS is set to 10; x-axis g is the
number of GA generations for GPS; when g=10, the number of PSO evolutions for
PSMS is set to 1000; when g=20, the number of PSO evolutions for PSMS is set to
2000; when g=30, the number of PSO evolutions for PSMS is set to 3000

of a full model over the single algorithm model. Another interesting pattern is
that the GPS algorithm outperforms the baseline algorithms with big margin on
datasets with a relatively imbalanced class distribution.

4 Speeding Up the GPS System

The training complexity of the GPS algorithm depends on the base learners
found and evaluated during the search. The main cost for GPS is the cost for
estimating a base learner’s performance (e.g., cross validation). The algorithm
searches for a full model consisting of many data mining operators. Therefore,
although GPS is powerful in modeling, the user may have to wait for several
hours, or even days on relatively large data. For example, on the reduced version
of the KDD Cup 2009 data (with 50,000 data points and 190 numeric attributes),
the GPS system took about six hours to complete on an AMD 2.8G PC with 16G
RAM (number of GA generations, number of PSO evolutions, GA’s population
size and PSO’s swarm size were all set to 10, and 3-fold cross validation was
used in the objective function). Therefore, in this section, we present a strategy
for speeding up the GPS algorithm. Before introducing the new algorithm, we
first review the model tree idea.



Table 2. WEKA algorithms and filters that are used as the DMO objects

Data Sampling Data Cleansing Feature Trans. Feature Sel.

SMOTE oversampling NumericCleaner Normalize CfsSubsetEval
Resample with replacement RemoveUseless Standardize InfoGainAttributeEval
Resample no replacement ReplaceMissingValues Center GainRatioAttributeEval

Do nothing Do nothing AddNoise OneRAttributeEval
Discretize PrincipalComponents

NominalToBinary ChiSquaredAtt.Eval
NumericTransform Do nothing

Do nothing

Algorithm HyperParameters
Bagging with Random Tree num.Bagging.Iterations, num.Atts., depth.Tree

Bagging with REPTree num.Bagging.Iterations, num.Folds., depth.Tree
AdaBoost.M1 with DecisionStump num.Boosting.Iterations , useResample
LogitBoost with DecisionStump num.Boosting.Iterations , useResample
Bagging with J48 Decision Tree num.Bagging.Iterations , prune , conf.
RotationForest with REPTree num.Iterations, Percentage.removed, projection

A model tree [11] is a decision tree system that uses linear models at the
leaves instead of using discrete class labels for classification tree or mean as
the prediction for regression tree. Model trees inherit the advantageous scalable
feature of decision tree systems since the training data is stored in a tree struc-
ture. Some variants that have been designed based on the model tree idea show
promising results, such as the logistic model tree [8].

We here propose a novel GPS-based model tree algorithm named the Full
Model Tree, because GPS builds a full model on a given dataset. The idea is that
instead of training the GPS algorithm on the full training data, we build GPS
models at the leaves of a tree structure. In the second set of experiments in this
paper, we compare GPS to Full Model Tree with two different tree structures,
namely, the perfect binary tree and the random binary tree based on the following
definitions.

Definition 1: A perfect binary tree is a binary tree with all leaf nodes at
the same depth. All internal nodes have degree 2.

Definition 2: A random binary tree is a binary tree formed by inserting
nodes one at a time according to a random mechanism.

Next, we show that theoretically when the above two binary tree structures
are used, and if the tree height is greater than zero and the training complexity
of GPS is worse than linear, then GPS-based Full Model Tree is faster than GPS
when training on the same data.

Assume the running time of the normal GPS algorithm (GPS-0) for training
its model on a dataset of n data points is O(f(n)), and that for the GPS-based
Full Model Tree is O(g(n)). Based on our preliminary experiments, we found
that the empirical training complexity of GPS is worse than linear on most of
the datasets we have tested, so here we consider the case for f(n) > n1, n > 1.

Theorem 1. For a perfect-binary-tree-based GPS Full Model Tree T with
height h ≥ 1. If GPS-0’s empirical training complexity is worse than linear, such
as f(n) > n1, n > 1, then we have g(n) < f(n).

Proof. Let l be the number of leaf nodes of T , we have l = 2h, (l ≥ 2). Let k
be the number of data points at each leaf of T , we have k = n/l. Then, we have



g(n) = l × f(k) and f(n) = f(k × l). Let f(n) = nx, so we have x > 1.

f(n)− g(n) = f(k × l)− l × f(k) = (k × l)x − l × kx

= kx × lx − kx × l = kx × (lx − l) = kx × lx−1 > 0.

Theorem 2. For a random-binary-tree-based GPS Full Model Tree T with
height h ≥ 1. If GPS-0’s empirical training complexity is worse than linear, such
as f(n) > n1, n > 1, then we have g(n) < f(n).

Proof. Let l be the number of leaf nodes of T , h ≥ 1 so we have l ≥ 2.
Let ki be the number of data points at leaf i of T , we have

∑l
i=1 ki = n. Let

f(n) = nx, we have x > 1. Then, we have g(n) =
∑l

i=1 g(ki) =
∑l

i=1 ki
x and

f(n) = nx = (
∑l

i=1 ki)
x. Therefore, f(n)−g(n) = {(

∑l
i=1 ki)

x−
∑l

i=1 ki
x} > 0.

The two theorems state that theoretically the two Full Model Tree variants
are faster than GPS in the case that the training complexity of GPS is worse than
linear. Results above are also applicable to memory consumption stating that
the two Full Model Tree variants are supposed to be more memory efficient than
GPS if the training complexity in terms of memory of GPS is worse than linear.
The results also imply that if GPS’s training complexity is linear or better, then
theoretically the Full Model Tree variants will not speed up the original GPS
algorithm. Next, we describe how the GPS-based Full Model Trees are built.

When growing a perfect binary tree, firstly the algorithm checks if the tree
height is equal to a user-specified value h. If tree height = h or the current data
contains only one class, then make a leaf node and build a GPS model, else the
best variable is selected for splitting. Here, the best is based on the information
gain measure of a variable. For numeric variables, we examine information gain
using the median of a variable as the splitting point; for nominal variables, we
balance the number of data points from distinct categorical values. For instance,
imagine a nominal variable has two distinct categorical values A and B ; if the
data we are to split has 100 data points, where 80 of them belong to A, and 20
of them belong to B, then we randomly select 30 data points from A, and put
them into B. If the nominal variable has three distinct categorical values, say A
with 60 data points, B with 30 data points, and C with 10 data points, then
we merge B and C first, and then balance A and BC by randomly moving 10
data points from A to BC. The same balancing strategy is also applicable to a
nominal variable having more than three distinct categorical values. In this way
the amount of data from the current node is roughly equally split for its two
child nodes.

When growing a random binary tree, firstly the algorithm checks if the tree
height is equal to a user-specified value h. If tree height = h or the current data
contains only one class, then make a leaf node and build a GPS model, else the
algorithm randomly chooses one of the best K variables for splitting. Here, the
best is based on the information gain measure of a variable, where K is a user-
specified value. For numeric variables, the best splitting point is found by trying
all possible splitting points between two neighbored numbers (the splitting point



Table 3. Performance and runtime of the GPS and the Full Model Tree algorithms;
A “	” indicates that in terms of AUC, the GPS algorithm is significantly better than
the respective algorithm; A “♦” indicates that in terms of runtime, the GPS algorithm
is significantly slower than the respective algorithm; level of significance 0.05

Dataset GPS FMT-perfect FMT-random GPS FMT-perf. FMT-rand.
AUC Runtime (mins)

Adult 0.94 ± 0.002 0.93 ± 0.003 0.93 ± 0.002 	 45 ± 6 37 ± 4 ♦ 48 ± 11
Connect-4. 0.95 ± 0.002 0.95 ± 0.002 0.95 ± 0.003 	 91 ± 5 77 ± 9 ♦ 74 ± 14 ♦
KDD Cup. 0.77 ± 0.002 0.77 ± 0.002 0.76 ± 0.003 	 178 ± 9 157 ± 11 ♦ 189 ± 8
Mini.B.E. 0.98 ± 0.002 0.98 ± 0.002 	 0.97 ± 0.003 	 124 ± 7 123 ± 9 135 ± 12
UCSD. 0.68 ± 0.003 0.68 ± 0.002 	 0.67 ± 0.002 	 487 ± 16 417 ± 19 ♦ 476 ± 17

with the highest gain will be selected); for nominal variables, the data is split
between the majority categorical value and the other categorical values.

Next, we examine both the predictive performance and the runtime of the two
Full Model Tree variants (one uses the perfect binary tree structure, the other
uses the random binary tree structure, namely, FMT-perfect and FMT-random,
respectively) to the original GPS algorithm.

We use five medium size datasets for this experiment. Table 1 shows the prop-
erties of these datasets. The original KDDCup09 dataset has 50,000 data points,
190 numeric variables and 40 categorical variables. To speed up the experiment,
the 40 categorical variables were removed from the data because some variables
have thousands of distinct values. We set the height of both FMT-perfect and
FMT-random to 3. So, for FMT-perfect, there will be 23 = 8 leaf GPS models to
be built, and each leaf will have n/8±1 data points where n is the total number
of training data points. The K value for FMT-random is set to log(M)+1, where
M is the number of variables. For the GPS algorithm, the number of generations
for GA, the population size for GA, the number of evolutions for PSO, and the
swarm size for PSO are all set to 10. The objective function of GPS is based on
2-fold cross validation.

Table 3 shows the comparison results based on 5 times 3-fold cross validation.
The AUC performance and the runtime are reported. For the AUC performance,
we can see that GPS significantly outperforms FMT-random on all datasets, in-
dicating that FMT-random is not good enough to be used as a GPS alternative.
The GPS algorithm significantly outperforms FMT-perfect on two datasets; for
the other three datasets, the performance of GPS and FMT-perfect has no sig-
nificant difference. This indicates that for these three datasets, FMT-perfect can
be used as a GPS alternative. In terms of runtime, the FMT-random algorithm is
significantly faster than GPS only on the Connect-4. dataset. One reason could
be that the number of data points at the leaf nodes of FMT-random are not the
same, so the empirical training complexity of FMT-random varies at each leaf.
We can see that FMT-perfect is faster than FMT-random on all datasets because
usually the number of leaf nodes of FMT-random is less than that for FMT-
perfect. The results show that FMT-perfect is significantly faster then GPS on 4
out of 5 datasets, indicating that FMT-perfect is a viable approach for speeding
up GPS. Overall, on 3 out of 5 datasets, namely, Adult, Connect-4., and KDD-
Cup09, the perfect-binary-tree-based Full Model Tree could significantly speed
up the GPS algorithm without sacrificing GPS’s predictive power.



5 Conclusions

We proposed a framework (in the DMO space setting) which can be used for
designing new FMS (full model selection) algorithms, and a novel FMS algorithm
which can be seen as a realization and an application of the framework. Our
experiments on ten real-world problems show that the GPS algorithm performs
very competitively with PSMS, the state-of-the-art PSO-based FMS algorithm.
We also examined the feasibility of using the model tree idea for speeding up
the GPS algorithm. Our experimental results suggest that using the perfect
binary tree as the internal tree structure for GPS-based Full Model Tree is a
viable approach when the empirical training complexity of GPS is worse than
linear. The techniques described in this paper could probably also be applied
to regression and label ranking problems, but this needs to be verified in a
future study. Another future work direction is to compare the performance of the
GPS systems to fine-tuned base-level ensemble algorithms. The 5-DMO template
(3) defined in Section 2 is only one of many possible templates for practical
data mining solutions, in future research we will also investigate methods for
optimizing alternative templates simultaneously in a cloud environment.
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