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Abstract

Data engineering is generally considered to be a central issue in the
development of data mining applications. The success of many learning
schemes, in their attempts to construct models of data, hinges on the
reliable identification of a small set of highly predictive attributes. The
inclusion of irrelevant, redundant and noisy attributes in the model build-
ing process phase can result in poor predictive performance and increased
computation.

Attribute selection generally involves a combination of search and at-
tribute utility estimation plus evaluation with respect to specific learning
schemes. This leads to a large number of possible permutations and has
led to a situation where very few benchmark studies have been conducted.

This paper presents a benchmark comparison of several attribute se-
lection methods for supervised classification. All the methods produce an
attribute ranking, a useful devise for isolating the individual merit of an
attribute. Attribute selection is achieved by cross-validating the attribute
rankings with respect to a classification learner to find the best attributes.
Results are reported for a selection of standard data sets and two diverse
learning schemes C4.5 and naive Bayes.

1 Introduction

Many factors affect the success of data mining algorithms on a given task. The
quality of the data is one such factor—if information is irrelevant or redundant,
or the data is noisy and unreliable, then knowledge discovery during training is
more difficult. Attribute subset selection is the process of identifying and remov-
ing as much of the irrelevant and redundant information as possible. Learning
algorithms differ in the amount of emphasis they place on attribute selection. At
one extreme are algorithms such as the simple nearest neighbour learner, that
classifies novel examples by retrieving the nearest stored training example, using
all the available features in its distance computations. At the other extreme are
algorithms that explicitly try to focus on relevant features and ignore irrelevant
ones. Decision tree inducers are examples of this approach. By testing the
values of certain attributes, decision tree algorithms attempt to divide training



data into subsets containing a strong majority of one class. This necessitates
the selection of a small number of highly predictive features in order to avoid
over fitting the training data. Regardless of whether a learner attempts to se-
lect attributes itself or ignores the issue, attribute selection prior to learning can
be beneficial. Reducing the dimensionality of the data reduces the size of the
hypothesis space and allows algorithms to operate faster and more effectively.
In some cases accuracy on future classification can be improved; in others, the
result is a more compact, easily interpreted representation of the target concept.

Many attribute selection methods approach the task as a search problem,
where each state in the search space specifies a distinet subset of the possible
attributes [3]. Since the space is exponential in the number of attributes, this
necessitates the use of a heuristic search procedure for all but trivial data sets.
The search procedure is combined with an attribute utility estimator in order to
evaluate the relative merit of alternative subsets of attributes. When the eval-
uation of the selected features with respect to learning algorithms is considered
as well it leads to a large number of possible permutations. This fact, along
with the computational cost of some attribute selection techniques, has led to a
situation where very few benchmark studies on non-trivial data sets have been
conducted. ‘

Good surveys reviewing work in machine learning on feature selection can
be found in {3, 4]. In particular, Liu et. al. [4] use small artificial data sets to
explore the strengths and weaknesses of different attribute selection methods
with respect to issues such as noise, different attribute types, multi-class data
sets and computational complexity. This paper, on the other hand, provides an
empirical comparison of six major attribute selection methods on fourteen well
known benchmark data sets for classification. Performance on a further three
“large” data sets (two containing several hundreds of features, and the third over
a thousand features) is reported as well. In this paper we focus on attribute
selection techniques that produce ranked lists of attributes. These methods are
not only useful for improving the performance of learning algorithms; the rank-
ings they produce can also provide the data miner with insight into their data
by clearly demonstrating the relative merit of individual attributes. The next
section describes the attribute selection techniques compared in the benchmark.
Section 3 outlines the experimental methodology used and briefly describes the
Weka Experiment Editor (a powerful Java based system that was used to run
the benchmarking experiments). Sections 4 and 5 present the results. The last
section summarises the findings.

2 Attribute Selection Techniques

Attribute selection techniques can be categorised according to a number of cri-
teria. One popular categorisation has coined the terms “filter” and “wrapper”
to describe the nature of the metric used to evaluate the worth of attributes
[10]. Wrappers evaluate attributes by using accuracy estimates provided by
the actual target learning algorithm. Filters, on the other hand, use general



characteristics of the data to evaluate attributes and operate independently of
any learning algorithm. Another useful taxonomy can be drawn by dividing al-
gorithms into those which evaluate (and hence rank) individual attributes and
those which evaluate (and hence rank) subsets of attributes. The latter group
can be split further on the basis of the search technique commonly employed
with each method to explore the space of attribute subsets!. Some attribute
selection techniques can handle regression problems, that is, when the class is
a numeric rather than a discrete valued variable. This provides yet another di-
mension to categorise methods. Although some of the methods compared herein
are capable of handling regression problems, this study has been restricted to
discrete class data sets as all the methods are capable of handling this sort of
problem.

By focusing on techniques that rank attributes we have simplified the matter
by reducing the number of possible permutations. That is not to say that we
have ignored those methods that evaluate subsets of attributes; on the contrary,
it is possible to obtain ranked lists of attributes from these methods by using a
simple hill climbing search and forcing it to continue to the far side of the search
space. For example, forward selection hill climbing search starts with an empty
set and evaluates each attribute individually to find the best single attribute.
It then tries each of the remaining attributes in conjunction with the best to
find the best pair of attributes. This process continues until no single attribute
addition improves the evaluation of the subset. By forcing the search to continue
{even though the best attribute added at each step may actually decrease the
evaluation of the subset as a whole) and by noting each attribute as it is added,
a list of attributes ranked according to their incremental improvement to the
subset is obtained. Figure 1 demonstrates this process graphically.

Several of the attribute selection techniques compared in the benchmark
only operate on discrete valued features. In order to apply these techniques
to data with numeric features discretisation is applied as a preprocessing step.
We used the state-of-the-art supervised discretisation technique developed by
Fayyad and Irani [6]. Essentially the technique combines an entropy based
splitting criterion (such as that used by the C4.5 decision tree learner [14]) with
a minimum description length stopping criterion. The best cut point is the one
that makes the subintervals as pure as possible, i.e where the information value
is smallest (this is the same as splitting where the information gain, defined as
the difference between the information value without the split and that with the
split, is largest). The method is then applied recursively to the two subintervals
until it is time to stop. For a set of instances .S, a feature A and a cut point T,
the class information entropy of the partition created by T is given by

E(A,T;S) = %Em(Sl) + %Enté’z )

11t is important to note that anysearch technique can be used with a method that evaluates
attribute subsets and that many of the possible permutations that this leads to have yet to
be explored



Features : {A B C D} Best Single

Addition
Feature Set Score (ranking)
Iteration § [ 1 0.00
Iteration 1 [A 1 0.20
[ B 3 0.40 B
{ c ] 0.30
[ Dl 0.15
Tteration 2 [A B 1 0.38
[ B C 1 0.65 [&]
[ B D] 0.47
Tteration 3 fABC 1 0.60 A
[ B C D] 0.57
Iteration 4 [ B C DI 0.62 D

Figure 1: Forward selection search modified to produce a ranked list of at-
tributes. Normally the search would terminate after iteration 3 because no
single attribute addition improves the best subset from iteration 2. In this case
the search has been forced to continue until all attributes have been included.



where S} and Sy are two intervals of S bounded by cut point 7', and Ent(S)
is the class entropy of a subset S given by

C
Eni(S) = 5 p(Ci, $)logy (p(Ci, 5)). (2)
=1

The stopping criterion prescribes accepting a partition 7" if and only if the
cost of encoding the partition and the classes of the instances in the intervals
induced by T is less than the cost of encoding the classes of the instances before
splitting. The partition created by 7T is accepted #ff

log, (N — 1) logy(3° —2) — [cEnt(5) — e1Ent(S1) — coEnt(S2)]
-+ .
N N
(3)

In Equation 3, N is the number of instances, ¢, ¢;, and ¢ are the number
of distinct classes present in .S, S1, and Sy respectively. The first component is
the information needed to specify the splitting point; the second is a correction
due to the need to transmit which classes correspond to the upper and lower
subintervals.

The rest of this section is devoted to a brief description of each of the at-
tribute selection methods compared in the benchmark. There are three methods
that evaluate individual attributes and produce a ranking unassisted, and a fur-
ther three methods which evaluate subsets of attributes. The forward selection
search method described above is used with these last three methods to produce
ranked lists of attributes. The methods cover major developments in attribute
selection for machine learning over the last decade. We also include a classical
statistical technique for dimensionality reduction.

Gain(A; T, 8) >

2.1 Information Gain Attribute Ranking

This is one of the simplest (and fastest) attribute ranking methods and is often
used in text categorisation applications [5, 16] where the sheer dimensionality
of the data precludes more sophisticated attribute selection techniques. If A is
an attribute and C is the class, Equations 4 and 5 give the entropy of the class
before and after observing the attribute.

H(C) == p(c)logyp(c), (4)

ceC

H(C14) = = 3 pla) 3 plela)logap(cla). (5)
a€A ceC
The amount by which the entropy of the class decreases reflects the ad-
ditional information about the class provided by the attribute and is called
information gain [14].
Each attribute A; is assigned a score based on the information gain between
itself and the class:



1G, = H(C)—- H(C|A) (6)
H(A;) — H(A{|C)
H(A;) + H(C) = H(A;, C).

I

Data sets with numeric attributes are first discretized using the method of
Fayyad and Irani [6].

2.2 - Relief

set all weights W[A] = 0.0
fori=1tomdo
begin
randomly select an instance R
find k nearest hits H;
for each class C # class(R) do
find k nearest misses M;(C)
for A =1 to #attributes do
WIA] = W[A] - 5, difi(A, R, H;)/(m x k)+

S otetass(m) =Pty Loget GHE(A, B, M;(C))]/(m x k)

end

Figure 2: Reliefl' algorithm.

Relief is an instance based attribute ranking scheme introduced by Kira and
Rendell [9] and later enhanced by Kononenko [11]. Relief works by randomly
sampling an instance from the data and then locating its nearest neighbour
from the same and opposite class. The values of the attributes of the nearest
neighbours are compared to the sampled instance and used to update relevance
scores for each attribute. This process is repeated for a user specified number
of instances m. The rationale is that a useful attribute should differentiate
between instances from different classes and have the same value for instances
from the same class.

Relief was originally defined for two-class problems and was later extended
(ReliefF) to handle noise and multi-class data sets [11]. ReliefF smoothes
the influence of noise in the data by averaging the contribution of k near-
est neighbours from the same and opposite class of each sampled instance
instead of the single nearest neighbour. Multi-class data sets are handled
by finding nearest neighbours from each class that is different from the cur-
rent sampled instance and weighting their contributions by the prior prob-
ability of each class. Figure 2 shows the ReliefF algorithm. The function
diff(Attribute, Instancel, Instance2) computes the difference between the val-
ues of Attribute for two instances. For discrete attributes the difference is either



1 (the values are different) or O (the values are the same), while for continuous
attributes the difference is the actual difference normalised to the interval [0,1].

Kononenko [11] notes that the higher the value of m (the number of instances
sampled), the more reliable Reliefl's estimates are—though of course increasing
m increases the running time. For all experiments reported in this paper, we

set m = 250 and k = 10 [11, 15].

2.3 Principal Components

Principal component analysis is a statistical technique that can reduce the di-
mensionality of data as a by-product of transferming the original attribute space.
Transformed attributes are formed by first computing the covariance matrix of
the original attributes, and then extracting its eigenvectors. The eigenvectors
{principal components) define a linear transformation from the original attribute
space to a new space in which attributes are uncorrelated. Eigenvectors can be
ranked according to the amount of variation in the original data that they ac-
count for. Typically the first few transformed attributes account for most of the
variation in the data and are retained, while the remainder are discarded.

It is worth noting that of all the attribute selection techniques compared,
principal components is the only unsupervised method—that is, it makes no
use of the class attribute. Our implementation of principal components handles
k-valued discrete attributes by converting them to k binary attributes. Each of
these attributes has a ’1’ for every occurrence of the corresponding k’th value of
the discrete attribute, and a 0’ for all other values. These new synthetic binary
attributes are then treated as numeric attributes in the normal manner. This
has the disadvantage of increasing the dimensionality of the original space when
multi-valued discrete attributes are present.

2.4 CFS

CFS (Correlation-based Feature Selection) [7, 8] is the first of the methods that
evaluate subsets of attributes rather than individual attributes. At the heart
of the algorithm is a subset evaluation heuristic that takes into account the
usefulness of individual features for predicting the class along with the level of
inter-correlation among them. The heuristic (Equation 7) assigns high scores to
subsets containing attributes that are highly correlated with the class and have
low inter-correlation with each other.

kr7
VE+E(k - s

where Meritg is the heuristic “merit” of a feature subset S containing k features,
Tef the average feature-class correlation, and 7y; the average feature-feature
inter-correlation. The numerator can be thought of as giving an indication of
how predictive a group of features are; the denominator of how much redundancy
there is among them. The heuristic handles irrelevant features as they will be
poor predictors of the class. Redundant attributes are discriminated against as

Merit, = (7)



they will be highly correlated with one or more of the other features. Because
attributes are treated independently, CFS cannot identify strongly interacting
features such as in a parity problem. However, it has been shown that it can
identify useful attributes under moderate levels of interaction {7].

In order to apply Equation 7 it is necessary to compute the correlation
(dependence) between attributes. CFS first discretizes numeric features using
the technique of Fayyad and Irani [6] and then uses symmetrical uncertainty to
estimate the degree of association between discrete features (X and Y'):

H(X)+H(Y)—H(X,Y)] (8)
H(X)+ H(Y) '

After computing a correlation matrix CFS applies a heuristic search strategy
to find a good subset of features according to Equation 7. As mentioned at the
start of this section we use the modified forward selection search, which produces
a list of attributes ranked according to their contribution to the goodness of the
set.

. SU =2.0x|

2.5 Consistency-based Subset Evaluation

Several approaches to attribute subset selection use class consistency as an eval-
uation metric [1, 13]. These methods look for combinations of attributes whose
values divide the data into subsets containing a strong single class majority.
Usually the search is biased in favour of small feature subsets with high class
consistency. Our consistency-based subset evaluator uses Liu and Setiono’s {13]
consistency metric:

J
Consistencys = 1 — Z—:Egi—?ﬁl—-'%, (9)
where s is an attribute subset, J is the number of distinct combinations of
attribute values for s, | D;| is the number of occurrences of the ith attribute value
combination, |M;| is the cardinality of the majority class for the ith attribute
value combination and N is the total number of instances in the data set.
Data sets with numeric attributes are first discretized using the method of
Fayyad and Irani [6]. The modified forward selection search described at the
start of this section is used to produced a list of attributes, ranked according to
their overall contribution to the consistency of the attribute set.

2.6  Wrapper Subset Evaluation

As described at the start of this section Wrapper attribute selection uses a target
learning algorithm to estimate the worth of attribute subsets. Cross-validation
is used to provide an estimate for the accuracy of a classifier on novel data when
using only the attributes in a given subset. Our implementation uses repeated
five-fold cross-validation for accuracy estimation. Cross-validation is repeated
as long as the standard deviation over the runs is greater than one percent
of the mean accuracy or until five repetitions have been completed [10]. The



modified forward selection search described at the start of this section is used to
produced a list of attributes, ranked according to their overall contribution to
the accuracy of the attribute set with respect to the target learning algorithm.

Wrappers generally give better results than filters because of the interaction
between the search and the learning scheme’s inductive bias. But improved
performance comes at the cost of computational expense—a result of having to
invoke the learning algorithm for every attribute subset considered during the
search.

3 Experimental Methodology

Our benchmark experiment applied the six attribute selection techniques to
sixteen standard machine learning data sets from the UCI collection [2]. These
data sets range in size from less than 100 instances up to several thousand, with
each having less than 100 attributes. A further three data sets (also available
from the UCI repository) are included in order to see how the attribute selec-
tion techniques fare in situations where there are larger numbers of features.
The full characteristics of all the data sets are summarised in Table 1. In or-
der to compare the effectiveness of attribute selection, attribute sets chosen by
each technique were tested with two learning algorithms—a decision tree learner
(C4.5 release 8) and a probabilistic learner (naive Bayes). These two algorithms
were chosen because they represent two quite different approaches to learning
and they are relatively fast, state-of-the-art algorithms that are often used in
data mining applications. The naive Bayes algorithm employs a simplified ver-
sion of Bayes formula to decide which class a test instance belongs to. The
posterior probability of each class is calculated, given the feature values present
in the instance; the instance is assigned to the class with the highest probability.
Naive Bayes makes the assumption that feature values are statistically indepen-
dent given the class. Learning a naive Bayes classifier is straightforward and
involves simply estimating the probability of attribute values within each class
from the training instances. Simple frequency counts are used to estimate the
probability of discrete attribute values. For numeric attributes it is common
practise to use the normal distribution [12]. C4.5 is an algorithm that sum-
marises the training data in the form of a decision tree. Learning a decision tree
is a fundamentally different process than learning a naive Bayes model. C4.5
recursively partitions the training data according to tests on attribute values in
order to separate the classes. Although attribute tests are chosen one at a time
in a greedy manner, they are dependent on results of previous tests.

For the first sixteen data sets in Table 1 the percentage of correct classifica-
tions, averaged over ten ten-fold cross validation runs, were calculated for each
algorithm-data set combination before and after attribute selection. For each
train-test split, the dimensionality was reduced by each attribute selector before
being passed to the learning algorithms. Dimensionality reduction was accom-
plished by cross validating the attribute rankings produced by each attribute
selector with respect to the current learning algorithm. That is, ten-fold cross



Table 1: Data sets.

Data Set Train size ‘est size  Num. Nom. Classes
glass-2 163 (A% 9 0 2
anneal 898 CcV 6 32 5
breast-c 286 CcV 0 9 2
credit-g 1000 (2% 7 13 2
diabetes 768 CcV 8 o 2
horse colic 368 Ccv 7 15 2
heart-c 303 cv 6 7 2
heart-stat 270 Ccv 13 ] 2
. ionosphere 351 Ccv 34 0 2
fabor 57 CcV 8 8 2
lymph 148 cv 3 15 4
segment 2310 cv 19 0 7
soybean 683 cV 0 35 19
vote 435 Ccv 0] 16 2
Z00 101 CV 1 16 7
arrhythmia 298 154 206 73 13
anonymous 29589 11122 0 293 2
internet-ads 2164 1115 2 1555 2

validation on the training part of each train-test split was used to estimate the
worth of the highest ranked attribute, the first two highest ranked attributes,
the first three highest ranked attributes etc. The highest n ranked attributes
with the best cross validated accuracy was chosen as the best subset. The last
three data sets in Table 1 were split into a training set containing two thirds of
the data and a test set containing the remaining data. Attribute selection was
performed using the training data and each learning scheme was tested using
the selected features on the test data.

For the attribute selection techniques that require data pre-processing, a
copy of each training split was made for them to operate on. It is important
to note that pre-processed data was only used during the attribute selection
process, and with the exception of Principal components—where data transfor-
mation occurs—original data (albeit dimensionally reduced) was passed to each
learning scheme. The same folds were used for each attribute selector-learning
scheme combination. Although final accuracy of the induced models using the
reduced feature sets was of primary interest, we also recorded statistics such as
the number of attributes selected, time taken to select attributes and the size
of the decision trees induced by C4.5.

3.1 Weka Experiment Editor

To perform the benchmark experiment we used Weka? (Waikato Environment
for Knowledge Analysis)—a powerful open-source Java-based machine learning
workbench that can be run on any computer that has a Java run time environ-
ment installed. Weka brings together many machine learning algorithms and

2Weka is freely available from http://www.cs.waikato.ac.nz/~ml
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Figure 3: Weka Experimenter.

tools under a common framework with an intuitive graphical user interface.
Weka has two primary modes: a data exploration mode and an experiment
mode. The data exploration mode (Explorer) provides easy access to all of
Weka's data preprocessing, learning, attribute selection and data visualisation
modules in an environment that encourages initial exploration of the data. The
experiment mode (Experimenter) allows large scale experiments to be run with
results stored in a database for later retrieval and analysis. Figure 3 shows the
configuration panel of the Experimenter.

4 Results on Sixteen Benchmark Data Sets

Table 2 shows the results on the first sixteen data sets for attribute selection
with naive Bayes. The table shows how often each method performs signifi-
cantly better (denoted by a o) or worse (denoted by a ) than performing no
feature selection (column 2). Throughout we speak of results being significantly
different if the difference is statistically significant at the 1% level according to a
paired two-sided ¢ test. From Table 2 it can be seen that the best result is from
the Wrapper which improves naive Bayes on six data sets and degrades it on
two. CFS is second best with improvement on five datasets and degradation on
three. The simple information gain technique (IG) results in six improvements
and four degradations. The consistency method (CNS) improves naive Bayes on
six data sets and degrades it on five. RelieflF gives better performance on seven

11
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Table 2: Results for attribute selection with naive Bayes

Data Set NB I1G RLF CNS PC CFS WRP
Z00 95.04 9434e 93.37Te 9385 93.86 93.94 ¢ 9434

heart-c 83.83 8254e 82.12e 8228e 8l85e 82648 82638 e
ionosphere  82.6 88378 0 89520 89950 90720 89750 9128 o
soybean 92.9 9243 e 9256 e 92.81 9093 e 9246 92.64 .
glass2 62.33 67420 63.830 6831lc 66740 71080 7506 o
vote 90.19 95630 95330 95820 92320 95630 9593 o
heart-stat 84.37 85.11 86 o B3.48e 8207e 8307 85
lymph 83.24  82.63 81.47 ¢  82.55 79.67 ¢ 82.35 84.11
labor 93.93 89.17e 9097e 92 e 89.77e 892 e 8577 e
diabetes 75.73 76.24 75.95 75.64 74.42 ¢ 76.19 76.12
breast-c 73.12  72.84 7099 ¢  T1.79 73.54 73.01 72.28
credit-g 74.98  74.36 74.49 e T4.06 e 73.3 e 74.33 74.35
segment 80.1 87.170 86970 85980 90.030 89.030c 89.57 o
horse colic 7828 83.2 o 82580 82770 7856 83.01 o 8261 o
anneal 86.51 87.060c 89170 89.7lo 90650 87.16 9291 o

o, e statistically significant improvement or degradation

Table 3: Wins versus losses for accuracy of attribute selection with naive Bayes.

Scheme Wins— Wins  Losses
Losses
WRP 30 34 4

CFSs 7 21 14
CNS 2 21 19
G -2 17 19
RLF -3 19 22
NB -7 28 35

rPC 27 17 44

data sets but also degrades performance on seven. Principal components comes
out the worst with improvement on five data sets and degradation on seven.

Table 3 ranks the attribute selection schemes. A pairwise comparison is
made between each scheme and all of the others. The number of times each
scheme is significantly more or less accurate than another is recorded and the
schemes are ranked by the total number of “wins” minus “losses”. From this
table it can be seen that the Wrapper is clearly the best with 34 wins and only
four losses against the other schemes. CFS and the consistency method are the
only other schemes that have more wins than losses.

Table 4 shows the results for attribute selection with C4.5 and Table 5 shows
the “wins” minus “losses” ranking for each scheme when compared against the
others. The results are somewhat different than for naive Bayes. The best
scheme for C4.5 is ReliefF which improves C4.5's performance on two data sets
and degrades it on one. It is also top of the ranking with 22 wins and only
seven losses against the other schemes. Consistency is the only other scheme
that is ranked higher than using no feature selection with C4.5; it improves
C4.5’s performance on three data sets and degrades performance on three data

12



Table 4: Results of attribute selection with C4.5

Data Set C4.5 1G CFS CNS RLF WRP PC
Z00 92.26 91.65 9106 @« 93650 9295 90.45 ¢ 9149
heart-stat 78.67 84520 85330 84110 82 o 8211 o 82220
ionosphere  89.74 89.4 91.09 o 91.05 91.43 91.8 o 8838
diabetes 73.74  73.92 73.67 73.71 73.58 73.5 71.51 e
vote 0646 095.84e 9565 9598 e 95.79e 9574 e 9207 e
credit-g 71.18 72.72 72990 722 71.63 72.23 69.34 e
soybean 92.48 924 91.14 ¢  92.43 92.43 92.19 83.75 e
heart-c 76.64 78950 79110 80230 804 o 77 82.65 o
glass2 77.97 7835 78.53 77.05 79.53 76.53 66.41 o
labor 80.2 80.6 81 79.73 79.53 78.33 88.6 o
lymph 75.5 73.09 ¢  73.41 75.43 76.83 76.63 74.6
breast-c 73.87 73.75 73.7 7224 8 7277 73.43 70.62 o
segment 96.9 96.81 96.94 96.87 96.89 96.92 93.95 »
anneal 98.58 98.72 98.47 98.85 98.73 98.66 96.26
horse colic 85.44 84,18 e 83.94e 84 e 849 84.14 ¢« 78.18 @

o, e statistically significant improvement or degradation

Table 5. Wins versus losses for accuracy of attribute selection with C4.5

Scheme Wins— Wins Losses
Losses
RLEF 15 22 7
CNS 12 20 8
C45 7 23 16
CFS 5 21 16
WRP 5 17 12
1IG 2 15 13
PC  -46 12 58

sets. CFS and the Wrapper are tied at fourth in the ranking. CFS improves
C4.5's performance on four data sets (more than any other scheme) but also
degrades performance on four datasets. The Wrapper improves performance on
two datasets and degrades performance on three.

The success of Relief' and consistency with C4.5 could be attributable to
their ability to identify attribute interactions (dependencies). Including strongly
interacting attributes in a reduced subset increases the likelihood that C4.5
will discover and use interactions early on in tree construction before the data
becomes too fragmented. Naive Bayes, on the other hand, is unable to make
use of interacting attributes because of its attribute independence assumption.
Two reasons could account for the poorer performance of the Wrapper with
C4.5. First, the nature of the search (forward selection) used to generate the
ranking can fail to identify strong attribute interactions early on, with the result
that the attributes involved are not ranked as highly as they perhaps should be.
The second reason has to do with the Wrapper’s attribute evaluation—five fold
cross validation on the training data. Using cross validation entails setting aside
some training data for evaluation with the result that less data is available for

13



building a model.

Table 6: Size of trees produced by C4.5 with and without attribute selection.

Data Set C4.5 1G CFS CNS RLF WRP PC
ZOO 15.64 13.22 0 13.74 o 1344 o 13.04 o 13.98 o 13.02 o
heart-stat 34.84 1212 0 1188 ¢ 13520 13660 1492 o 482 o
ionosphere  26.58 21840 16640 17140 17220 139 o 20040
diabetes 41.54 14620 15920 16540 16740 17.06 o 30520
vote 10.64 944 o 864 o 992 o 9 o 972 o 2044 e
credit-g 125.05 57.340 60390 61.820 68520 6348 o 10980
séybean 92.27 86.5 o 88290 92.25 91.21 90.75 88.84
heart-c 42.34 19.72 0 19450 22480 23170 242 o 816 o
glass?2 23.78 1488 0 16280 16260 17.120 1622 o 11180
labor 6.96 622 o 61 o 6.18 o 548 o 6.13 o 588 o
lymph 27.41 14710 14350 12260 14560 1443 o 18180
breast-c 12.38 10.47 10.26 15.09 11.8 842 o 772 o
segment 81.86 80.82 80.26 79.44 o 80.96 79.5 119
anneal 49.75 48.45 50.06 46.83 0  46.73 o  48.63 38.94 o
horse colic  8.57 21.18 e 2575 e 881 2064 209 e 642 o

o, e statistically significant improvement or degradation

Table 7: Wins versus losses for C4.5 tree size

Scheme  Wins—  Wins  Losses
Losses

PC 21 47 26
CFS 15 30 15
IG 13 29 16
RL¥ 7 25 18
CNS 86 26 20
WRP O 22 22
C45 -62 6 68

Table 6 compares the size (number of nodes) of the trees produced by each
attribute selection scheme against the size of the trees produced by C4.5 with
no attribute selection. Smaller trees are preferred as they are easier to interpret.
From Table 6 and the ranking given in Table 7 it can be seen that principal
components produces the smallest trees, but since accuracy is generally degraded
it is clear that models using the transformed attributes do not necessarily fit the
data well. CFS is second in the ranking and produces smaller trees than C4.5
on 11 data sets with a larger tree on one dataset. Information gain, ReliefF and
the Wrapper also produce smaller trees than C4.5 on 11 data sets but by and
large produce larger trees than CFS. Consistency produces smaller trees than
C4.5 on 12 data sets and never produces a larger tree. It appears quite low on
the ranking because it generally produces slightly larger trees than the other
schemes.

Table 8 shows the average number of attributes selected by each scheme for
naive Bayes and Table 9 shows the “wins” versus “losses” ranking. Table 8 shows
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Table 8 Number of features selected for naive Bayes. Figures in brackets show

the percentage of the original features retained.

Data Sct Orig IG RLE CNS PC CFS WRP
zo0 17 12.8(75%) 12.5 (74%) 16.3 (96%) 4.7 (28%) 13.6(80%) 10.5 (62%)
heart-c 13 7.1 (55%) 8.6 (66%) 8.7 (67%) 3.6 (28%) 7.2 (55%) 8.7 (67%)
lonosphere 34 7.9 (23%) 8.1 (24%) 10.5(31%) 18.1(53%) 12.6(37%) 11.7 (34%)
soybean 35  30.9(88%) 31.3(89%) 32.7(93%) 36 (103%) 25.8(74%) 20.8 (59%)
glass2 9 2.7 (30%) 3.2 (35%) 3.9 (44%) 4.5 (50%) 2.1 (24%) 1.9 (22%)
vote 16 1 (6%) 1.7 (11%) 2.6 (16%) 14.9(93%) 1 (6%) 3  (19%)
heart-stat 13 7.8 (60%) 9.2 (71%) 10.2(79%) 2.6 (20%) 7.9 (61%) 10 (77%)
lymph 18  16.6(92%) 13.1 (78%) 14.3(79%) 15.3(85%) 15 (84%) 13.1 (73%)
“labor 16  12.1(75%) 13.6 (35%) 13.7(86%) 4.3 (27%) 11.8(74%) 9  (56%)
diabetes 8 2.7 (34%) 3.6 (45%) 4  (50%) 5.9 (74%) 2.8 (35%) 4.1 (53%)
breast-c 9 3.8 (42%) 7.4 (82%) 5.7 (63%) 5.2 (57%) 2.7 (30%) 3.2 (36%)
credit-g 20 13.2(66%) 14.3 (72%) 13.6 (68%) 19.9(100%) 12.4(62%) 10.7 (53%)
segment 19 11 (58%) 11.1(58%) 5 (26%) 15.2(80%) 7.9 (42%) 9.2 (48%)
horse colic 22 5.8 (26%) 4.1 (18%) 3.0 (18%) 22.8(104%) 5.8 (26%) 6.2 (28%)
anncal 38  10.1(27%) 3.7 (10%) 5.4 (14%) 38.9(103%) 7.1 (19%) 25.4 (67%)

Table 9: Wins versus losses for number of features selected for naive Bayes.

Scheme  Wins— Wins  Losses
Losses

CFS 24 42 18
IG 11 35 24
WRP 9 35 26
RLF -1 30 31
CNS -15 21 36
PC -28 21 49

that most schemes (with the exception of principal components) reduce the
number of features by about 50% on average. Principal components sometimes
increases the number of features (an artifact of the conversion of multi-valued
discrete attributes to binary attributes). From Table 9 it can be seen that CFS
chooses fewer features compared to the other schemes—retaining around 48%
of the attributes on average. The Wrapper, which was the clear winner on
accuracy, is third in the ranking-—retaining just over 50% of the attributes on
average.

Table 10 shows the average number of features selected by each scheme for
C4.5 and Table 11 shows the “wins” versus “losses” ranking. As to be expected,
fewer features are retained by the schemes for C4.5 than for naive Bayes. CFS
and the Wrapper retain about 42% of the features on average. ReliefF, which
was the winner on accuracy, retains 52% of the features on average. As was
the case with naive Bayes, CFS chooses fewer features for C4.5 than the other
schemes (Table 11). ReliefF is at the bottom of the ranking in Table 11 but its
larger feature set sizes are justified by higher accuracy than the other schemes.

It is interesting to compare the speed of the attribute selection techniques.
We measured the time taken (in milliseconds®) to select the final subset of

3This is an approximate measure. Obtaining true cpu time from within a Java program is
quite difficult.
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Table 10: Number of features selected for C4.5. Figures in brackets show the

percentage of the original features retained.

Data Set Orig 1G CFS CNS RLF WRP PC
zoo 17  11.4(67%) 9 (53%) 11.2(66%) 10.5(62%) 7.1 (42%) 10.5(62%)
heart-stat 13 3.2 (25%) 3 (23%) 3.6 (28%) 5.6 (43%) 4.6 (35%) 2.1 (16%)
ionosphere 34 12.2(36%) 6.9 (20%) 9.3 (27%) 8.7 (26%) 7.2 (21%) 10.2(30%)
diabetes 8§ 3.2 (40%) 3.4 (43%) 3.6 (45%) 3.9 (49%) 3.8 (47%) 5.9 (74%)
vote 16 11.6(72%) 9.6 (60%) 6.5 (40%) 10.6(66%) 8.6 (54%) 11.2(70%)
credit-g 20 7.8 (39%) 6.7 (34%) 8.1 (41%) 9.1 (45%) 7.7 (39%) 3.9 (19%)
soybean 35  29.5(84%) 23.7(68%) 35 (100%) 32.4(93%) 19.2 (55%) 30.2(86%)
heart-c 13 3.9 (30%) 3.5 (27%) 4 (31%) 5.1 (39%) 5.9 (45%) 3.8 (29%)
_ glass2 9 4.2 (47%) 4.6 (51%) 4.4 (48%) 4.7 (52%) 4 (44%) 4.2 (47%)
labor 16 3.9 (24%) 2.8 (18%) 6.6 (41%) 6.5 (40%) 3.3 (21%) 3.5 (22%)
lymph 18 6.8 (38%) 5.3 (30%) 4 (22%) 4.5 (25%) 5.9 (33%) 9.2 (51%)
breast-c 9 4.4 (49%) 4 (44%) 6.6 (73%) 6.9 (7T7%) 3.98 (44%) 4.4 (49%)
segment 19  16.4(86%) 11.9(63%) 9.5 (50%) 12.6(66%) 9.2 (48%) 16.4(86%)
anneal 38  16.6(44%) 21.3(56%) 15.5(41%) 20.4(54%) 18.2 (48%) 36.4(96%)

Table 11: Wins versus losses for number of features selected for C4.5

Scheme  Wins—  Wins  Losses
Losses

CFS 24 35 11
WRP 13 30 17
CNS 2 26 24
1G -8 18 26

PC -8 17 25
RLF -23 11 34

attributes. This includes the time taken to generate the ranking and the time
taken to cross validate the ranking to determine the best set of features. Table 12
shows the “wins” versus “losses” ranking for the time taken to select attributes
for naive Bayes. CFS and information gain are much faster than the other
schemes. As expected, the Wrapper is by far the slowest scheme. Principal
components is also slow, probably due to extra data set pre-processing and the
fact that initial dimensionality increases when multi-valued discrete attributes
are present.

Table 12: Wins versus losses for time taken to select attributes for naive Bayes.

Scheme  Wins— Wins  Losses
Losses

CFS 50 57 7

IG 49 56 7
CNS 13 38 25
RLF -10 29 39
PC -36 17 53
WRP -66 4 70

Table 13 ranks the schemes by the time taken to select attributes for C4.5.
It is interesting to note that the consistency method is the fastest in this case.
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Table 13: Wins versus losses for time taken to select attributes for C4.5

Scheme  Wins— Wins  Losses
Losses

CNS 34 46 12
1G 29 42 13

CFS 25 40 15
RLF 12 36 24
PC -34 20 54
WRP  -66 4 70

While consistency does not rank attributes as fast as information gain, speed
gains are made as a by-product of the quality of the ranking produced—with
4.5 it is faster to cross validate a good ranking than a poor one. This is because
smaller trees are produced and less pruning performed early on in the ranking
where the best attributes are. If poorer attributes are ranked near the top then
C4.5 may have to “work harder” to produce a tree. This effect is not present
with naive Bayes as model induction speed is not affected by attribute quality.
Although ReliefF produces the best attribute rankings for C4.5, it is not as fast
as information gain. The instance-based nature of the algorithm makes it slower
at producing an attribute ranking.

5 Results on Large Data Sets

Figure 4 shows the results on the three large data sets for attribute selection
with naive Bayes. Error bars denote the boundaries of a 95% confidence interval.

On the arrhythmia data set information gain, ReliefF, CFS and the Wrapper
improve the performance of naive Bayes. Consistency gives roughly the same
performance as naive Bayes and principal components degrades the performance
of naive Bayes. From Table 14 it can be seen that only a small percentage of the
original number of attributes is needed by naive Bayes on this data set—CFS
retains just 3% of the features, and at the other end of the scale, information
gain retains 22% of the features.

On the anonymous and internet-ads data sets the confidence intervals are
much tighter due to larger test set sizes. There is no result for the Wrapper on
the internet-ads data set because of the length of time it would take to run?. All
methods, with the exception of principal components, perform at roughly the
same level on these two data sets. CFS is fractionally better that the others on
the internet-ads data set. On the anonymous data set the Wrapper and CFS are
marginally better than the others. With the exception of principal components,
Table 14 shows that CFS selects the smallest attribute sets for naive Bayes.
CFS’s bias in favour of predictive uncorrelated attributes is particularly well
suited to naive Bayes.

4We estimated that about 140 days of runtime on our 1400 MHz processor would be
required in order to produce the attribute ranking
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Figure 4: Feature selection results for naive Bayes on large data sets.

Table 14: Number of features selected for naive Bayes on large data sets. Figures
in brackets show the percentage of the original features retained.

Data Set

Orig IG

RLF CNS PC CFS WRP

arrhythmia
anonymous
internet-ads

327 51 (22%%)
203 12 (4%)
1557 984(63%)

13 (6%) 7 (3%) 5 (2%) 6 (3%) 47 (21%)
18 (6%) 22 (8%) 122(42%) 11 (4%) 182 (62%)
1476(95%) 602 (39%) 23 (1%) 345 (22%) —
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Figure 5: Feature selection results for C4.5 on large data sets.

Figure 5 shows the results on two of the three large data sets for attribute
selection with C4.5. There are no results on the anonymous data set because
the length of time needed to cross validate attribute rankings using C4.5 was
prohibitive®. On the arrhythmia data set information gain, ReliefF and CFS
improve the performance of C4.5. Reliefl gives has the best performance on
this data set. Table 15 shows the number of features retained by the attribute
selection methods. As was the case for naive Bayes, good performance can
be obtained on the arrhythmia data set given a small number of the original
features. All methods, with the exception of principal components, perform
equally well on the internet-ads data set. Figures in Table 15 and Table 16
help differentiate the methods. Disregarding principal components, the smallest
feature sets are given by CFS and ReliefF. These two methods retain 5% and
43% of the original attributes respectively. RelefF, consistency and CFS make
a small reduction in the size of C4.5’s trees.

6 Conclusions

This paper has presented a benchmark comparison of six attribute selection
techniques that produce ranked lists of attributes. The benchmark shows that

5(C4.5’s runtime is dominated by the number of instances (roughly log-linear). A single ten
fold cross-validation on the training data takes over an hour to complete and we estimated
that over 40 days of processing would be required to evaluate a ranked list of attributes
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Table 15: Number of features selected for C4.5 on large data sets. Figures in
brackets show the percentage of the original features retained.

Data Set Orig 16 RLF CNS PC CFS WRP
arrhythmia 227 28 (12%) 35 (15%) 19 (8%) 2 (1%) 11 (5%) 124 (55%)
internet-ads 1557 1387(89%) 663 (43%) 1094(70%) 16 (1%) 83 (5%) —

Table 16: Size of trees produced by C4.5 with and without attribute selection
on large data sets.

° Data Set C45 IG CFS CNS RLF WRP PC
arrhythmia 67 61 63 63 53 61 33
internet-ads 47 47 43 43 43 — 49

in general, attribute selection is beneficial for improving the performance of com-
mon learning algorithms. It also shows that, like learning algorithms, there is no
single best approach for all situations. What is needed by the data miner is not
only an understanding of how different attribute selection techniques work, but
also the strengths and weaknesses of the target learning algorithm, along with
background knowledge about the data (if available). All these factors should
be considered when choosing an attribute selection technique for a particular
application. For example, while the Wrapper using the forward selection search
was well suited to naive Bayes, using a backward elimination search (which is
better at identifying attribute interactions) would have been more suitable for
C4.5.

Nevertheless, the results suggest some general recommendations. The wins
versus losses tables show that, for accuracy, the Wrapper is the best attribute
selection scheme, if speed is not an issue. Otherwise CF3, consistency and
ReliefF are good overall performers. CFS chooses fewer features, is faster and
produces smaller trees than the other two, but, if there are strong attribute
interactions that the learning scheme can use then consistency or ReliefF is a
better choice.
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