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Abstract

This paper generalises Géra and Boyarsky’s [16] bounded variation (BV') approach to the ergodic
properties of expanding transformations, and analyses the convergence of Ulam’s method for the
numerical approximation of absolutely continuous invariant measures. We first prove an existence
theorem for BV invariant densities for piecewise expanding maps on subsets of R"; the maps must
be C?, but may have infinitely many branches and need not be Markov. Under an additional “onto”
assumption, explicit bounds on the spectral gap in the associated Perron-Frobenius operator are
proved. The corresponding contraction rates are in the BV norm, rather than a projective metric.
With this quantitative information, we are then able to prove convergence and explicit upper bounds
on the approximation error in Ulam’s method for approximating invariant measures. Because the BV
approach is rather concrete, the methods of this paper can be applied in practice; this is illustrated
by an application of the main results to the Jacobi-Perron transformation on R2.

Keywords:  Absolutely continuous invariant measures, decay of correlations, approximation of
invariant measures, Jacobi—Perron transformation

Introduction

This paper concerns the construction of probability measures which are absolutely continuous with
respect to Lebesgue measure m and invariant under the action of a piecewise expanding map on a
subset of R”. Such measures are called absolutely continuous invariant measures (acims), and are
determined by their corresponding invariant densities. A map T on a domain A C R" is piecewise
ezpanding if there exists a constant A > 1 and a countable partition {Bq,} of A such that each T,
is one—to—one, and |T'(z) — T (y)| > M|z — y| whenever z,y are in the same B,. In this paper we give
an existence theorem for invariant densities for such maps subject to A being large enough, T being
locally C? and the image sets T'(B,) not being too wild. T may have infinitely many branches. The
proof uses the multi-dimensional bounded variation (BV') approach of Géra and Boyarsky [16]. Next,
some explicit quantitative bounds are derived for the exponential rate at which arbitrary densities
approach the invariant measure under iterates of the Perron—Frobenius operator. In contrast to other
approaches [12, 27, 33], these estimates are in the BV-norm, and lead to explicit quantitative error
bounds on Ulam’s method [35] for the numerical approximation of acims. Related, and better known
decay of correlation results [12, 27, 33] are, so far as we know, not sufficient to obtain such bounds. In
the final section of the paper, the approach is applied to the classical Jacobi—Perron transformation.

Motivation and pedagogy

This work is motivated in part by a specific problem: to construct an acim for the Jacobi—Perron
(JP) transformation on R” [34]. The JP transformation has an infinite Markov partition, and since
each branch has bounded distortion, the existence of an invariant density is known; however, no
formula for it exists [2]. A natural question is therefore whether the density can be approximated
numerically. Recent work on Ulam’s method [35] for the numerical approximations of acims in multi-
dimensions [11] suggests a positive answer to this question. Ulam’s method consists in replacing the



Perron-Frobenius operator £ by a certain finite—dimensional approximation; the fixed point of the
finite dimensional operator is then an approximation to an invariant density for 7. One needs sev-
eral ingredients to analyse Ulam’s method: (i) existence of an invariant density in a reasonably well
behaved subspace of L'(A); (ii) explicit control of the effects of finite-dimensional approximations
to that subspace; (iii) knowledge of the “stability” of the acim to perturbations. The BV approach
from [16] almost satisfies the first of these requirements, but contains a more or less technical obstruc-
tion for transformations with infinitely many branches. By considering the geometry of the images
of one-to—one branches of T, rather than one-to—one domains themselves, and making a few other
adjustments to the approach in [16], we obtain a suitable solution to problem (i) in Section 1 below.
The rest of the paper is then devoted to problems (ii) and (iii). The central tool is the derivation of
explicit quantitative bounds on the non—peripheral part of the spectrum of £, and this is the most
substantial part of the paper. Before giving a precise statement of the main results, we give a few
historical comments.

Historical comments on the acim problem

Invariant measures are the fundamental objects in the ergodic theory of dynamical systems, and are
therefore of considerable importance in statistical descriptions of complicated dynamics [23]. For
piecewise expanding maps on domains in R", an important question is: how much expansion is
necessary to guarantee the existence of an acim? When r = 1, Lasota and Yorke [24] proved that
A > 1is sufficient when all branches of the map are C. Subsequent work by Rychlik [31] (and others)
required less regularity of each branch, and in all cases A > 1 suffices.

In higher dimensions, considerably more delicacy is required. For piecewise complex analytic maps
of the plane, Keller [20] proved that A > 1 is sufficient to ensure the existence of an acim. Buzzi [10]
has recently proved the existence of acim under the same expansivity assumption for maps which
are R-analytic, but not holomorphic. In higher dimensions (r not necessarily 1 or 2) and without
analyticity, the situation is less satisfactory: one generally requires “sufficient expansivity” conditions,
where A is bigger than some number determined by either the shape of the boundaries of one-to—one
branches [16], or the density with which e-neighbourhoods of these boundaries “fill out” the space [33,
10]. These “boundary effects” arise from discontinuities of the invariant densities on Up oT"(0Ba).
When T admits a Markov partition, boundary effects can be avoided (for example [28]). At least
two approaches to the non—-Markov problem are present in the literature: one based on bounded
mean local oscillation [5, 6, 33, 10] of densities, and another on bounded variation in the sense of
distributions [16, 1]. In both cases, a suitable relatively compact subset of L'(A) is used, and a
quasi—compactness argument based on the Ionescu—Tulcea and Marinescu ergodic theorem [18] yields
a spectral gap for the Perron—Frobenius operator; this is important for the stochastic stability and
numerical approximation of acims [21]. More detailed commentary can be found in [5, 10].

In each of the above approaches, the choice of function space determines the precise formulation
of the “sufficient expansivity” condition. Despite these attempts, a general answer as to when A > 1
is sufficient to admit an acim for piecewise C? maps on R" is still lacking. We prove below that if the
range structure of T' is uniformly non-degenerate then A > 1 is sufficient (Theorem 2). However, for
general piecewise expanding maps, Theorem 2 retains a “sufficient expansivity” condition which is
constrained by the geometry of boundaries of images of one-to—one branches. This is a consequence
of the technology we exploit: the behaviour of BV. Nonetheless, the BV approach has the virtue of
concreteness, and this allows us to write the statements of the theorems in a way which makes the
hypotheses verifiable for specific transformations. In the final section of the paper this is illustrated
with an application to the JP transformation.

Main results

Let A C R" be a bounded subset of R", consisting of an at most countable union of connected
components, where the boundary of each component has finite (r — 1)—dimensional measure. We
consider transformations T : A — A satisfying the following conditions:

One—to—one branches: There exists a partition (possibly countably infinite) £ = {Ba,} of A such that
T is C? and non-singular on each int(B,), and the boundary 0B, of each B, is piecewise Lipschitz
with finite (r — 1)—dimensional measure. The inverse branches will be denoted by T, Y TB., — B,.
The inverse branches of 7™ will be denoted

-n __ m-n A -1 -1
Ta(") - Ta"...al - Tan o oTal
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where each a; denotes a one—to—one branch of T'.

Ezpansivity: There exist global constants C; > 0, A > 1 such that
|DT_ 5y - v| < Cix"|o| (1)

where DT 7, is the Jacobian matrix of T_7,.

n

Bounded Distortion: There exists a constant C2 > 0 such that

< Cs. (2)

V (det(DT, "))
det(DT5 1)

We now give geometric conditions which allow the formulation of our “sufficient expansivity”
conditions.

DEFINITION. A connected set S C R" with piecewise Lipschitz boundary of finite (r —1)-dimensional
measure whose faces meet at angles strictly bounded away from zero will be called non—degenerate
provided that both a(S) > 0 (where a(S) is the sine of half the smallest interior angle at corners of
S), and the following geometric condition holds:

Geometric condition Let a' < a(S). A number ¢ > 0 will be called small enough for (S,a’) if
(i) S\ Bc(0S) £ 0 (B<(X) denotes the e-neighbourhood of a set X ), and (i1) each line segment L,
connecting © € 0S to the nearest point in O(B(0S)) NS is wholly contained in S and makes an angle
with &S at x whose sine is bounded below by a’. Then S is non—degenerate if for every a’ < a(S),

€(S,a') = sup {e : € is small enough for (S,a’)} > 0.
€>0

A collection {S.} of subsets will be called uniformly non—degenerate if each S, is non—degenerate,
and both a = inf, a(Sy) > 0 and inf, €(Ss,a’) > 0 for all a’ < a(S). O

By following the reasoning from [16] we first prove:

Theorem (GB') Suppose that the images of one—to—one branches {TBa} are uniformly non—
degenerate. Then

(i) if CiA™ (1 + 1/a) < 1 then T possesses an acim;

(i) if Cid™' (1 4+ 1/a) < 1/+/r then Ulam’s method converges in L' (A);

(#11) if the collection Un{T"™ B, (=)} is uniformly non—degenerate and A > 1, then parts (i) and (i) of
the theorem apply to an iterate of T'.

This result is called (GB™) because of the close resemblance to Géra and Boyarsky’s existence
result [16]; the main difference is that our sufficient expansivity condition is on one—-to—one images,
and therefore allows infinitely many such pieces. Parts (i) and (iii) of the theorem are proved as
Theorem 2 in section 1 below. Part (ii) of the theorem is given in section 3. In section 2, we prove
the more substantial result:

Mixing theorem If the condition in (GB™ ) (i) holds for some T™', and for each k there exists a
large enough non-degenerate set Wy such that Wy, C TF™ (B, (kn1)) for all one-to—one branches of
Tk then there exist constructively defined constants C < oo and p < 1 such that

€™ (F = [a fdm)|| g, < Cp" || = [ £ dm 5,
for all n > 0 where L is the Perron—Frobenius operator for T, and || - |pv denotes the BV norm.

The mixing theorem is proved as Theorems 3 and 4. The importance of the “onto” assumption
is also discussed. The main argument has already appeared for one—dimensional maps [30], and
comparison with that paper may be helpful. In section 3, the results of the first two sections can be
applied to obtain explicit quantitative error bounds for Ulam’s method. In section 4, all the results
of the paper are illustrated with the Jacobi—Perron transformation [34].

REMARK.  The definition of non—degeneracy adopted here is a reworking of [16], where a more
detailed description of the constant a(S) can be found. The geometric definition of €(S, a’) is relatively
easy to compute for reasonably well behaved sets, such as star-shaped domains. The utility of the
definition can be seen in 4.2, where computations are made for an explicit example. O



1 Existence of invariant densities

In this section we follow Géra and Boyarsky’s multi-dimensional bounded variation approach to
obtain an existence theorem for acims. While the approach used here is similar to the one from [16],
we need to make a number of small changes to get a result which is explicitly applicable to the JP
transformation. Therefore, much of this section is rather standard; the aim has been to provide
sufficient detail to elucidate applications of the theorems. Consequently, in this section, as in the
remainder of the paper, we are rather careful to give formulas for the various constants required in
the theorems.

Throughout the paper, m denotes the Lebesgue measure on R, T': A -+ A (A C R"), and we
assume m(A) = 1. The characteristic (or indicator) function of a subset £ C R" is denoted by x &,
and | - | denotes Euclidean distance on R".

1.1 Multi-dimensional bounded variation
As in [16], we use the definition of BV from [14]:

DEFINITION. (Bounded variation in R") Let A C R” be an open set with piecewise Lipschitz
boundary, and let C§(4;R") denote the collection of compactly supported smooth vector fields on A.
Let div denote the divergence and for each f € L'(A) put

Va(f) =sup {//; f(@)div w(z)dm(z) : w € Co(A;R"), |w(z)| < 1Ve € A} ,

Then Va(f) is called the variation of f over A. If V4(f) < oo, then f is said to have bounded variation
over A and it is usual to write f € BV (A). The set of f € BV (A) equipped with the norm

Ifllav = [Ifllr + Va(f)
is a Banach space [14, 1.12]. O

Va(-) generalises most familiar properties of one—dimensional variation, including subadditivity.
The computation of V4(-) can be elucidated by considering the following class of functions:

DEFINITION. A function f € BV (A) is called piecewise C" if there exists a countable partition
of A into subsets {Ag} such that f is differentiable on each int(Ag), and 0Ap can be written as a
countable collection of piecewise Lipschitz surfaces of finite (r — 1)—dimensional measure. O

If f is piecewise C', contributions to Va(f) arise in two ways: as integrals of |V f| over the open
sets on which f is C!, and from discontinuities across the boundaries of such sets. To formalise this,
we require a little more standard notation: Suppose that I' is a piece of Lipschitz (r — 1) dimensional
surface across which f is discontinuous. If z € I' and ¢ is sufficiently small, then B.(z) (the ball of
radius € at z) partitions Be(z) into two connected components. Denote these by Bl and B . Then,
following [14, 2.5]:

DEFINITION. (Trace of a function on an oriented surface) For each point € T', put

Jo+ fdm Jo- fdm
+ T B/ — T B¢
(If z € OA, extend f to R" by setting flgra =0.) O

Thus, for example, if f € C'(4;R) and E C A has piecewise Lipschitz boundary, let H denote
the (r — 1)—dimensional Hausdorff measure on 0FE. Then

VA(f)=/ |Vf|dm+/ traef —tronf| dH.
int(E) OE\OA

Finally, we define a family of cones in L':

DEFINITION. Let the subset A C R” be fixed. For each M > 0 let
Cu={0<feL'(A):Va(f) < M||fllz1}.

Each Cys is a cone of uniformly bounded variation. Convexity follows immediately from the subaddi-
tivity of Va(:). O

REMARKS:



1. In fact, Va(-) is lower semicontinuous with respect to L' [14, 1.9], every f € BV (A) can be
approximated by a sequence {f;} C C*°(A4;R) such that ||f—f;||z1 — 0and Va(f;) = Va(f) [14,
1.17], and subsets of uniformly bounded BV -norm are relatively compact in L'(A) [14, 1.19).
In view of these facts, all the estimates in this paper are done for piecewise C! functions; the
case of general BV functions follows by an approximation argument.

2. The cones Cy are a multi-dimensional generalisation of those introduced by Liverani [27], and
exploited in the one-dimensional version of the current paper [30].

3. For M > 0, subsets CM|{f;||f”L1:m7nst} are compact in L!. This follows from the relative
compactness of BV C L' since || f|lav = ||fllzx + Va(f) < (1 + M)||fllzr < (1 + M)const
whenever f € Cuml|isy fll 1 =const}- This fact is of fundamental importance in the construction
of invariant densities. Indeed, the main idea below is to find an M, such that Cus, is preserved
by the Perron-Frobenius operator for the dynamics.

4. Unfortunately, the BV class admits some rather wild functions: for example, a positive BV (R")
function can have infinite essential supremum, or even have non-zero integral, while its essential
infimum on every open set is zero. Fortunately, BV functions are L'—close to reasonably regular
functions, and this fact is exploited in section 2 below. O

1.2 The Perron—Frobenius operator and preliminary BV estimates

We next recall the Perron—Frobenius operator for 7" whose fixed points are densities of acims. We will
make some standard estimates about the behaviour of Va(f) under iteration by the operator. The
idea is to obtain a Lasota—Yorke type inequality, thus implying the invariance of a suitably chosen
cone Cpr. The existence of an acim then follows almost immediately.

Since T is piecewise non-singular, we may define the Perron—Frobenius operator L for T (see [23]).
For f € L'(A) we have the formula

foly!
Lf(x)=) WXT(BQ)- 3)

We assume throughout that T is fixed, and therefore do not denote the dependence of £ on T'. Indeed,
the only other transformation we will deal with will be T™ (for some n); then, the corresponding
Perron—Frobenius operator is L* = Lo---o L (n times). Consequently, the formula for the action of
L™ on L' functions is similar to (3), except that the sum is taken over inverse branches T oy of T".

The operator £ is a Markov operator on L'; that is ||Lf||z1 < ||f]|z2 with equality if f > 0.
Lemma 1.1 For f which are C*, and T satisfying (1) and (2),
nen < Y(f

1.
v (fiT) dm
~ nt(TBa) det DT o T;;"

o))
+ b <7 dHors,
/am,) OIB) \ det DT o T7* ore

(we have adopted the convention that each (T B.) is oriented towards the interior of TBy);

2. for each «,

/ v
int(TBa)

Proof. See appendix B. O

_ foTd
det DT o T !

dm < Cix™! |Vf|dm+C2/ |f| dm.
Ba

int(Ba)

Next, the trace terms appearing in Lemma 1.1 (1) must be dealt with. This is where the geom-
etry of the one-to—one pieces contributes to the “sufficient expansivity” condition mentioned in the
introduction. Here, we borrow a geometric lemma from [16].

Lemma 1.2 (Géra—Boyarsky type inequality [16, 15]) Let S be a non—degenerate set. For ev-
ery a' < a(S) there exists §' > 0 such that

1 1
/ |tr3’sg| dH < = / [Vg|dm + —,/ lg| dm
a8 a' \ Jint(s) ' Js

for any g € C*(S;R). The constant &' depends on o’ and e(S,a’) and may approach 0 as ' — a(S).



Rather than give a proof of Lemma 1.2, we note that the construction from [16] can be realized
in specific cases to give explicit bounds on the numbers a(S) and §’. In Section 4.2 below we do this
for a triangle in R?. The proof can be duplicated for general non-degenerate sets.

1.3 Lasota—Yorke type inequalities

A Lasota—Yorke type inequality now follows easily from Lemmas 1.1 and 1.2 under sufficient expan-
sivity assumptions. It is then a standard matter to deduce the existence of an acim with a density of
bounded variation. First of all, we collect together the lemmas:

Proposition 1.3 Let T satisfy (1) and (2) and suppose that {TB,} is a collection of uniformly
non-degenerate sets. Let a' < a(T(By,)) for all . Then there exists §' > 0 such that

Va(Lf) < O (1 +1/a")Va(f) + (Ca(1 +1/a") +1/(a'8")) || £]|1-

Proof. See appendix B. O

To produce a Lasota—Yorke type inequality in which the coefficient of Va(f) is strictly less than
one, it is necessary to impose a “sufficient expansivity” condition on T'. We give two ways to achieve
this:

DEeFINITION.  (Non-degenerate range structure) The collection of sets U2 {T" B, (n)} will be
called the range structure of T. The range structure will be called uniformly non—degenerate if each
collection {T™ B ()} is uniformly non-degenerate, and inf,, > inf ) a(T" B, )) > 0. O

Theorem 1 (Lasota—Yorke type inequality) Let T satisfy (1) and (2), and let f € BV (A).

(i) Suppose that {T'B,} are uniformly non—degenerate sets and that \ is large enough that C1A™*(1+
1/a) < 1 where a = infy a(T'By). Then for every o € (CiA™(1 + 1/a),1) there exists a constant
K, > 0 such that

VA(Lf) S oVa(f) + Kol fllzs-

(i) If T has a uniformly non—degenerate range structure, then for every o € (0,1) there exists ne > 0
and a constant K, such that
Va(L"™ f) < oVa(f) + Kol fllz1.

Moreover, the constants K,,n, have explicit formulas.

Proof. (i) Pick o’ such that ¢ = C1A™'(1 + 1/a’) and apply Proposition 1.3. (#) Let 0 < o’ <
a(T" B, (n)) for all range sets a™. Pick n, = min{n : Ct\""(1+1/a’) < o}. Now, since {T"* B_(n,)}
is a uniformly non-degenerate collection, let J, be such that Lemma 2.1 holds with J, replacing §' for
each set $ = T"? B (»,). Since we are working with 7", replace in the conclusion of Proposition 1.3,

Cix 1 by Cid ", Cs by C ll’f/\__"f and &' by &, thus obtaining a formula for K. O

REMARKS

1. In the derivation of the Lasota—Yorke inequality above, we followed the approach of Géra and
Boyarsky [16], except that we have applied the trace inequality to image sets T B,, rather than
the one-to—one domains B,. This approach resolves a technical difficulty ([16, Lemma 1]), and
allows more general transformations, as the images of one-to—one branches may be uniformly
non—degenerate, even if the original domains are not.

2. The formulation of “sufficient expansivity” in terms of one-to—one images allows infinitely many
branches (not possible in [16]), but it is at the price of a “large images” condition.

3. The uniform non—degeneracy of the range structure may in general be hard to obtain. One
special case is the following: T is said to have a finite range structure if the range structure
contains only finitely many sets. That is there exists a finite collection {Ui,... U} of subsets
of A such that for every o™, T"B, .y = U; for some i = i(a(™). By introducing the finite
range structure condition, Yuri [36, 37] has shown the existence and decay of correlations for
invariant densities for large classes of transformations. While the BV approach does not require
this condition (as seen in the first part of Theorem 1 below), it does play a practical role in
quantitative estimates on the invariant density, as well as in computational approximations. If
T has a finite range structure, and each range set U; is non—degenerate, then Theorem 2 (ii)
applies. O



We now complete this section with a simple example illustrating the advantages of looking at
image sets in the BV approach:

EXAMPLE (IMPORTANCE OF FINITE RANGE STRUCTURE) Let A = T? = R?>/Z” be the usual 2-torus,

and let
T: [ e ]l—)P[ o ] (mod 1),
T2 X2

2 0 .
[0 2:| if1>x1,20>1/2,

where

P= [g _g] i£0 <2 <21 <1/2,

2 0 .
[_2 2] if0<z <z2<1/2.

Suppose now that we attempt to construct a Lasota—Yorke inequality by applying Lemma 1.2 to
one-to—one domains of T, rather than their images. The smallest interior angle in the corner of a
one-to—one branch of T is 7/4, and under inverse iteration this shrinks as the angle between

—1\ " -1\ "
2 =2 0 2 =2 1
(32 ) 8] = (5 2]7) )
One can check that a(n), the sine of half this angle, is slightly less that 27", so that 1/a(n) > 2.
On the other hand, 27" < |P;!| for any n, where P, is any n—fold product of the three matrices
above. Since each matrix DT™ can be written as such a composition, |DT"7,|/a(n) > 1 for all
n. Therefore, a Lasota—Yorke inequality cannot be obtained be using the geometry of one-to—one
domains. On the other hand, T has a finite range structure consisting of the whole square, and the

triangle {(z1,z2) : 0 < z1 + z2 < 1}. Since each of these sets is non—-degenerate, Theorem 1 (ii)
applies. O

1.4 Existence of invariant densities
The existence of an invariant density for 7' now follows in a standard fashion:

Theorem 2 Let T be as in Theorem 1 (i) or (i5). Then T has an absolutely continuous invari-
ant measure whose density has bounded variation. Upper bounds on the variation can be calculated
ezplicitly.

Proof. Suppose that T is as in part (i) of Theorem 1. Fix o € (C1A~'(1 + 1/a),1) and let K, be as
in that theorem. Then, by definition of the cones Cur,

LCn C CJM+K(,,

in view of the fact that ||Lf||z1 = ||f]|,1 whenever f > 0. Thus X = Cx, /o) N{f : ||fllzr =1} is a
compact, convex set, invariant under £. It follows that £ has a fixed point in X; that is, an invariant
density f whose variation is bounded above by K, /(1 — o).

In case (ii), use Theorem 1 (ii) to pick an n such that a contractive Lasota—Yorke inequality holds
for T™, and produce a normalised fixed point f, for £™ as in case (i) above. It is easy to verify that

n—1
1 k
= — L: n
9= ;?:o f

is an invariant density for 7. We finish by computing an upper bound on its variation. Suppose that
Va(fn) < M. For each k < n, the same argument as in Proposition 1.3 shows that there exists d; > 0
such that

- 1-7F
Va(L®f) <R +1/d )M + (O 757 L+ 1/a)) +1/(@d0))1.
Summing this expression over K and dividing by n one obtains
(1+1/d') (CiM 1
<=2 (2 S —
Valg) < 1-X1 n +0 +a’min{51,...,5k}



2 Mixing rates

In this section we establish explicit bounds on the non—peripheral spectrum of the Perron-Frobenius
operator for T. By the classical Ionescu—Tulcea and Marinescu ergodic theorem [18], the existence
of such a spectral gap follows almost immediately from Theorem 1. However, our present concern is
to obtain constructively derived expressions for this gap. Consequently, we avoid use of this general
theorem, and adopt a more “first—principles” approach.

Throughout this section we will use a Renyi-type distortion constant Cs satisfying

det DT" 7 (x)
| < Cs (4)
det DT 7 (y)
whenever z,y € TB,_ () for some (™. By (1) and (2),
) —n 1—-A"
Lip (log | det(DTa(n))l) < 01021_7)\71, (5)

C1Co
so that (4) automatically holds with C3 < e1-3=1.
For the remainder of the paper we assume that A C [0,1]", and make the following “onto”
assumption:

Assumption: Let T have a uniformly non—degenerate range structure, and suppose that for every
M > 0 there exists an no(M) such that for each n > ng there exists a set W, C A such that (i)
H(OW,,) < oo, (ii) for each one—to-one branch o™, W, C T"B,,ny and (iii) Wy is not too small: in
particular,

m(Wn) > 8rMC1C3\™ "

where C1, A are as in (1) and Cs is as in (4). O
REMARK. If T has a non—degenerate finite range structure {Ui, ..., U} and there exists io € 1...k
such that

Uiy CT" (Bym))
for all one—to—one branches of T™, then the onto assumption will be satisfied for large enough ne. O

The argument in this part of the paper is in several stages. First of all, we define a suitable family
of norms (equivalent to the usual BV norm) in which to obtain contraction rates. We then establish
a contraction principle which requires that certain iterates of arbitrary pairs of BV functions satisfy
a mutual “lower bound condition”. The remainder of the section is devoted to showing that this
lower bound condition holds under the “onto assumption”.

2.1 Choice of norms for mixing estimates

First of all, we need an appropriate norm in which to compute mixing estimates: As above, let Cps
denote a cone of uniformly bounded variation, and define a difference cone T'as by

Lo — { g€ BV(A):g=fP — fwhere f&) € Cyr are s. t. }
M — _ .
IF Nz = 1FD Nz

Note that f (#) are not the usual positive and negative parts gi of g (unless it happens that these
both lie in the cone Car). One can easily check that I'ss is a linear subspace of BV = {g € BV (A):
J4 9dm = 0}. We define a norm on each I'ns by:

lgllar = inf {II F Pl 9= £ = £, £ ecu}

Indeed, one can prove the following lemma [30]:

Lemma 2.1 Each (I'm,|| - ||m) s a Banach space. Moreover,
1. if M1 < My then Tpr; C gy and ||gl|lmy < ||g]|ar, whenever g € Ty ;

2. if L is a Perron—Frobenius operator and n > 0 then

L%y, CCry = [1£%gllmy < llgllae, whenever g € Ma;



3. if g € T'npr then
llgllzr < 2[lglla and Va(g) < 2M||gllar;

llgllz: Val(g)
< max .
llgllar < { 2 M

4. if g €T then

In view of parts (3) and (4) of the above lemma, each I'5; agrees with the zero-mean subspace BV;
of BV(A), and the norms ||g||a and ||g||Bv are equivalent up to a multiplicative constant (depending
on M). The norms ||-||ar have been specifically constructed because they are ideal for estimating rates
of contraction in BVj under the action of £; we now establish the appropriate contraction principle.
For clarity, we state the hypotheses of the proposition first:

Condition: An operator L is said to satisfy a uniform lower bound condition on the cone Cpr if
there exists an o € (0,1) and nar > 0 such that for each pair of functions fV,f3® € Cur with
1D = 1F P11, there ezists a non—negative function 1) = Y@y 2 such that

£ O — 4 € Cur, LM — g e Cu
and [[¢llr = ol 42|z O

Proposition 2.2 (Contraction on a difference cone) If L satisfies a uniform lower bound con-
dition on Cnr then

I£" gllm < (1 = )ligllae
for all g € BVy.

Proof. Let g = f) — ) where f&) € Cpr and ||g|lar = ||fF]| 1. Let ¢ = Ys+) s be as in the
lower bound condition. Then

LM g = LM (f(+) _ f(—)) = LM () _ e (=) (6)
_ ([:an(+) _ d") _ (ﬁ"Mf(_) _¢) .

By assumption, £™M f(£) _ ) € Caz, so that 0 < LM f£) _ 4 and hence

|em s | = / (£ £ — ) dm = / £ ) dm—/ pm = e 79| [l
Lt A A A Lt
Moreover, f*) >0 = ‘E"Mf(i)HLl = Hf(i)HLl, so that
e s )| = (£, - Il
Lt Ly
() _ ()

< ol =l

= (1 =a)lgllu-
The result now follows from (6) and the definition of || - ||as. O

This contraction principle is a generalisation of the classical Doeblin condition [29], and forms the
basis of the argument below. To apply Proposition 2.2, most of the work consists in establishing the
existence of lower bound functions for suitable iterates of the Perron-Frobenius operator for 7.

REMARK. Using Lemma 2.1, the contraction principle in Proposition 2.2 leads to explicit contraction
rates for iterates of £ in the || - ||y —norm on the BV -cone. This should be compared with the work
of Schmitt [12], Liverani [26] and Saussol [33] where contraction rates are obtained in a projective
metric (rather than the underlying norm) on suitable cones. O

2.2 Lower bounds for iterates of certain functions

In the next three sections we prove that £ satisfies a uniform lower bound condition. We begin by
calculating lower bound functions for certain simple functions.

Recall that A C [0,1]", let h € (0,1) and let 5 be a partition of [0,1]” into cubes of side-length h.
Let

Cup=CunN{d:¢=> dsxc, (¢s€R")

Cgé€n



Our initial target is to construct uniform lower bound functions for £"Cas,p, but we begin with a
general lemma:

Lemma 2.3 Let T satisfy (1) and (2), have a uniformly non-degenerate range structure, and let
O1 = Wy, be an “onto set” for T™'. If L is the Perron—Frobenius operator for T, then for a.e.
z€0; and0< pe L!:

n 1
LM p(x) > Cs Z (ess 1nf¢) XB_ (n1) ,

aln1) (n1) n

where C3 1is the constant from (4), and {B, ()} s the partition of A into one—to—one branches of
Tr.

Proof. Since x € O, it has a unique pre-image under each one-to-one branch of T"!: z_(ny) =
T ' (x) € B,(ny). Hence,

alm1

n1 ¢(xa("1))
£ = Z|olet Tz, o)

In view of equation (4) and the mean value theorem,

m (T™(B,1))) < Cs _
m(Byny))  — m(Byny))

| det DT™ (w,ny))| < Cs
Thus, for a.e. z € O1,

OEED SE L

aln1)

1
> = essinfo | m(B_(ny))

Cs %; (Ba("l) ) o

[e3
- 1 Z ess inf ¢
- Cs ( a(m1) XB“(nl) ’
a(n1) 1
since for a.e. £ € 01, 0 < ess inf ¢ < ¢(x,,(ny)) for each a™). O

a(n1)

We now estimate the norm of the function on the right in the conclusion of Lemma 2.3. In the
one—dimensional case, this is very easy as BV functions on the interval are well approximated by the
infimum over fine partitions [30]. Unfortunately this is not the case with BV (R") when a function
can have essential infimum equal to zero over any reasonable partition, while still retaining positive
mass and finite variation. Since our method uses Y ) ess 1nf dXb (n) PO capture a fixed proportion

aln

of the mass of ¢, we cannot use just any initial functions ¢ € BV(A) For this reason, we restrict to
simple functions, which cannot be too wild.

Lemma 2.4 If ¢ € Cu,p and n is sufficiently large that C1 A"/ < h/2 (cf. (1)) then there ezists

a function ¢ > 0 such that
é< Z (ess 1nf¢> XB_(n)

alm) 52

and

H‘ZHLI > (1=2"7"hM) [|]| 1.

Proof. If1 < 2""'Mh then there is nothing to prove. Otherwise, let ¢ be the partition of [0,1]" into
rectangles which is obtained by using the central points of the cubes from 7 as vertices. Then each
partition element E € ( is a rectangle with side-length h (unless part of its boundary is formed by
OA, in which case some sides have length h/2). Put

=3 (np) s

Ee¢

We first prove the norm estimate, and then the lower bound.

10



Note that since ¢ € Car, Va(¢p) < M||4||L1. Since ¢ is constant on elements of 7, all contributions
to Va(¢) come from discontinuities at the boundary of partition elements. In particular, since H-
almost all' such boundary points are contained in Ugecint(E),

M|l > Va(d) 2 Y Vinum(9)- (7)

Ee(

Now, fix E € {. If {I';} denotes the (finite) collection of oriented boundaries of cells from 7 that
intersect E, then

znt(E) ¢) Z |t7°r - trr ¢| H ENT; )

However, since each ENT; is an (r— 1)—d1mens1ona1 rectangle of side-length h/2, we can immediately
calculate H(ENT;) = (h/2)" . Moreover, since ¢|x is piecewise constant with discontinuities along
I,
max ¢ —ming < 3|t ¢ = trr, 9| = Vineem (9) 2/B) "
2

In particular, it follows that

-4 < (g — min ) m(B) < Vi (612"

- H(qﬁ—ngnqﬁ)

EllL ENL

Summing this expression over E € ¢ and comparing with (7), we obtain

@llzt = gl = 11¢ = Bllr > (1 = 2""AM) [|4| 1.
We now prove the lower bound. This follows from:

Claim: Let B, (n) be a one-to—one domain of T™ and let E € { be such that m(EN B, )) > 0. Then
{Cen:mBynyNC)>0} C{C en:m(CNE)>0}

Proof of claim: By the construction of ¢, whenever C € 1 and E € (, either m(C N E) > 0, or
|rc—zr| > h/2for all z¢ € C and zg € E. Therefore, if m(CNE) =0andy € C €1, z € E € { then
|y—z| > h/2. Now, suppose that C is such that m(B_»)NC) > 0. Let y € B, (»)NC and z € ENB,(n).
Since both y, z € B, (n), (1) implies that |[y—z| < CiA™"|T"(y)—T"(z)| < C1A™"\/r < h/2. Therefore
m(C N E) > 0, and the claim follows.

Proof of lemma continued: Now, if E € {, m(B_ =) NE) >0 and € B, ) N E then, by the claim,

essinf¢ | = min > _ m1n
(B“(") ¢> {Cenm(CNB  (n))>0} dlo 2 (Cenm(CNE)>0} dlo =ming = g(z).

Repeating the argument for each E with m(B ) N E) > 0 completes the proof of the lemma. O

Proposition 2.5 Let T, n1 and O1 be as in Lemma 2.8. If ¢ € Cu,p and and ni is such that
CiA™"\/r < h/2 (cf. (1)), then

n 1 e
L™ > roA (1—2 th) l$ll 1 X0, -

Proof. Follows immediately from Lemmas 2.3 and 2.4. O

Proposition 2.5 gives a lower bound function for iterates under £ of functions from Carn. To
construct lower bound functions for iterates of general functions from the cone Cas (as needed in the
application of Proposition 2.2), it is essential to study how Cas,n can be used to approximate Cas.

LH denotes the (r — 1)-dimensional Hausdorff measure.

11



2.3 Approximation of BV ([0,1]") by simple functions

Here we collect several facts about the behaviour of BV([0,1]") under approximation by simple
functions.

DEFINITION. (Rectangular partition) A partition 1 of [0,1]" is a rectangular partition if every
element of 7 is a rectangle. If there exist positive integers INi,..., N, such that if B €  then

B = By, .1, = [k1/N1, (k1 +1)/N1) % ... X [kn /Ny, (ke +1)/Ny)

where? 0 < k; < N;, then 5 is called a regular rectangular partition. Let D, denote the collection of
L' functions that are constant on each B € 1. O

REMARK. If 5 is a regular rectangular partition let h(n) = min{1/Ny,...,1/N,}. If ¢ € D,, then

2r||¢l| 1
h(n)

as is easily checked. O

Va(e) <

Let  be a regular rectangular partition of a rectangular domain, and define a projection opera-
tor II,, : L'(A) — D, by the formula

(,¢) (2) = 3 22 IBM’" ().

Ben

One can check that [, ¢dm = [, (II,¢) dm, and further key properties are summarised in the
following lemma.

Lemma 2.6 If A CR" is a rectangle, and n a regular rectangular partition with mazimum side-length
h, » € BV(A), then

1. Va(Ily8) < VrVa(e);
2. ||¢ —pollr < hy/rVa(e).

REMARK. The facts reported in Lemma 2.6 generalise elementary properties of variation in one-
dimension and depend on the fact that the partition is rectangular. A sketch of the proof is given in
Appendix A. O

Lemma 2.6 gives quantitative control over the approximation of BV (A) by D,. We can now use
these estimates to prove the lower bound condition for iterates of Cas.

2.4 Lower bounds for iterates of general BV densities

The construction of lower bound functions proceeds by “boot—strapping” off Proposition 2.5. We also
need Theorem 1 the Lasota—Yorke inequality to show that the variation of the difference between a
general BV function and an L'—close simple function decays under iteration by £. Therefore, suppose
that Theorem 1 holds for an iterate of T'. That is, there exists n1 > 1 and constants o1 < 1, K1 < o0
such that

Va(L™ f) < o1Va(f) + Kullfllz

for f € BV(A). Iterated application of this inequality yields:

ot

VA(E*™) < otVA(f) + T2 Kl - (8)

Proposition 2.7 (Lower bound functions for Cis) Let M > 0, A = [0,1]" and suppose that
dW, 6P € Cur, are such that ||| = ||¢P||L1. Suppose also that ns is large enough that

1

ning
\/_CIA - 2r+1\/_M

and ninz > no(M) where no(M) is as in the definition of the onto assumption. Let Oz be an onto
set for T™™2. Then there exists a function 1 > 0 such that

LM >y and L¢P >y,

21f any k; = N;, then the corresponding interval in the product should be [1 — 1/N;, 1].

12



while

1605 O > g 11 > 6210 02
and
Va(®) < Myllp™?|| 11,
where

Proof. By multiplying 1 by ||¢*?||.1, the proposition will hold for general ¢ if it holds for
D /16|21 and ¢P/||¢P |1 . We therefore assume without loss of generality that ||¢™12]| .1 = 1.

The proof involves approximating qS(I) and ¢(2) by piecewise constant densities.

Since nima > no(M), the onto assumption guarantees that

—nin (02)
2¢/rCiA™"1" <
\/_ - 4.03\/_M
Hence, it is possible to choose h > 0 such that
nin m(02) 1
2 12 <h < —— —
NP h \/_Mmln{ 4Cs ’ZT}’

and 7 a regular rectangular partition of side-length k. Then, since ¢(1'?) > 0,

1Tl = 16010 =1 = 16|22 = Iy 11

Moreover, by Lemma 2.6 and (9), for ¢ =1, 2,

(0L, = 1d)¢ Pl < hv/rVa(e®)
< hrM|j¢? |
m(02)
< PR S
=~ 403 3
while ]
VA(Hnd’(l)) < \/FM
Then, by (9),
2" h Va (I, 9™) < % and VrCiAT™M"2 < g
Therefore, by Proposition 2.5,
; 1
ning @Oy> -
[: (Hnd) ) - 203XO2'
Now, because L is a linear operator,
£n1n2¢(i) — pman2 (Hnd)(i)) _ prane (Hn¢(i) _ ¢(i))

v

1 nina ( (@) (i))*
_— — I —
5g;X0s — £ (@ —

where fT = max{f,0} denotes the positive part of a function.
Now put

1p = max {0, %X02 _ [rin2 (Hn¢(1) _ ¢(1))+ _ prine <H"I¢(2) _ ¢(2))+} .
3

Then,
L2 > g L2 >0 g >0

we need only check the norm and variation estimates. Clearly,

m(OQ)

m
> [lls > - (s - )"

203
_ H Hn¢(2) _ ¢(2)>

Ll

Ll

13
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(10)

(11)

(12)



and

vaw) < FO%) Ly, (ﬁ“m (nnqs(l) _ ¢(1>)+>

2Cs
+Va (,5"1"2 (g™ - ¢(2))+> : (13)

Now, because [, LmM"2(I,¢" — ¢ =0,

The norm estimate now follows from (12). Finally, by (11)

[1£7172 (¢ — )]l 11
2

Lrine (Hn¢(i) _ ¢(i))+

L1
1 m(02)

< =
- 2 4C;3

by (10).

Va(¢® = ¢) < Va(m9Y) + Va(¢"”) < (L+ V)M,
so that equations (8) and (10) together show that

Ki m(0»)
1—0’1 403 ’

The bound on My now follows from (13). O

Va(L™ "2 (g — ¢)) < 072 (1+ V)M +

2.5 Mixing rates

We now give a spectral estimate for L.
Let the transformations T be as above. That is, there is a Lasota—Yorke inequality for T with
constants o1, K1, and the onto assumption holds. Fix

.= KL
1—0’1

Let n2 be large enough that nimz > no(Mx) and the other hypotheses of Proposition 2.7 hold. Let
My be the constant from Proposition 2.7, and let n3 be the minimal integer such that

K. 1 K
ns (g72 M, My) <2 .
o1 <Ul tia” ‘”)—21—01

Let
ne = n1(n2 + n3).

Theorem 3 (Mixing Theorem for L) Let O2 be the onto set from Proposition 2.7. Then for any
function g € BVy(A),
1€ gllar. < (1 —m(02)/4C3)llgl|m.,

where || - ||m, is the norm on the difference cone T'u, .

Proof. The theorem follows more or less immediately from Propositions 2.2 and 2.7. Let f*'? € Cu,
be such that |||z = ||f®]|z1, then Proposition 2.7 applies. Let ¢ be the given function. Then,
fori=1,2,

VA" 1O =) < o Va(F D) gl Pl + Va@) < MUIF s,

£ fO —pll > FDN 0 — |l > (1 —m(02)/2C3) || £P]| 1
Ll

while

where M' = 07?2 M, + My + K1/(1 — 01). Now, let

¢* = Acnlns’l[).
Since 7 is a positive function,
m 02
Ielles = plle > 2202
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To apply Proposition 2.2 we must check that £™* f® —1), € Car, for i = 1,2. Since £™1"2 f) —g) > 0,

" £O = ulla = | 2 (1= oy > > WOl

e g -9)

On the other hand, by (8),
na g(6) _ oy ning( pring p(i) _ ns 0) 1 ()
VA(L™ £ —apu) = Va(L"3 (L™ f1Y — o)) < M’ +1 171 < SMAF ]z

by the choice of n3. The inclusion of £7* f& — 4, in Cas, follows. Thus £"* satisfies a uniform lower
bound condition on Cps, and the theorem now follows from Proposition 2.2. O

To illustrate that this theorem is fairly easy to apply, we give a mixing result for the special case
when T has a finite range structure of non—degenerate sets. Suppose the sets {Un,... Uy} form the
range structure, and let

1 .
a=3 min{a(U1),...,a(Us)}
where a(U;) is the smallest interior angle of the non—degenerate set U;. Let § > 0 be such that
Lemma 1.2 holds uniformly with § = §(U;) for each 7. Next put

_ [—log(2C:(1 +1/a)) 1 1 1
ny = [ Tog X and 02 e 1+ +a5'

Now, by Theorem 1 and this choice of n1, K,
Va(L"f) < CXTVa(f) + Kallflloa,

and in particular
Va(L™ f) 0.5Va(f) + Killfllz1-
Therefore, put M. = 6K and 8 = min{m(U;)}. Then the minimal no in the onto assumption is:

B [log(SrM*Clcg/B)-‘
o= log A

Finally, choose n2,n3,n. as preceding® Theorem 3. Then:

Theorem 4 Let T have a finite range structure of non—degenerate sets and let f € BV (A). Then
for any n >0,

L™ (f = [ fdm)llsv < Cp"lIf — [ fdm| BV,
where

P=(1—ﬁ/(403))1/n*, and C:Mmax{l M}

3 2’ 6
where Ny, My, 8,C1,C2,C3 are as in Theorem 3.
Proof. First of all, set f — [ fdm = g € BVy(A). Then, by Theorem 3,

€™ gllar. < (1 —m(02)/4Cs)lIgllm.

where O is the onto set for 7"1"2. Since this onto set must be one of the sets U;, it follows
automatically that (1 — m(02)/2C3) < p™*. Now, write n = n.k + n, where n, < n.. Then,

n
*k ™
1€ glar. < o™ ML glar. < 2 max (1€,

By Lemma 2.1 (4) and the Lasota—Yorke inequality above,
I£7gllz: CiA'(1+1/a)Va(g) + Killgllz: }

max £ gllar. < m?Xmax{ I s

Since (1 + 1/a) < Ki/C> and M, = 6K, the rhs is bounded by {1/2,(1 + C1/C2)/6}||gllzv -
Since m(U;)/4C3 < 1/4, it follows that p"* > 3/4, so that the upper bound on C follows from
Lemma 2.1 (3). O

REMARKS:

3The choice of n3 depends on the measure of the boundary of the onto sets; one simply uses max{H (dU;)} at this place
in the definition.
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1. Theorems 3 and 4 are less than ideal. First of all, the choices of n. and M, have been made
for efficient exposition, rather than minimality. For specific examples, better choices will always
be possible. Secondly, the onto assumption is rather heavy—handed. In each of [12, 27, 26, 33],
rates of decay of correlations are computed under much weaker hypotheses—essentially that 7'
is mixing. In this paper, the requirement of having an onto set is important for getting explicit
numerical bounds on the mixing rates.

2. The lower bound function approach used here means that mixing rates depend sensitively on
both the distortion of the map (as expressed by the constants Cz,C3), and the size of the
contractive constant in the Lasota—Yorke inequality: the faster that variation is shrunk, the
sooner mixing will occur.

3. For the applications presented in sections 3 and 4 below, explicit bounds on the spectral gap
of the operator £|pyv(a) are important. The “lower bound function” method used to establish
such bounds (cf. section 2) is related to a general method used by others [12, 27, 33]. In each
of these papers, contraction rates are established for iterates of the Perron—Frobenius operator
in a projective Hilbert metric on the BV —cone. In this paper, contraction rates have been
established in a Banach space norm which is equivalent to the BV-norm (up to multiplicative
constants). For the application to the error analysis of Ulam’s method, this extension is essential:
the projection operation II, is well behaved in the L'-norm (cf. Lemma 2.6), but not in the
projective metric used in [12, 27, 33]. O

3 Application to computing invariant measures

We now discuss a well known numerical scheme for approximation of invariant densities: Ulam’s
method. Initially suggested by Ulam in 1960 [35], and shown to converge for one-dimensional trans-
formations by Li [25], there has been a recent upsurge in interest for multi-dimensional transforma-
tions [8, 13, 11]. The idea is to solve an approzimate operator equation.

Ulam’s method. Fix a finite partition n of A. Let II, denote the corresponding projection onto
D, (cf. Section 2). Then

Py ET,0L
is an Ulam approzimate operator. If T has a unique invariant density ¢., then P, has a one-
dimensional fixed point space. Let ¢, be such that

Pny =¢n  and  |[¢yllpr =1.

One hopes that ¢, — ¢. as the partition 7 is refined. O

Given a partition 7, Ulam’s method is easily implementable on a computer; either as a finite—
dimensional fixed point problem [25], or by Monte—Carlo simulations of an associated Markov chain [17,
30].

An early result on the strong—norm convergence of Ulam’s method for a class of multi-dimensional
maps appeared in [8]. A partial generalisation for expanding transformations was [11]. We now give a
more complete version, with error bounds. The rate of approximation first appeared in [21] for one—
dimensional maps, but the constructive approach adopted here enables error bounds to be derived.
Theorem 5 Let T : [0,1]" — [0,1]" satisfy (1) and (2), and let n be a partition of [0,1]" into
rectangles of side-length h = h(n).

(i) Let ¢y be a normalised fized point of Py. If the one—to—one images of T are uniformly non—
degenerate, and

Cix'(1+1/a) < 1/4/F

(cf. Theorem 1), then T has an invariant density ¢« and ||¢y, — ¢«||r1 — 0 as h — 0.
(i) If T has a uniformly non-degenerate range structure, then there exists no > 0 such that if

Iy o L™ ¢y = ¢, |Idnllzr =1,

then
||¢n - ¢*||L1 — 0 as h — 0.

In either case, ||¢n — ¢d«||z1 < O(—hlogh). In case (ii), the constants in the O(-) notation are
explicitly computable.
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Proof. (i) By Theorem 1, there exist constants o < 1/4/7, K < oo such that
LCyv CCom+k-

Moreover, by Lemma, 2.6 (i), II,Cx C C s7ps. Hence,

(ITy 0 L)Cm C Co rmit ks

so there exists My < oo such that (ITo £)Cpry C Cary- It follows that ¢, C Car, (since ¢, is the unique
normalised fixed point of P,). Because level sets of Cas, are relatively compact in L', there exists a
convergent subsequence of ¢, as h(n) — 0. Indeed, by Lemma 2.6 (ii),

”[:‘1577 - ¢n”L1 = ||(Id - Hn)£¢77||L1
< hrVa(Lé,) <hMo—0 ash— 0.

Hence, every limit point of {¢,} is an invariant density for 7'

(#i) Use Theorem 1 (ii) to pick ng > 0 such that
L™Cy CComtk

for some o < 1/4/r. Then, use the same argument as in part (i).

Finally, the approximation rate follows from a general argument used by Keller [21]. If the
constants from Theorems 1 and 3 are used, then the same argument as in [30] will give explicit
bounds on the constants in the O(-) notation. O

REMARKS:

1. In [11] the authors showed the existence of a constant ¢ such that Va(Il,¢) < cVa(¢) for
suitable partitions n and ¢ € BV (A). They therefore obtain a version of Theorem 5 (i). With
the knowledge of ¢ given by Lemma 2.6, we have been able to give a result with explicitly
verifiable hypotheses.

2. There appears to be no way to get a result similar to part (ii) of the theorem without taking
several iterates of £ before applying II,. While this situation is unsatisfactory, it may be un-
avoidable: in a recent paper, Blank and Keller [4] discussed conditions for stochastic stability
of one-dimensional maps. They proved that for Lasota—Yorke type maps, the expansivity con-
stant A must exceed 2 in order to guarantee stochastic stability, whereas expansivity exceeding
1 is sufficient for existence of an invariant density. If 1 < A < 2, a localisation phenomenon
can occur, although they were able to show that Ulam’s method still approaches the invariant
measure in the topology of weak convergence. Whether this convergence can be extended to
the L' topology without enough expansion to ensure stochastic stability is unclear.

3. It is worth pointing out that the partition 7 used for implementations of Ulam’s method does
not need to be a dynamical partition for the map. Certainly, if a Markov partition exists,
better numerical performance will be obtained by using it. However, for multi-dimensional
maps, calculating Markov partitions of arbitrarily fine resolution is at best extremely difficult.
Indeed, this is one of the virtues of using the BV approach for Markov maps: In the Markov
case, satisfactory existence results for acims need not require delicate calculations, since the
discontinuities across partition boundaries can be ignored. In applications, this simplification
cannot be assumed because dynamical partition boundaries are often infeasible to compute.
One thus typically uses a non—Markov partition in Ulam’s method (for example above, 7 is a
partition into cubes), so that boundary discontinuities appear interior to partition cells; the
projection operation II, then averages mass across (Markov) partition boundaries. Any anal-
ysis of Ulam’s method needs to take this “spreading” into account. When the BV approach
is analytically tractable (and successful, as in Theorems 1— 5), the exact location of parti-
tion boundaries becomes unimportant; only their geometry contributes to the Lasota—Yorke
inequality (cf. Lemma 1.2). Since Ulam’s method preserves BV (all our computations take
place in suitably chosen cones Car), the “global regularity” implied by inclusion in a uniform
BYV class is of immense practical importance in numerical calculations: it implies that the Ulam
approximations are actually convergent to the acim. a
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4 Example: Jacobi—Perron transformation in R?

We now illustrate the main results of the paper with the classical Jacobi-Perron (JP) transformation
on R?. The quantitative information obtained is far from optimal, but the JP transformation has
long resisted this kind of analysis [19, 3].

The JP algorithm is one attempt to generalise Diophantine approximation by the one—dimensional
continued fraction algorithm to a multi-dimensional setting. Hence, it provides an example of a
nontrivial (and uncontrived) multi-dimensional transformation whose ergodic properties are of inter-
est [19, 9, 34]. There is a unique ergodic acim for the JP transformation [34], but no exact formula
exists [2]. It also has exponential decay of correlations [28], but no bounds are known on the rate.
In [19], the authors use a careful argument to prove an exponential rate of convergence® for the
“modified Jacobi-Perron algorithm” for simultaneous approximation of points in R? by rationals
with a common denominator. The argument is based on integrating certain quantities with respect
to the (known) invariant density for the modified Jacobi-Perron transformation. Because the invari-
ant density is unknown for the JP transformation, similar results do not exist for the classical JP
algorithm.

The transformation
Let A =[0,1]%, and let

T(1,22) = ({%}{xl_l})

where {-} denotes the fractional part of a number. Thus, there exist unique integers k2 > 1 and
0 < k1 < k2 such that

T(xl,mg) = (% —k'1, .Z'i — kz) -
1 1

The pairs of integers (ki,k2) index the monotonicity sets of the transformation 7', we write this
partition as {B(x, k) }-

The monotonicity components of T consist of two kinds of pieces: trapezia (indexed by pairs
(K1, k2) with k1 < k2) and triangles (indexed by pairs (k1, k2) with k1 = k2). Under one application
of T, the trapezia map over the entire square, while the triangles map over the triangular region

S = Uky>k1>1Bky ko) = {(z1,22) € R®:0<z1 <z < 1}.

Therefore, T has a finite range structure consisting of two subsets {5, [0,1]>}. In fact, the transfor-
mation is Markov, and is conjugate to a subshift of finite type on the set of symbols

{(k1,k‘2) : 0 S k‘1 S k‘2,1 S kz}

The transition
(k1 k2) = (K1, K2)

being admissible if either k1 < k2 or if k1 = k2 and ki > 0 (this is easily checked from the geometry
of the map T). A string o™ = ({2, k{), ..., (k"™ k{"™V) is called admissible if every transition
& k) s (k9D k0D is admissible. It is obvious that o™ is an admissible string if and only
if the cylinder set T 7 ([0, 1)?) has non-zero measure. (To make the conjugacy with the subshift
well-defined, all preimages of the vertical and integer slope lines which partition the monotonicity
components of 7" must be removed from the square (c.f. [34]). Since these together have Lebesgue
measure zero, generic ergodic properties are unaffected.)

Multi—-dimensional rational approximation

Before applying our results, we establish some notation, and describe the JP algorithm for simulta-
neous approximation of two real numbers by rationals with a common denominator.
Fix ¢ = (z1,x2), and let k(z) = (k1(x), k2(x)) be the integers obtained by one application of the
JP transformation. Put
=1 qa=k), =k

4This is defined below, and is not the same thing as ezponential decay of correlations.
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and for each n > 1

Dn+1 Pn—2 Pn—-1 DPn 1
qn+1 = | n-2 4n-1 (qn k(T (z)) |,
Tn+41 Tn-2 Tpn-1 Tn k2(T" ()

where the initial conditions p_; = po = go = r—1 = 0 and g-; = rg = 1 have been adopted.
Obviously, each of the sequences {pn}, {gn}, {rn} is increasing. Then the nth JP approximation to z

is the pair
Pn Gn
™' Tn)

Each triple (pn,@n,7») is in one to one correspondence with an admissible string
a™ = (ki(z), k2(2)),. .., (k1 (T" *(2)), k2(T™ *())), so that each & € B, ) = T [0,1]* has the
same nth JP approximation. The rate of approzimation of the algorithm is the the maximal number

v such that
const
} < ity

Pn

max
T

n
— — I
n

— — 1
n

)

for m—a.e. pair (z1,z2). If v > 0, then the JP algorithm is said to converge ezponentially. (In the
case of one—dimensional approximation by ordinary continued fractions, the analogous value of = is
1, so that the continued fraction algorithm converges exponentially). Ito et. al. [19] prove that v > 0
for the modified Jacobi—Perron algorithm, and numerical estimates of « for the JP algorithm (which
suggest exponential convergence) are given in [3]. In view of the argument in [19], knowledge of the
invariant density for 7' is a helpful step towards rigorous estimates of v for JP.

4.1 Regularity of the Jacobi—Perron transformation

We now show that the T satisfies (1)—(4). The following estimates from Schweiger’s monograph are
sufficient to derive suitable constants:

Lemma 4.1 (Basic properties of JP [34]) Let T be the Jacobi-Perron transformation, and for
each n > 0 let o™ be an admissible string. If (pn, qn,Tn) 18 the corresponding triple of integers, then

1. for each x = (z1,x2),

T=" (z) = (pn—zwl +Pn-1Z2+Pn Gn—2T1 + @n-122 + qn>
alm) Th—2T1 + Th_1T2 +Tn Th_2T1 + Th_1T2 +Tn

2. also )
det DT ", (z)| =
| ol )( )| (rn72$1 +7"n71$2+7“n)37
3. and
Pn Pn-1 Pn Pn-2 qn gn—1 qn qn—2 8 Ln/2]
max - - | T T b) - - Cl S a -
Tn Tn—1 Tn Tn—2 Tn Tn—1 Tn Tn—2 9

REMARK. Part (1) is Lemma 1.2, Part (2) is Lemma 2.4 and Part (3) follows from the proof of
Theorem 9.6 in [34]. O

Similar to [34], we can estimate the expansivity and distortion constants of the JP transformation.
These bounds are sufficient for our applications, but not optimal.

Corollary 4.2 For each inverse branch T 7\ of T™:
(e}

1. for any xz,y € T"(B,n)),
det DT, (z)
det DT, (y)

. g\ [n/2l
T <2(3)

|V det DT_ %) ()| < 3V/2| det DT, %) ().

< 3%

2. while

8. and for each x,
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Proof. The first part follows immediately from Lemma 4.1 (2) since
0<zi,22,91,y2 <1 and Tno2 <Tp_1 <7Tp

(cf. [34, Lemma 2.6]).
For Part (2), notice that

—2Z1 + Tp—1Z2 +Tn \Tn

oo (T ()1 = (2= - @ @)

By Lemma 4.1 (1), (T 7 (2))1 can be written as a convex combination of

pn2pn1pn
TnZTnl’rn

Therefore, since the sequence {r, } is increasing and 0 < z1,z2 <1,

0

— pn Pn—1
8.771 (Ta(n ( )) - -

Tn Tn—1

Pn Pn—2
= =
Tn Tn—2

()"

by Lemma 4.1 (3). The other entries of DT (ny can be estimated in the same way, and this part of
the corollary follows from standard proper’cles of the matrix 2—norm.
The last part of the corollary also follows from Lemma 4.1 (1) by differentiation. O

<ma.x{

4.2 Boundary estimates on a triangle

To apply the main results of this paper we need knowledge of the remaining constants appearing in
Theorem 1. For this, we give a precise statement of Lemma 1.2 for a triangle in R?:

Lemma 1.2 revisited Let S C R? be a non-degenerate triangle. Then if a is the sine of half the
minimal angle at a vertex of S and § is the minimal distance from the central point of S to 0S:

1 1
triqgl < —/ dg+ /
| ltrisal 1_m(m(s)| | a5 [1d

for every c € (0,1) and g € BV (S). O
REMARK. One corollary of this lemma is that for a’ < a(9), every € < § is small enough for (S,a’).
In the notation of the statement of the lemma in section 1, §' = (1 —a’/a(S))d. O

We now prove the lemma. This case is needed for the JP transformation, and is easily extended
to arbitrary star-like regions in R”. The proof is motivated by the geometric construction in [16].

Proof of lemma: Let S C R? be a non—degenerate triangle. We prove the lemma for 0 < g € C*; the
general case follows by separating positive and negative parts and using an approximation argument.
First, we establish some notation: let {Ly},cas be the field of line segments from points y € 05 to
the central point of the triangle; see Figure 1.

For each y € 0S there exists a vector wy such that

L,={y+tw,:te€0,1]}.

Let
A .
6(5) = Jnf |wy] (14)

be the minimal length of a segment L,. If the face of 3S containing y has unit normal vector v, then

wy meets 0S5 at an angle §, such that
Wy - v

sin 4, = .
Y |wy |
If 3(S) is half the minimal angle at a vertex of S, then

a(S) £ sin B(S) < |sin | (15)

for each y € 3S. The constant a(S) is the same as in [16].
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Now, because g is continuous, for each y € 95,

1
trasg(y) =lim — [ g(z+swy)ds.
s=0

Letting g, (s) = g(y + swy), it follows from standard properties of one-dimensional variation [va;‘] )
a,

that for ¢ € (0,1),

+ .
trasg(y) < sé%fclgy(8)+%?cr](gy)

1 C C
< —/ gy(s>ds+/ g, ds
Cc s=0 s=0
1 C C
= 1 aGds+ [ 1Vgw,lds
C s=0 s=0
1 C C
< -
<l (g [ a@ds+ [ valas),

by (14). Therefore, by integrating over S and applying Fubini’s Theorem, one obtains

1
trisg < —ar 9(y + swy) [wy| dv(y, s)
/as os cd(S) Ji(y,s)c08% 0,1} v) ol ’
+f [Vo(y + 5wy | vy, 5), (16)
{(y,8)€0S5x[0,c]}
where dv(y,s) = dmyasx[o,c](¥8) = dma [o,c](s) X dmi,as(y) (maw denotes the d-dimensional

Lebesgue measure on the subset W C R").
Next, recall that 0 < ¢ < 1 and put

S =8'(c) & Uyeos{y +swy : s €[0,c]} C S,
and let @ : 85 x [0,¢] — S’ be the diffeomorphism defined by
B(y,s) =y + swy.

To bound the rhs of (16) by integrals over §’ C S, we must estimate the distortion of &.
Suppose that the situation is as depicted in Figure 1, with y € 0S contained a face aligned in the
e1 coordinate direction (horizontal direction, ey is the vertical direction). Then

wy = 81 (cot Gy e1 + e2)
and
®(y,s) =y +sd1(cotfyer +e2).
One can easily check that cot 8y4aye; — cot 8, = —Ay/d1 + o(Ay) so that

9 _ oy Pyt Ays) —2(y,s)
6y¢(y’s) B A];I,ISO Ay N

(1 — 5)61.

On the other hand,

7] . ®(y,s+ As)—D(y,s)
afb(y, s) = Alililo As = 41 (cot By e1 + e2).
Therefore,
) 0] _ LN .
det D®(y, s) = ‘ Sicotd, & | 01(1 — s) =sin by |wy| (1 — ).
Then, for all (y,s) € 3S x [0, ],
oy dvy,s) = o, o (a(y, )
v ’ det D®(y, s) ’ '
1 1
I mdmz,s’ (2(y,9))
< L (@, 9) (17)
> 1—¢ G(S) 2,8’ Y, )
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by equation (15). Combining (16) and (17) we have (by the change of variables formula for integra-
tion):

11 1 1
tr¥cg< —— / dgl+ ————= oo :
/as 959 < 1—ca(S) s/l 9l c(1 —c) a(S)(S) S’g

Since S’ C S and c is arbitrary, the lemma follows. O

EXAMPLE: Let S be the right-angled triangle with side-lengths 1,1,+/2. Then the minimal interior
angle at a vertex is m/4, so that

T 1

8 Vit2v2

a(S) = sin

One can check that

4.3 Application of results
Finally, we can apply Theorems 1—b5 to the JP transformation.

Theorem 6 Let T be the Jacobi-Perron transformation on R?, and let £ be its Perron—Frobenius
operator. Then

1. For everyn >0 and g € BV,

g\ Ln/2l
V(L") < 2(5) x 5.021V (g)
+60.52 X [|gllz1.

2. T has an invariant density ¢. with
V(¢) < 60.52(|g]| 1

3. Let n. =280, M, =363. Then

n/ns
215
" < 485. —
I£"gllBv < 485.3 (216) llgllBv
for all g € BV (A).

4. if ng > 40, then the Ulam’s method with the operator
I, o L™

converges to an invariant density for T as the regular rectangular partition 7 is refined. The
approzimation error is at most O(—h(n)log h(n)).

Proof. The first part follows from Theorem 1, Corollary 4.2 and Lemma 1.2:

/2]
Va(L"f) <2 (g) (1+1/ca) + (3\/5(1+1/ca)+ 0(117_0)&0 .

For the triangle S above, a(S) = 1/v/4 + 2v/2,5(S) = 1/(2++/2), and we choose ¢ = 0.65. Lemma 1.2
also holds for the square with these constants (since it’s angles and diameter are larger). Putting
these numbers in the above equation yields the required result.
Since T has a finite range structure, the existence of ¢, follows from Theorem 2 (ii). Since
L« = ¢y for all n > 0,
V(gs) = lim V(L"$) < 60.52[|¢x |1

by part (i).

Rate of mixing: Choose n1 = 40. Part (i) of the theorem gives a Lasota—Yorke inequality with
o1 = 0.5, K1 = 60.52. We thus obtain M. = 363, and using § = 1/2,C:1 = 2,C» = 2V/3, we have
no < 192. Therefore, we choose na = 5 to ensure that ninz > ng. Finally,put n3 = 2. To check that
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this ng is big enough (as preceding Theorem 3), simply observe that for either range set, H(9S) < 4
and m(S) < 1. The theorem now follows from Theorem 4 with n, = ni(n2 + ns).
The final part follows from Theorem 5, because no need only satisfy

CiA™™ (14 1/a) < 1/V2.

With the JP constants, no = 40 will suffice. O

From a quantitative point of view, the results presented in Theorem 6 are unimpressive; they
have been included primarily to illustrate the practical application of the results in this paper. More
detailed study of the expansion constants of the JP transformation would lead to better estimates.

A Proof of Lemma 2.6

The proof of the lemma is derived from a related result using a slightly different notion of variation.
We describe this result, and give an indication of how to prove it. Let I'; = {z € [0,1]" : z; = 0},
and for each z € T'; let f; .(s) = f(z+ se;), where e; is the coordinate vector orthogonal to I';. Thus,
each f; : [0,1] = R. Then let,

Wm=;meM%

where var denotes the usual one—dimensional variation. In fact, from [22],

Va(f) < Va(f) < Vrva(f).

Therefore, Lemma 2.6 follows from the following:

Lemma A.1 Let n be a regular rectangular partition of [0,1]" into cubes of side—length h, and let
II,, be the associated projection. Then

2. If =Ty fllzr < AVA(F).

The first part of the lemma is reasonably well-known [32, Lemma 3.3], and can be deduced from
the equivalent result in one-dimension. The second part is not too surprising, and also comes from
the one—dimensional result. We now give a sketch proof, as the details are a little tedious.

Sketch proof of part (ii). The idea is to write II, as a sequence of “one—dimensional” projections.
Let h = 1/N, and let B(z) € n be the unique B such that £ € B. Then B(z) can be written as;
B(x) = IIj_;[ki(x)/N, (ki(x) + 1)/N). Now, for each i, one can write £ = z + se;, where z € T';
and k;(z) < sN < ki(z) + 1, so that f(z) = f;,.(s). Then, define projection operators @; by their
pointwise action:
(ki(z)+1)/N
(Qif)(z) =N fiz(s) ds.
ki(z)/N
For each z € T;, the function (Q;f). is simply the mass preserving projection of f, onto the partition
of [0,1] into N equal subintervals. It follows from standard properties of one-dimensional variation
that
! 1
1) = Qe ()] ds < pvan(fic).
By integrating over I';, one thus obtains (after using Fubini’s theorem)

[1r-Qiiam<n [ var(fio)ax (18)
A r; [0,1]
With a little care, one can also show [7] that when j # 1,
var if)j,z) dz < var(f;,.) dz. 19
[ CHIBEEEY S (19)

Now, put go = f, and for each ¢ =1,...,r put g; = Qi fi—1. In this notation, equation (18) says that

/ |9i — gi—1|dm < h/ var ((gi—1)i,2) dz.
A r; [0,1]
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Successive application of (19) yields

/var((gi_l)i,z)dzg/ var ((go)i,) dz.
r r; [0:1]

L [0.1]

Therefore,

/A|gn—go|dmsZ/Ami—gi-ndehZ/ vax (go)s) d= = hVA(P)
i=1 i=1 7Ll >

However, by Fubini’s theorem, II, = @, - - - Q2Q1. Therefore, g, = II, f and the lemma follows. O

B Other calculations

Proof of Lemma 1.1 The first part follows immediately from the definitions of variation and £. For
the second part,

/ d
int(TBa)

foTy?
| det DT o Ty !

-1
— / M‘*’f"ﬂ;ld(%ﬂ
int(TBg) || det DT o Tg " | |det DT o T4 °|

/ DT_l( (df) o T} )‘
int(TBa) “ det DT o T3t
+/ foT;' d(detDToT,")
int(TBa) |det DT o T5'  det DT o T
(df) o T3
det DT o Tt
foTs!

det DT o T3 !

IA

Cix!t

int(TBa)

+Co /
int(TBa)

= o \df| + C /B I

int(Ba)

INA

by (1), (2) and the change of variables formula for integration. O
Proof of Proposition 1.9 Without loss of generality assume that f is C' on each int(B,). Thus,

3 / oo ISl < V() (20)

(o7

Now, by Lemmas 1.1 (1) and 1.2,
VA(LH) <30 (0 +1/0) foyirmy IVEF X8 dm+1/('8) [ |L(fxB.)] dm) -

Since [, |L(fxB.)ldm < [, |f]ldm, the proposition follows from (20), and Lemma 1.1 (2). O
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FIGURE 1: Construction of Lemma 1.2 on a triangle S in R?.
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