PHYSICAL REVIEW E 77, 061908 (2008)

Characteristics of temporal fluctuations in the hyperpolarized state of the cortical slow oscillation
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We present evidence for the hypothesis that transitions between the low- and high-firing states of the cortical
slow oscillation correspond to neuronal phase transitions. By analyzing intracellular recordings of the mem-
brane potential during the cortical slow oscillation in rats, we quantify the temporal fluctuations in power and
the frequency centroid of the power spectrum in the period of time before “down” to “up” transitions. By
taking appropriate averages over such events, we present these statistics as a function of time before transition.
The results demonstrate an increase in fluctuation power and time scale broadly consistent with the slowing of

systems close to phase transitions. The analysis is complicated and limited by the difficulty in identifying when
transitions begin, and removing dc trends in membrane potential.
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I. INTRODUCTION

Recently, there have been many experimental quantifica-
tions of aspects of the cortical slow oscillation. During slow-
wave sleep, the membrane potential of a cortical neuron
cycles at a frequency of about 1 Hz between high-firing (or
“up”) states and low-firing (or “down”) states [1,2]. These
oscillations appear to be important for memory consolidation
[3]. This can occur in small brain structures; for example,
Rector et al. have used evoked potentials to demonstrate
sleeplike states in individual cortical columns in the barrel
cortex of rats [4]. However, the oscillation is also apparent
across larger length scales; for example, Massimini et al.
have mapped the propagation of waves of slow-wave activity
across the cortex using a high-density electroencephalogram
(EEG) [5]. Volgushev et al. have recently made intracellular
recordings of the slow oscillation in several spatially sepa-
rated neurons [6].

The mean-field approach provides an avenue for the mod-
eling of large-scale assemblies of neurons [7-9]. As a result
of such a treatment, Steyn-Ross et al. [10] have proposed
that the cortex can have more than one stationary state—i.e.,
the model can have more than one equilibrium solution, and
transitions between these states are analogous to first-order
phase transitions. Recently, Wilson et al. have suggested that
the oscillation between the low-firing and high-firing states
in the cortical slow oscillation may be an example of this
[11]. However, such descriptions in terms of phase transi-
tions are still speculative—Bojak and Liley have success-
fully modeled the human EEG for anaesthetic induction
without requiring their mean-field model to exhibit multiple
stationary states [12], and Robinson et al. and Rennie et al.
have described the major resonances of the EEG (including
synchronous oscillations) by using linear analysis about a
local solution to a mean-field thalamo-cortical model
[13-15]. Moreover, Molaee-Ardekani et al. have recently re-
produced the oscillation between up and down states with a
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model that does not have multiple stationary states [16].

We are therefore motivated to study intracellular record-
ings of the slow oscillation with the aim of identifying any
evidence for or against the phase-transition explanation of
the slow oscillation. The fact that this oscillation exists on
many length scales (single neuron through to whole cortex)
suggests that analysis of single-neuron recordings may in
this case be reasonably compared to predictions from a
mean-field modeling approach.

Computer simulations and theoretical analysis of a corti-
cal mean-field model on the approach to a transition show an
increase in temporal and spatial correlations [17]; therefore,
experimental detection of such increased fluctuations would
provide (nonconclusive) evidence for the hypothesis that the
repeating down to up transitions of slow wave sleep can be
described by first-order phase transitions. In order to measure
spatial correlations, we require multiple simultaneous record-
ings from several neurons, and currently this is difficult
(though Volgushev et al. report such a recording from four
neocortical neurons [6].) However, it is possible to analyze
the temporal fluctuations from a recording of the membrane
potential from a single neuron. In this paper, we take a series
of such recordings from neurons from the motor cortex of
rats, and analyze the fluctuations in the membrane potential
during the periods of time immediately preceding the transi-
tion from a down to an up state of the slow oscillation. Spe-
cifically, we look for evidence of an increase in the time
scale of fluctuations, and an increase in fluctuation power,
both of which would support the phase-transition hypothesis

[18].
II. MATERIALS AND METHODS

All experiments were approved by the University of
Otago Animal Ethics Committee (AEC 93/04).

A. Surgery

Male Wistar rats (280—390 g) were anesthetized with an
intraperitoneal (IP) injection of urethane (1.6—2.0 g/kg body
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weight, Sigma-Aldrich, Inc., St. Louis, USA). The local an-
aesthetic bupivacaine (Astra-Zeneca, Australia) was applied
to all incisions and pressure points, at a dose unlikely to
produce any systemic effects (up to 2 mg/kg). Surgical ana-
esthesia was verified by the absence of the withdrawal reflex
following administration of a toe pinch.

For intracellular recording, a craniotomy was performed
over the left motor cortex (in relation to bregma: anteropos-
terior (AP); —1.0 to +4.0 mm, mediolateral (ML); +1.0 to
+3.0 mm) and a burr hole was drilled in the skull for place-
ment of a silver wire electrode against the dura, for EEG
recording. The synchrony of the EEG wave form was used as
an indication of depth of anaesthesia. Supplementary ure-
thane (approximately 0.15 g/kg IP every 2 h) was adminis-
tered on detecting EEG desynchronization. Dental acrylic
was used to cement the EEG electrode in place and build a
well around the craniotomy. During recording, the well was
filled with paraffin wax to increase recording stability, and
the cisterna magna was punctured to reduce brain pulsations.

B. Intracellular recording

Recording electrodes were sharp  micropipettes
(60—110 M) resistance) pulled from 3 mm glass capillaries,
filled with 1M potassium acetate. These were lowered
through the motor cortex in 1 wm steps using a Burleigh
Inchworm micromanipulator (New York, USA) until a neu-
ron was impaled or the maximum depth of 1.8 mm was
reached. Recordings were made using an Axoclamp-900A
amplifier digitized at 10 kHz with a Digidata 1322A and re-
corded using PCLAMP 10 software (Axon Instruments, Inc.,
California, USA).

The membrane potential activity of the recorded neuron
was monitored continuously throughout the experiment until
impalement was lost. Neurons were included in the study if
they exhibited the following: (1) rhythmic membrane fluc-
tuations between a relatively depolarized up state and a rela-
tively hyperpolarized down state, with a down state mem-
brane potential more negative than —60 mV; (2) fairly
constant average membrane potential for the up and down
states; and (3) action potentials that overshot 0 mV, with an
amplitude greater than 50 mV. During the analysis of the
results, a further criterion was applied, namely that the se-
quence had to exhibit at least 10 identifiable down to up
transitions—this is a quantification of requirement (1) and
the rationale is explained below. A total of nine sequences,
each from a different rat, were selected in this way. Se-
quences were of at least 90 seconds and the sequences con-
tained a total of 635 identified down to up transitions. Stable
recording was continued for each neuron for at least 30 sec-
onds after the end of the analyzed sequence, in most cases
for at least several minutes following.

C. Neuronal classification

All neurons, bar one, were identified electrophysiologi-
cally as regular spiking pyramidal neurons, due to the char-
acteristic train of single action potentials elicited in response
to intracellular current injection [19,20]. The one neuron not
tested with current injection was similar in other respects
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FIG. 1. (Color online) A cortical pyramidal neuron recorded
intracellularly during the experiments from which the sample is
taken. The basal dendrites (double arrowhead) arising from the py-
ramidal soma (S) are studded with dendritic spines, as are the ob-
lique branches (enlarged inset) arising from the apical dendrite (ar-
rowhead). The membrane potential (“Vm” in top inset) responds
nonlinearly to negative current pulses (“Im”) injected into the soma
and fires a single action potential to a just-threshold positive current
pulse.

electrophysiologically to the remainder of the sample. The
depth of each neuron in the cortex was estimated by the
travel of the pipette distance below the surface of the pia, as
displayed on the Burleigh micromanipulator. Using an esti-
mate for the interface between layer 3 and 5 in this region of
approximately 600 wm [21,22], the sample comprises four
neurons in layer 3 and five in layer 5. Neurons in each of
these subgroups did not differ significantly in their firing
frequencies, action potential parameters, or membrane poten-
tials in the up or down states. In some experiments, 3% bio-
cytin (Sigma) was included in the solution in the micropi-
pette and the tissue processed after the experiment using
established means [23] to identify the neuron. A representa-
tive example of a pyramidal neuron recorded during the se-
ries of experiments which yielded the sample is shown in
Fig. 1. Due to technical limitations, we do not include the
histology of a neuron used in the up and down state analysis
presented here. However, the morphology and electrophysi-
ology of the neuron shown is representative of all regular
spiking pyramidal neurons we have recovered during our
experiments.
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FIG. 2. (a) The membrane potential against time. The points of transition as identified by the threshold are marked with a “+”
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(b) A close-up view of two of the down-to-up transitions. (c) The second derivative of the membrane potential against time; the first-
derivative being evaluated with a center-difference method based on 50 data points (or 0.005 s) forward and backward of the point of
interest; the second-derivative using 100 data points (0.01 s) forward and backward. The extremely high values of the second derivative are
due to action potentials, as can be seen from comparison with part (a). (d) A close-up view of the second derivative, for the same section of
data as part (b). The threshold of 12 500 mV/s? marked with a dashed line. The points of transition are indicated with the vertical bars. The
second derivative must remain below the threshold for a period of more than 0.2 s for the upward crossing to be accepted as a transition.

III. ANALYSIS

We analyzed intracellular recordings of membrane poten-
tial against time. All recordings showed fluctuations in mem-
brane potential between a down state and an up state, reflect-
ing slow-wave oscillatory activity in corticothalamic
networks due to urethane anaesthesia [1,20]. For the kth se-
quence (k=1,...,M), where M(=9) is the total number of
sequences analyzed, we have a series of data points y(j),
where j=1,...,N* with N* being the total number of data
points in the sequence. The “time” for each index j is equiva-
lent to j/f,, where f; is the sample frequency (10 000 Hz).

First, we identify the locations of the down to up transi-
tions. That is, for each sequence k, we want to locate the
indices j =T§‘ which correspond to the points where the se-
quence begins its ith transition from a down to an up state,
with i=1, ..., P* where P is the total number of transitions
in the kth sequence.

As can be seen in the example sequence in Fig. 2(a) the
membrane potential begins to climb quickly as the down
state ends and we use this fact to identify the point of tran-
sition (i.e., point in time where the membrane potential
leaves the down state and starts a transition to the up state).
We have done this by examining the second derivative of the
membrane potential with respect to time—a high second de-
rivative to corresponds to a rapid upward curve in membrane
potential. A high curvature is a robust characteristic of the
end of the down state. Although the transition from down to
up also produces a large positive gradient (first derivative)
the large variability in the shape of the transition means that

the gradient may be largest at the end of the down state, at
the start of the up state, or at any point in between. This
makes a method based on the first derivative less reliable at
identifying the point of transition where the down state ends.
Specifically, we begin by defining the first time derivative at
a point of interest with a center-difference method based on
the mean over 50 data points before and after the point of
interest; i.e., we define the derivative dV%(j) at the data point
j as

DG+

502 Ey"o—n) (3.1)

M) = ( 50
i=1

Using this result, we constructed the second time derivative
d?*(j) for all data points in the sequence using a center-
difference method based on the mean over 100 data points
before and after the point of interest,

1 100 100
a2y = L2 ( S a4+ 15 S G - z))

101\ 1005
(3.2)

We then applied a threshold of 12500 mV/s? to identify
candidate transitions as the points when the second deriva-
tives cross this threshold (going up). We only accept candi-
date transitions where the second derivative has remained
below threshold for a period of 0.2 s before transition; this
means that short down states and action potentials are ex-
cluded. This choice of method was selected because it gave a
good performance in identifying down to up transitions. The
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values for these parameters were chosen by systematically
varying one parameter at a time, with a view to maximizing
the classification rate of transitions while ensuring the algo-
rithm had a virtually zero false-positive classification rate.

The method is summarized in Fig. 2. Part of a sequence is
shown in Figs. 2(a) and 2(b), with the second derivative in
Figs. 2(c) and 2(d). We mark the identified points of transi-
tion with a “+” symbol on (a) and (b). From an examination
of all the sequences by eye it is clear that the method suc-
cessfully located many transitions. Over the whole data set,
only one automated classification was judged clearly incor-
rect on examination by eye; this was removed from the
analysis.

We remark that identification of a particular time that cor-
responds to a transition is somewhat arbitrary; in practice the
progression from a down to an up state takes around 0.1 s,
and there is often no clear point at which we can say the
down state ends. However, since we are primarily interested
in the changes in the fluctuations on the approach to transi-
tion (specifically, whether they increase in power and time
scale), exactly where we classify the transition is of less
importance. We have also tried to implement the method of
Volgushev et al. who found that they could identify up and
down states from the statistics of the fluctuations in local
field potential [6]; however, this did not prove as successful
as the second derivative method described above.

We only present data for the down to up transitions, not
the up to down transitions. This is because the up state is
complicated by the presence of action potentials, which
themselves are a limit cycle [18]. It would be a major under-
taking to untangle voltage fluctuations due to the proximity
to transition from those due to the preceding sequence of
action potentials.

For each transition within a sequence we extract the mem-
brane potentials for a period of 0.25 s before the transition.
In other words, for the ith transition in the kth sequence, we
define the data series

TG =T -0 +)),
where j=1,...,0, with 0=2500 (i.e., 0.25 s X f,).

It is apparent from Fig. 3(a) that the average membrane
potential of the neuron in the down state changes with time
(it usually becomes less negative as it approaches the transi-
tion) and in order to analyze the spectrum of the fluctuations
we must remove the average trend. This is not straightfor-
ward since we have no way of knowing a priori which
changes in membrane potential are due to a change in aver-
age voltage, and which are due to low-frequency fluctuations
[18], or even whether such a distinction can be made.

To proceed, for each sequence we construct the mean
membrane potential over the 0.25 s preceding each transi-
tion, with the mean taken over all the identified down to up
transitions in the sequence:

(3.3)

Pk
1 .
?"(J’)=ﬁ27"(}'), j=1,...,0. (3.4)
i=1

By subtracting this mean trend from each of the 0.25 s seg-
ments of data, we can remove much of the overall trend in
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FIG. 3. (Color online) (a) An example sequence of membrane
potential against time. For clarity, only 15 s out of 90 s has been
shown. The points that have been identified as transitions are
marked by crosses. A close-up view of one of the transitions is
shown. (b) The mean membrane potential during the 0.25 s period
before a transition, for the neuron shown in sequence (a). The av-
erage has been taken over all the identified transition periods. The x
axis indicates time before transition—i.e., =0 s denotes the transi-
tion point and t=—-0.25 s denotes 0.25 s before the transition; the
minus sign is introduced to enable the graph to be read left to right.
The gray lines indicate one standard deviation either side of the
mean. (c) The membrane potential minus the mean membrane po-
tential, for the 0.25 s periods before some of the transitions. (For
clarity, not all the series are shown.) Note how there is a wider
spread in the sequences at the transition point (r=0) compared to
0.1 s previously (=—0.1 s). The top arrow signifies the length of
the sliding window that has been used to analyze the frequency
data; the bottom arrow shows the time before the transition.

the neuron’s membrane potential as it approaches the transi-
tion point, leaving the fluctuations about the trend. That is,
we construct

j=1,...,0, i=1,...,P~
(3.5)

AT = 79G) =70,

Figure 3(b) shows the mean potential *='(j) in the time pre-
ceding the transition for the sequence shown in part in Fig.
3(a), and Fig. 3(c) shows some of the individual segments of
data A7*="{(j) once the mean trend has been subtracted. By
inspection of Fig. 3(c), it can be seen that the subtraction of
the mean membrane potential has not been entirely success-
ful in removing the trend, and this issue is discussed further
below. Removal of the trend necessarily removes low fre-
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quency fluctuations and therefore such an approach restricts
the frequency range that we can analyze.

The fact that the mean (i.e., the trend) ¥ has been con-
structed from the transition segments $* implies that this
definition of fluctuation AF* is biased. (For example, if there
were just one transition in the sequence then A7 would be
identically zero.) For this reason we eliminate sequences that
show less than 10 identifiable transitions.

For each of the detrended 0.25 s segments [i.e., each se-
ries of Fig. 3(c)] we construct the temporal power spectrum
as a function of the time before the transition. We do this by
taking a sliding 0.05 s long windows of data, and evaluating
the Fourier transform of the detrended membrane potential
within this window. Since the sample rate for the data is
10* Hz, there are 500 samples in each 0.05 s window. Figure
3(c) indicates how this is done.

Mathematically, we write

2, D =AF(Q-T-L12-1+)), (3.6)

where j=1,...,L+1 (where L=0.05sX f,=500 and indi-
cates the length of the sliding window). The discrete index 7
indicates the midpoint of the sliding window—the time be-
fore the transition ¢ is given by 7/f,. For 7<L/2 and 7=Q
—L/2, we leave zX(j,7) undefined. (Note on the plots we
present time as negative so that increasing time, i.e., decreas-
ing time before transition, can be read left to right.) Then, we
define the discrete Fourier spectrum by taking a discrete Fou-
rier transform

Z(r,m) = FIZG, ],

where F is the discrete Fourier transform over index j and r
is a discrete index that describes frequency. [Frequency
=r/(0.05 s), denoted by f,, where r=1,...,0.]

We use a rectangular window rather than the more usual
tapered window for the analysis because we wish to identify
small variations in power at low frequencies on approach to
the transition—i.e., we exploit the frequency resolution that a
rectangular window gives. The disadvantage of this is spec-
tral leakage, in this case the power spectrum at high frequen-
cies can be contaminated by artifacts due to low frequency
signals.

For each sequence, we then average the Fourier power
spectrum over all the P segments preceding the identified
transitions, to obtain an averaged spectrum S"(r,r) of tem-
poral fluctuations as a function of time before transition,

(3.7)

pk

1 .
Sk(r,7) = ﬁz |Z4(r, D).

i=1

(3.8)

For one sequence, Fig. 4(a) shows such spectra for five of
the 0.05 s windows (i.e., five 7 values); the centers of the
windows are at times of 25 ms, 50 ms, 75 ms, 100 ms, and
125 ms before the transition. Above about 500 Hz the spec-
tra typically show white noise, but below this frequency
there is a clear increase in power as frequency decreases.
Moreover, when we look at the very low frequencies (long
time scales), we can clearly see that the window closest to
transition has the largest power. For this neuron there are
resonances at about 140 Hz and 350 Hz. No other neuron
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FIG. 4. (Color online) (a) A plot of the power spectrum for one
neuron. The five lines denote the mean power over 0.050 s seg-
ments that are centred at 0.025 s (black), 0.050 s (blue), 0.075 s
(green), 0.100 s (red), and 0.125 s (yellow) before the transition.
The mean is taken over all the identified transitions in the sequence
for this neuron. The dashed lines either side of the 0.025 s line
indicate the standard uncertainty in this result. (The standard uncer-
tainties for the other lines are similar in size.) Also shown by the
heavy dashed line is a curve of the form S(f)=B+A/f2, where S is
power, f is frequency, and A and B are constants fitted by eye. (b)
The power spectrum minus S(f), for the neuron of part (a). Here we
see the increase in power at low frequencies as the transition is
approached.

showed clear indications of these resonances, and their origin
has not been identified. We do not discuss them further here.
In order to condense our results into a simply presentable

form, we quantify the fluctuations in two ways. First, we
quantify the size of the fluctuations by constructing the mean
power u(7) as a function of the time before the transition—
i.e., for each window we take the total power in the Fourier
spectrum up to 500 Hz and we average over all the transi-
tions in all the sequences (weighting each transition
equally—i.e., each sequence is weighted by the number of
transitions it contains),

M

> Phuk(n)

k=1

> P
k=1

where
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25

uk(7) =2 Sk, 7). (3.10)
r=1

The “25” upper limit corresponds to the number of frequency
steps that are contained below 500 Hz (=500 Hz X 0.05 s).
Secondly, we quantify the time scale for the fluctuations by
constructing the centroid of the frequency spectrum ¢(7) as a
function of the time before the transition. Again, we average
over all transitions in all sequences,

M
> Prck(n)

5(T)=k:lM—, (3.11)

k=1
where
25
2 £54r )
r=1
Mn="5

> S4r,7)

r=1

(3.12)

In these analyses we remove the spectrum for frequencies
above 500 Hz on the grounds that this is dominated by white
noise.

IV. RESULTS

The resulting plots are shown in Fig. 5. The horizontal
axis shows the time before the transition—the zero point on
the axis corresponds to the transition, and the vertical axes
show how the power [Fig. 5(b)] and centroid [Fig. 5(c)]
change as the transition is approached. Figure 5(a) shows the
mean membrane potential, for comparison (each sequence
being weighted by the number of transitions it contains.) It is
clear from these figures that the power and centroid fre-
quency are strongly correlated with the mean membrane po-
tential. Specifically, as the membrane potential increases on
the approach to a transition, the power in the fluctuations
increases, and the centroid frequency decreases from about
110 Hz to 90 Hz (i.e., power increases and shifts to lower
frequencies). This is what we would expect from the phase
transition model. At earlier times, before about 0.15 s before
the transition, the overall power reduces with increasing
time, and the centroid frequency increases. This we attribute
to the influence of the previous transition from an up to a
down state. We have also repeated the calculations with a
cutoff in the spectrum at 400 Hz—the results are similar,
suggesting that the exact choice of cutoff is not particularly
important. Use of a tapered Hann window rather than the
rectangular window for weighting the sequences z/(j, 7) pro-
duces similar results (an increase in power and decrease in
frequency as the transition is approached), but the uncertain-
ties are larger. The analysis was also repeated separately for
layer 3 and layer 5 neurons, but no qualitative difference in
the trends was found; hence the results are presented to-
gether.
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FIG. 5. (a) The mean membrane potential in the 0.25 s period
before a down to up transition, averaged over all transitions used in
this study, i.e., =}7, P55%(j)/ =)L, PX. Note that it rises on the ap-
proach to transition (¢#=0). Negative times denote the time before
transition. (b) The mean fluctuation power as a function of time
before transition. Note that only frequencies below 500 Hz have
been used in this calculation. Averages have been taken over all
sequences and transitions. The dashed lines indicate the standard
uncertainty in the mean. (c) The centroid frequency of the power
spectrum, averaged over all sequences used in this study, as a func-
tion of time before transition. The dashed lines indicate the standard
uncertainty in the mean.

We now address the question of how much the spectrum
of Fig. 4(a) (and the results of Fig. 5) can be attributed to the
fact that the subtraction of the mean membrane potential still
can leave a noticeable drift in the data sequence. Figure 3(c)
shows that the spread of the detrended sequences increases
as the transition is approached—i.e., the detrending has not
been completely successful. Consider the example of a linear
drift—i.e., a function of form y(r)=ar+b (0<t<T), where ¢
is time and a and b are constants, repeating every time 7 in
a sawtooth fashion. If we were to take the Fourier transform
of such a function we would produce a power spectrum S
that had form S(f) ~ 1/f%; this would manifest itself as a line
of gradient —2 on a log-log plot such as Fig. 4(a). On Fig.
4(a) we have superposed a curve of the form S(f)=B+A/f%;
the “A” constant accounts for the white-noise spectrum at
high frequencies.

Although Fig. 4(a) does have a section that has a gradient
close to —2, it is clear that not all of the shape can be attrib-
uted to this effect. In particular, at low frequencies (below
about 100 Hz), we can clearly identify that as the transition
is approached, the power at the very lowest frequencies in-
creases more rapidly than that at higher frequencies. We
show this in Fig. 4(b) where we plot power minus the trend
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line B+A/f?, against frequency; at low frequencies the
power clearly increases as the transition is approached. This
effect is demonstrated in the centroid plot of Fig. 5(c). If the
results were purely driven by this artifact, we would expect
the centroid not to change, since the power § at all frequen-
cies would grow proportionally according to S(f)=A/f>,
where A is a constant (when evaluating the centroid, we only
consider frequencies up to 500 Hz, since white noise appears
to dominate from then on).

Therefore, we suggest that the results do show some evi-
dence of an increase in fluctuation power, and a decrease in
fluctuation frequency (that is, an increase in fluctuation time
scale) as the transition is approached.

V. CONCLUSIONS

In this work we have attempted to quantify the magnitude
of power fluctuations and time scales as a transition is ap-
proached between the down and up state of a cortical neuron
during slow-wave sleep. We find that increases in both these

PHYSICAL REVIEW E 77, 061908 (2008)

are broadly consistent with critical slowing, providing some
evidence to support the assertion that transitions between
these cortical states can be described by first-order phase
transitions.

The major limitations with this analysis are the identifica-
tion of the positions of the transitions, and the need to sepa-
rate out fluctuations in membrane potential from trends in the
mean membrane potential. The latter is particularly trouble-
some; given that the predicted shift in power towards low
frequencies, and that a trend is simply a very low-frequency
response, it is unclear whether such a separation is strictly
possible. However, we believe that the qualitative trends
shown in this paper are still valid.

Ideally, we would wish to look at spatial correlation func-
tions. However, such data are not readily obtainable at the
present time. If, in the future, high-quality many-electrode
intracellular voltages can be obtained, an analysis of the spa-
tial statistics on the approach to transition would be very
worthwhile.
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