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Abstract 
Phosphorus fertiliser is necessary to maintain the production of New Zealand hill country 

pastures. Technological advances in GIS and GPS have given aerial fertiliser applicators 

more precision than ever before.  The key question is; to what extent do soil chemical 

properties vary within hill country landscapes, and is a knowledge of the variability able to 

be used to differentially apply fertiliser, maximise P fertiliser use efficiency, and minimise 

P loss to waterways? The objective of this thesis was to quantify the phosphorus 

variability on Blue Duck Station, a summer-moist hill-country farm located in the Central 

North Island of New Zealand. The soil comprised Allophanic Soil (Andisols) on the flat to 

low slopes with Brown Soil (Inceptisols) on the steeper hills. 

Blue Duck Station was delineated into six soil-landscape groups (north facing medium 

slopes, north facing steep slopes, south facing steep slopes, south facing medium slopes, 

flat ridge tops, and flat valley floors, based on slope, aspect, and elevation using GIS. 

Three replicate units were randomly selected from each of the six soil-landscape 

groups, which gave 18 study-sites in total. For each study site, one transect sample and 

five grid samples were collected. Olsen P, Anion Storage Capacity, pH, Sulphate-sulphur 

and Cations (Mg, Na, K, Ca) were determined. 

The Olsen P ranged from a mean of 6.8 in the south facing medium slopes to 21.2 in the 

north facing medium slopes. North facing medium slopes and valley low floors had higher 

mean Olsen P values than all other landscape groups (P<0.01) and also had the greatest 

variability in Olsen P values. The majority of Olsen P values were considered ‘low’ or ‘very 

low’. Soil pH was consistent, ranging between 5 and 5.4, whilst anion storage capacity 

(ASC) levels ranged from 35% to 85%. High ASC levels indicated soils of volcanic origin, 

containing tephra, whereas low ASC levels were associated with soil predominantly 

derived from tertiary sedimentary rock. 

At Blue Duck Station, the application of higher rates of P fertiliser to south facing steep 

slopes and south facing medium slopes, with medium rates of P fertiliser addition to north 

facing steep slopes and ridge low slopes would optimise fertiliser use. There is limited 

benefit in applying fertiliser to north medium slopes and flat valley floors as Olsen P is 

near optimal for this environment and stock transfer will continue to add nutrients to 

these areas. 

The variability within a sample site (between grid and transect samples) was often greater 

than the range of variability the means across all the landscape groups. Due to such large 

sample variability, difficulties arise when attempting to recommend accurate fertiliser 

regime, or sampling programs. The soil analysis results from a small number of samples 

should be treated with caution.   

The Best Management Practice for soil sampling the Central North Island Hill Country 

would be to avoid sampling small exceptional areas like flat valley floors and flat ridge 

tops. Focusing sample regimes on a number of transects across northern and southern 

slopes would give more representative results.  
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Chapter 1 

Introduction  

 Soil phosphorus in New Zealand hill-country 1.1

Phosphorus is a vital soil component. Soil phosphorus plays an essential role in 

plant health; promoting root growth and winter hardiness, stimulating tillering, 

and increased maturation speed. The aim of my study is to measure the 

variability of soil phosphorus, and other soil chemical properties, to determine 

whether precision agriculture methods could be applied to hill and steep land 

areas to maximise P fertiliser use efficiency.  

 

Soil formation can be broken down into 5 soil forming factors. The 5 soil forming 

factors are; parent material, climate, organisms, relief and time (Jenny, 1941). 

Interactions between the soil forming factors influence the development and 

dynamic characteristics of soil. Parent material and topography are the two main 

factors that influence soil formation within hill-country farms.  Steep slopes and 

varying aspects are encompassed by topography, which influence soil depth, P 

runoff, erosion potential, nutrient removal and climatic effects (Mclaren & 

Cameron, 1996, Gillingham, et al. 2003b). Parent material gives soils their 

inherent chemical and physical properties. Together, topography and parent 

material create a mosaic of soil types throughout the hill-country landscape.  

 

Hill-country farms make up 3.5 million hectares of New Zealand’s 14 million 

hectares of pastoral land (Williams & Haynes, 1990). Often considered the back-

bone of New Zealand pastoral farming, more sheep and cattle are bred and run 

on hill-country than on any other class of farmland in New Zealand. Due to the 

poor soil fertility of most hill-country farms, fertiliser addition is an essential 

component of pasture production. Fertiliser is used to supply soils with the 
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essential elements that are not immediately available in unfertilised soils 

(Binoka, 2008). The main addition to hill-country pasture is superphosphate, 

which helps to resolve soil fertility and mineral-deficiency problems. 

Superphosphate increases inorganic phosphorus and sulphur, leading to 

increased nitrogen fixation rates, as a result of increased clover growth (Williams 

& Haynes, 1990).   

 

The addition of fertilisers to farming systems can have inadvertent 

environmental impacts.   The main issue of phosphorus fertiliser application is 

the potential degradation caused to natural waterways. Due to natural 

phosphorus levels in aquatic systems being very low, small increases in the 

amount of phosphorus going into waterways can have a big effect. Phosphorus in 

the waterways encourages nuisance weed and algae growth, which, as the 

excess growth dies and decomposes, may impact stream life by starving the 

water of oxygen, advancing eutrophication.  

 

 Potential of GIS and GPS to aid in the application of 1.2

fertiliser  

My project investigates the potential of targeted phosphorus fertiliser 

application in hill-country. Global positioning systems (GPS) and global 

information systems (GIS) have reached a level of development and accessibility 

that allows them to be used for precision fertiliser application. In the past, the 

capability of fertiliser applicators to avoid application on specific areas was 

limited, however, the use of GIS and GPS has allowed for small areas like stock 

camps, streams and high fertility areas to be avoided.  

 

Improved versatility and accuracy of fertiliser application, has come as a result of 

the combination of GPS and GIS systems. The GPS system allows the deliberate 

variation of application rates to meet the differences in optimum fertiliser 

requirements of contrasting landscape groups.  
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 Location of study 1.3

My study was undertaken in the King Country, which is situated in the central 

North Island of New Zealand. My study area, Blue Duck Station, is a summer-

moist hill-country farm located at Whakahoro, 43km south west of Taumarunui 

(Figure 1.1). The total area of Blue Duck station is 664 ha, 262 ha of pasture, and 

the remaining 402 ha made up of scrub and indigenous forest. The pasture is 

divided into 33 ha of strongly rolling easy hill-country, 76 ha of moderate hill-

country, and the remaining 154 ha is moderate to steep hill-country, with 

exposed rock cliffs and steep gorges (Grant & Dudin, 2007). Blue Duck station has 

an effective farmed area of 425 ha, stocked with 3,978 stock units at a rate of 9.4 

su/ha (Grant & Dudin, 2007).  

 

Blue Duck Station is found in the Kaiwhakauka Catchment, a sub-catchment to 

the wider Whanganui River Catchment. Within the Kaiwhakauka Catchment, four 

percent of Whio (New Zealand’s native Blue Duck) breeding pairs are found. 

Understanding soil phosphorus, is essential for the water quality of the 

Whanganui River and thus the protection of the Whio’s habitat.  
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Whanganui River 

Retaruke River 

Blue Duck Station 

Whanganui Nation Park 

   
Legend: Native Bush River Study Area 

Figures 1.1 Location of the Blue Duck Station study area 
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 Thesis objective, hypothesis and research 1.4

questions 

 

The overall objective of my study is to measure the variability of soil P and other 

soil chemical properties to determine whether precision agriculture methods 

could be applied to hill and steep land areas to maximise P fertiliser use 

efficiency both economically and environmentally.  

 

 

The specific objectives of my study are to: 

 Generate soil landscape groups for Blue Duck Station using available 

GIS information  

 Create a robust sampling regime to sample landscape groups 

 Determine the variability of soil phosphorus, and relationship with 

other measured variables, with respect to the soil landscape groups 

 

The hypothesis of my MSc thesis is: Soil landscape units can be used to 

determine fertiliser recommendations to maximise productivity and minimise 

adverse environmental effects in hill-country in the King Country. 
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Chapter 2 

Literature Review  

 Introduction 2.1

Chapter 2 discusses the relevant literature relating to phosphorus distribution in 

the steep North Island hill-country of New Zealand. It describes the phosphorus 

cycle and pastoral properties within hill-country farms, discusses soil phosphorus 

measurements, soil pH, and other soil chemical properties. The environmental 

issues related to fertiliser use are also discussed.  

 Soil Phosphorus 2.2

 Introduction to soil phosphorus 2.2.1

Soil phosphorus takes two forms, inorganic and organic, which vary in 

accumulation rates, plant availability, and natural occurrence. Total soil 

phosphorus content is influenced by the individual properties of, and 

interactions between, parent material, weathering, fertiliser addition, stock, and 

runoff. Since the advent of aerial topdressing, New Zealand hill-country farms 

have accumulated phosphorus in the soil which can range between 0.02 to 0.15% 

of the soil (Mclaren & Cameron, 1996).  

 Inorganic soil phosphorus 2.2.2

Inorganic phosphorus is in a form that is readily available to plants. Inorganic 

phosphates can be classified into four main groups; calcium phosphate, 

aluminium phosphates, iron phosphates, and adsorbed phosphates which are 

extractable after the removal of the first three forms (Chang & Jackson, 1957). 

Naturally occurring inorganic (or mineral) soil phosphorus is derived mostly from 

the weathering of primary apatite mineral. Soil phosphorus in its secondary form 
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(calcium, iron, and aluminium phosphates) is important for regulating the 

phosphorus in soil solution (Gillingham, 1987).   

 

 Organic phosphorus 2.2.3

Soil organic phosphorus levels can vary from 20 to 80% of total phosphorus in 

the upper layers of the soil (Dalal, 1977).  Soil organic phosphorus occurs in 

chemically diverse forms and enters the soil through the breakdown of organic 

matter. Soil microbes play an important role in recycling many organic 

phosphorus compounds, due to their ability to break down soil organic matter. 

The longer accumulation period of phosphorus in organic matter (compared with 

carbon, oxygen, hydrogen, nitrogen and sulphur), attributes to the high P 

content in organic matter.  

 

Organic phosphorus is often overlooked within agricultural systems as organic P 

is not available for plant uptake (Dalal, 1977). Relative to soils under cultivation, 

pastoral systems can have high organic P levels, upwards of 50-80% of total soil P. 

In pastoral systems, the mineralisation of organic phosphorus contributes to the 

plant available P pool. Allophanic clay soils and higher organic matter soils are 

generally associated with larger organic phosphorus content (Dalal, 1977) 

(Stewart & Tiessen, 1987).  

 Phosphorus cycling  2.3

The phosphorus cycle of grazed hill-country pastures is a web of interacting 

processes in which phosphorus is cycled through soil, plants, and animals (Figure 

2.1). The phosphorus cycle is a dynamic system, involving both inputs and 

outputs. The major inputs of the phosphorus cycle are via additions of fertiliser, 

dung and litter. Losses from the P cycle are due to animal uptake, erosion, export 

of animal products, and animal transfer). Internal chemical cycling also plays a 

part in influencing the availability of phosphorus (Gillingham, 1987). 
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Figure 2.1 Processes and interactions of the phosphorus cycle (Modified from 

Gillingham, 1987) 
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 Below-ground cycling 2.3.1

Mineralisation and immobilisation cause the cycling of P through organic and 

inorganic states simultaneously (Perrott, et al., 1992).  

a) Mineralisation 

Organic phosphorus must be mineralised to inorganic P forms to enter the plant-

available phosphorus pool (Stewart & Tiessen, 1987). The process of 

mineralisation is facilitated by enzymes; therefore, controlled by factors 

influencing microbial activity. These factors are; increased temperature, soil 

moisture, pH and aeration which increase growth of microbial bacteria. 

b) Immobilisation 

Immobilisation is the conversion of inorganic phosphorus to organic phosphorus, 

also known as phosphate fixation, retention, sorption or reversion. The 

immobilisation of organic P is dependent on the availability of inorganic P and 

organic substrates for the growth of soil biomass. The proportion of fertiliser P 

added, which is then removed from the phosphorus pool via immobilisation, is 

not accurately known, but is likely to be considerable (Cornforth, nd).   

 

Immobilisation and the precipitation of phosphate compounds have the ability to 

decrease the plant available P from added P fertiliser. Phosphate retention can 

lead to 50% of added P being fixed and unable to be taken up by plants (Mclaren 

& Cameron, 1996).   

 

 Above ground P losses 2.3.2

a) Sources of P 

Above-ground phosphorus loss occurs via three main routes: the export of plant 

and animal products, the transfer in excreta, and the runoff via soil erosion. Even 

small variations between farms can strongly impact the above ground losses. 

c) Export of plant and animal products 

In New Zealand hill-country, the majority of animals sold are store wether lambs, 

surplus two-tooth ewes, cull mature ewes, and some weaner and cull-breeding 
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cows (Gillingham, 1978). Phosphorus is lost via meat (or animal export) and 

through the sale of wool.   

d) Transfer in excreta 

The uneven distribution of animal excretion over time can influence soil P levels 

(Saggar et al. 1990) (Figure 2.2). The three slope classes used by Saggar et al. 

(1990) were low slope (1-20˚), medium slope (13-25˚) and steep slope (≥26˚). 

Each slope class had varying gains, losses, animal intake, excretal return and 

fertiliser requirements. Greater animal returns were found on low slopes, leading 

to greater gains compared to medium and steep slopes, regardless of low slopes 

larger losses of animal product compared with steep slopes.     

 

 

Figure 2.2 Schematic of nutrient transfers in a grazed hill-country pasture 
(Saggar, et al., 1990) 
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A study from the Whatawhata and Te Kuiti research stations reported that 60% 

of animal dung was distributed over 15% of the paddock; which was 

predominantly made up of easy slopes (Rowarth & Gillingham, 1990). Of the 

three slope classes Saggar et al. (1990) used, low slopes (31% of the farms area), 

medium slopes (41% of the total area), and steep slopes (28% of the farms area) 

to measure excretal return. Of the excretal returns measured in this study, 60% 

of dung was measured on the low slope, 30% of dung was measured on the 

medium slopes and 10% of dung was measured on the steep slopes.  

Consequently, less fertiliser is required on medium and low slopes because of 

net gains in P concentration due to animal transfer. (Saggar, et al., 1990, Rowarth 

& Gillingham, 1990). Uneven nutrient distribution influences the phosphorus 

status of varying slope classes in the hill country. Soil P under campsites can 

increase by 38% per annum via nutrients transfer from steep slopes. A similar 

pattern would also be expected for the other nutrients (figure 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60 

Figure 2.3 Distribution of dung and change in soil phosphorus on different slopes 

of hill country pasture (Williams & Haynes, 1990, after Rowarth & Gillingham, 

1989) 
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Saggar et al. (1990) created a nutrient model to predict soil P distribution within 

a farm (Figure 2.4). To determine nutrient transfer levels via animals for each 

slope class, the model used pasture production, pasture P concentration, pasture 

utilisation, animal product loss and animal excreta. The predicted change to soil 

P was then calculated by adding animal transfer levels to fertiliser history.    

e) Runoff 

Phosphorus is not prone to leaching losses due to it being relatively immobile in 

soil. This means that the majority of soil phosphorus is lost via runoff. 

Phosphorus runoff is split into two forms; particulate P loss and dissolved P loss. 

Phosphorus bound to sediments and organic matter (particle-bound P) makes up 

Figure 2.4 –Schematic of nutrient transfer model in grazed hill country pasture 
(Saggar, et al., 1990) 
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80% of P runoff, and dissolved P accounts for the additional 20% loss (Meneer, et 

al., 2004, Parfitt, et al., 2009).  

 

Storm events transfer large amounts of soil sediments to waterways and 

phosphorus bound to these sediments creates particle-bound P loss. Storm 

events account for 70% of particle P losses within a hill-country system due to 

the characteristically steep and often easily erodible soils, which is approximately 

55% of a hill-country farm’s total P loss (McColl, et al., 1977). In contrast, at 

Ballantrae Hill Country Research Station, the loss of dissolved inorganic 

phosphorus annually ranged between 9% and 16% of the total phosphorus 

imported into the system (0.69 to 1.47 kg/ha) (Hart, et al., 2004).  

 

Upon fertiliser application, what is not diffused into soil solution (then into soil 

matrix) is easily lost due to runoff, owing to the high solubility of the mono 

calcium phosphate that is found within superphosphate. P runoff can be at risk 

for between 7 to 60 days after P fertiliser application (McDowell, et al., 2010). 

McColl & Gibson (1979) measured the P concentration of runoff pre and post 

fertilisation, finding that P concentrations of runoff post application were 22 

times higher than that of pre-fertiliser application runoff. Studies on hill-country 

farms at Whatawhata and Waipawa have shown that the application of fertiliser 

increases levels of dissolved reactive phosphorus by 0.06 to 6.4 mg L-1 at 

Whatawhata, and 0.46 to 31.5 mg L-1 at Waipawa (Hart, et al., 2004).      

 

The main factors controlling the runoff/redistribution of P throughout the hill-

country are, slope, soil type, soil P status, animal treading, and fertiliser 

management. The reduction and mitigation of phosphorus runoff is achieved by 

controlling these factors with five key management systems: P fertiliser 

management, grazing management, riparian management, post-harvest 

management, and whole-system management (combination of approaches and 

advice) (Meneer, et al., 2004).  
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 Animal intake 2.3.3

The majority of phosphorus intake by stock is from the pasture species which 

they consume. Of the plant nutrients ingested by stock, 60% to 90% is returned 

to the system as excretion (Williams & Haynes, 1997). Factors that influence 

animal intake are; pasture availability, quality of pasture (young grasses are more 

palatable and contain more P than older grasses), grazing habits (animal type and 

frequency of excretion), and farm management (stocking rate, camping 

behaviour, grazing patterns).  

 

 Phosphorus returns in litter 2.3.4

The phosphorus quality and content of herbage varies seasonally, species to 

species, and with plant age. Herbage is returned into the soil predominately by 

microbial decomposition.  

 

Decomposition rates increase if the P status and temperature are high, and there 

is an adequate supply of nitrogen either from the plant material itself or added 

fertiliser (Gillingham A. , 1987). The rapid increase in microbial population 

creates addition to the inorganic phosphorus pool due to the input from young 

plant material.  

 Phosphorus returned in dung 2.3.5

Sheep faces contain plant available phosphorus, which when incorporated into 

the soil, is as effective as superphosphate (Barrow, 1987). Understanding animal 

behaviour, pasture utilization, and animal transfer is vital to understanding dung 

distribution. The phosphorus content within excreta is controlled by the quality, 

and consumption of herbage. Sheep on hill country tend to graze steeper slopes 

but camp/congregate on flatter areas (Haynes & Williams, 1999). This causing 

dung and urine from grazing animals to accumulate around animal camps, ridges, 

trees, troughs, gateways, and areas conducive to animal congregation (Sigua, et 

al., 2011, Haynes & Williams, 1999).   
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Due to the majority of stock excretion occurring at night, areas where animals 

camp are hot spots for phosphorus return. Ingrained predatory responses create 

tendencies for stock to camp on flat, elevated sites. The transfer and 

redistribution of P due to livestock represents a large proportion of nutrient 

cycling within a farming system; therefore, it is important that the habits of 

livestock on hill-country farms are clearly understood (Lemunyon & Daniel, 2002).  

 

Management techniques to decrease uneven dung distribution include dividing 

paddocks into slope classes, increasing stocking rate, and more intense farming 

practices (subdivision and rotational grazing, as opposed to low stocking rate and 

set stocking). Uniform dung distribution and consequently lower fertiliser 

requirements provide for simpler fertiliser regimes, provided that evenly spread 

fertiliser is the best option (Thorrold & White, 1985, Williams & Haynes, 1990).  

 

 Plant uptake of phosphorus 2.3.6

Plants uptake inorganic P (readily available) and convert it to organic P (non-

available P). Once the plant dies and decomposes, this organic P is then 

converted back to inorganic P by microbes. Plant uptake of phosphorus occurs 

via three basic methods in which nutrients make contact with the root surface; 

root interception, mass flow, and diffusion. The amount of P plants intake via 

these methods is dependent on root distribution and density (Gillingham, 1987, 

Gillingham, 1978). Roots with larger distribution and denser systems are able to 

extract larger volumes of phosphorus from the soil, giving them the competitive 

edge. As well as dense root systems, vesicular-arbuscular mycorrhizal fungi can 

increase the surface area of the roots, therefore, further increasing the volume 

of phosphorus uptake.  

 

Phosphorous uptake can vary from plant to plant due to individual phosphorus 

extraction efficiency. Plants in low phosphorus soils are efficient at P extraction, 

as opposed to the low P extraction efficiency of pasture plants that naturally 

grow in soils with high phosphorus levels. In hill-country soils where P and 
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fertility is naturally low, pasture species like White clover are efficient at P 

uptake (Gillingham, 1987).  

 Fertiliser additions 2.3.7

Many types and concentrations of phosphorus fertiliser are available in New 

Zealand, all originating from phosphate rock deposits (Mclaren & Cameron, 

1996). Phosphorus fertiliser is applied in inorganic form, and either taken up by 

plants or incorporated into soil by microorganisms. Phosphorus entering farming 

systems via fertiliser and/or dung at a rate higher than is removed, leads to 

phosphorus accumulation. A depletion of P occurs when the addition of fertiliser 

and/or dung does not exceed the amount of P being removed from the system 

(Saggar, et al., 1990). 

 

Natural phosphorus deficiencies within New Zealand soils create a requirement 

for phosphorus fertiliser if maximum pasture production is to be attained. 

However, the application of fertiliser on New Zealand hill-country farms is often 

not sufficient to build up soil nutrient reserves. Limiting soil nutrient reserves, 

decreases soil fertility, leading to lower animal and pasture production  

 

Perrott et al. (1992) studied the effects of P fertiliser on organic cycling and 

microbial biomass in hill-country soils under pasture. When fertiliser was 

withheld, pasture production markedly decreased due to a lack of natural 

organic phosphorus utilisation (mineralisation), depleting inorganic phosphorus 

stocks. The addition of P fertiliser increased pasture production and microbial 

phosphorus. The increase was possibly the result of an improved supply of root 

exudate, allowing for an increase in microbial activity. Whether fertilised or not, 

organic phosphorus was not utilised and resulted in a substantial accumulation 

of soil organic phosphorus (10-12 kg P ha-1 year-1) (Perrott, et al., 1992). 
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The higher phosphate retention (>84%) of Allophanic Soil requires more fertiliser 

to maintain soil nutrient levels than soil with medium (60-84%) and low (10-59%) 

phosphate retention. High P-retention soil require 6kgha-1 more P than a low P-

retention soil. When using superphosphate (9% P content), this translates to an 

increased application cost of $30 ha-1 (2011 price) for a soil with high P-retention, 

which on a 1000 ha farm equates to $30,000 (Fraser & Vesely, 2011, Cornforth I. , 

1998). 

 

 Pastoral properties of New Zealand hill-country 2.4

farms 

 Introduction to pastoral properties  2.4.1

Soil fertility is the main factor influencing pasture production on hill-country 

farms (Gillingham, 1980). Soil fertility is influenced by slope, aspect, altitude, 

climate (temperature, rainfall, and solar radiation) and grazing management, 

which all vary widely within hill-country (Fraser & Vesely, 2011). Knowledge of 

the factors influencing soil fertility, and their variability within the landscape, can 

help create effective differential fertiliser regimes.   

 Varying pasture production driven by slope, aspect and altitude 2.4.2

Aspect and slope variations are driven by solar radiation and wind, which 

influences precipitation and moisture losses, heat balances, soil-forming 

processes, and pasture composition. All factors combine to influence pasture 

production (Radcliffe & Baars, 1987).  

 

Soil moisture is a large contributing factor to increased pasture growth. 

Differences in soil moisture are associated with varying aspects. South facing 

slopes are cool and have high soil moisture content, leading to increased White 

clover growth. While the warmer, dryer, north facing slopes are dominated by 

Subterranean clover and native legumes (Gillingham, et al., 2003b, Gillingham, et 

al., 2008ab). The summer soil moisture of a Waipawa hill-country farm was 

higher on south facing slopes than on the north facing slopes (Gillingham, 2003).  
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Low slopes have higher pasture production than steep slopes, regardless of 

aspect. For a hill-country farm on the east coast of the North Island of New 

Zealand, pasture production on north-facing slopes (especially low slopes) was 

higher than that of any other slope and aspect class (Gillingham, et al., 1998, 

Gillingham, et al., 2007). At Whatawhata Hill-country Research Station, pasture 

production on campsites was double that of the pasture production on 45 ° slope 

(Gillingham, 1980). Slopes above 26° require 1.1 kg P to produce one stock unit, 

however, flat land only requires 0.3 Kg P (Gillingham, et al., 1999). 

 

 Climatic influences on pasture production 2.4.3

In many hill-country pastures, between 60 to 80% of total annual pasture growth 

takes place within three to four months of the year, mostly from spring through 

to early summer. The lowest pasture growth occurs during winter and late 

summer (Gillingham, 1980, Rattray, 1987). The best techniques for dealing with 

seasonal changes to pasture production are to take advantage of times of high 

soil moisture, as well as conditioning pasture to grow when soil moisture is low 

(Gillingham, 2003). 

 

Seasonal climatic variation can influence rates of bacterial growth, thus 

influencing organic phosphorus. Perrott et al. (1992), reported that organic 

phosphorus increased with decreasing temperatures (winter-spring), and 

decreased when temperatures increased (spring-summer). Increased soil 

moisture (winter-spring) and low microbial activity rate combine to create an 

accumulation of labile organic phosphorus (solid phase phosphate that is readily 

able to move into solution (Mclaren & Cameron, 1996)). High temperatures 

(summer) increased the availability of root exudates used as substrate for 

bacterial growth, improving the environmental conditions at that time and 

reducing the amounts of microbial P and release of inorganic phosphorus.  
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Legume content can drive overall production and quality of hill-country pasture. 

Low clover content translates to a decrease in pasture quality (Gillingham. et al., 

2008b). Hill country studies have shown that the most reliable clover production 

response to fertiliser was in early spring (Gillingham et al. 2007, Saggar, et al., 

1990, Dalal, 1977). The increased production was due to favourable temperature, 

rain and subsequent soil moisture, for pasture growth. Gillingham, et al., (2007) 

also showed an increase in clover production with increasing Olsen P.   

 Management options for improved pasture production 2.4.4

Optimised grazing management and improved soil fertility are two management 

techniques that have the potential to improve pasture production within the hill-

country. The basis of grazing and soil fertility management is to enhance the 

quality and quantity of pasture, which leads to increased animal health and 

production (Lambert, et al., 2004).  

a) Grazing management 

Rotational grazing and set stocking are two common methods of grazing 

management on hill-country farms. Set stocking systems produce less dense 

pasture than rotational grazing. Suckling (1959) stated that the increase in 

density of set stocking systems is so much that it has the potential to depress 

herbage accumulation rates. A later study by Lambert (1986) dismissed Suckling 

(1959) results. Finding that when sheep were rotationally grazed under high 

stocking rates, pasture density was not reduced to an extent that herbage 

accumulation rates was less than if the same area had been set stocked. Setting 

high stocking rates in combination with rotational grazing minimises legume 

shading while maximising pasture utilization (Gillingham, 2003). 

 

Grazing management techniques are well established in most hill-country farms, 

however, trails have proven them to have little effect on legume performance. 

Hill-country farms are constrained by economic and practical considerations, 

especially those of animal nutrition, individual animal performance, and area 

productivity, to a limited range of defoliation and treading intensities and 

frequencies (Lambert, 1986).  
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b) Fertiliser management  

The application of P fertiliser generally increases legume concentration in 

pasture, allowing for increased atmospheric nitrogen fixation (Blackmore, et al., 

1969; Suckling, 1959; Lambert & Grant, 1980; Edmeades, 1984). Superphosphate 

increases pasture production and allows for a substantially increased stocking 

rate, leading to increased animal production. Results from a hill-country study by 

Gillingham, et al., (1998) showed that pasture response to fertiliser varied 

between north and south aspects; high pasture response on south facing aspects 

and north facing medium slopes. The increases in pasture production due to 

phosphorus fertiliser application also varied with slope. Hill-country farm trails at 

Whatawhata and Waipawa (Table 2.1) illustrate increases in pasture production 

in relation to increases in Olsen P tests, on both steep and easy slopes. The 

response of pasture production to increasing P fertiliser inputs on steep slopes 

was half that of the response from easy slopes, at both Whatawhata and 

Waipawa. On steep slopes, pasture production increases due to fertiliser inputs 

was not significant, meaning further P fertiliser application will likely not result in 

a positive pasture response (Gillingham, 2003).  

 

 

Table 2.1 Average annual pasture production (kg DM/ha) on easy and steep 

slopes with increasing Olsen soil P for contrasting locations (Gillingham, 2003)    

 

Whatawhata*     

(1985-88) 

Olsen P = 8 Olsen P = 11 Olsen P = 30 SED *** 

Easy (10 - 20°) 12 000 13 000 14 750 4.3 

Steep (30-40°) 8 150 7 500 8 500 365 

Waipawa**       

(1995-2002) 

Olsen P test = 9 Olsen P test = 

15 

Olsen P test = 

28 

SED 

Easy (15-25°)  3 700 4 300 4 900 2.5 

Steep (25°+) 2 000 2 200 2 700 478 

* Average from 0-30 and 30-70mm soil depth 

** 0-75mm soil depth 

*** standard error of the difference 
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Edmeades’ (1984) study of phosphorus requirements for hill-country yellow-

brown earths demonstrated that to maximise production and ensure efficient 

use of fertiliser P in terms of pasture production per unit of P applied, it is 

important that pasture is vigorous and have a good legume base.  

 Phosphorus requirements for hill-country pasture  2.4.5

Edmeades, et al (1984) stated that at an Olsen P of 13, clover/ryegrass could 

reach 90% maximum pasture production while a recent optimal Olsen P of 20 

was suggested by Ledgard, et al., (1991). 

 Pasture composition 2.4.6

Pasture composition of New Zealand hill-country comprise of lower fertility grass 

species such as Brown-top, Yorkshire Fog, Sweet Vernal and Crested Dogstail 

Perennial Ryegrass, and Cocksfoot. Hill country legumes include White clover, 

Subterranean clover, and lotus (Charlton & Belgrave, 1992) (Chapman & 

Macfarlane 1985). 

 

White clover (Trifolium repens) was the most commonly planted legume 

following the early development of pasture. White clover is able to fix nitrogen 

which is then supplied to the pasture (Williams & Haynes, 1990). Brown-top is a 

major grass species present in hill-country ever since the beginning of New 

Zealand pastoral farming (Brougham, et al.,, 1974).  

 

 Differential application of fertiliser in hill-country 2.5

Aerial fertiliser application in New Zealand began in the early 1950’s, with the 

uniform application of fertilisers over hill-country farms (Gillingham, et al., 1999).  

Spatial nutrient variability is not taken into account when applying fertiliser 

uniformly, leading to the over-application of P fertiliser on low production areas 

and the under application on high production areas (Gillingham, et al., 1999, 

Gillingham et al., 2003). The incorrect application of fertiliser leads to both 

environmental and economic degradation. Fertiliser is one of the single largest 

expenditure items on hill-country farms. Between 2007 and 2010, the cost of 
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superphosphate approximately doubled. Due to the increasing cost of fertiliser 

and current economic climate, farmers are looking at better ways to apply 

fertiliser without forfeiting pasture production and environmental health (Fraser 

& Vesely, 2011).  

 OVERSEER 2.5.1

OVERSEER is a model used to optimise production and environmental outcomes 

through the examination of nutrient movement and use. The five main 

objectives of overseer are (AgResearch, 2012); 

1. Identifying nutrient transfers and pathways 

2. Use scientific reasoning and robust processes to model pathways 

3. Uniformity throughout farming systems 

4. Usability for the farming community 

5. Mitigation options 

 

AgResearch used the results of a large number of trails, creating definitions of an 

average, standard and relative response curve. The response curves, Olsen P, 

stocking rate and other site related variables are able to be used in conjunction, 

to define phosphorus fertiliser requirements (Gillingham A. G., 2001) 

 

 Fertiliser management using GIS and GPS 2.5.2

a) GIS 

GIS (Geographical Information System) is computer software used for creating 

geographically referenced information. Hill-country farms are able to use GIS 

mapping techniques to display critical farm information and create specific 

landscape units. The maps can then be used to generate fertiliser response 

blocks and ideal fertiliser regimes. 

b) GPS 

GPS uses triangulation by receiving signals from three or more satellites to 

determine its distance from them relative to the earth (Gillingham, et al., 1999).  
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A combination of GIS, GPS and farm information, allows the accuracy of fertiliser 

application to increase relative to regular blanket application. GPS is able to 

determine the ground speed relative to the speed an aircraft is travelling, which 

allows varied fertiliser application through automatic hopper adjustment. 

Therefore, the use of both GPS and GIS can create accurate and deliberate 

adjustment to fertiliser application along aircraft flight paths, allowing for the 

contrasting fertiliser requirements of landscape groups to be met (Gillingham, et 

al., 1999). 

 

c) Precision fertiliser application 

In the North Island hill country, financial and environmental pressures are 

creating the need for farmers to apply less phosphate fertiliser where soil fertility 

is high, which creates an opening for GIS and GPS technology (Stantiall, 2006). 

Traditional blanket fertiliser application can lose 10–15% of fertiliser unintended 

areas; gullies, steep faces, fenced off areas, swamps and streams. The benefits of 

precision fertiliser application not only reduce wastage, but can decrease cartage 

and fuel costs (Gillingham et al., 1999).  

 

Gillingham (1999, 2001) outlined the three main components required for 

efficient differential fertiliser management. Firstly, spatial variation of each 

landscape unit must have temporal longevity, so that it is worthwhile to treat 

different landscape units as separate entities. Secondly, the varying management 

practise of each landscape unit must be based on pasture response trial or 

through a modelling approach. Lastly, differential fertiliser recommendations 

must be based upon quantitative results.  

 

Gillingham, et al., (1999) studied the effects of differential fertiliser application 

on a low P status Manawatu moist hill-country farm, and a high P status East 

Coast summer dry hill-country farm. The results illustrated that using the same 

quantity of fertiliser, but applying it differentially, could lead to increases in 

pasture production, stocking rate and net economic margin. Farm with a low soil 

P status can increase stocking rate by 0.5 su/ha and economic return by 7.5%.  
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Farms with higher soil P status, can increase stocking rate by 0.9 su/ha and 

economic return by 10.1% (Gillingham et al., 1999). 

 

The potential savings of differential fertiliser application have been estimated by 

Fraser and Vesely (2011) using Waikoha Hill-Country Station (Table 2.2). 

Waikoha’s underlying geology comprised tertiary sandstone, siltstone and 

limestone with tephra deposits. Parent material mixing has created a mosaiced  

of soil types. Table 2.2 illustrates the varying cost of raising the Olsen P by 6 units 

using the precision fertiliser application technique, compared with blanket 

fertilsing. By using the soil specific fertiliser application, the cost of raising Olsen 

P by 6 units would be $671,292, compared with $1,065,978 it would have been if 

fertiliser was applied to high phosphorus retention with blanket application. The 

$394,686 saving demonstrates the economic advantage of using targeted 

fertiliser application (Fraser & Vesely, 2011).  

 

Table 2.2  The variation in fertiliser and application costs between targeted fertiliser application 

of varying soil p-retention levels compared with blanket fertiliser application of high P-retention 
soils (blanket high) or low P-retention soils (blanket-low) – hypothetical situation (Fraser & 
Vesely, 2011).  
 

 High P-ret Med P-ret Low P-
ret 

Total Blanket 
high 

Blanket 
Low 

Area (Ha) 450 472 2,078 3,000 3,000 3,000 

Maintenance 
Cost ($) 

32,479 27,680 93,739 153,897 207,996 129,997 

Development 
Cost* ($) 

133,977 102,201 281,216 517,394 857,982 389,992 

Maintenance + 
Development ($)  

166,456 129,881 
 

374,955 671,292 1,065,978 519,989 
 
 

* Based on raising Olsen P by 6 units 

 

 

Gillingham et al., (1998, 1999) suggested that the most efficient fertiliser policy 

would be for only south aspects, and moist north aspects to receive P application, 

and for steep north facing slopes to receive limited P. Findings also showed that 

the greatest response to P fertiliser was from easy slopes (15-20) increasing it 
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pasture growth 1670 kg/ha over steep slopes. Suggesting that easy slopes should 

receive priority fertiliser application.  

 

Issues of differential fertiliser development are; 

1. The cost of equipping aircrafts with GPS technology. Gillingham et al., 

(1999) estimated an additional cost of $3.52/ha for imposing the new 

fertiliser technology, still however, making it profitable for farmers.  

2. The minimum size dimension of aerial application. The topographic 

variability over small scale of many hill-country farms means that the 20m 

wide fertiliser units used by Gillingham et al., (1999) could be pose 

application difficulty. Hill-country farms are likely to have many areas that 

are too small to treat separately, bringing about the issue of pragmatism.  

3. The third issue is the accuracy of application boundaries due to the 

physical form of fertilisers.  Fertilisers with higher granulation have the 

narrowest boundary widths (Gillingham, et al., 1999).  

 

 Soil mapping and its implications for differential fertiliser application  2.5.3

Soil mapping can influence the effectiveness of differential fertiliser application. 

Due to soil fertility being a component of pasture production, placing the 

optimum amount of fertiliser on the appropriate soil type could allow for pasture 

maximization.  Once a soil type has been sampled and the limiting nutrients 

analysed, farm-scale soil mapping would be able to accurately target P fertiliser. 

The problem being that the North Island hill-country does not have soil mapping 

with enough detail to be used as a practical management tool (Fraser & Vesely, 

2011). Soil mapping is made difficult by the mosaic of intermixed soil types with 

varying parent materials; sedimentary, calcareous and tephric origins.  

 

Fraser and Vesely (2011) created a farm scale soil map on a 3500 ha farm, 

Waikoha Station. The total cost of creating the farm scale soil map was $3 ha-1, 

approximately $10, 500 for the entire farm. The cost was made up by time spent; 

reviewing relevant soil and geological surveys, conducting field work, and 
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creating GIS layers. Though it was a small area detailed mapping exercise, 

mapping whole districts or regions would most likely cut the price per hectare 

and become more cost effective.  

 

Fraser and Vesely (2011) discussed the concept of using pasture production to 

break down hill-country farms into various fertiliser response blocks; steep land, 

moderate slopes, easy slopes and stock camps. Steep land had the lowest 

potential fertiliser response, and highest runoff risk. Moderate slopes had the 

potential to respond well to fertiliser dependent on soil type. Easy slopes will 

gain the most benefit from fertiliser. Application of additional fertiliser is not 

necessary in stock camps where soil fertility is not a limiting factor.   

  

  Soil P measurement Methods 2.6

 Introduction 2.6.1

Soil testing determines whether or not the soil has adequate nutrient levels to 

attain maximum pasture production, evaluates the balance of soil nutrients, and 

allows for empirical fertiliser recommendations (Hill Laboratories, 2012a).     

 

 Olsen P Measurement  2.6.2

Since the mid 1970’s, the Olsen P test has been used to measure plant available 

phosphorous, and determine the amount of labile inorganic phosphate in soils 

(Sinclair, et al., 1997). The practical use of the Olsen P test is to predict pasture 

response to phosphate fertilisers and assist in calculating pasture P requirements 

(Mclaren & Cameron, 1996). Olsen P is a necessary requirement for OVERSEER to 

generate a nutrient budget (Ledgard, et al., 1999). 

 

Sinclair et al. (1997) stated that there is little relationship between Olsen P and 

relative yield, and little variance between soil types. Claiming Olsen P can 

account for 28% of variation in relative pasture yield, and only when the Olsen P 

levels are greater than 20, will the relative yield be high. Sinclair et al. (1997) 
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concluded that the relationship between relative pasture yields and Olsen P was 

too varied for the use of fertiliser recommendations, and should only be used to 

predict the probability of a specified recommended yield not being achieved 

without the use of fertilisers. The poor relationship between Olsen P and relative 

yield could be due to several factors. These factors could be; measurement 

errors at study sites, the independent change over time of a single site, or and/or 

the study sites relationship varies at different sites 

 

Edmeades et al. (2006) however, showed that pasture production on Pumice 

Soils, Allophanic Soils and Recent Soils increased with increasing Olsen P. Peak 

relative pasture production for Pumice Soil was achieved at an Olsen P of 20, and 

Brown Soil can reach 95% of its maximum yield with an Olsen P of 11.5  

(Gillingham’s et al., 2007).  

 

Olsen P can be measured using air-dried or field-moist soils. Variations between 

air-dried and field-moist Olsen P were recorded in a study by Perrott et al. (1992) 

measuring on average of 3.9 units higher for air-dried soils than field-moist soils. 

The difference was thought to be due to the microbial P released in the process 

of soil drying. A modified Olsen test uses a volume of soil opposed to a weight for 

its extraction process, leading to a superior correlation with either plant yields or 

plant P uptake (Edmeades, et al., 2006). 

 

Truog, Olsen, Bray 1 and Bray 2, and Egner are the five most common soil test 

methods used to measure pasture response to phosphorus fertiliser. Saunders, 

et al., (1987) compared each five soil tests on New Zealand’s three major soil 

groups (yellow-brown loam, yellow-brown pumice soils, and yellow-grey earth). 

Of the five soil tests, Olsen P (using a volume of soil) gave the best prediction of 

probable minimal yield.  

 Phosphorus buffer capacity 2.6.3

Phosphorus buffer capacity is the capacity of a soil solutions phosphate 

concentration to resist change when soil phosphate is added or removed. The 
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larger the phosphorus buffer capacity, the more phosphorus bound to the soil, 

creating less P available to the plants (Burkitt, et al., 2002). Phosphorus buffer 

capacity influences the amount of added phosphorus fertiliser available for plant 

uptake. Solution P concentration is the main determinant of P availability to 

crops. The increase of P buffer capacity increases, the quantity of P necessary to 

maintain  solution P concentration that crop demand. (Moody, 2007). 

 

The phosphorus buffer capacity of a soil can influence Olsen P levels. For many 

New Zealand soils (Volcanic, Sedimentary and Recent soils), a lower P buffer 

capacity gives higher Olsen P levels for the same amount of P added. As a soil’s 

buffer capacity decreases, the need for additional fertiliser decreases; reducing 

money spent on fertilisers and reducing leaching into water ways. 

 

 Anion Storage Capacity 2.6.4

Anion storage capacity (ASC), previously termed phosphate retention, measures 

a soil’s ability to retain anions, like phosphates and sulphates, which are 

negatively charged nutrients. Soils with high anion storage capacities, like 

volcanic soil, will retain more phosphates and sulphates than sedimentary soil 

with a low ASC. If a soil has a high ASC, then it will retain sulphate better than 

one with a low ASC (Morton, 2012). ASC is measured on an arbitrary 0-100% 

scale (Rayment & Lyons, 2011). Fixation occurs due to the precipitation of soil 

phosphorus as insoluble P compounds, soil clays and/or organic matter bind 

tightly to soil P inhibiting the uptake of soil P by plant roots, or the incorporation 

of soil P into very stable soil organic matter (Quin, 2010).  

 

The anion storage capacity of Allophanic Soils in New Zealand have a typical 

range between 90-100, while 20-30% is a standard ASC level for a sedimentary 

soils. Two to three times the amount of capital P fertiliser is required for soil with 

high ASC than low ASC soils.  
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 Other Soil Chemical Properties 2.7

  Soil Ph 2.7.1

Soil pH is expressed as the concentration of hydrogen ions, with the pH scale 

being a base 10 exponential scale. Acidic soils have higher hydrogen ion 

concentration than hydroxide concentration and vice versa for alkaline soils 

(Singer & Munns, 2006)  

 

Soil pH is termed ‘the controlling variable’ due to its ability to govern the 

availability of most essential nutrients; cation exchange capacity, active and 

reserve acidity and buffering capacity (Cornfort & Frank, 2000, Ashman & Puri, 

2002).  Thompson, et al., (1973) stated that soil pH has little direct effect on 

plant growth; however, by influencing the availability of macro-nutrient, soil pH 

can indirectly impact plant growth (Figure 2.5) (Brady & Weil, 2008). 
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The rate of mineralization is enhanced by adjusting the pH such that it is 

optimum for general microbial metabolism, as the soil pH is increases, microbial 

activity is markedly increased. Mineralization of soil organic phosphorus 

increases following the liming of acidic soils (Dalal, 1977, White, 1987). Soil pH 

has the propensity to decrease with development, hence the need for regular 

application of lime every 2 – 4 years to maintain an optimal level of pasture 

production (Williams & Haynes, 1990). 

Figure 2.5 A schematic illustration of the relationship between plant nutrient 

availability and soil pH (Hill Laboratories, 2012c) after (Truog, 1948) 

Soil pH 
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 Cation exchange capacity 2.7.2

Cation exchange capacity (CEC) is the soil’s ability to hold exchangeable cations, a 

measure of a soil’s ability to retain nutrients (Singer & Munns, 2006). Soil pH 

effects CEC, as soil pH decreases, H+ attach to the colloids and other cations are 

pushed off into the soil solution, decreasing the cation exchange capacity. When 

soil pH is low, only the permanent charges on 2:1 clays, 1:1 clays, and some pH 

dependent allophone and organic colloids are able to hold exchangeable ions.  

 

CEC influences soil pH buffering capacity. The pH buffering capacity is the 

amount that a soil resists a change in pH, mostly due to the size of the cation 

exchange capacity and amounts of H+ in reserve (Mclaren & Cameron, 1996). 

Changing the H+ concentration of soil means that the equilibrium balance is 

upset, therefore, the soil acts to re-establish the cation exchange equilibrium by 

moving H+ to and from the reserve and active sites. Therefore, the change in H+ 

will always be smaller than the amount of H+ increased or decreased initially, 

which is referred to as being buffered against any changes in the soil’s pH. 

 Sulphate-sulphur 2.7.3

A soil’s sulphate-sulphur level is used as a measure for readily available sulphur. 

Sulphate-sulphur concentration are influenced by mineralisation, dung and urine 

patches, and fertiliser addition. Sulphate sulphur has a high level of mobility in 

the soil, therefore, is a largely varying, fluctuating variable (Hill Laboratories, nd).  

 

 Organic sulphur 2.7.4

Of total soil sulphur, 97% is in organic form. Organic sulphur is the measure of 

medium-term available S and the readily soluble fraction of the organic S pool 

(Hill Laboratories, nd).  

 

 Cations – Magnesium, Sodium, Potassium and Calcium 2.7.5

Magnesium, potassium and calcium are all essential base micro nutrients for 

plant growth. Sodium is not an essential plant nutrient required for plant growth. 
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However, it is required for optimal animal health and production (Edmeades & 

O'Connor, 2003). Cations within soil influence the way that nutrients move from 

the soil to the roots. The three basic methods in which nutrients make contact 

with the root surface for plant uptake are root interception, mass flow and 

diffusion.  

 

 Environmental issues related to fertiliser use 2.8

Small amounts of runoff into waterways can be detrimental to the environment 

(Hart, et al., 2004).  Phosphorus runoff from agricultural land is a major cause of 

non-point-source pollution. Pollution from phosphorus runoff causes 

contamination of streams and lakes, which can lead to accelerated 

eutrophication. Eutrophication and pollution to waterways leads to the 

degradation of aquatic animals and their habitats, drinking water and water 

recreation (Daniel, et al., 1998). Efficient fertiliser application by means of 

differential fertiliser application can help reduce runoff into aquatic systems 

(Gillingham, Morton, & Gray, 2003).   

 

The Sustainable Land Use Initiative (SLUI) aims to protect soil and farm assets 

from storms. Soil losses can have an effect on the rural economy and require 

government aid and relief (following storm events). Encompassed in the SLUI 

plan are Whole Farm Plans (WFPs), which aim to build both environmental (soil, 

land, water, and vegetation) and economic (farm business) sustainability, and 

entertains the notion that these two elements are interrelated and should not be 

treated individually (Horizons Regional Council, 2007) 

 

Within phosphorus fertilisers are many impurities which occur due to the original 

material used to make the fertilisers. Table 2.3 from McLaughlin et al. (1996) 

illustrates the mg/kg dry weight content of individual elements within phosphate 

rock, and its comparison to that found within the earth’s crust.  
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A review of the environmental impacts caused due to fertiliser addition by 

McLaughlin et al. (1996) showed the risk of increased contamination 

concentration due to fertilisers. They concluded that fluorine, mercury and lead 

pose negligible risk of toxicity due to accumulation. However, cadmium was the 

element of most concern.  

 

The accumulation of cadmium in soils is affected by the concentration of 

cadmium within the fertiliser. Within recent years, the use of lower cadmium 

concentrated fertilisers, and plant cultivars that restrict cadmium uptake, have 

helped reduce the accumulation of cadmium by plants. Increased cadmium 

concentrations are a risk due to the transfer from soil to plants to animals, 

intended for human consumption (Lognanathan, et al., 1996). 

 

 

 

Table 2.3 Heavy metals and other potential toxic elements in rock 

phosphate, compared with averages in the earth’s crust (McLaughlin, Tiller, 

& Naidu, 1996) 
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 Summary and Conclusion 2.9

 

Soil phosphorus occurs in two forms, organic and inorganic. The organic form of 

phosphorus is unavailable for plant uptake, but when mineralised is added to the 

plant available phosphorus pool. Inorganic phosphorus is readily available for 

plant uptake, but when immobilised it is converted to organic phosphorus. The 

phosphorus cycle is a dynamic system involving both inputs and outputs. 

Phosphorus inputs are dominated by the additions of fertiliser, dung, and dead 

plant material. Phosphorus losses mainly occur due to animal intake, erosion, 

export of animal products and animal transfer. Stock excretion predominantly 

occurs on lower slopes, increasing the transfer of nutrient and pasture 

production, when compared with medium and steep slopes (Rowarth & 

Gillingham, 1990). A study by Saggar et al. (1990) on a North Island hill country 

farm documented that 60% of animal excretion occurred on low slopes, 30% 

occurring on medium slopes and 10% on steep slopes. Losses to the phosphorus 

cycle mainly occur due to overland erosion/runoff. Phosphorus runoff consists in 

two forms, particulate and dissolved. Particulate runoff makes up 80% of total 

runoff, of which 70% is due to large scale storm events. The remaining 20% of 

total runoff occurs via dissolved P (Meneer, et al., 2004, Parfitt, et al., 2009). 

  

New Zealand North Island hill country is characteristically nutrient deficient, 

often requiring fertiliser additions to reach optimal pasture production. 

Influences on pasture production and stock transfer are dominated by slope, 

aspect, altitude, climate and grazing management differences. South facing 

slopes are cool and have high soil moisture content, allowing for the increased 

the presence of White clover. North facing aspects have the highest pasture 

production levels, due to their warmer, drier environment that is dominated by 

Subterranean clover. Low slopes have the highest pasture production out of all 

slope classes. The best overall response to fertiliser was spring to early summer. 

Unlike pasture production, south facing slopes had the best response to added 

fertiliser.  
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For hill country farms to reach optimal pasture production, recommended Olsen 

P levels were suggested. Edmeades, et al., (1984) suggested an Olsen P of 13, 

whereas more recently Ledgard, et al., (1991) recommended an optimal Olsen P 

levels of 20. Saunders, et al., (1987) demonstrated that out of Truog, Olsen, Bray 

1 and Bray 2, and Egner P, the best phosphorus test to measure pasture 

response to fertiliser was Olsen P. Edmeades et al., 2006 showed that pasture 

production increases with increasing Olsen P levels. To achieve optimal Olsen P 

levels, fertiliser management is vital.  

 

Technological advances in GIS and GPS have given aerial fertiliser applicators 

more precision than ever before.  With the aid of GIS and GPS, differential 

fertiliser application is able to be accurately and deliberately adjusting along an 

aircraft’s flight paths. Increased accuracy allows for contrasting landscape 

nutrient requirements to be individually met. Typically, single rate fertiliser 

application (Blanket fertiliser) accrues fertiliser losses of between 10 to 15%. 

Blanket fertiliser application can increase runoff into waterways which causes 

accelerated eutrophication (Hart, et al., 2004). The essential three components 

for differential fertiliser application to occur are; the temporal longevity of 

spatial soil fertility variations, the varying fertiliser additions must be based on 

pasture response trials or modelling, and  models must be based on quantitate 

scientific trials results (Gillingham, et al., (1991, 2001). Differential fertiliser 

application can increase a low P status hill country farm’s stocking rate by 0.5 

su/ha, and improve its economic return by 7.5%.  
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Chapter 3 

Physical Environment, 

Experimental Design, and Field 

Sampling and Laboratory Methods  

 

 Introduction 3.1

Chapter three contains the description of Blue Duck Station’s climate, geology, 

and soils. An explanation of the experimental design and sampling regime, and 

the laboratory techniques used for soil chemical analysis are also included.  

 

 Physical environment 3.2

 Location 3.2.1

Blue duck station is a dry stock, sheep and beef hill-country farm located in the 

central King Country (Figure 1.1).  

 Climate 3.2.2

The King Country has a mean winter (July) temperature of 7.5˚C, and an average 

summer (January) temperature of 18.3˚C. Frost occurs, on average 62 days of the 

year. The King Countries sunshine hours are 1,629, lower than New Zealand’s 

1,800 average sunshine hours (Pollock, 2011). High cloud cover and an inland 

sheltered location means that the King Country receives as little as 40% of 

possible sunshine hours (Abel, et al., 1978).  
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Precipitation is controlled by the King Country’s hilly topography and has a yearly 

rainfall of between 1525 and 1775mm. My study site at Blue Duck Station is 

located in the Taumarunui-Te Kuiti corridor rain belt, which receives orographic 

rainfall due to the Western hills (Abel, et al., 1978).   

 Parent material 3.2.3

The four main geological regions that can be distinguished within the King 

Country are (Abel, et al., 1978):   

1. Basalt zone in the south-east and north-west, from Tongariro-Ruapehu 

and Pirongia. 

2. Ignimbrite flow covering the north-east quadrant of the region, which 

encompasses islands of greywacke. 

3. Greywacke ranges that underlie the ignimbrite covering the northern half 

of the region.  

4. Young, deeply dissected regions of soft sediments from Mokau to 

Ruapehu, which are mostly siltstones and silty-sandstone, creating 

plateau’s and broad ridges. The broken hilly landscape has been formed 

due to the siltstones and silty-sandstones soft, easily erodible material. 

 

The soils at Blue Duck Station are formed mainly on tephra and sedimentary 

rocks. The sedimentary rock is of Miocene origin (24 Ma) and mainly fine-grained 

sandstone and mudstone. The sediments deposited in the Miocene were eroded 

from calcareous sandstone, mudstone, and limestone that were deposited 

in Oligocene times (34-24 Ma). Tephra deposits are from both rhyolitic and 

andesitic volcanoes, forming a sequence of thin, fine-grained interfingering 

tephra layers (Lowe, 2010).   Soil type and landscape variation are predominantly 

a reflection of the underlying rock type. The overlain tephra are deposited on the 

flat ridge tops, and accumulated on the valley floors via erosion. Large-scale 

mass movements are common on the steep slopes which are made up of 

Mahoenui Group mudstones (Edbrooke, 2005).  

 

http://en.wikipedia.org/wiki/Calcareous
http://en.wikipedia.org/wiki/Oligocene
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 Soil  3.2.4

Ridge tops are mantled with tephra, the hill-slopes are mainly sedimentary, and 

valley floors consist of a mixture of both sedimentary and tephra derived 

colluvium and alluvium, creating a mosaic of soil types. Blue Duck Station’s main 

soil types are; Typic Orthic Allophanic Soils (Ngaroma - Tapuwae soils), Acidic 

Orthic Brown Soils (Whangamomona - Muturangi soils) and Typic Orthic Recent 

Soils (Orbell, 1974).  

a) Allophanic Soils (Ngaroma - Tapuwae soils) 

Typic Orthic Allophanic Soils contain Allophane, Imogolite and Ferrihydrite 

minerals, which are products of weathered tephra material. Allophanic Soils are 

easily dug, feel greasy when moist, and samples are easily crumbled. Typic Orthic 

Allophanic Soils are permeable without barriers to deeply penetrating roots 

(Hewitt, 1998) (Landcare Research, 2012). 

b) Brown soil (Whangamomona - Muturangi soils) 

Brown Soils make up 43% of New Zealand and occupy the rolling and hilly lands 

of the southern King Country. Areas where Brown soils are common do not often 

experience summer drought or winter waterlogging, and are moderately to 

imperfectly drained (Hewitt, 1998, Landcare Research, 2012). Brown Soils are 

predominately formed in weathered sedimentary material (Orbell, 1974) where 

any tephra deposits have been removed by erosion. Subsoil is of brown or yellow 

brown colour due to weathered iron oxide from the parent material, and top-soil 

is dark grey-brown.  

c) Typic Orthic Recent Soils 

Recent soils show limited signs of soil-forming processes due to weak 

development. The A horizon is distinct, but lacks a developed B horizon 

(Landcare Research, 2012). 

 

 Land-use capability 3.2.5

The land-use capability system (LUC) is a rating of an area’s ability to sustain 

agricultural production (Lynn, et al., 2009). The LUC is a combination of The New 
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Zealand Land Resource Inventory, which records the five physical factors; rock 

type, soil, slope, present type and severity of erosion, and vegetation, and the 

LUC classification numbering system of eight classes, based on decreasing 

versatility and capability.  

 

Blue Duck Station had 5 main LUC ratings (Lynn, et al., 2009);  

- Class III erosion limited – 0-7° slope. This class has slight erosion potential, 

and is mainly used for pasture on undulating country, with moderate 

limitations to arable use. located on the flat areas of both high and low 

elevation 

 

- Class IV wetness limited - 0-7° slope. – This class is well suited to pastoral 

use; however, there is severe arable limitation due to wetness. Class IV 

wetness is located at the foot of some low slopes.  

 

- Class IV erosion limited – 7-15° slope.–This class has nil to moderate 

sheet erosion, and is well suited to pastoral land, however, there is 

severe arable limitation due to erosion. This class is located on the 

majority of medium slopes. 

 

- Class VI erosion limited – 21-25° Slope. This class has potential slight soil 

slip, earth flow and sheet erosion. Class VI is characteristic of relatively 

stable, good, North Island hill country which is non-arable due to erosion 

limitations. This class is limited to grazing pastures, and located in a small 

southern part of the farm. 

 

- Class VII erosion limited – >25° Slope .This class has slight to severe soil 

slip, sheet and earth slow potential,  only able to support extensive 

grazing or erosion control forestry. This class is located on the top eastern 

areas of the farm and bottom western corner. 



Chapter 3 Physical Environment, Experimental Design, and Field Sampling and 
Laboratory Methods 

 

41 
 

 Experimental design 3.3

 Experiment overview 3.3.1

GIS was used to delineate Blue Duck station into 6 landscape groups with similar 

aspect, slope and elevation.  

a) Digital elevation model 

Aspect, elevation and slope were created using a digital model of Blue Duck 

Station’s terrain. The DEM was sourced from the University of Waikato 

Geography Department, and was to an accuracy of 25m (Figure 3.1).    

  
Figure 3.1 Digital elevation model of Blue Duck Station  
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b) Slope 

Blue Duck Station’s effective farm land was split into 3 slope classes; low slope 

(1-12 ˚), medium slope (13-25 ˚) and steep slope (≥ 26 ˚) (Figure 3.2). The slope 

classes used were adopted from a nutrient transfer model, created by Saggar et 

al. (1990). 

  
Figure 3.2 Slope model of Blue Duck Station  
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c) Aspect 

Aspect classes were; North, 270 – 90 ˚ and South, 90 – 270 ˚ (Figure 3.3).  

  

Figure 3.3 Slope model of Blue Duck Station  
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d) Determination of landscape units 

The 6 landscape groups created were; north facing medium slopes (NM) (13-25˚); 

south facing medium slopes (SM) (13-25˚); north facing steep slopes (NS) (>25); 

south facing steep slopes (SS) (>25), flat ridge tops (RL) (1-12˚ > 400 m elevation) 

and valley floors (VL) (1-12˚ < 150 m elevation)(Figure 3.4).  

  

Figure 3.4 Landscape groups of Blue Duck Station  
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e) Study site locations 

The location of samples sites once the 3 replicates from each landscape groups 

had been randomly selected (Figure 3.5).  

Figure 3.5 Study site locations. Numbers represent landscape group replicate 
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 Experimental Design 3.4

 Selecting and locating study sites 3.4.1

An important aspect of field sampling was randomisation and the elimination of 

sample bias, allowing for robust and representative data collection and results. 

 

Three replicates for each of the 6 landscape groups were selected to be sampled, 

one replicate of each landscape group was randomly selected from the northern 

end of the farm and two replicates of each landscape group were randomly 

selected from the southern end of the farm. Randomisation was achieved by 

labelling each landscape unit with a number. A random number generator was 

then used to select 18 study sites, 3 from north facing steep slopes, 3 from north 

facing medium slopes, 3 from south facing steep slopes, 3 from south facing 

medium slopes, 3 from valley low slopes, and 3 from ridge low slopes.  

 

The sample location of each landscape unit was determined by identifying the 

centre of mass of each polygon which was located using the “centroid” 

(geometric centre of a polygon) function of ARC GIS.  The GPS co-ordinates of 

selected sample sites were then recorded and input into a hand-held GPS device, 

enabling the sample site to be located in the field.  
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Figure 3.6 Sample layout of sampling patter. Transect and grids  

Transect 

 Transect location and Sample Collection  3.4.2

 Sampling was undertaken in summer between the 24th of February and the 1st of 

March, 2012 (Figure 3.6). The sampling was comprised of one transect sample 

and 5 grid samples at each sampling site. The transect sites began from the 

centre of mass within each landscape unit and extended in a random compass 

direction, unless the site was atypical. An atypical transect was any site with the 

presence of obstacles, such as landslip scars, trough sites, gate sites, farm tracks 

or fences, in which case, the transect was moved across in 5m intervals until at 

least 10m clear of obstacles. If irregularities, such as obvious urine or dung 

patches were encountered, sample core sites were moved so they were 50 cm 

clear of the irregularity. 

 

The key attributes of each sample site were measured; latitude and longitude  

(GPS), altitude (GPS), slope (Abney level), aspect (compass), presence of animal 

dung, stock present and pasture quality. The transect line was stretched over 40 

m (Figure 3.7 a). A topsoil description (3.7 b) at the beginning and end of each  

transect, was achieved by digging a 40cm soil pit (Figure 3.7 c). Every 2 m along 

the 40 m transect a soil sample was taken and bulked (Figure 3.7de) using a 

stainless steel push sampler, to a depth of 75 mm and a diameter of 25 mm 

(Figure 3.7 e). A grid sample 4 m x 5 m was taken 10m perpendicular to the 

transect every 5 metres (Figure 3.7 f). Six bulked soil samples were acquired on 

each landscape unit (Figure 3.7 d).  
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Figures 3.7 - Summary of sample process - a - Laying out 40 m transect with 

2 m interval - b - Soil profile to allow for profile description - c - Digging soil 

pits at each end of the transect - d - Bulking the samples at the end of the 

transect - e - Taking samples every two metres over the 40 m transect - f - 

Pacing out 10 m to sample the grid  

 

d.  

e.  

a.  

c.  

b. 

f.  

f.  
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 Sample Labelling system 3.4.3

 Each sample bag was pre-labelled with its landscape unit name, replicate 

number and sample number (Figure 3.8). A summary of all sample names used is 

in Table 3.1. 

 

 

 

 

 

Table 3.1 Summary of sample names 

 
Landscape group 

 
Transect sample name 

 
        Grid sample name 

 
Ridge Low Slope 1  

RL 1 
 

RL1 G1 – RL1 G2 – RL1 G3 – RL1 G4 – RL1 G5 
 
Ridge Low Slope 2 

RL 2 
 

RL2 G1 – RL2 G2 – RL2 G3 – RL2 G4 – RL2 G5 
 
Ridge Low Slope 3 

RL 3 
 

RL3 G1 – RL3 G2 – RL3 G3 – RL3 G4 – RL3 G5 

 
Valley Low Slope 1 VL 1 

 
VL1 G1 – VL1 G2 – VL1 G3 – VL1 G4 – VL1 G5 

 
Valley Low Slope 2 VL 2 

 
VL2 G1 – VL2 G2 – VL2 G3 – VL2 G4 – VL2 G5 

 
Valley Low Slope 3 VL 3 

 
VL3 G1 – VL3 G2 – VL3 G3 – VL3 G4 – VL3 G5 

 
South Facing Steep Slope 1 SS 1 

 
SS1 G1 – SS1 G2 – SS1 G3 – SS1 G4 – SS1 G5 

 
South Facing Steep Slope 2 SS 2 

 
SS2 G1 – SS2 G2 – SS2 G3 – SS2 G4 – SS2 G5 

 
South Facing Steep Slope 3 SS 3 

 
SS3 G1 – SS3 G2 – SS3 G3 – SS3 G4 – SS3 G5 

 
South Facing Medium Slope 1 

SM 1 
 

       SM1 G1 – SM1 G2 – SM1 G3 – SM1 G4 – SM1 G5 
 
South Facing Medium Slope 2 

SM 2 
 

      SM2 G1 – SM2 G2 – SM2 G3 – SM2 G4 – SM2 G5 

 
South Facing Medium Slope 3 SM 3 

 
      SM3 G1 – SM3 G2 – SM3 G3 – SM3 G4 – SM3 G5 

 
North Facing Steep Slope 1 NS 1 

 
NS1 G1 – NS1 G2 – NS1 G3 – NS1 G4 – NS1 G5 

 
North Facing Steep Slope 2 NS 2 

 
NS2 G1 – NS2 G2 – NS2 G3 – NS2 G4 – NS2 G5 

 
North Facing Steep Slope 3 NS 3 

 
NS3 G1 – NS3 G2 – NS3 G3 – NS3 G4 – NS3 G5 

 
North Facing Medium Slope 1 

NM 1 
 

      NM1 G1 – NM1 G2 – NM1 G3 – NM1 G4 – NM1 G5 
 
North Facing Medium Slope 2 NM 2 

 
     NM2 G1 – NM2 G2 – NM2 G3 – NM2 G4 – NM2 G5 

 
North Facing Medium Slope 3 

NM 3 
 

      NM3 G1 – NM3 G2 – NM3 G3 – NM3 G4 – NM3 G5 

   

 
 

 

 

                   RL1  – RL1 G1 – RL1 G2 – RL1 G3 – RL1 G4 – RL1 G5                  

 

 

          Figure 3.8 Example of labelling system for ridge low slope sample site 1 

Transect sample Grid sample 1 Grid sample 2 Grid sample 3 Grid sample 4 Grid sample 5 

Landscape unit replicate  
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 Field Sampling – Native bush areas 3.5

In addition to pastoral sampling, native bush samples were taken on both virgin, 

unaltered vegetation, and on area of vegetation that has been deforested for 

pastoral use, but allowed to regenerate back to native vegetation. All samples 

were taken on south facing medium slopes, to allow for a comparison with 

pastoral south facing medium sites.  

 

The sampling regime within native vegetation consisted of 10 sample sites. Five 

sample sites were on a native vegetation site that had never been cleared for 

pastoral use, whilst the remaining five samples were taken from an area of 

native vegetation that had once been cleared and used for pastoral farming, but 

is now being left to regenerate. The method of sampling for native bush was 

similar to that of pastoral sampling, except that only a single transect was used 

and no grids were sampled. The attributes of the sample location were recorded, 

and every 2 m along the 40 m transect a soil sample was taken using a stainless 

steel push sampler, to a depth of 75 mm and a diameter of 25 mm. Each soil 

sample consisted of 20 bulked cores.  

 

In the areas of regenerating native vegetation, occasional patches of cow dung 

were seen on stock trails which are evidence that there had been some stock 

movement. Stock trails were avoided for the purpose of sampling. 

 

After discussion with the farmer on the most appropriate location to sample, a 

random sampling point was picked by walking 200 m in a random compass 

direction (random number generation) from the point of entry. Once the initial 

sample location was found for both the virgin and secondary vegetation sites, 

the subsequent 4 sample locations were taken 200 m from where the last 

transect ended.  
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 Laboratory Methods  3.6

 Introduction 3.6.1

Eurofins Labs analysed soil samples for Olsen P, anion storage capacity, pH, 

organic sulphur, sulphate-sulphur, calcium, potassium, magnesium and sodium. 

A separate analysis of soil pH was undertaken at the University of Waikato, Soil 

and Ecosystems Laboratory. The process of sample preparation and analysis are 

covered in this section. Methods for soil analysis (unless otherwise stated) were 

provided by Eurofins laboratory. 

 

 Sample Preparation 3.6.2

After samples were collected, I stored them in aluminium trays to begin air 

drying for three weeks. Samples were then sieved to 2 mm. Once sieved, I placed 

the samples in an oven at 35 ˚C for 21 hours to complete air drying. Samples 

were stored in air tight, sealed, labelled polythene bags to await analysis. 

 

 Soil pH (Method undertaken and supplied by 3.7

Eurofins Labs)  

Manual determination of soil pH was determined through a water slurry and left 

to stand for 16-24 hours (Eurofins Labs after, Blackmore, et al., (1987), Cornforth, 

(1980); Lee, et al., (1991)).  

 Reagent 3.7.1

a) Potassium Chloride (3 M): 

b) Hydrochloric Acid Cleaning Solution (0.1 M): 

Diluted 17.5 mL of HCl to 2 L with water. 

c) pH Electrode Storage Solution: 

Dissolved 1 g KCl in pH 7.00 buffer solution and made up to 200 mL in a 

volumetric flask with the buffer. 
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 Standards 3.7.2

a) Stock pH 4.00 Buffer ± 0.02: 

b) Stock pH 7.00 Buffer ± 0.02: 

 

 SAMPLE PREPARATION 3.7.3

Placed 14 ± 0.5 mL of soil samples into beakers and added 29.0 ± 0.5 mL of water. 

Samples were covered to avoid evaporation and left for 16-24 hours in a 

constant temperature room (20°C). 

 

 ANALYSIS 3.7.4

The pH meter was calibrated using pH 7.00 and pH 4.00 buffers until the slope 

displays between 97% and 100%. Soil samples were then thoroughly mixed, the 

pH electrode was inserted and the sample blasted with a compressed air jet 

inserted into the bottom of the soil slurry for 20 seconds, the samples were then 

allowed to settle to maximum depth. The pH measurement was recorded when 

pH meter beeped and calibration was checked after each batch of 40 samples. A 

maximum pH fluctuation of ±0.02 was allowed before recalibration was 

necessary 
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 AMMONIUM ACETATE EXTRACTABLE CATIONS 3.8

(Method undertaken and supplied by Eurofins Labs) 

Ammonium acetate soil extracts are analysed for the cations (Ca, K, Mg, Na) by 

an automated 4-channel flame spectrophotometer (Eurofins Labs after, 

Cornforth, (1980); Lee, et al., (1991), Clinton, (1967)). 

 Apparatus 3.8.1

· Reciprocating shaker. 

· Atomic absorption/emission spectrophotometer (air/C2H2). 

· AIM 1250 Autosampler. 

 Reagents 3.8.2

a) Extractant (1 M Ammonium Acetate): 

· 14158 g of 98% CH3COONH4 was weighed out and transfered to a vat. 

Fill vat to 180 L mark with water. 

· Mixture was stirred thoroughly and left overnight 

· pH was checked = 7.00 ± 0.01 

· If pH needed adjustment, ammonium solution (25%) or acetic acid 

was used. 

 Standards 3.8.3

a) Stock Standards: 

(i) 1000 µg/mL Mg: 

 Magnesium Nitrate Spectrosol Atomic Absorption Standard. 

(ii) 40000 µg/mL Ca: 

 Calcium Chloride Volumetric Solution. 

(iii) 5000 µg/ml Ca: 

 6.2431g CaCO3 (oven dried 3hrs, 105°C) was weighed into a 500mL 

volumetric flask, 200mL water, and 20mL concentrated Hydrochloric acid 

was added and diluted to 500mL mark with water. 
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(iv) 1000 µg/ml Na: 

 Sodium Nitrate Spectrosol Atomic Absorption Standard. 

(v) 1600 µg/ml K: 

 3.051 g KCl (oven dried for 3 hours at 105°C) was dissolved in a 1000mL 

volumetric flask with water. 

 

b) Working standards 

Stock standard amounts (ml) in Table 3.2 were pipetted into a series of 100mL 

volumetric flasks and made to volume with the extractant.  

 

 

The cation concentration of the standards in µg/mL and Quick Test Units are 

shown in Table 3.3 

 

Table 3.3 Cation concentration in standards, and the corresponding 

concentrations in the soil in Quick Test Units (QTU) 

Standards Mg Ca Na K 

µg/mL 

in 

solution 

QTU in 

solution 

µg/mL 

in 

solution 

QTU in 

solution 

µg/mL 

in 

solution 

QTU in 

solution 

µg/mL 

in 

solution 

QTU in 

solution 

Blank 0 0 0 0 0 0 0 0 

Low 10 10 125 5 10 10 40 10 

Middle 25 25 250 10 25 25 80 20 

High 50 50 500 20 50 50 120 30 

 

Table 3.2 Stock standard amounts (ml) 

Standard Mg (mL) Ca (mL) Na (mL) K (mL) 

Blank 0 0 0 0 

Low 10 25 10 25 

Middle 25 50 25 50 

High 50 100 50 75 
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 Sample Preparation  3.8.4

The soil sample (4.4 mL) was placed into 50mL conical flasks and 20.0 ± 0.2 mL of 

extractant was added from the dispenser. The lids were placed onto the flasks 

and shaken for 2 minutes ± 5 seconds on the reciprocating shaker. Immediately 

after shaking, the extractants were filtered through 5B filter papers into 10 mL 

sample tubes. Sample were then placed onto a sample rack and loaded onto the 

auto-sampler, with the standards positioned from 1 to 6 in the standard rack. 

 

 Analysis  3.8.5

Samples were analysed through a spectrometer, with a minimum wavelength 

reading of around 285 nm. 

 

 Dilutions  3.8.6

Samples with concentrations greater than the top standard were diluted 6 times 

in a sample tube ie. 1 mL sample + 5 mL extractant. A note was made, and the 

computer analysing the sample made adjustments.  

 Calculations 3.8.7

The raw spectrometer signal was processed through an analogue to digital 

converter, feeding data into the labs software application, which automatically 

calculating the cation level of each sample 
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 OLSEN PHOSPHATE (Method undertaken and 3.9

supplied by Eurofins Labs) 

Extracting the soil with 0.5 M sodium bicarbonate solution at pH 8.5. The 

orthophosphate ion (PO4
-) reacts with ammonium molybdate and antimony 

potassium tartrate under acidic conditions to form a yellow complex. These 

complex is reduced with ascorbic acid to form the characteristic blue colour, 

which absorbs at 880nm. The absorbance in proportional to the concentration of 

orthophosphate in the sample. (Eurofins Labs after, Olsen, et al., (1954), Murphy 

& Riley, (1962), Watanabe & Olsen, (1965)). 

 Apparatus 3.9.1

· Temperature controlled end-over-end shaker. 

· Temperature controlled extractant vat. 

· Lachat Flow Injection Analyser 

 

 Extractant Reagents  3.9.2

a) Sodium Hydroxide (4 M): 

A 2 L beaker filled with 1.5 L of water was placed in the fume cupboard in a tray 

containing cooling water, which then had 320 g of NaOH pellets added, a few at 

a time dissolved, then left to cool completely. The solution was transferred to a 

2000mL volumetric flask and made to volume with water, mixed, and transfered 

to a labelled plastic container. 

b) Polyacrylamide Solution: 

A 2L beaker was filled with 1500 mL of water and boiled, in which 1.0 g of 

polyacrylamide was then added, and stirred until dissolved. Once completely 

cooled, it was transferred to a 2L volumetric flask and made to volume with 

water. 
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c) Extractant (0.5M Sodium Bicarbonate, pH 8.50 ± 0.02, 25ºC): 

For every litre required to make the vat to 100 L, 42 g of NaHCO3, 4.0 mL of 4 M 

NaOH and 5.0 mL of polyacrylamide solution was added. The remainder was 

made up to 100 L with water, and left overnight to stir with an automatic stirrer. 

d) pH 7.00 Buffer 

e) pH 9.20 Buffer 

 

 Flow Injection Reagent 3.9.3

a) Reagent 1. Stock Ammonium Molybdate Solution: 

In a 1L volumetric flask, 40.0g of ammonium molybdate tetrahydrate [(NH4) 

6Mo7O24.4H2O] was dissolved, using approximately 800mL of deionised water. 

The mixture was then diluted to make 1 L and mixed with a magnetic stirrer for 

four hours.  

b) Reagent 2. Stock Antimony Potassium Tartrate Solution: 

In a 1L volumetric flask, 3.22g of antimony potassium tartrate (potassium 

antimony tartrate hemihydrate K(SbO)C2H4O6.1/2 H2O) was dissolved, using 

approximately 800mL of deionised water. Then diluted to 1L and mixed with a 

magnetic stirrer until dissolved.  

c) Reagent 3. Molybdate Colour Reagent: 

In a 1 L volumetric flask, 500mL of deionised water was added, to which 35.0mL 

of concentrated sulfuric acid (H2SO4) was added. Once cooled, 72mL of 

Antimony Potassium Tartrate Solution (Reagent 2) and 213mL Ammonium 

Molybdate Solution (Reagent 1) was added, then diluted to make 1 L, inverting to 

mix 

d) Reagent 4. Ascorbic Acid Reducing Solution: 

In a 1L volumetric flask, 60.0g of ascorbic acid was dissolved using approximately 

800mL of deionised water. 2.0g of dodecyl sulfate (CH3(CH2)11OSO3Na) was 

then dissolved into the solution, which was then made to 1L with deionised 

water, mixed by inversion.  
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e) Reagent 5. Sodium Hydroxide – EDTA Rince: 

65g of sodium hydroxide (NaOH) and 6g of tetrasodium ethylendiamine 

tetraactic acid (Na2EDTA) was dissolved in 1L of deionised water. 

 

 Standards 3.9.4

a) Diluent (1 M Sodium Bicarbonate): 

In a 1000 mL beaker, 84.00 ± 0.01 g of NaHCO3 was dissolved into approximately 

800 mL of water, with a magnetic stirrer. The pH was adjusted to 8.50 ± 0.02 by 

adding 4 M NaOH to increase pH, or hydrochloric acid to decrease pH. The 

NaHCO3 was transferred to a 1000 mL volumetric flask and made to volume with 

water.  

b) Stock Standard (500 ug/mL P): 

In a 250 mL volumetric flask, 0.5490 ± 0.001 g of KH2PO4 was dissolved with 

water. The KH2PO4 was dried at 105°C for 3 hours before use. 

c) Secondary Standard (12.5 ug/mL P): 

In a 1000mL volumetric flask, 25 mL of stock standard was diluted with water.. 

d) Working Standards: 

100 mL of the 1M NaHCO3 solution was transferred to a series of 200 mL 

volumetric flasks. The 25 QTU standard was used as the check standard and 

made up to 500mL. 250 mL of the 1M NaHCO3 solution was transferred to the 

500 mL flask and the amounts of secondary standard in Table 3.4 were added to 

make to volume. 
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Table 3.4 Amounts of secondary standard needed to make up to volume 

Standard Volume of Flasks 

(mL) 

Volume of 

Secondary Standard 

(mL) 

Concentrations 

Solution 

(µg/mL) 

Soil 

(QTU) 

1 200 0 0 0 

2 200 4.0 0.25 5 

3 200 8.0 0.50 10 

4 500 50.0 1.25 25 

5 200 40.0 2.50 50 

6 200 80.0 5.00 100 

7 200 100.0 6.25 125 

 

e) Working Standards 

For each 1L required, 100 L milliQ solution, 5.0mL of polyacrylamide solution and 

4.0 mL of 4 M NaOH was added.  

 

 Sample Preperation 3.9.5

The pH meter was calibrated at the buffer temperature using the pH 7.00 and pH 

9.22 buffers. The extractant temperature was measured and pH meter was 

adjusted to this temperature. Each morning prior to use, the extractant was 

checked that it is at pH 8.50 ± 0.02. 

In a 250 ml Erlenmeyer flasks, 4 mL of soil and 80 ± 2mls of extractant was added 

into the flasks. Samples were shaken on an end over end shaker for 30 minutes 

at 25°C.  Samples were then filtered through number 6 filter paper, into 10 mL 

test tubes,  transferred to a test tube racks and placed onto an auto-sampler. 

 

 Analysis 3.9.6

A Lachat Flow Injection Analyser was used to analyse the samples for Olsen P  
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 Potassium Phosphate Extractable Sulphate 3.10

Sulphur (Method undertaken and supplied by 

Eurofins Labs) 

Potassium phosphate extracts are analysed for sulphate-sulphur by automated ion 

chromatography (Eurofins Labs after, Waltkinson & Kear, (1994)).  

 Extractant  3.10.1

a) 0.02M Potassium Phosphate (monobasic) pH = 4.00 ± 0.02 

In a 10L aspirator, 27.2g of 0.02M Potassium Phosphate (monobasic) was 

dissolved in approximately 600mL of water overnight. Then made to 10L with 

water and the pH was adjusted to 4.00 ± 0.02, using 20% HCI or KOH solution. 

 

 Sample Preparation  3.10.2

In a 50mL conical flask, 4.00 ± 0.01g of soil and 20 ± 0.5 mL of extractant was 

added. The samples were then shaken for 30 ± 5 minutes on an end over end 

shaker and filtered through number 5C filter papers into test tubes immediately 

after shaking. If extracts were cloudy, they were re-filtered through a new filter 

paper until a clear filtrate was obtained. Once filtered, test tubes were 

transferred into the test tube rack and analysis on the Dionex ICS-2100 Ion 

Chromatography System (ICS-2100). 

 

 Analysis using ICS-2100 ION CHROMATOGRAPH 3.10.3

· The ICS-2100 ION CHROMATOGRAPH was used to analyse the samples for 

sulphate sulphur 

·  

 Standards 3.10.4

a) Stock Standard (1000ug/mL S): 

Dissolve 4.4308g of Na2SO4 (oven dried for 3 hours at 105°C) in a 1000 mL 

volumetric flask with Milli Q water. 
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b) Secondary Standard (100ug/mL S): 

Dilute 100mL of the stock standard in a 1L volumetric flask with the 

extractant. 

c) Working Standards: 

Secondary standard were diluted with the extractant into a series of 500mL 

volumetric flasks, amount in Table 3.5. 

 

Table 3.5 Amounts of secondary standards to be diluted with the extractant 

Standard Volume of Flasks (mL) Concentration of sulphate sulphur in 

Solution in (µg/mL) Soil Sample in QTU 

1 5 1 0 

2 15 3 0.25 

3 50 10 0.50 

4 150 30 1.25 

 

 Instrument QC Standards 3.10.5

a) Stock 1500 (ug/mL S): 

Weighed 2.038g of dried K2SO4 and diluted into 250mL flask. 

b) Sub Stock 75 (ug/mL S): 

Diluted 10mL of 1500 ug/mL Stock into a 200mL flask. 

c) Instrument QC Standard 15 QTU (3 ug/mL S): 

Diluted 20mL of 75 ug/mL Sub Stock with the extractant into 500mL 

 Analysis 3.10.6

The Chromeleon 7 was used to analyse the samples for sulphate sulphur 
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 Potassium Phosphate Extractable Organic 3.11

Sulphur (Method undertaken and supplied by 

Eurofins Labs) 

Potassium phosphate extracts analysed for sulphate-sulphur are then measured 

for total sulphur by ICP-OES and the difference calculated is reported as Organic 

Sulphur (Eurofins Labs after, Watkinson & Perrot, (1990), Watkinson & Kear, 

(1996), Watkinson & Kear, (1996) 

 

 APPARATUS 3.11.1

 End over End Shaker. 

 Apparatus TJA IRIS-AP ICP-OES or Perkin Elmer OPTIMA 2000 ICP - OES. 

 EXTRACTION 3.11.2

a) Extractant - 0.02M Potassium Phosphate (monobasic) pH = 4.00 ± 0.02: 

10L of extractant was made. In a 10L aspirator, 27.2g of 0.02M Potassium 

Phosphate was dissolved with approximately 600mL of water. 10mL of 

chloroform was added under fume hood and left to dissolve overnight, then 

made to 10L with water. The pH was adjusted to 4.00 ± 0.02 using 20% HCI or 

KOH solution.  

 STANDARDS 3.11.3

a) Stock Standard (1000ug/mL S): 

4.4308g of Na2SO4 (oven dried for 3 hours at 105°C) in a 1000mL volumetric 

flask with Milli Q water. 

a) Secondary Standard (100ug/mL S): 

In a 1L volumetric flask, 100 ml of the stock standard was diluted with the 

extractant. 
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b) Working Standards: 

Working standard were made by diluting secondary standard with extractant, to 

the levels shown in Table 3.6, into a series of 500mL volumetric flasks.  

 

Table 3.6 Amounts of secondary standards to be diluted with the extractant 

Standard Volume of Flasks (mL) Concentration of sulphate sulphur in 

Solution in (µg/mL) Soil Sample in QTU 

1 5 1 0 

2 15 3 0.25 

3 50 10 0.50 

4 150 30 1.25 

 

 INSTRUMENT QC STANDARD 3.11.4

a) Stock 1500 (ug/mL S) 

Diluted 2.038g of dried K2SO4 into a 250mL flask. 

c) Sub Stock 75 (ug/mL S) 

Diluted 10mL of 1500 ug/mL Stock into a 200mL flask. 

d) 3(ug/mL S) Instrument QC Standard: 

Diluted 20mL of 75 ug/mL Sub Stock with extractant into 500mL 

 

 SAMPLE PREPARATION 3.11.5

Weighed 4.00 ± 0.01g of soil into a 50 mL conical flask and then dispensed 20 ± 

0.5 mL of extractant into each flask. The flasks were then shaken for 30 ± 5 

minutes with an end over end shaker. Extracts were then filtered through 5C 

filter paper into test tubes, immediately after shaking. If extracts were cloudy, 

they were re-filtered through a new filter paper until a clear filtrate was obtained. 

The samples were run on ICP-OES for Total sulphur. The same samples were then 

analysed for sulphate sulphur on HPIC (High Performance Ion Chromatography) 
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and the organic sulphur was measured by the difference between total sulphur 

and sulphate sulphur.  

 ANALYSIS 3.11.6

Soil S Method programme at Eurofins Lab was used for analysis and processed in 

LABMAN 

 

 Anion Storage Capacity (Method undertaken and 3.12

supplied by Eurofins Labs) 

A 5 g soil sample is shaken with a buffered phosphate solution for 16 hours on an 

end-over-end shaker. A buffer pH of 4.6 is used to closely achieve the maximum 

phosphate retention in many soils. The amount of phosphate remaining in 

solution is determined calorimetrically using visible spectroscopy and from this 

the Anion Storage Capacity (phosphate retention) is calculated (Eurofins Labs 

after, Blackmore, et al.,(1987)). 

 

 APPARATUS 3.12.1

· End-over-end shaker. 

· Gilson 401 Dilutor 

· Shimadzu UV Mini 1240 Spectrophotometer 

 REAGENTS 3.12.2

a) Buffer Solution (pH 4.6, 1000 µg/mL P): 

In a 10L aspirator, 43.94 g of KH2PO4 and 136.0 g CH3COONa.3H2O was 

dissolved in 2 L of water, 57 mL of acetic acid was then added and then made 

to volume. 

b) Molybdo-vanadate Stock Reagent 

In two separate 600 ml portions of water, 40g of Ammonium  olybdate 

((NH4)6 o7O24.4H2O) and 2g of Ammonium Vanadate (NH4VO3) were 

disolved. They were then dissolved by heating and gently mixing (less than 
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60  C). The two solutions were mixed and 280 ml of concentrated Nitric Acid 

was added, then diluted to 2 litres and mixed well.  

c) Molybdo-vanadate Working Reagent 

Diluted stock vanadate reagent four times i.e. diluted 250ml of stock into 

1000ml water. 

 STANDARDS 3.12.3

a) Diluent (Sodium Acetate Trihydrate): 

In a 1000 mL volumetric flask, 13.60 g of CH3COONa.3H2O and 5.7 mL acetic 

acid were diluted and made to volume with water. 

b) Working Standards. 

Working standards were made up by adding varying amounts of P buffer 

solution (1000 g/mL) (Table 3.7) into a series of 100 mL volumetric flasks and 

made to volume with the diluent.  

 

 

Table 3.7 Working standard amounts 

Standard  Volume of P buffer solution 

added (mL) 

Anion Storage Capacity 

Solution in (µg/mL) In soil (%) 

1  0 0 100 

2  20 200 80 

3  50 500 50 

4  70 700 30 

5  100 1000 0 

 

 SAMPLE PREPARATION 3.12.4

5.00 ± 0.01g of soil samples were weighed into 50 mL conical flasks,  adding 25.0 

± 0.5 mL of the buffered P solution.  Flasks were stoppered and shaken with an 

end-over-end shaker for 16 hours ± 15 minutes. Samples were filtered into test 

tubes through Advantec 131 fluted filter paper.  

 



Chapter 3 Physical Environment, Experimental Design, and Field Sampling and 
Laboratory Methods 

 

66 
 

 ANALYSIS 3.12.5

Calibrated Gilson 401 Dilutor was used to analysis the samples. 9 mLs of 

Molybdo-vanadate working reagent was added to 0.1 ml of sample and 

standards and placed into numbered test tubes, mixed well and left to colour up 

for at least 1 hour. A spectrophotometer was used to measure the colour.  

 

 Soil pH analysis at Waikato University 3.13

There are several complications and difficulties to be aware of when measuring 

soil pH. Using a pH electrode reflects the hydrogen activity in the bulk soil 

solution and not the total hydrogen ion activity around the soil particle. Soil pH 

provides useful links with other soil properties and allows for important soil 

management decisions (Thompson & Troeh, 1973).  

 

Soil pH was measured following the method of Blakemore, et al., (1987) 

1. Acid wash and rinse 50 ml sample pots with deionised water  

2. Weighed 10 g of soil and 25 ml of deionised water into each pot 

3. Homogenised for 6 seconds on high speed 

4. Left overnight to settle 

5. Measured the pH using an Jenway 3510 pH meter. Checking the 

temperature of the solution each morning, and periodically throughout 

analysis to monitor and the meter was adjusted to the current 

temperature. 
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Chapter 4 

 Results 

 Sample site description 4.1

The combination of photographs at the beginning of this chapter helps illustrate 

the location of each study site within the landscape. A photo of the top soil, 

pasture composition, and overall site photo are displayed for each replicate of all 

landscape groups.  
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 Valley Low study unit one 4.1.1

Below are the main attributes of valley low, study site one; location, altitude, 

slope, soil class, vegetation, stock and other comment to be record present at 

site (Figure 4.1). 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Valley low site one, site data summary  

Location:  157 ˚ 4’ 2.8’’ 39 ˚ 7’ 24.746’’    Altitude: 145m     Slope: 4°      
Soil class:  Allophanic Soil 
Vegetation: Moderate Scotch thistles with some clover and mixed grasses. 
Stock: No stock at present, 25 steers one week previously. 
Other comments:  Flat, highly grazed area. The only flat area on the farm receiving lime 
fertiliser. 
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 Valley Low study unit two 4.1.2

 Below are the main attributes of valley low, study site two; location, altitude, 

slope, soil class, vegetation, stock and other comment to be record present at 

site (Figure 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Valley Low slope site two, site data summary 

Location:  39 ˚ 07’ 59.4 ’’ 175˚ 03’ 41.9 ’’Altitude: 283m     Slope: 3°      
Soil class:  Allophanic Soil 
Vegetation: Apparent rushes. Mixed grasses, some grass gone to seed. 
Stock: Sheep (1200-1500) Cattle (100 steers). 
Other comments:  Flat from the beginning of the transect, then steepened off at the end of  
(4-5°). Not reached by the lime trucks, though similar in appearance to VL1.  
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 Valley Low study unit three 4.1.3

Below are the main attributes of valley low, study site three; location, altitude, 

slope, soil class, vegetation, stock and other comment to be record present at 

site (Figure 4.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Valley Low slope site three, site data summary 

Location:  39˚ 08’ 02.3 ’’ 175˚ 03’ 30.07 ’’ Altitude: 249m    Slope: 9°     
Soil class:  Allophanic Soil 
Vegetation: Pasture has been noticeably grazed. Grass at a medium length (30cm), less 
grazing than VL1 or VL2. 
Stock: Wild deer and goats seen grazing, no domestic stock at present. 
Other comments:  Small paddock in comparison to the rest of the farm. Potentially used as 
a holding paddock, and surrounded by historic Whare, old motorbike track and small creek. 
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 Ridge Low study unit one 4.1.4

Below are the main attributes of ridge low, study site one; location, altitude, 

slope, soil class, vegetation, stock and other comment to be record present at 

site (Figure 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Ridge Low slope site one, site data summary 

Location:  39 ˚ 07’ 27.5 ’’ 175 ˚ 04 ’ 51.6 ’’Altitude: 428m    Slope: 7°      
Soil class:  Brown Soil 
Vegetation: For the most part grass has been well grazed, though some small patches of 
grass have gone to seed. High clover content and mixed grasses. 
Stock: 1200 - 1500 sheep one week previously. 
Other comments: High point on the farm, and what looks like an old fence line and track to 
the right. Narrow ridge, 50m wide. High winds, potential wind erosion. 
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 Ridge Low study unit two 4.1.5

Below are the main attributes of ridge low, study site two: location, altitude, 

slope, soil class, vegetation, stock and other comment to be record present at 

site (Figure 5.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Ridge Low slope site two, site data summary 

Location:  39 ˚ 08’ 16.4 ’’ 175˚ 03 ’ 49.3 ’’ Altitude: 463m    Slope: 2°      
Soil class:  Allophanic Soil 
Vegetation: High clover content and mixed grasses. Pasture has been well grazed. 
Stock: Well grazed, 1200-1500 sheep. 
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 Ridge Low study unit three 4.1.6

Below are the main attributes of ridge low, study site three; location, altitude, 

slope, soil class, vegetation, stock and other comment to be record present at 

site (Figure 4.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Ridge Low slope site three, site data summary 

Location:  39 ˚ 08’ 11.4 ’’ 175 ˚ 03’ 49.5’ Altitude: 459m    Slope: 1°      
Soil class:  Brown Soil 
Vegetation: Well grazed. 
Stock: 1200-1500 sheep and 100 steers.  
Other comments: A low slope, however, the top soil is shallower. Undulation is higher than 
other ridge low slopes. Steep faces both sides. 
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 North facing steep slope study unit one 4.1.7

Below are the main attributes of north facing steep slope, study site one; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 North Facing steep slope site one, site data summary 

Location:  39 ˚ 08’  11.4 ’’ 175 ˚  03 ’ 49.5 ’ Altitude: 361m    Slope: 20°    Aspect: 20°  
Soil class:  Recent Soils 
Vegetation: Long patches of grass that have gone to seed. Noticeable grazing in some areas, 
between long grass patches. 
Sock: No stock at present. 1200-1500 sheep one week previously. Feral goats grazing. 
Other comments: Obvious sheep dung. 
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 North facing steep slope study unit two 4.1.8

Below are the main attributes of north facing steep slope, study site one; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 North Facing steep slope site two, site data summary 

Location:  39 ˚ 08’  09.6 ’’ 175 ˚  03 ’ 48.2 ’’ Altitude: 350m    Slope: 36°    Aspect: 65°  
Soil class:  Recent Soil 
Vegetation: Mixed grass, predominant Browntop. 
Stock: 1200-1500 sheep. Well grazed. Sheep grazing below, on the lower slopes.  
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 North facing steep slope study unit three 4.1.9

Below are the main attributes of north facing steep slope, study site two; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.9).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 North Facing steep slope site three, site data summary 

Location:  39 ˚ 08 ’  09.6 ’’ 175 ˚  03 ’ 48.2 ’’Altitude: 431m    Slope: 35°    Aspect: 294°  
Soil class:  Brown soil 
Vegetation: Some scattered ferns and bush. Grass gone to seed. 
Stock: 1200-1500 sheep one week previous. 100 steers currently grazing.  

 



Chapter 4 Results 

 

77 
 

 North Medium study unit one 4.1.10

Below are the main attributes of north medium steep slope, study site one; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 North Facing medium slope site one, site data summary 

Location: 39 ˚ 07 ’  21.5 ’’ 175 ˚  04 ’ 40.2 ’’ Altitude: 273m    Slope: 15°    Aspect: 15°  
Soil class:  Brown soil 
Vegetation: Patches of rushes. Some grass gone to seed, but areas noticeable grazing 
Stock: 1200-1500 sheep one week previous. 
Other comments: A raised “micro” ridge around a wet area. Small creek to the left side of 
sample sites, bordering borders native bush. 
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 North Medium study unit two 4.1.11

Below are the main attributes of north facing medium slope, study site two; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 North Facing medium slope site two, site data summary 

Location: 39 ˚ 08 ’  25.7’’ 175 ˚  03 ’ 28.9 ’’ Altitude: 387m    Slope: 11°    Aspect: 300°  
Soil class:  Brown soil 
Vegetation: Highly grazed, Scotch thistles, some patchy ferns. Poor pasture. 
Stocking: Sheep present, 100 Steers, 30 cows. 
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 North Medium study unit 3 4.1.12

Below are the main attributes of north facing medium slope, study site three; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.12). 

 

 

 

 

 

 

 

 

 

Figure 4.12 North Facing medium slope site three, site data summary 

Location: 39 ˚ 07’ 56.6’’ 175˚  03’  29.6’’ Altitude: 260m    Slope: 14°    Aspect: 320°  
Soil class:  Brown soil 
Vegetation: Long grass gone to seed.  
Stock: Little noticeable grazing. 
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 South Steep study unit one 4.1.13

Below are the main attributes of south facing steep slope, study site one; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 South steep slope site one, site data summary 

Location: 39˚ 07’ 28’’ 175 ˚  04 ’ 08.9 ’’Altitude: 208m    Slope: 34.2°    Aspect: 208°  
Soil class:  Brown soil 
Vegetation: Scattered bush. Mixed grass species and clover present. Pasture gone to 
seed. Majority of grass 40-60 cm long. 
Stock: Low level cattle grazing – 25 steers. 
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 South Steep study unit two 4.1.14

Below are the main attributes of south facing steep slope, study site two; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 South steep slope site two, site data summary 

Location: 39 ˚  08 ’  10.0’’ 175 ˚  03 ’ 54.3 ’’ Altitude: 437m    Slope: 30°    Aspect: 136°  
Soil class:  Brown soil 
Vegetation: Mixed grasses and some patchy ferns. 
Stock: 1200-1500 sheep at present. 
Other comments: Many well-worn sheep tracks. Stock camp ¾ of the way up the steep 
slopes. In the morning sheep were grazing on the north facing slopes. 
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 South Steep study unit three 4.1.15

Below are the main attributes of south facing steep slope, study site three; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.15).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 South steep slope site three, site data summary 

Location: 39˚  08’  23.8 ’’ 175˚  03 ’ 38.9’’ Altitude: 472m    Slope: 34°    Aspect: 236°  
Soil class:  Brown soil 
Vegetation: Mixed grasses, and clover present. Some ferns and long grass gone to seed. 
Stock: Stock not present at time of sampling.  
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 South Medium study unit one 4.1.16

Below are the main attributes of south facing medium slope, study site one; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 South medium slope site one, site data summary 

Location: 39 ˚  07 ’  37.2 ’’ 175˚  04 ’ 38.6 ’’ Altitude: 391m    Slope: 13.5°    Aspect: 190°  
Soil class:  Allophanic Soil 
Vegetation: Small valley dip.  
Stock: 1200-1500 sheep one week previous. Obvious dung patches. 
Other comments: SM1 G2 look like it could be a sheep camp site. Very windy. 
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 South Medium study unit two 4.1.17

Below are the main attributes of south facing medium slope, study site two; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 South medium slope site two, site data summary 

Location: 39 ˚ 08 ’  14.0 ’’ 175 ˚ 04 ’ 01.0 ’’ Altitude: 341m    Slope: 23°    Aspect: 160°  
Soil class:  Brown soil 
Vegetation: Noticeably grazed. Scotch thistles. Mixed grasses with limited clover 
Stock: 2000-1500 sheep at present. Large amounts of sheep dung, due to potential sheep 
camp.  
Other comments: Oddly deep topsoil. ‘ icro’ flat within medium slopes  
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 South Medium study unit three 4.1.18

Below are the main attributes of south facing medium slope, study site three; 

location, altitude, slope, soil class, vegetation, stock and other comment to be 

record present at site (Figure 4.18). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 South medium slope site three, site data summary 

Location: 39˚ 08 ’  08.5 ’’ 175˚  03’ 31.7 ’’ Altitude: 127m    Slope: 16°    Aspect: 160°  
Soil class:  Brown soil 
Vegetation: Some patches of grass gone to seed, but majority well grazed 
Stock: No stock at present 
Other comments: Marginal land. Scattered bush becoming dense. The side of a ridge sloping 
down to a track and creek. Very sheltered 
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 Introduction of soil chemical property results  4.2

Chapter four present’s results obtained from laboratory analysis of soils collected 

from Blue Duck Station. The Olsen P, anion storage capacity, pH, sulphate-

sulphur and cation (Mg, Na, K, Ca) levels were determined for each sample.  

Measurements of soil chemical properties were made from air-dried soil samples. 

The relationship between, varying soil chemical properties and landscape groups, 

and variation within study site are investigated. Selected soil properties were 

plotted against Olsen P and ASC to investigate possible relationships.  

 Ratings of Soil Properties  4.2.1

The ratings and recommended ranges for soil chemical properties used in this 

thesis are given in Table 4.1.  

 

 

 

 

 

 

 

Table 4.1 New Zealand Soil Bureau soil chemical properties ratings (after Blakemore, et 

al., 1987). Organic sulphur rating and  optimal cation levels (MAF QT) under pastoral 

agriculture (after Hill Laboratories, 2012c) 

Rating
 

pH
1
 Olsen P

1
 ASC (%)

1
 

Sulphate-Sulphur 
(mg/kg)

1
 

Organic Sulphur (mg/kg)
2 

Very Low <4.5 <10 0-10 <5 <5 
Low 4.5-

5.2 
10-20 10-30 5-15 5-11 

Medium 5.3-6 20-30 30-60 15-50 12-20 
High 6-7.1 30-50 60-90 50-150 >20 
Very High >7.1 >50 90-100 > 150 - 

Optimal cation range Potassium
2
 Calcium

2
 Magnesium

2
 Sodium

2
  

MAF QT values 10.4-16.64 7.74-15.48 23.3-69.9 10.6-26.5  

2 Ratings from Hill Laboratories 2012c 

1 Ratings from  Blakemore, et al., 1987 
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 Results of chemical analysis 4.3

 Olsen P 4.3.1

The Olsen P ranged from a mean of 6.8 in the south facing medium slopes 

through to a mean of 21.2 in the north facing medium slopes. North facing 

medium slopes and valley low slopes had higher mean Olsen P values than all 

other landscape groups (P < 0.01) (Figure 4.19).  

 

The sites with the highest Olsen P values (North facing medium slopes and Valley 

low slopes) also had the greatest variability in Olsen P levels (Figure 4.19).  Olsen 

P levels were ‘very low’ in primary vegetation, south facing medium slope and 

south facing steep slopes landscape groups. Olsen P levels were ‘low’ in 

secondary vegetation, ridge low slopes, north facing steep slopes and valley low, 

and ‘medium’ in the north facing medium landscape unit.  

 

a ab b bc b b d cd 

Figure 4.19 The relationship between Olsen phosphorus (µg/ml) and landscape 
groups. Error bars are 95% confidence intervals to the mean. Different letter 
notation for landscape groups indicate significant differences (p>0.05). Landscape 
unit groups with the same letter notation have no significant difference between 
them.  
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 Anion Storage Capacity 4.3.2

North facing steep slopes had the lowest (p<0.01) mean ASC level (35), and valley 

low had the highest (p<0.01) mean ASC level (84). There was no difference 

(P<0.05) between all other landscape groups (Figure 4.20).  

  

Primary vegetation, south facing steep slopes, secondary vegetation, north facing 

steep slopes and north facing medium slopes had ‘medium’ ASC values.  South 

facing medium slopes, ridge low slopes and valley low slopes had ‘high’ ASC 

values. 

 

 

 

 

 

Figure 4.20 The relationship between anion storage capacity (%) and landscape 
groups. Error bars are 95% confidence intervals for the mean. Different letter 
notation for landscape groups indicate significant differences (p>0.05). 
Landscape unit groups with the same letter notation have no significant 
difference between them. 
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 Soil pH 4.3.3

Excluding primary vegetation, the mean pH values for all other landscape groups 

were consistent (soil pH between 5.2 and 5.4). Primary vegetation had the 

lowest (P<0.05) soil pH value of 5, and north facing steep slopes had the highest 

(P<0.05) of 5.4 (Figure 4.21). Soil pH levels were analysed at Eurofins Laboratory, 

and Waikato University. Below are the soil pH values analysed by the Europhins 

Laboratory. Results from Waikato University results are in the appendix (Table 

A4.1) 

 

 

The soil pH of primary vegetation was rated ‘low’. All other soil landscape 

group’s soil pH levels were rated ‘medium’.   

 

 

 

Figure 4.21 The relationship between soil pH and landscape groups. Error bars 
are 95% confidence intervals for the mean. Different letter notation for 
landscape groups indicate significant differences (p>0.05). Landscape unit 
groups with the same letter notation have no significant difference between 
them. 
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 Organic Sulphur 4.3.4

North facing steep slopes had higher (p<0.05) organic sulphur levels (3.6) than all 

other landscape groups. Valley low had the lowest (p<0.05) organic sulphur 

levels (11.2) of all landscape groups. The remaining landscape groups had no 

differences (P<0.05) in organic sulphur levels (Figure 4.22). 

 

Organic sulphur values on north facing steep slopes were rated ‘very low’, all 

other landscape groups had values rated ‘low’.  

 

 

 

 

 

  

Figure 4.22 The relationship between organic sulphur (ppm) and landscape 
groups. Error bars are 95% confidence intervals for the mean. Different letter 
notation for landscape groups indicate significant differences (p>0.05). 
Landscape unit groups with the same letter notation have no significant 
difference between them. 
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 Sulphate-sulphur 4.3.5

Sulphate-sulphur values ranged from a mean of 4.5 on north facing steep slopes, 

to a mean of 21.5 on valley low slopes (Figure 4.23).  

 

 

Sulphate sulphur levels on north facing steep slopes were rated ‘very low’, all 

other landscape groups were rated ‘low’.  

  

 

 

 

 

 

Figure 4.23 The relationship between sulphate sulphur (ppm) and landscape 
groups. Error bars are 95% confidence intervals for the mean. Different letter 
notation for landscape groups indicate significant differences (p>0.05). 
Landscape unit groups with the same letter notation have no significant 
difference between them. 
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 Magnesium 4.3.6

Valley low had the lowest (p<0.05) mean magnesium level of 45. Primary 

vegetation had the highest (P<0.05) mean magnesium level of 45 (Figure 4.24).  

 

 

Valley low slope was the only landscape groups with levels not in the 

recommended cation range.  

 

 

 

 

 

Figure 4.24 The relationship between Magnesium (Quick Test Value) and 
landscape groups. Error bars are 95% confidence intervals for the mean. 
Different letter notation for landscape groups indicate significant differences 
(p>0.05). Landscape unit groups with the same letter notation have no 
significant difference between them. 
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 Potassium 4.3.7

Potassium values ranged from a mean of 16.6 in the north facing medium slopes 

through to a mean of 9 for secondary vegetation sites (Figure 4.25).  

 

 

Primary native vegetation and secondary regrowth forest vegetation were the 

only landscape groups with means potassium levels not in the recommended 

cation range.   

 

 

 

 

 

 

Figure 4.25 The relationship between potassium (Quick Test Values) and 
landscape groups. Error bars are 95% confidence intervals for the mean. 
Different letter notation for landscape groups indicate significant differences 
(p>0.05). Landscape unit groups with the same letter notation have no 
significant difference between them. 
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 Calcium 4.3.8

North facing steep slopes had the highest (P<0.01) mean calcium level of 7.5. 

Valley low slope had the lowest (P<0.05) mean calcium level of 4.1 (Figure 4.26).  

 

 

All landscape groups had mean calcium levels below the recommended cation 

level.  

 

 

 

 

 

 

 

Figure 4.26 The relationship between calcium (Quick Test Value) and 
landscape groups. Error bars are 95% confidence intervals for the mean. 
Different letter notation for landscape groups indicate significant differences 
(p>0.05). Landscape unit groups with the same letter notation have no 
significant difference between them. 
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 Sodium 4.3.9

North facing steep slope had the highest (p<0.05) mean magnesium level of 6.5. 

Valley low slope had the lowest (P<0.05) mean magnesium level of 4.6 (Figure 

4.27). All sodium levels were below recommended cation levels.  

 

 

 

 

 

 

 

Figure 4.27 The relationship between sodium (Quick Test Values) and landscape 
groups. Error bars are 95% confidence intervals for the mean. Different letter 
notation for landscape groups indicate significant differences (p>0.05). 
Landscape unit groups with the same letter notation have no significant 
difference between them. 
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 Between sample variability 4.4

 Introduction  4.4.1

To assess the between sample variability, sample replicates for each landscape 

unit were considered separately. At each sample site there were six samples, one 

from a transect sample and five from grid samples (section 3.12 – Field Sampling 

– Pastoral Sampling).  

 

 Olsen P 4.4.2

There was variability (p<0.05) between study site for all landscape groups, except 

for ridge low slopes (Figure 4.28). The within sample site (i.e. grid/transect) 

variability, e.g. NM1 is greater than the variability of the means across all study 

site. 
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Figure 4.28 Variation of Olsen phosphorus within landscape units. Different 
letter notation for landscape groups indicate significant differences (p>0.05). 
Landscape unit groups with the same letter notation have no significant 
difference between them. 
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 Anion Storage capacity 4.4.3

There was variability (p<0.05) between study site for all landscape groups (Figure 

4.29). Two entire valley low study sites and one ridge low study site had ASC 

levels above 80%. All north facing steep sites were below an ASC level of 45%. 

ASC fluctuated within and between study sites remaining study sites.  

 

 

 

 

 

 

 

 

Figure 4.29 Variation of anion storage capacity within landscape units. 
Different letter notation for landscape groups indicate significant 
differences (p>0.05). Landscape unit groups with the same letter notation 
have no significant difference between them. 
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 pH 4.4.4

There were significant differences (P<0.01) between study site for north facing 

medium slopes, valley and ridge low slopes, and south facing medium slopes. 

The south facing steep slopes and north facing steep slopes showed no 

significant variability between sample sites (Figure 4.30).  

 

 

 

 

 

 

 

 

 

 

Figure 4.30 Variation of pH within landscape units. Different letter notation for 
landscape groups indicate significant differences (p>0.05). Landscape unit 
groups with the same letter notation have no significant difference between 
them. 
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 Organic Sulphur 4.4.5

There was variability (p<0.05) between study site for all landscape groups (Figure 

4.31). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31 Variation of organic sulphur within landscape groups. Different letter 
notation for landscape groups indicate significant differences (p>0.05). Landscape 
unit groups with the same letter notation have no significant difference between 
them. 
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 Sulphate-sulphur 4.4.6

South facing steep slopes were the only landscape group with no variability 

between study sites (Figure 4.32). The remaining landscape groups had 

variability between and within study sites. 
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Figure 4.32 Variation of sulphate sulphur within groups. Different letter notation 
for landscape groups indicate significant differences (p>0.05). Landscape unit 
groups with the same letter notation have no significant difference between 
them. 
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 Magnesium 4.4.7

North facing steep slope was the only landscape group with no variability 

between study sites (Figure 4.33). The remaining landscape groups fluctuated 

between and within study sites.  

 

 

 

 

 

 

 

 

 

Figure 4.33 Variation of magnesium within landscape groups. Different letter 
notation for landscape groups indicate significant differences (p>0.05). Landscape 
unit groups with the same letter notation have no significant difference between 
them. 
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 Potassium 4.4.8

There were significant differences (P<0.01) between study sites for north facing 

medium slopes, and valley and ridge low slopes. South facing steep slopes, south 

facing medium slopes and north facing medium slopes showed no variability 

between study sites (p<0.05) (Figure 4.34). 

 

 

 

 

 

 

 

 

 

 

Figure 4.34 Variation of potassium within landscape units. Different letter 
notation for landscape groups indicate significant differences (p>0.05). 
Landscape unit groups with the same letter notation have no significant 
difference between them. 
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 Calcium 4.4.9

There were significant differences (P<0.01) between study site for north facing 

steep and north facing medium slopes, valley low slopes, south facing steep 

slopes and south facing medium slopes. Ridge low slope showed no variability 

between study sites (Figure 4.35). 

 

 

 

 

 

 

 

 

Figure 4.35 Variation of calcium within landscape groups. Different letter 
notation for landscape groups indicate significant differences (p>0.05). 
Landscape unit groups with the same letter notation have no significant 
difference between them. 
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 Sodium 4.4.10

 There were significant differences (P<0.01) between study site for landscape 

groups, north facing medium slopes, valley and ridge low slopes. South facing 

steep slope showed no variability between study site (p<0.05) (Figure 4.36).  

 

 

 

 

 

 

 

 

 

 

Figure 4.36 Variation of sodium within landscape groups. Different letter 
notation for landscape groups indicate significant differences (p>0.05). 
Landscape unit groups with the same letter notation have no significant 
difference between them. 
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 Between variable relationships 4.4.11

a) Relationship between ASC and Calcium 

ASC was weakly negatively correlated with calcium, r2 = 0.4 (Figure 4.37) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37 Scatter plot of anion storage capacity and calcium with a linear 
regression line to show the relationship.  
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b) Relationship between ASC and organic sulphur 

ASC was positively correlated with organic sulphur, r2 = 0.65 (Figure 4.38) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38 Scatter-plot of anion storage capacity and organic sulphur with a 
linear regression line to show the relationship.  
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c) Relationship between ASC and magnesium 

 

ASC was negatively correlated with magnesium, r2 = 0.6 (Figure 4.39) 
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Figure 4.39 Scatter plot of anion storage capacity and magnesium with a linear 
regression line to show the relationship.  
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d) Relationship between Olsen P and potassium 

 

Olsen P was positively correlated with potassium, r2 = 0.37 (Figure 4.40) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.40 Scatter plot of Olsen P and potassium with a linear regression line 
to show the relationship.  
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e) Relationship between organic sulphur and sulphate sulphur 

 

Organic sulphur had a positive correlation with sulphate sulphur, r2 = 0.5. (Figure 

4.41) 

 

 

 

 

  

Figure 4.41 Scatter plot of organic sulphur and sulphate sulphur with a linear 
regression line to show the relationship.  
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Chapter 5  

Discussion and Conclusion 

5.1. Introduction  

Blue Duck Station was delineated into six different soil-landscape groups, using 

aspect, slope and elevation. The six soil-landscape groups identified were; north 

medium (slopes of 13-25˚, aspect >270˚ <90˚), south medium (slopes of 13-25˚ 

aspect <270˚ >90˚), north steep (slopes of >25˚ aspect >270˚ <90˚), south steep 

(slopes of >25˚, aspects <270˚ >90˚), ridge low (slopes of 1-12 ˚, >400 m 

elevation), and valley low (slopes of 1-12 ˚, < 150 m elevation). Three study-sites 

within each of the 6 landscape groups were randomly chosen, which gave 18 

study-sites in total. For each study site, one transect sample and five grids 

samples were collected. Olsen P, Anion Storage Capacity, pH, Sulphate-sulphur 

and Cations (Mg, Na, K, Ca) were determined for each sample.  

 

Two vegetated sites in different stages of ecological succession were sampled to 

compare soils under pasture and native vegetation. “Primary vegetation” is an 

area of virgin native forest which has never been cleared for pastoral use, and 

“secondary vegetation” is an area of regrowth forest was previously cleared for 

pastoral use, but allowed to revert back to its native state.    

 

The overall objective of my study was to measure the variability of soil 

phosphorus and other soil chemical properties, to determine whether precision 

agriculture methods could be applied to hill and steep land areas to maximise P 

fertiliser use efficiency. My hypothesis was that landscape groups could be used 

to determine fertiliser recommendations to maximise productivity and minimise 

adverse environmental effects in hill slope landscapes in the King Country. 
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This chapter discusses the results that were presented in chapter four. It 

discusses potential explanations for the variability of soil chemical properties 

within the landscape, evaluates varying fertiliser scenarios, and states 

recommendations for Blue Duck Station. This chapter also debates traditional 

soil sampling methods, discusses potential for runoff recommendations and 

compares Blue Duck Station’s soil chemical properties with a the Ballantrae Hill 

Country Research Station.  

 Variability of soil chemical properties 5.2

 Introduction 5.2.1

Hill country farms are dynamic systems, lacking uniformity in both physical and 

chemical properties. They are comprised of mixed slopes, aspects, stock 

transfers, and parent material. The variability influences soil chemical properties, 

soil fertility, and fertiliser requirements. When soil samples from Blue Duck 

Station were analysed, variability was seen in every facet of sampling. This 

included variability from one landscape group to the other (e.g. Figure 4.23), 

variability between replicate (e.g. Figure 4.29), and variability within sample 

replicates (e.g. Figure 4.19). When applying fertiliser to hill country farms, 

misunderstanding soil nutrient variability, can be the difference between under-

fertilisation and over-fertilisation. Potential influences on the variability of soil 

chemical properties at Blue Duck Station are discussed below. 

 

 Source of soil chemical variability 5.2.2

c) Parent material and topographical variability 

The presence or absence of allophane can indicate the source of a soils parent 

material in the Central North Island of New Zealand. Of the soil chemical 

analyses undertaken at Blue Duck Station, anion storage capacity (ASC) can be 

used to indicate whether or not a soil contains allophane.  ASC is the measure of 

a soils ability to retain anions like phosphate and sulphate, a high ASC can 

indicate the presence of tephra containing soils (volcanic) and a low ASC can 

indicate soil derived predominantly from tertiary sedimentary material.  
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Tephra deposited from vents in the Rotorua and Taupo district have mantled the 

King Country landscape (McCraw, 1974). However, tephra is not deposited 

equally (ASC at Blue Duck Station decreased with increasing slope) throughout 

the landscape; the location of deposits are influenced by erosion, accumulation 

and mixing. Steep slopes and select ridges are highly erosion prone, causing 

tephra material to accumulate to the greatest extent on the valley floors. The 

Field-Perot allophane test (Milne, 1991) indicated positive allophane test on the 

valley floors, negative allophane tests on the steep slopes, and somewhat weak 

allophane reaction on the ridges (Table 5.1).  

 

 

 

 

 

 

 

 

Table 5.1 Allophane test on selected landscape groups 

Landscape groups Sample Replicate 

 Transect 

Sample 

Grid 

sample 1 

Grid 

sample 2 

Grid 

sample 3 

Grid 

sample 4 

Grid 

sample 5 

North steep slope 1 N N N N N N 

North steep slope 2 N N N N N N 

North steep slope 3 N N N N N N 

South medium 1 A A WA A A A 

Valley low 1 A A A A A A 

Valley low 2 WA WA A A WA WA 

Valley low 3 SA SA SA SA A WA 

Ridge low 1 N N N N A N 

Ridge low 2 A A A A A A 

Ridge low 3 N N N WA WA N 

Virgin forest N MA N N N N 

Re-growth  N N N N WA N 

N – Non Allophanic   WA – Weakly Allophanic   MA – Mildly Allophanic   SA – Strongly Allophanic 
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Two interesting results were evident from Blue Duck Station’s allophane test 

(Table 5.1). South facing medium slopes had a mixture of positive allophane 

results, between replicate samples from the same site. Potentially being an 

indication of micro-topographical influences, where small dips in the topography 

retain initial volcanic deposition, and/or collect allophonic soil from eroded sites 

above.  Also, flat ridge tops that were expected to contain allophane, had 

samples which contained no allophane or showed weak allophane reactions. This 

may be due to deposited tephra material being ‘blown’ off the exposed ridges, 

and eroded down slope.  

 

Calcium and Magnesium can be used to indicate sedimentary parent material 

(assuming little lime, super (Ca) and Mg fertiliser have been applied). Soil 

chemical analysis at Blue Duck Station indicated that the highest calcium and 

magnesium levels were found on the steep slopes, with lower calcium and 

magnesium concentration on the low slopes. The high calcium levels on steep 

slopes are likely derived, not from fertiliser, but from calcareous sedimentary 

parent materials. As calcium/magnesium levels increase with slope, ASC levels 

decrease. Due to ASC indicating tephra derived parent material, this relationship 

reinforces the fact that steep slopes are dominated by sedimentary materials 

(low ASC, high magnesium and calcium), and lower slopes are primarily tephra 

dominant (higher ASC levels and lower calcium and magnesium levels) (Figure 

5.1).  
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d) Stock influence  

The transfer of nutrients throughout hill country farms is dominated by animal 

habits. Stock transfer nutrients from areas where they graze, on steeper slopes, 

to areas where they rest and excrete, on lower slopes (Daniel, et al., 1998). 

Consequently, soil phosphorus and potassium levels often increase under areas 

of animal congregation (Sigua, et al., 2011, Haynes & Williams, 1999).  Saggar et 

al., (1990) measured the accumulation of animal excretion on low, medium and 

steep slopes. The results showed that varying slope classes with similar areas 

received different excretion levels. Totals stock excretion occurs 60% on low 

slopes, 30% on medium slopes, and 10% on steep slopes. Williams & Haynes 

(1990) presented similar results, showing that soil phosphorus under stock 

camps increased by 38%. Both Blue Duck Station and Ballantrae Research Station 

had their highest potassium and Olsen P levels on low slopes, potential evidence 

of stock transfer to low slopes.  

Calcareous soils derived predominantly from Tertiary sedimentary, located on 

steep slopes rocks 

Soil containing tephra, located on low slopes 

 

Figure 5.1 Soil profile showing the differences between sedimentary 

(calcium rich, low ASC) soils and volcanic (low calcium high ASC). 
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e) Aspect and slope influence on pasture production 

Varying climatic conditions due to slope and aspect can influence pasture 

production. South facing slopes are cool and have higher overall soil moisture 

content due to lower evapotranspiration, which leads to increased White clover 

growth. North facing slopes are warmer (receiving up to 80% more solar 

radiation (Radcliffe & Lefever, 1987)), dryer, and dominated by Subterranean 

clover and native legumes. North facing slopes also have the highest pasture 

production of any slope and aspect class (Gillingham, et al., 1998, Gillingham, et 

al. 2003b, Gillingham, et al., 2007, Gillingham A. et al., 2008ab). This is reinforced 

with Blue Duck Station’s northern facing slopes having the highest Olsen P, 

potassium, magnesium, calcium and sodium levels.  

 

f) Past fertiliser history 

The application of phosphorus fertiliser influences soil chemical properties. A 

good predictor of past fertiliser application is the relationship between Olsen P 

and anion storage capacity (laboratory measure of P buffer capacity) (Lambert, et 

al., 1998, Edmeades. et al., 2006). The high P buffer capacity associated with high 

ASC, means that more P fertiliser is needed to raise the Olsen P level of a soil 

with a high ASC, than a soil with a low ASC. Therefore, if P fertiliser has been 

applied, ASC and Olsen P will have a negative linear relationship. However, if 

there has been limited fertiliser applied, the ASC will not have had the 

opportunity to ‘buffer’ any additions to soil P, therefore the soil ASC will not be 

related to Olsen P levels. At Blue Duck Station, no relationship between ASC and 

Olsen P was seen, evidence of limited past fertiliser application.  

 

The relationship between sulphate-sulphur and organic sulphur is another 

indicator of past fertiliser effects. Sulphate-sulphur is the immediate plant 

available soil sulphur – affected by fertiliser– whereas organic sulphur is the 

natural pool of soil S – not influenced by fertiliser (Edmeades, 2003a). If there 

has been no past fertiliser application, the natural, undisturbed relationship 

between organic sulphur and sulphate sulphur is in quasi equilibrium, (can be 

considered the same entity). However, the application of fertiliser disturbs the 
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natural relationship between organic sulphur and sulphate sulphur.  Blue Duck 

Station had a positive linear relationship between sulphate sulphur and organic 

sulphur, indicating limited past fertiliser application.   

 

No fertiliser has been applied to native forested sites at Blue Duck Station; 

therefore, the relationship between pastoral sites and primary forested sites 

(similar aspect and slope) can be used as an indicator of past fertiliser 

application. Soil chemical results showed that forested and pastoral sites had 

similar anion storage capacity and Olsen P levels. The similarity between native 

forest vegetation and pastoral vegetation again demonstrated limited past 

fertiliser application at Blue Duck Station. 

 

g) Vegetation influences 

Soils under native forest vegetation at Blue Duck Station had the lowest soil pH 

levels (Table 5.2). Low soil pH levels are typicall of New Zealand native forests, 

due to thousands of years of undisturbed forest cover, allowing the soils to 

accumulating acidic litter, dropped by native conifer–broadleaf vegetation 

(Sparling & Schipper, 2004, Hewitt, 2009).  

 

Sulphate sulphur is a component of organic matter, and able to be used as an 

indicator of organic matter accumulation. At Blue Duck Station, virgin forest 

vegetation had higher (P<0.05) sulphate sulphur levels than pastoral sites. The 

elevated sulphate sulphur levels may be due to a combination of higher rates of 

organic matter accumulation, increased organic sulphur mineralisation, and high 

levels of microbial activity, as a result of moist shaded soils (Haynes & Williams, 

1999, Edmeades, et al., 2003).  
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 Fertiliser scenarios and recommendations for Blue 5.3

Duck Station 

 Introduction 5.3.1

Fertiliser additions can maximise pasture production by attaining optimal Olsen P 

levels. However, variable Olsen P levels throughout the landscape make blanket 

fertiliser application redundant. Blanket fertiliser application, over-fertilises 

some areas, while under-fertilising others. Applying to much fertiliser to a farm, 

reduces profitability and increases the risk of phosphorus additions to the 

environment. Of equal negative consequence is applying too little fertiliser, 

reducing pasture production, and farm profits (Edmeades, 2003b).  

 

 

 

 

 

 

Table 5.2 Comparison between pastoral, primary forested vegetation and 

secondary re-growth forest vegetation sites, all located on south facing medium 

slopes. Different letter notation for landscape groups indicate significant 

differences (p>0.05). 

Soil Chemical Property Pastoral Site Primary Vegetation Secondary Vegetation 

ASC 62.65 50.49 59.03 

Ca 4.44 5.46 4.46 

K 11.45 8.66 8.92 

Mg 25.63a 44.12b 34.96ab 

Na 4.96 5.46 4.52 

OS 6.03 7.46 6.33 

P 6.71 7.35 9.96 

pH 5.38a 4.94b 5.26ab 

SO4 6.81a 16.96b 10.12ab 
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 Varying sampling, and fertiliser scenarios    5.3.2

In a farming system, phosphorus is the most expensive nutrient, however, to 

maximise production of a legume-based system, its application is vital. The per 

hectare gross margin (net income minus the variable costs) of a farm is a 

valuable measure of its profitability (Edmeades, 2002b). The average gross 

margin of a Manawatu-Taranaki hill country sheep and beef farm is 606 ($/ha), 

which requires an optimal Olsen P of 22 µg/ml to be achieved (Beef and Lamb 

New Zealand, 2010) (Figure 5.2). The Manawatu-Taranaki hill country regions 

optimal Olsen P of 22 was used in my calculation for Blue Duck Station. An Olsen 

P of 22, is not dissimilar to the optimal Olsen P (90-95% of the biological 

maximum ) of 20, established by Ledgard, et al., (1991). 

 

 

Once a target Olsen P level was decided upon, six hypothetical sampling 

scenarios were generated, allowing for a range of differential fertiliser 

treatments to be created and compared (Table 5.3) 

 

 

 

Figure 5.2 Relationship between economic optimal Olsen P and gross margin ($ha) 

(Edmeades, 2002) 
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Table 5.3 Fertiliser cost to raise current Olsen P level to optimal Olsen P level at 

Blue Duck Station, based on various sampling scenarios  

Sampling type Average 
Olsen P 

Olsen P 
units to 
optimal* 

Fertiliser 
needed to 
 raise to 
 optimal 
(kg/ha)** 

Fertiliser 
cost to 
optimal 
($/ha) 
*** 

Area in 
Hectares 
(Ha)   

Cost for 
farm ($) 

a) Medium slope 14.0 8.0 450.0 157 260 40,820 

b) Averages of all data 12.0 9.9 555 195 260 50,700 

c) Weighted average  11 11 616 216 260 56,160 

d) Low slopes 13.3 8.7 487 170 260 44,200 

e) Aspect  North slopes 15.8 6.2 347 121 116 14036 

South slopes 6.7 15.2 851 297 113 33561 

 Low slopes 13.3 8.7 487 170 33 5610 

      Total 53207 

f) Aspect 
and Slope  

North Steep 10.4 11.6 644 225 81 18225 

North Medium 21.2 0.8 43 15 35 525 

South Steep 7.5 14.5 810 283 73 20659 

South Medium 6.7 15.2 851 297 40 11880 

 Valley Low 16.4 5.6 313 110
 

23.4 2574 

 Ridge Low 10.2 11.8 660 231
 

9.6 2220 

      Total 56,083 

*       Economic Optimal Olsen P of 22 is based on a gross margin aim of 606 ($/ha), which is the average    North Island hill 
country farm average  
**    Superphosphate to raise Olsen P 1 unit - 56Kg/ha  sedimentary soil (Morton et al., 1994)                                 
***  Fertiliser price 355$/Metric Ton = 0.35$/Kg – Ravensdown 
 

a) Medium slopes - based on the assumption that the entire farm will be fertilised based on rates calculated 
by soil test values of medium slopes 

b) Average of all data – the entire farm would be fertilised based on rates calculated by the average of all my 
soil test values over all slopes and aspects of the farm 

c) Weighted average - the entire farm would be fertilised based on rates calculated by the weighted average 
(the contribution of the data point to the mean is based on the area of which it covers)  of the soil test values 
over all slopes and aspects of the farm 

d) Low slope - based on the assumption that the entire farm will be fertilised based on rates calculated by 
soil test values of valley low and ridge low 

e) Aspect (minus low slopes) – The farm would be split into three fertiliser block. South facing slopes 
(average of all south facing slopes), north facing slopes (average of all north facing slope), and low slopes 
(combined average of valley and ridge low) 

f) Aspect and slope – The farm kept it delineation, each landscape group was fertilised using its mean Olsen 
P.   
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A fertiliser econometric model can be used to determine the most economically 

viable fertiliser application, which takes into account the relationship between 

soil fertility, production levels, and cost surrounding fertiliser application. It is 

therefore, difficult to determine the most economical fertiliser application 

scenario for Blue Duck Station in the absence of such model. Nevertheless, it is 

well known that economic fertiliser gains are not liner. They reach a point of 

diminishing return, where by it is not economical to apply additional fertiliser to 

reach higher levels of soil fertility (Figure 5.3). For a soil with low fertility, the 

cost (c) of applying fertiliser is low, relative to the economic benefits (b) to the 

farm. For farms where soils fertility is initially high, the cost (c) of applying 

fertiliser is high; relative to the economic benefits (b) gained. As soil fertility 

increases, so does the cost of raising pasture production levels, which reduces 

the potential profitability of fertiliser application (diminishing returns) 

(Edmeades, 2003b).  

 

 

Figure 5.3 Relationship between production and soil fertility, showing 

the economical optimal (Edmeades, 2002b) 

B = benefit 

C = cost 
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 Potential for differential fertiliser application 5.3.3

Previous research by Gillingham, et al., (1998) (1999) (2003a) has shown that 

differential fertiliser application can help achieve maximum fertiliser efficiency. 

Differentially fertilising a North Island hill country farm can increase the stocking 

rate by 0.5 su/ha and improve its economic return by 7.5%. Gillingham et al., 

(1998) suggested the most efficient fertiliser policy for hill country farms is high 

phosphorus fertiliser application on south facing, and moist north facing slopes. 

They also suggested applying limited phosphorus to steep north facing slopes. 

Gillingham, (2001) supported the process of differential fertiliser application, 

demonstrating that capital phosphorus fertiliser on easy slopes, and nitrogen 

fertiliser on both north and south steep slopes would improve economic returns 

by 34% than a blanket application of low level P fertiliser, and 8.1% better than a 

blanket application of high P fertiliser. 

 

Gillingham, (1999) demonstrated the cost of producing one stock unit on various 

slope classes. On steep slopes it took 1.1kg/P/yr to produce one stock unit, 0.7 

Kg/P/ha on easy slopes, and only 0.3Kg/P/ha on flats. The problem with focusing 

on the influence of slope to produce a stock unit, is that Blue Duck Station is 

dominated by steep slopes. Blue Duck Station has only 33ha of flat slopes and 75 

ha of easy slope, with steep slopes occupying 153.5 ha (over half of the farm). 

Therefore, the option of only fertilising low slopes would leave 153.5 ha of land 

with an Olsen P level below 10, which, due to the propensity of pasture under an 

Olsen P level of 10 to decrease in pasture quality (Clark, et al., 1990, Dodd & 

Ledgard, 1999), would be poor fertiliser management. 

 

a) P fertiliser recommendations 

Soil chemical properties of Blue Duck Station follow trends produced by 

Gillingham, et al., (1998) (1999) (2003a) (2001). Southern facing aspect had the 

lowest Olsen P levels, valley low and north facing medium had the highest Olsen 

P levels, and north facing steep slopes and ridge low slopes were between the 
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two levels. The six scenarios in Table 5.3 were created to recommend fertiliser 

applications.  

 

Sample scenarios a) medium slope b) averages of all data c) weighted average, 

and d) low slope, offer similar cost to the farmer (Table 5.3). The fertiliser 

recommendations were based on the cost to raise the mean Olsen P of the 

scenario to the optimal Olsen P level of 22. Averaging the data meant that much 

of the sample sensitivity was lost. The high Olsen P levels of north facing medium 

slopes and ridge low slopes overestimated the farms average Olsen P, causing 

the areas to be under-fertilised. The low Olsen P levels of the southern slopes 

underestimated the farm, recommending P application which cause over-

fertilising.   

 

Sampling scenario e) was a recommendation based on an average of each aspect 

class (Table 5.3). The recommended fertiliser cost for scenario e) was $53,207, 

the third lowest fertiliser option. Though fertiliser costs are not the lowest for 

this scenario, it acknowledges the differences in Olsen P values between south 

facing aspects and north facing aspects.  Scenario e) applies 63% of the 

recommended total P fertiliser to the nutrient deficient south facing aspects and 

the remaining 37% of fertiliser on the higher Olsen  P level north facing slopes.   

 

The most detailed mosaic of application rates occurs when the farm was split 

into fertiliser blocks based on slope, aspect and elevation (scenario f). Table 5.3 

displayed notable differences in fertiliser cost between south facing slopes, north 

facing slopes, north facing medium slopes, ridge low and valley low. The low 

Olsen P values (6.7) of the south facing slopes can lead to a depression in pasture 

production if not raised, making it a priority for south facing slopes to receive 

fertiliser. Nutrient transfer to north facing steep slopes is limited; therefore 

natural soil P increases are unlikely. Applying fertiliser to these north facing steep 

slopes will lift the current Olsen P value (10.4) and increase clover vigour and 

subsequent nitrogen fixation due to Subterranean clover presence (Lucas, et al., 

2010).  Fertiliser additions to flat ridge tops would benefits soil fertility, by raising 
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its current Olsen P of 10.2. There is limited benefit in applying fertiliser to north 

medium slopes and flat valley floors as Olsen P is near optimal for this 

environment and stock transfer will continue to add nutrients to these areas. 

 

If cost was not a limiting factor, scenario f) would achieve the most economical 

increase to pasture production. The landscape units would discourage over-

fertiliser application to areas with high Olsen P values, and under-fertiliser 

application to sites with low Olsen P values. If the farm experienced economic 

restraints, the application of fertiliser to south facing slopes, north facing steep 

slopes and ridge low would still discourage incorrect fertiliser application, due to 

otherwise misleading sampling regime (however, only saving  $2800). 

 

b) Sulphur fertiliser recommendations 

Fertiliser recommendations are not heavily weighted on sulphate sulphur levels 

because of it high mobility in the soils. Therefore, organic sulphur is the 

predominant indicator of soil S needs. Organic sulphur, and therefore fertiliser 

recommendation, is based on a soils ability to reach a steady state concentration 

of organic sulphur. Brown soils reach a steady-state concentration in organic 

sulphur levels of between 11-32 ppm (Edmeades, et al., 2005). Edmeades, et al., 

(2005) suggested that if organic sulphur levels are below 10, fertiliser S should be 

applied immediately for pasture maximisation. Organic sulphur levels at Blue 

Duck Station are predominantly below 10, therefore, it is recommended they 

receive an initial application to achieve an organic sulphur level of 10-12. Once 

an organic sulphur level of 10–12 is achieved, organic S levels will be enough to 

facilitate adequate annual mineralisation to reach sulphaur requirements for 

pasture maximisation. Yearly application of 250kg/ha/yr of superphosphate will 

be sufficient to maintain yearly optimal S levels (Edmeades, Feyter, & O'Connor, 

1984).  In many cases, farm management plays a vital role in soil S levels and 

improved pasture management. Applying regular fertiliser will increase the soils 

organic matter content, in turn increasing the organic sulphur pool, and allowing 

for more sulphate sulphur to become available (Edmeades, 2003a).  
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c) Lime recommendations 

When lime is applied in conjunction with P fertiliser, both pasture maximisation 

and the increased P use-efficiency occurs (Edmeades, et al., 1985). The optimal 

pH of most North Island mineral soil is between 5.8 and 6. To attain production 

maximisation irrespective of cost, best results are seen via low rate application of 

lime in conjunction with other fertilisers. Correct lime additions can restore 

nutrient deficiencies by 0 to 10%, whereas the addition of P can correct nutrient 

deficiencies by over 100%. Therefore, if the farm experiences economic 

restrictions, P fertiliser application should be given priority over lime (Edmeades, 

et al., 1985).  

 

d) Concluding thoughts 

Little has changed to the native soil fertility status of Blue Duck Station, due to 

limited past fertiliser application and relatively low stocking rate (9.2 su/ha). The 

potential for soils to be in a development stage creates the need for high initial 

fertiliser application. Blue Duck Station should then be reassessed after the initial 

fertiliser application; to understand more about the phase of development, and 

the subsequent changes in soil chemical properties. (Gillingham, et al., 1998). 

 

 Questioning traditional soil sampling methods 5.4

Soil fertility is the foundation of productivity of any farm; therefore, a sampling 

protocol to measure soil fertility, and the variability within a farming system 

needs to be clearly stated (Edmeades D. , 2013). Mclaren & Cameron, (1996) and 

Hill Laboratories, (2012b) and have outlined basic sampling protocol for hill 

country farms. Their sampling protocol suggests that farms should be delineated 

into one or more of the following factors; soil type, topography, land use, 

fertiliser history and healthy/unhealthy areas. Also giving an idea of the number 

of cores, transect sampling, areas to avoid and sample location.  

Suggestions to sampling protocol have been made by some authors. However, 

there is a lack of Best Management Practise (BMP), with regard to a sampling 

protocol, specific to New Zealand hill country farms. An explicit BMP would allow 
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for comparable, replicable and consistent soil tests throughout New Zealand hill 

country farms, allowing for a better understanding of ‘true’ variability of soil 

fertility.   

 

The result in Table 5.3 - various sampling scenarios – indicates the potential for 

varying sampling methods to influence farm fertiliser recommendations. If 

fertiliser recommendation were to be formulated using the north medium soil 

test, the farm would be predominantly under-fertiliser. Whereas using soil test 

for south facing medium slopes recommended fertiliser application that would 

over-fertilised the rest of the farm. Leading to the question of, what areas must 

be sampled to give the most accurate fertiliser recommendation. The Best 

Management Practice for soil sampling the Central North Island Hill Country 

would be to avoid sampling small exceptional areas like flat valley floors and flat 

ridge tops. Focusing sample regimes on a number of transects across northern 

and southern slopes would give more representative results.  

 

 Potential for runoff recommendations 5.5

The majority of phosphorus lost to waterways occurs within five to ten meters of 

river/stream systems (Morton & Roberts, 1999). When developing P runoff 

reduction strategies, it is important to understand that major sources of 

particulate phosphorus runoff to waterways are via stream bank erosion, and the 

major source of dissolved P is due to the direct application of phosphorus 

fertiliser to waterways (Edmeades, 2002). 

 

Therefore, the BMP at Blue Duck Station to deal with phosphorus loss into 

waterways would be the reduction of direct fertiliser application to waterways, 

which would be achieved as a result of precision fertiliser application.  
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 Blue Duck Station and Ballantrae Hill Country 5.6

Research Station comparison  

Soil type and past fertiliser application differentiate Ballantrae Research Station 

and Blue Duck Station. Ballantrae is formed on tertiary sandstone, siltstone, and 

mudstone, while Blue Duck Station is formed on calcareous mudstone, overlain 

by tephra. Blue Duck Station has remained relatively unchanged since the 

conversion from native forest vegetation to pastoral land. Extensive past 

fertiliser application at Ballantrae has masked the natural variability of soil 

fertility, evening out natural variation due to slope, aspect and soil type (Table 

A5.1 and A5.2 - Appendix).  The implication for fertiliser applications are that 

initial capital fertiliser for Blue Duck Station, should be varied based upon aspect 

differences, however, a reassessment may be required once the soils are in 

maintenance phase.   

 

 Addressing the Research Hypothesis 5.7

Due to the variability between aspect and slope classes I accept my hypothesis, 

concluding that landscape groups could be used to determine fertiliser 

recommendations to maximise productivity and minimise adverse environmental 

effects in hill country of the Central North Island. Variations in soil test data were 

evident when averaged across landscape groups of different aspects, slopes and 

elevations. However, the south facing slopes were significantly different from 

both the north medium and the valley low slopes.  
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 Recommended further work 5.8

 The use of an econometric model to determine the most economically 

valuable fertiliser application 

 Additional sampling to determine the amount of recorded variability was 

due to temporal changes. Would the soil test result be different if 

sampling was undertaken in winter?  

 Whether it is practical to treat landscape groups differentially, based on 

statistical significance, or whether pragmatism outweighs significance,     

 Practical limitations of differential fertiliser application, and associated 

costs/benefits, both economically and environmentally 

 

 Summary and Conclusions 5.9

Blue Duck Station was delineated into six soil-landscape groups (north facing 

medium slopes, north facing steep slopes, south facing steep slopes, south facing 

medium slopes, ridge low slopes and valley low slopes) based on slope, aspect, 

and elevation using GIS. Three replicate units were randomly selected from each 

of the six soil-landscape groups, which gave 18 study-sites in total. For each 

study site, one transect sample and five grid samples were collected. Olsen P, 

anion storage capacity, pH, sulphate-sulphur and cations (Mg, Na, K, Ca) were 

determined. 

 

Mean Olsen P values were 10.4 on south facing steep slopes, 21.2 on north 

facing medium slopes, 7.5 on south facing steep slopes, 6.7 on south facing 

medium slopes, 16.4 on valley floors and 10.2 on flat ridge tops. Olsen P levels at 

Blue Duck Station were uniformly low, and the majority of landscape groups had 

a Blakemore, et al., (1987) Olsen P rating of ‘very low’ or ‘low’. Results suggested 

that the higher Olsen P values on the north facing medium slopes and valley low 

slopes were due to positive nutrient transfer via animals who prefer to rest on 

the warmer and flatter areas. Sites with highest Olsen P values also had the 

greatest variability. 

  



  Chapter 5 Discussion and conclusion 

 

129 
 

The ridges tops and valley floors of Blue Duck Station are mantled with tephra, 

and hill slopes are made up of calcareous soils derived predominantly from 

tertiary, sedimentary parent material. Positive allophane test and high ASC levels 

supported the presence of tephra on valley floor and flat ridge tops, while high 

calcium and magnesium were an indication of calcareous sedimentary soils on 

the steeper hills slopes. 

  

Blue Duck Station has a limited history of past fertiliser application, reflected in 

the relationship between sulphate sulphur, Olsen P and ASC relationship, and 

limited differences between native vegetation and pastoral sites. 

 

Soil pH was consistent, ranging between 5 and 5.4, and was rated by Blakemore et al., 

(1987) as ‘medium’, apart from acidic soil under virgin native forest sites. The 

optimal pH of most North Island mineral soil is between 5.8 and 6, therefore the 

best pasture production results would be seen using low rate application of lime 

in conjunction with other fertilisers (Edmeades, et al., 1985) 

 

Organic sulphur and sulphate sulphur were rated as ‘very low’ (Blakemore et al., 

1987), on north facing steep slopes, and the rest of the landscape groups were 

rated ‘low’. Organic sulphur is the predominant indicator of soil S needs. Due to 

the majority of organic sulphur levels at Blue Duck Station being below 10, initial 

fertiliser application is recommended to achieve an organic sulphur level of 12 

(Edmeades, et al., 2005). Once organic sulphur levels of 10–12 are achieved, 

sufficient organic S mineralisation will occur annually to meet the pasture S 

requirement to maximise production. Farm management plays a vital role in soil 

S levels. Applying regular fertiliser will increase the soils organic matter content, 

in turn increasing the organic sulphur pool, and allowing for more sulphate 

sulphur to become available (Edmeades, 2003a).  

 

At Blue Duck Station, the application of higher rates of P fertiliser to south facing 

steep slopes and south facing medium slopes, with medium rates of P fertiliser 

addition to north facing steep slopes and ridge low slopes would optimise 
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fertiliser use. There is limited benefit in applying fertiliser to north medium 

slopes and flat valley floors as Olsen P is near optimal for this environment and 

stock transfer will continue to ass nutrients to these areas. 

  

Fertiliser recommendations for Blue Duck Station were based on mean values 

averaged across the 3 study sites for each landscape group. However, 

high variability within a sample site (between grid and transect samples) was 

often greater than the range of variability across the means of all the landscape 

groups. Due to such large sample variability, difficulties arise when attempting to 

recommend accurate fertiliser regime, or sampling programs. The soil analysis 

results from a small number of samples should be treated with caution.  

 

The Best Management Practice for soil sampling the Central North Island Hill 

Country would be to avoid sampling small exceptional areas like flat valley floors 

and flat ridge tops. Taking samples on a number of transects across northern and 

southern slopes would give more accurate results.  
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Appendix 

Waikato Laboratory pH analysis 

 

 

 

 

 

 

 

 

 

 

Table A4.1 pH values obtained through chemical analysis at Waikato University 
laboratory 
 

Sample Transect Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 

NS1 5.804 5.213 5.44 5.57 5.195 5.657 

NS2 5.665 5.403 5.78 5.568 5.572 5.8343 

NS3 5.636 5.554 5.718 5.385 5.553 5.396 

NM1 5.175 5.394 5.391 5.437 5.398 5.309 

NM2 5.205 5.48 5.532 5.223 5.125 5.671 

NM3 5.346 5.572 5.334 5.233 5.371 5.631 

SS1 5.401 5.467 5.326 5.489 5.335 5.6 

SS2 5.453 5.793 5.475 5.698 5.515 5.456 

SS3 5.748 5.759 5.953 5.305 5.798 5.585 

SM1 5.477 5.379 5.205 5.49 5.635 5.463 

SM2 5.876 5.695 5.707 5.449 5.864 5.638 

SM3 5.543 5.659 5.67 5.587 5.463 5.804 

VL1 5.581 5.733 5.572 5.655 5.601 5.874 

VL2 5.365 5.178 5.094 5.268 5.156 5.508 

VL3 5.194 5.783 5.302 4.977 5.249 5.34 

RL1 5.532 5.513 5.344 5.339 5.199 5.296 

RL2 5.571 5.695 5.455 5.4 5.613 5.857 

RL3 5.382 5.128 5.561 5.652 5.657 5.419 
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Comparative data between Blue Duck 

Station and Ballantrae Hill Country 

Research Station 

Soil chemical properties of Blue Duck Station were compared with Ballantrae Hill 

Country Research Station, a hill country farm in the Tararua District, with similar 

slope and aspect (Table 5.4) 

 

Table A5.1 Aspect effect on soil chemical properties of Ballantrae Hill-country Research 

Station and Blue Duck Station. Samples were from all aspects combined, and are taken 

at the top 75 mm of soil (Ballantrae data from; Lambert, et al., 2000). 

Soil Chemical 

Properties 

Study Site              Aspect category 

North South  

Olsen P Blue Duck Station 15.9a 7.1b  

 Ballantrae Mixed Fertiliser
1
 13.4 13.4  

Anion storage capacity Blue Duck Station 50a 59b  

 Ballantrae Mixed Fertiliser
1
  20.5a 30.5b  

Soil pH Blue Duck Station 5.3 5.4  

 Ballantrae Mixed Fertiliser
1
  5.35 5.36  

Organic sulphur Blue Duck Station 4.7a 6.1b  

 Ballantrae Mixed Fertiliser
1
 3.91 3.68  

Sulphate sulphur Blue Duck Station 6.4 6.3  

 Ballantrae Mixed Fertiliser
1
 5.8 5.4  

Potassium Blue Duck Station 14.9a 11.2b  

 Ballantrae Mixed Fertiliser
1
 9.3 9.4  

Calcium Blue Duck Station 6.1a 4.9b  

 Ballantrae Mixed Fertiliser
1
 6.2 6.0  

Magnesium Blue Duck Station 32.7a 26.7b  

 Ballantrae Mixed Fertiliser
1
 28.4 26.1  

Sodium Blue Duck Station 6.4a 5.4b  

Represents the bulking of samples from varying aspects and fertiliser application rates, to give samples 

which are differentiated by slope classes   
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Table A5.2 Slope effect on soil chemical properties of Ballantrae Hill-country Research 

Station and Blue Duck Station. Samples were from all aspects combined, and are taken 

at the top 75 mm of soil (Lambert, et al., 2000, Mackay & Lambert, 2011). 

Soil Chemical 

Properties 

Study Site Slope Class (degrees) 

Low Medium High 

Olsen P Blue Duck Station 13.3a 13.4a 9b 

 Ballantrae   -      No fertiliser 4.5 4.5 3.5 

 - Low fertiliser 17.5 20 15 

 - High fertiliser 60 42.5 29.5 

 Ballantrae Mixed Fertiliser
1 

16.3a 12.3b 12.8b 

ASC Blue Duck Station 75.2a 59.8b 45.3c 

 Ballantrae Mixed Fertiliser 
1
 25.5 26.9 24.2 

Soil pH Blue Duck Station 5.3a 5.3a 5.4b 

 Ballantrae Mixed Fertiliser
1
 5.43a 5.37ab 5.36b 

Organic sulphur Blue Duck Station 9.1a 6b 5b 

 Ballantrae Mixed Fertiliser 
1
 4.76a 3.91b 2.97c 

Sulphate sulphur Blue Duck Station 17.4a 17.7b 5.1c 

 Ballantrae   -      No fertiliser 15 17.5 12.5 

 - Low fertiliser 15 15 15 

 - High fertiliser 12.5 15.2 10 

 Ballantrae Mixed Fertiliser
1
 6.5 5.2 4.9 

Potassium Blue Duck Station 14.4a 13.9b 12.2b 

 Ballantrae   -      No fertiliser 8.3 8.7 6.6 

 - Low fertiliser 8.7 9.13 6.6 

 - High fertiliser 13.3 8.7 4.15 

 Ballantrae Mixed Fertiliser
1
 12.2a 9.2b 7c 

Calcium Blue Duck Station 4.6a 4.6a 6.5b 

 Ballantrae   -      No fertiliser 3.01 2.1 4.2 

 - Low fertiliser 5.6 5.6 3.01 

 - High fertiliser 5.5 9.1 7 

 Ballantrae Mixed Fertiliser
1
 6.9 6.1 6.2 

Magnesium Blue Duck Station 21.3a 25.4b 34c 

 Ballantrae   -      No fertiliser 25 18.8 19.2 

 - Low fertiliser 22.8 20.8 17.6 

 - High fertiliser 17.6 14.4 15.7 

 Ballantrae Mixed Fertiliser
1
 31.3a 25.5b 25.9c 

Sodium Blue Duck Station 4.9a 5.6b 6.1b 

1 Represents the bulking of samples from varying aspects and fertiliser application rates, to give 
samples which are differentiated by slope classes   
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Sample analysis data 

 

Unit ASC Ca K Mg Na OS P pH SO4 

SS1 69.68 3 8.3 19.3 5.6 8.493 5.02 5.33 5.844 

SS1 - G1 72.665 2.2 10.8 13.9 3.2 10.349 3.3 5.5 12.774 

SS1 - G2 46.958 4.3 10.3 27.1 6.7 6.846 4.54 5.23 2.634 

SS1 - G3 68.519 3.2 11.1 17.5 4.1 8.498 3.71 5.41 7.378 

SS1 - G4 54.256 3.5 8.8 19.2 5.6 7.585 5.32 5.33 5.272 

SS1 - G5 64.704 4.4 7.8 16.3 5.7 9.347 4.55 5.42 6.89 

SS2 55.831 6 12 31.9 6 4.537 12.63 5.21 6.926 

SS2 - G1 49.782 6.6 11.1 28.4 6.7 3.185 6.87 5.48 4.851 

SS2 - G2 58.856 6.1 14.1 29.4 5.4 3.961 9.46 5.25 7.517 

SS2 - G3 58.016 6.4 9.6 29.9 6.8 3.409 6.98 5.53 4.446 

SS2 - G4 44.572 7.2 9.8 37.9 7 2.772 8.72 5.33 4.59 

SS2 - G5 40.203 7.2 7.1 40.4 6.5 2.806 7.04 5.25 2.837 

SS3 56.103 5.8 8.3 27.9 6.3 5.928 6.99 5.51 6.021 

SS3 - G1 69.561 3.9 7.2 16.8 5.5 8.953 5.73 5.46 4.441 

SS3 - G2 66.771 5.2 6.7 18.9 6.2 8.002 5.05 5.61 7.974 

SS3 - G3 39.827 6.4 13 41.4 4.8 4.767 9.73 5.32 2.694 

SS3 - G4 47.953 6.6 23.3 44.1 5.9 8.099 6.59 5.54 7.115 

SS3 - G5 32.363 8.1 20.3 41 5.8 5.384 23.32 5.31 4.552 

 

Unit ASC Ca K Mg Na OS P pH SO4 

NM1 42.556 5.4 18 35.5 4.9 5.529 49.45 5.05 4.516 

NM1 - G1 35.834 4.9 17.3 28.5 4.9 3.777 16.64 5.22 3.574 

NM1 - G2 32.809 6.3 22.6 41.7 4.6 3.719 44.54 5.09 7.68 

NM1 - G3 30.625 6.3 20.7 35.6 5.6 4.667 29.59 5.24 4.438 

NM1 - G4 41.38 3.8 12.1 22.1 4.8 4.134 14.31 5.13 3.267 

NM1 - G5 33.314 6.5 17.5 33.7 5.3 4.256 23.07 5.13 2.921 

NM2 53.969 4.6 21 21.8 4.6 5.294 20.59 5.21 9.982 

NM2 - G1 48.389 6.3 31.2 35.8 5.8 4.166 31.14 5.42 9.245 

NM2 - G2 63.981 5.1 21.7 21.6 5.8 6.227 13.61 5.43 8.729 

NM2 - G3 54.79 4.2 10.5 18.1 5.5 3.302 11.8 5.26 8.828 

NM2 - G4 64.145 3.5 22.3 18.5 5.1 5.786 24.35 5.19 10.537 

NM2 - G5 38.87 6.6 19.6 38.2 7.6 4.297 27.08 5.43 8.797 

NM3 82.181 3.4 7.5 16.4 8 7.941 13.27 5.26 12.503 

NM3 - G1 78.313 3.5 12.2 18.3 8 8.757 13.63 5.43 9.267 

NM3 - G2 66.655 5 11.1 20.4 8.5 6.394 11.74 5.28 9.69 

NM3 - G3 81.977 2.5 7.3 12.8 8 8.449 9.88 5.23 11.103 

NM3 - G4 85.641 3.8 11.2 20.7 7.6 9.086 14.77 5.26 12.355 

NM3 - G5 86.14 2.4 9 14.2 9.2 9.434 12.43 5.3 14.033 
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Unit ASC Ca K Mg Na OS P pH SO4 

SM1 85.481 4 11.3 20 5 16.363 8.59 5.26 4.988 

SM1 - G1 68.74 3.9 16.2 23.9 4.5 9.651 8.7 5.24 8.669 

SM1 - G2 59.878 3.5 16.3 20.7 4.1 8.126 6.73 5.14 7.179 

SM1 - G3 85.317 4 12.9 21 4 7.481 5.21 5.4 10.175 

SM1 - G4 79.408 3.8 17.1 21.7 4.4 9.882 11.36 5.29 18.691 

SM1 - G5 96.805 4.4 11.7 20.8 3.8 12.664 6.35 5.46 14.632 

SM2 58.495 6.3 10.3 38.9 5.5 3.752 5.01 5.66 4.814 

SM2 - G1 62.159 4.4 5.9 25.5 4.7 2.044 4.22 5.55 5.481 

SM2 - G2 60.66 5.3 7.7 35.7 4.8 3.459 3.3 5.56 4.547 

SM2 - G3 38.677 5.5 12.2 50.1 4.9 3.331 5.48 5.35 2.738 

SM2 - G4 67.488 5.5 10.3 27.8 6.7 4.356 3.82 5.66 4.164 

SM2 - G5 39.343 6 18.3 39.5 5.6 3.53 8.03 5.41 2.226 

SM3 48.606 4.2 8.7 20.7 6 2.987 6.73 5.32 4.855 

SM3 - G1 40.035 4.8 5.8 24.1 6.1 2.141 6.73 5.4 3.159 

SM3 - G2 69.779 3 19.9 16.6 3.7 6.912 9.89 5.06 12.667 

SM3 - G3 56.355 3.4 6.5 16 5.3 4.028 7.34 5.41 5.843 

SM3 - G4 50.785 3.8 7.2 18.8 4.9 3.437 7.07 5.24 3.689 

SM3 - G5 59.731 4.1 7.8 19.5 5.2 4.327 6.29 5.38 4.219 

 

Unit ASC Ca K Mg Na OS P pH SO4 

NS1 34.46 8.5 19.2 48.1 5.4 4.261 12.38 5.57 5.309 

NS1 - G1 44.905 6.4 15.1 34.8 6.1 6.721 16.97 5.22 8.609 

NS1 - G2 34.792 8.6 18.3 50.6 6.6 4.478 9.02 5.4 5.435 

NS1 - G3 34.958 7.3 15.6 40.3 5.7 4.695 14.12 5.42 6.989 

NS1 - G4 40.926 6.3 19.7 34.1 5.5 5.872 12.67 5.24 5.96 

NS1 - G5 33.797 10 13 43.5 6.4 4.821 8.71 5.53 3.795 

NS2 38.019 7.5 10.8 36 8 2.057 6.8 5.45 5.8 

NS2 - G1 34.322 9 6.7 33.6 8.3 0.938 5.66 5.38 3.828 

NS2 - G2 36.002 10 9.8 42.6 8.5 2.26 4.82 5.56 1.834 

NS2 - G3 38.691 7.5 11.9 41.9 5.6 3.92 6.06 5.43 4.545 

NS2 - G4 43.228 6.7 12.6 38.4 5.8 1.569 5.79 5.38 5.761 

NS2 - G5 26.256 10.5 12.2 44.5 7.3 1.055 5.15 5.53 5.06 

NS3 33.015 5.7 14 39.3 5.5 2.671 14.11 5.45 3.756 

NS3 - G1 32.348 6.6 11.4 48.8 6 3.944 7.72 5.4 1.695 

NS3 - G2 28.352 6.4 11 39.6 6.5 2.315 6.28 5.36 2.219 

NS3 - G3 34.68 6.4 15.5 37.8 6.1 3.641 15.73 5.37 2.817 

NS3 - G4 34.18 6.3 14.7 31.8 7.5 4.861 28.47 5.1 3.562 

NS3 - G5 30.35 6.6 9.6 38.5 5.8 3.731 7.18 5.28 2.126 
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Uni ASC Ca K Mg Na OS P pH SO4 

VL1 90.164 3.8 12.4 14.3 4.2 14.533 14.25 5.39 33.59 

VL1 - G1 94.356 5.2 13.7 17.3 4.4 13.407 12.4 5.5 41.921 

VL1 - G2 89.325 5.7 10.5 17.2 3.9 15.66 17.51 5.53 29.088 

VL1 - G3 90.164 5 14.6 16.8 3.8 15.061 13.36 5.55 39.061 

VL1 - G4 94.507 5.4 8.4 13.8 4.4 12.188 14.24 5.37 27.685 

VL1 - G5 94.015 6.1 6.6 14 4.5 13.955 11.27 5.52 36.739 

VL2 69.036 4.5 14.5 20.9 4.2 9.843 20.29 5.15 11.696 

VL2 - G1 70.378 3.5 18.5 15.9 3.7 9.427 20.15 5.04 12.74 

VL2 - G2 64.677 4.3 19.2 23.8 3.7 7.889 35.6 5 17 

VL2 - G3 82.283 3.3 10.7 11.7 5 13.325 13.94 5.19 9.947 

VL2 - G4 63.503 5.3 25.1 27.4 4 6.687 44.15 5.14 18.037 

VL2 - G5 61.491 4.5 15.3 22.4 4.3 6.835 18.74 5.12 8.779 

VL3 92.21 2.2 7.2 9.8 5 10.978 7.89 5.22 14.593 

VL3 - G1 97.133 4.8 11.8 17.6 7.1 10.597 8.72 5.53 14.741 

VL3 - G2 92.538 3.6 12.3 13.5 4.6 10.807 8.27 5.23 19.266 

VL3 - G3 94.672 1.8 8.3 9.3 4.5 10.575 9.29 5.04 14.182 

VL3 - G4 88.763 2.9 12.4 13.3 4.3 10.954 10.41 5.14 16.604 

VL3 - G5 86.63 2.5 9.9 14.8 7.4 8.539 13.91 5.01 21.029 

 

Unit ASC Ca K Mg Na OS P pH SO4 

RS1 55.342 4.8 18.6 27.9 5.8 4.992 9.57 5.22 6.18 

RS1 - G1 43.526 6.9 22.8 39.4 5.8 4.83 20.97 5.49 7.278 

RS1 - G2 56.693 4.6 14.6 25.8 7.9 6.182 8.29 5.2 5.373 

RS1 - G3 52.641 4 20.1 28.4 5 8.106 13.31 5.18 5.868 

RS1 - G4 55.849 3.9 14.5 25.2 4.3 6.458 7.56 5.12 7.392 

RS1 - G5 48.421 4.5 16.6 31.6 6.2 4.605 10.64 5.08 4.248 

RL2 96.799 5 14.8 22.2 4.6 10.224 9.71 5.53 24.739 

RL2 - G1 98.131 2.6 6.6 11.3 3.7 8.424 4.95 5.65 17.471 

RL2 - G2 94.967 4.8 11.9 24.9 3.9 10.276 9.78 5.42 21.924 

RL2 - G3 96.466 4.8 13.2 20 3.9 6.437 8.43 5.48 34.896 

RL2 - G4 98.131 5.3 16.8 22.9 4 9.666 11.89 5.57 32.784 

RL2 - G5 96.133 5.2 10.5 25.5 5 9.239 11.71 5.61 20.473 

RL3 50.375 4.6 16 22.5 5.8 8.308 10.59 5.23 9.258 

RL3 - G1 38.771 5.3 11 26 5.8 3.331 5.15 5.21 3.735 

RL3 - G2 62.477 6.2 22.2 29.9 6 6.209 11.2 5.4 15.808 

RL3 - G3 43.247 5.6 15.5 26.2 6.4 4.389 9.5 5.34 6.235 

RL3 - G4 57.338 5.9 25.7 29.6 4.8 8.046 13.72 5.44 11.263 

RL3 - G5 44.905 5.9 16.8 34.6 5.6 7.642 7.46 5.27 4.876 
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Unit ASC Ca K Mg Na OS P pH SO4 

SV 1 63.43 3.6 8.6 31.9 4.5 6.791 4.72 5.26 9.715 

SV 2 52.672 5 11.2 42.3 4.7 5.873 12.98 5.25 8.386 

SV 3 53.513 5.1 8.2 40.6 4.7 6.217 14.66 5.39 7.228 

SV 4 45.781 5.3 8.3 37.8 4.9 5.014 12.16 5.19 8.161 

SV 5 79.736 3.3 8.3 22.2 3.8 7.766 5.29 5.19 17.115 

PV 1 44.1 5.2 7.8 54.9 7 7.037 7.05 4.75 12.834 

 

 

Unit ASC Ca K Mg Na OS P pH SO4 

PV 1 44.1 5.2 7.8 54.9 7 7.037 7.05 4.75 12.834 

PV 2 65.616 3.4 11.2 26.7 4.5 9.125 9.8 4.61 16.919 

PV 3 41.242 6.6 7.9 52.7 5.8 5.76 9.63 5.16 10.063 

PV 4 37.376 6.4 7.8 48.5 5 6.242 5.86 5.18 16.591 

PV 5 64.103 5.7 8.6 37.8 5 9.111 4.4 4.98 28.17 
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