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1. Introduction: what is tephrochronology? 

Tephrochronology is a unique method for linking and dating geological, palaeoecological, 

palaeoclimatic, or archaeological sequences or events. The method relies firstly on stratigraphy 

and the law of superposition, which apply in any study that connects or correlates deposits from 

one place to another. Secondly, it relies on characterising and hence identifying or 

‘fingerprinting’ tephra layers using either physical properties evident in the field or those 

obtained from laboratory analysis, including mineralogical examination by optical microscopy or 

geochemical analysis of glass shards or crystals (e.g., Fe-Ti oxides, ferromagnesian minerals) 

using the electron microprobe and other tools. Thirdly, the method is enhanced when a numerical 

age is obtained for a tephra layer by (1) radiometric methods such as radiocarbon, fission-track, 

U-series, or Ar/Ar dating, (2) incremental dating methods including dendrochronology or varved 

sediments or layering in ice cores, or (3) age-equivalent methods such as palaeomagnetism or 

correlation with marine oxygen isotope stages or palynostratigraphy. Once known, that age can 

be transferred from one site to the next using stratigraphic methods and by matching 

compositional characteristics, i.e., comparing ‘fingerprints’ from each layer. Used this way, 

tephrochronology is an age-equivalent dating method. 

 Even if a tephra layer is undated, or if it is dated imprecisely, it nevertheless provides an 

isochron or time-plane that allows the sequence in which it is found to be correlated with other 

sequences where it occurs. Herein lies the unique power of tephrochronology: deposits and their 

palaeoarchival evidence are thus able to be connected and synchronized  positioned precisely on 

a common time scale  using the tephra layer as a stratigraphically fixed tie-point, even where the 

tephra is poorly or undated.  In this situation, the age scale is best envisaged as a length of elastic 

that can be stretched or contracted when numerical ages are obtained, or age precision is 

improved, whilst the tephra’s stratigraphic juxtaposition with respect to the enclosing deposits 

and associated archival data remains fixed on the ‘elastic’. When the tephra age is known, 

however, that age can be applied directly to the sequence where the tephra has been newly 

identified. This is because tephra layers are erupted over very short time periods (volcanic 

eruptions typically last for only hours or days to perhaps weeks or a few months or so at most), 

and thus each represent an instant in time, geologically speaking (Lowe, 2011).  

 A tephra layer from a powerful eruption can be spread widely over land, sea and ice, 

hence forming a thin blanket that has exactly the same age wherever it occurs (unless it has been 

reworked). For example, the Icelandic Fugloyarbanki tephra, identified in the NGRIP ice core 

from Greenland, has been dated at 26,740 ± 390 (1) calendar (cal.) years before AD 2000 on the 

basis of multi-parameter counting of annual layers in NGRIP (Davies et al., 2008). It forms a 

widespread marker horizon or isochron in marine deposits in the North Atlantic and on the distant 

Faroe Islands between Iceland and Scotland. Thus palaeoarchives at these widely separated 

localities are now able to be connected precisely. Moreover, the extent of the radiocarbon marine 

reservoir effect in this region at the time can be examined using the Fugloyarbanki tephra as an 

independent time-plane.  
 

*Citation for this article is given on p. 28 
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In the New Zealand region, the Kawakawa (or Oruanui) tephra, erupted from Taupo caldera c. 

25,400 cal. yr BP (Vandergoes et al., 2013), similarly forms an extensive isochron linking 

numerous terrestrial and marine sequences to the same point in time (Pillans et al., 1993; Carter et 

al., 1995; Alloway et al., 2007b; Newnham et al., 2007a, 2007b; Holt et al., 2010; Van Eaton and 

Wilson, 2013) (Fig. 1).  

 

 
 

Fig. 1. Isopachs of Kawakawa/Oruanui tephra (in centimetres) showing the tephra’s distribution extending 

>1000 km away from its source at Taupo caldera. Isopachs to the 10 cm mark are from Wilson (2001); 

beyond 10 cm, the thinner isopachs are based on relatively few sites and are indicative only (from 

Vandergoes et al., 2013). Trace occurrence in Northland is after Newnham et al. (2004). 

 

 Much of this workshop article is based on Lowe (2011), who comprehensively reviewed 

the basis of the discipline of tephrochronology, documenting recent advances in techniques as 

well as problems that may be encountered. A short, easy read on tephrochronology was given by 

Lowe et al. (2008b), and Lowe et al. (2008a) partly updated Froggatt and Lowe (1990). Other 

reviews pertaining especially to New Zealand include those of Shane (2000) and Alloway et al. 

(2007a, 2013). Numerous volcanological aspects of tephra studies are covered in detail by 

Sigurdsson (2000), and Smith et al. (2006) provided an introduction to New Zealand 

volcanology. Historical aspects of tephra studies in New Zealand were described by Lowe (1990) 

and Lowe et al. (2008c). A special volume comprising 31 tephra-based papers was published in 

2011 (Lowe et al., 2011a). 
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2. More on nomenclature 
 

Tephras (from the Greek tephra meaning ‘ashes’) are the explosively-erupted, unconsolidated 

pyroclastic (literally ‘fiery fragmental’) products of volcanic eruptions. They encompass all grain 

sizes: ash (grains <2 mm in diameter), lapillus or lapilli (64–2 mm), or blocks or bombs (>64 

mm). Ash can be classed as coarse (2 mm–62.5 µm) and fine (<62.5 µm); lapilli can be divided 

into five classes from extremely fine to coarse (Cas et al., 2008). Further clast-size related 

information was reported by Fisher et al. (2006) and White and Houghton (2006). As noted 

above, tephrochronology in its original sense (sensu stricto) is the use of tephra layers as 

isochrons to connect or correlate sequences and to transfer relative or numerical ages to such 

sequences where the tephras have been dated (Fig. 2). It is not simply ‘dating tephras’. Rather, 

tephrochronometry is the term used to describe the dating of tephra layers either directly or 

indirectly. In recent times, the term tephrochronology (sensu lato) has been used quite broadly 

and universally to describe all aspects of tephra studies as used, for example, by Alloway et al. 

(2007a) (Table 1).  

The terms ‘tephra’ and ‘tephrochronology’ were coined by Icelandic geoscientist Sigurdur 

Thorarinsson in his doctoral thesis “Tephrochronological studies in Iceland (University of 

Stockholm) in 1944 (Thorarinsson, 1974, 1981; Lowe, 1990; Steinthorsson, 2012; Wastegård and 

Boygle, 2012). Often regarded as the ‘father of tephrochronology’, Thorarinsson was born just 

over 100 years ago on 8 January 1912 and died 8 February 1983 (Lowe et al., 2011b). A special 

issue of the journal Jökull was published in 2012 to commemorate the centenary of his birth 

(Benediktsson et al., 2012). 
 

 

 

Fig. 2. Nomenclature of tephra and derivative terms and their relationships with one another and with 

other terms including the near-synonym pyroclastic material. ‘Tephra’, by definition unconsolidated or 

‘loose’ pyroclastic material, is used in four different senses (white rectangles across centre). The terms 

listed beneath the blue rectangular boxes at the very bottom should be abandoned (from Lowe, 2008a). 
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Undertaking tephrochronology always requires tephrostratigraphy to some degree (Lowe, 

2011). Tephrostratigraphy is the study of sequences of tephras and associated deposits, their 

distribution and stratigraphic relationships (superpositions), and their relative and numerical ages. 

It involves defining, describing, characterizing, and dating tephra layers using their physical, 

mineralogical or geochemical properties from field or laboratory-based observations, or both. In 

the last decade or so, there has been a revolutionary development focussed on detecting 

diminutive, distal tephras that are invisible in the field and referred to as cryptotephras. From the 

Greek word kryptein, meaning ‘to hide’, cryptotephras usually comprise fine-ash-sized (typically 

<~125 m) glass shards or crystals, or both, preserved and ‘hidden’ in peats or in lake, marine or 

aeolian sediments or soils, or in ice cores (Table 1; Lowe, 2011). Cryptotephrostratigraphy refers 

to the stratigraphic study of tephra-derived glass-shard, or crystal concentrations (e.g., Hogg and 

McCraw, 1983, p. 182; Matsu’ura et al., 2011, 2012; Wastegård and Boygle, 2012), that are 

encompassed within sediments or soils but which are not visible in the field as layers. The term 

‘cryptotephra’ has replaced an earlier term ‘microtephra’ but the term ‘microshard’, defined as 

glass shards <32 µm in diameter, has been proposed by Lowe et al. (in prep). 

 Note that the letter ‘o’ rather than ‘a’ is the appropriate connecting letter in all these terms 

derived from tephra, and that the adjective ‘volcanic’ is redundant when referring to tephra. The 

term ‘airfall’ is no longer used (tephra-fall or tephra fallout, or ash-fall or ash fallout if 

appropriate, are used instead). Several other words in useage have tephra or tephrós (‘ash 

coloured’) at their root but none normally is relevant to tephrochronological studies. ‘Tephrite’ 

refers to a typically ash coloured alkalic basaltic volcanic rock erupted effusively as lava, not 

explosively. ‘Tephroite’ is a mineral, Mn2SiO4, in the olivine group that is commonly ash-grey to 

olive or bluish green in colour. And ‘tephromancy’ is divination by means of sacrificial (human) 

ashes, requiring supernatural insight! 

 

 

 

Table 1. Tephra-related nomenclature in brief (from Lowe, 2011).  
_____________________________________________________________________________________________________________________ 

Term   Definition 

Tephra  All the explosively-erupted, unconsolidated pyroclastic products of a volcanic  

eruption (Greek tephra, ‘ashes’). 

Cryptotephra  Tephra-derived glass-shard or crystal concentration, or both, preserved in 

sediment (including ice) or soil and not visible as a layer to the naked eye (Greek 

kryptein, ‘to hide’). 

Tephrostratigraphy   Study of sequences of tephra layers and associated deposits, their distribution and 

stratigraphic relationships, and their relative and numerical ages. Involves 

defining, describing, characterizing, and dating tephra layers in the field and 

laboratory. 

Tephrochronology Use of tephra layers as isochrons (time-parallel marker beds) to connect and  

  (sensu stricto)  synchronize sequences and to transfer relative or numerical ages to them using 

stratigraphy and other tools. An age-equivalent dating method. 

Tephrochronology  All aspects of tephra studies and their application. 

  (sensu lato)   

Tephrochronometry Obtaining a numerical age or date for a tephra layer. 

______________________________________________________________________________ 
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3. Mapping tephras: from metre to sub-millimetre scale 

Since the mid-late 1920s, tephras have been mapped using field and laboratory based methods in 

New Zealand. In the field, the most successful approaches have included the so-called ‘hand-

over-hand’ method whereby relatively thick sequences of tephras (metre to decimetre scale) are 

traced from cutting to cutting (Fig. 3) using their stratigraphy and salient physical properties 

including colour, bedding characteristics, or other features such as pumice density (e.g., hard vs 

soft) or colour, the presence of accretionary lapilli, or marker mineral grains (crystals) such as 

biotite visible via a hand lens. Distinctive marker beds provide a useful stratigraphic starting 

point in unravelling the complexities of a road cutting or other exposure (Fig. 4). The nature of 

buried soil horizons or loess associated with tephra layers may also provide helpful information 

in the field. Such methods are ultimately limited as the tephra layers thin away from source and 

lose diagnostic features in subaerial sequences, or where they become mixed together by soil-

forming processes or by cryoturbation in periodically frozen landscapes.  

But for several decades now, cores taken from lake sediments and peat bogs in Hawke’s 

Bay, Waikato, Taranaki, and Auckland have revealed a rich record of visible tephra layers a few 

centimetres to millimetres in thickness preserved at sites far from source volcanoes (e.g., Lowe, 

1988; Molloy et al., 2009; Augustinus et al., 2011) (Fig. 5). Most recently, sub-millimetre-scale 

cryptotephra studies on such sediments have been initiated in the Waikato and Auckland regions 

(Table 2). Marine cores have also revealed detailed tephra records – which, together with those 

from lakes and bogs, provide a record of explosive volcanism that can be more comprehensive 

than that obtainable near to source because of burial or erosion of eruptives near volcanic centres 

(Fig. 6). Overseas, new developments in North America have been dramatic and ‘ultra-distal’ 

cryptotephras have been described by Pyne-O’Donnell et al. (2012). 

Recently, Streeter and Dugmore (2013) advocated the development of high-resolution 

tephrochronology from studies in Iceland where they used digital photography to obtain 

thousands of stratigraphic measurements of multiple tephra layers intercalated with sediments (at 

a resolution of ± 1 mm). Further novel applications of tephrochronology to geomorphology were 

described by Dugmore and Newton (2012). 

 

 
 

Fig. 3. Metre-thick, proximal, coarse, partly bedded pumiceous late Holocene rhyolitic tephra beds 

(mainly blocks/bombs and lapilli) and associated darker buried soil horizons (marking volcanic 

quiescence) evenly draping an antecedent strongly-rolling landscape near Taupo (from Lowe, 2011).  
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Fig. 4. Example of a stratigraphic marker bed in a road cutting, Hamilton. The prominent white bed mid-

section is Rangitawa tephra (c. 340 ka). Lying at the base of strongly-weathered tephra beds and 

associated buried soils (Hamilton Ash sequence), rhyolitic Rangitawa tephra contains characteristic 

coarse-ash-sized golden platy crystals (biotite-kaolinite intergrade) and coarse-ash-sized quartz crystals. 

This widespread tephra, erupted near the end of MOI stage 10 (Alloway et al., 2007a; Holt et al., 2010), 

overlies unconformably a dark reddish-brown buried soil >c. 0.78 Ma, about 1 m of volcanogenic 

alluvium, and (at the base) either the Ongatiti Ignimbrite (c. 1.23 Ma) (Lowe et al., 2001) or the 

Kidnappers Ignimbrite (c. 1 Ma) (Wilson et al., 1995).  Photo: D.J. Lowe. 

 

 
Fig. 5. Main tephra-producing Quaternary volcanic centres of North Island. The two most frequently 

active rhyolitic centres are Taupo and Okataina calderas (see Fig. 6). Egmont and Tongariro centres are 

andesitic, Tuhua (Mayor Island) is peralkaline, and the locally distributed tephras from Auckland Volcanic 

Field are basaltic. After Wilson and Leonard (2008). 



7 
 

QT Workshop 2013    

   

 
 

Fig. 6. Interfingering stratigraphic relationships, ages, and volumes (as non-vesiculated, void-free magma, 

i.e., dense-rock equivalent, DRE) of tephras erupted from Okataina and Taupo caldera volcanoes in North 

Island, New Zealand, since ca. 60 ka cal. BP (based on Wilson et al., 2009). Another significant unit (not 

depicted) in this period is the rhyolitic Earthquake Flat tephra (7 km
3 
DRE), which was erupted from the 

Kapenga caldera volcano (adjacent to Okataina) immediately after the Rototiti/Rotoehu eruption (Wilson 

et al., 2007). Note that since this diagram was published by Lowe (2011), Danišík et al. (2012) re-dated 

the Rotoiti/Rotoehu and EFT eruptives using (U-Th)/He and high-resolution 
14

C dating to attain ages of c. 

45-50 cal ka; Vandergoes et al. (2013) re-dated the Kawakawa/Oruanui eruptives using high-resolution 
14

C dating on new, optimal sample materials to derive an age 25,358 ± 162 cal yr BP (2); and ages on 

around 20 other widespread  tephras erupted since 30,000 cal yr BP were recently revised by Lowe et al. 

(2013).  
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 4. Fingerprinting 

Tephra fingerprinting in New Zealand has been undertaken using a range of analytical methods, 

almost always in conjunction with stratigraphic and chronological criteria where available (Table 

3). Accurate fingerprinting is an essential element (!) in developing any age models for tephras, 

and the level of probability that can be applied to their identification and correlation is an 

important consideration in quantitative tephrochronology. Ideally, multiple criteria (more than 

one thread of evidence) should be used to secure the correlation: for example, stratigraphic 

position together with mineralogical assemblage and glass major element composition. 

Numerical age data are also useful. 

 

 
 

Table 2. Special techniques used to identify and map thin distal tephras, or detect cryptotephras in cores 

or sections, in New Zealand (after Lowe et al., 2008a) (see also Gehrels et al., 2008). 
_____________________________________________________________________________________________________________________ 

Application Method 

Field Ground radar  

  Magnetic susceptibility   

Laboratory X-radiography  

  Magnetic susceptibility 

  Dry bulk density   

  Rapid X-ray fluorescence   

  Spectrophotometry (reflectance and luminescence) 

  Refractive indices of glass  

  Glass counts (cryptotephras) 

  Total organic carbon, loss on ignition  

 

                
Table 3. Summary of main analytical methods (excluding geochronology) used in New Zealand over past 

few decades to characterize and correlate tephras erupted since c. 30,000 cal. yr BP (after Lowe, 2011). 

_____________________________________________________________________________ 

Tephra component/properties Methods of analysis    Example 

Ferromagnesian minerals    

     Assemblages Petrographic microscope  Table 4 

     Pyroxenes, amphiboles, olivine, Electron microprobe  

         biotite crystals   Fig. 9 

Fe-Ti oxides    

 Major and minor elements in  

     crystals Electron microprobe  Fig. 8 

 Eruption temperatures and  Electron microprobe  Table 4 

      oxygen fugacities        

Glass shards or selvedges  

 Major elements Electron microprobe  Figs. 10, 11 

 Rare-earth and trace elements  LA- or SN-ICPMS, INAA,  

  SIMS
a
 

 Shard morphology Optical microscope, SEM   

Feldspars   

 Anorthite (An) content of  

       plagioclase crystals Electron microprobe  
 

a
LA- or SN-ICPMS, laser ablation or solution nebulisation inductively coupled plasma mass spectrometry; INAA, 

instrumental neutron activation analysis; SIMS, secondary ionisation mass spectrometry (ion  microprobe); SEM, 

scanning electron microscope. 
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Mineralogy 

One of the most common methods has been to use optical microscopy (using a petrological or 

polarizing microscope) to identify ferromagnesian mineralogical assemblages where such 

minerals are abundant. These minerals can be extracted using magnetic separators (e.g., Frantz) 

together with non-toxic heavy liquids (e.g., sodium polytungstate). With stratigraphic constraints, 

the relative abundances of ferromagnesian minerals typically allow a source volcano to be 

identified. For eruptives <30,000 cal. yr BP, orthopyroxene is always dominant in Taupo 

Volcanic Centre (TP)-derived tephras whereas biotite, hornblende, cummingtonite, or 

orthopyroxene predominate in Okataina Volcanic Centre (OK)-derived tephras (Table 4). 

Sometimes a mineral assemblage is sufficiently distinctive for an individual tephra  for example, 

Tuhua Tephra (from Mayor Island), which contains sodic phases such as aegirine  to be readily 

identified by only a few grains. However, the absence of diagnostic minerals does not necessarily 

negate an identification because minerals such as olivine are readily depleted by weathering, and 

biotite and orthopyroxene may be rapidly dissolved in some acid peat bogs (e.g., Hodder et al., 

1991). Ferromagnesian minerals also tend to be sparse or absent at distal localities, having 

dropped out from proximal ash clouds earlier because of their high density. Recent studies of the 

OK-derived tephras (erupted since 30,000 cal. yr BP) have shown that all but two comprise 

multiple magma types (Table 4), adding complexity to the use of ferromagnesian minerals for 

correlation purposes but increasing in some the potential for fingerprinting by chemical analysis 

of constituent minerals and glass (see below). Andesitic eruptives are usually distinguishable 

from rhyolitic tephras because of their high pyroxene, or hornblende plus clinopyroxene, 

contents. 

 

Microprobe analysis 

In undertaking electron microprobe analysis (EMPA), sample preparation (Fig. 7) and probe 

operating conditions are critically important in deriving accurate and robust data, especially for 

glass which normally requires a defocussed beam to minimise volatilisation of Na and K 

(Froggatt 1992; Hunt and Hill, 1996, 2001; Turney et al., 2004; Lowe, 2011). Appropriate 

standards must be checked (analysed) frequently and there is now a general requirement for 

analyses of such standards to be published alongside new EMPA data (e.g., Westgate et al., 

2008). A revised set of protocols for microprobing glass (and reporting such analyses) was 

published by Kuehn et al. (2011) following an intensive interlaboratory comparison exercise in 

2010-2011. Glass EMPA analyses are usually normalized (summed to 100%, most of the deficit 

being attributable to water) to enable valid comparisons of analyses. Some consider that such 

normalization can ‘cover up’ poor data (low totals), and should therefore not be undertaken (e.g., 

Pollard et al., 2006). Recently, Hayward (2012) has developed robust protocols that enable the 

routine use of narrow beam diameters of 5 µm, and as low as 3 µm, without loss of Na. Such a 

development is extremely important because it enables many fine-grained samples to be analysed 

from wider, more distal geographic locations than previously, it reduces or prevents bias in data 

collection because most or all shards in a sample can be analysed, it enables more shards that are 

vesicular or microlite-rich (such as occur frequently in andesitic or basaltic tephras) to be 

analysed than previously possible, and EPMA data acquisition is more easily automated and 

hence potentially more cost-effective (Hayward, 2012).  

Analyses of Fe-Ti oxides, titanomagnetites and ilmenites, by EMPA have been useful for 

tephra fingerprinting (Table 4). An example of the use of minor elements (Mn, Mg) to distinguish 

five TP-derived tephras is given in Fig. 8. Egmont (EG) or Tongariro Volcanic Centre (TG) 

sources are usually determinable. The eruption temperature and oxygen fugacity (oxidation state 

of magma) of rhyolitic tephras – estimated using single-grain EMPA of Fe-Ti oxide pairs of 

titanomagnetite and ilmenite – have provided a relatively new way to distinguish and match 

tephras and, in some cases, magma batches within an eruptive sequence (Table 4). 
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The compositions of pyroxene, amphibole and olivine, obtained by EMPA, generally allow 

few individual tephra eruptive events to be identified but source volcanoes may be readily 

distinguished. For example, clinopyroxene and hornblende in EG-derived tephras are typically 

more calcic than those from TG, hornblende from these two andesitic sources is more pargasitic 

than that from the rhyolitic centres, and olivine in TG-derived tephras is forsteritic (Mg-rich) 

compared with that from Mayor Island which is fayalitic (Fe-rich). More recently, however, it has 

been demonstrated that the FeO and MgO contents of biotite derived from Kaharoa (two eruptive 

phases), Rotorua, Rerewhakaaitu, and Okareka tephras were different, thus enabling them to be 

distinguished from other OK-derived eruptives (Fig. 9).  
 

 

 
 

 

Fig. 7. Preparation of crystals or glass shards in ‘blocks’ for analysis by electron microprobe. Grains must  
be polished flat before analysis (from Lowe, 2011). 
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Fig. 8. Biplot of MnO vs MgO (wt%) analyses for ilmenites obtained using EMPA from five TP-derived 

tephras showing that Taupo (Unit Y), Whakaipo (V),  and Waimihia (S) and are distinguishable from one 

another and from Karapiti (B) and Opepe (E) (from Lowe et al., 2008a). 

 

The most commonly used tephra fingerprinting technique in New Zealand involves 

major-element analysis of volcanic glass shards using EMPA (Shane, 2000; Shane et al., 2006; 

Lowe et al., 2008a). Established initially in New Zealand in the early 1980s by Paul Froggatt 

(Froggatt and Gosson, 1982; Froggatt, 1983), EMPA of glass enabled volcanic sources to be 

readily identified for almost all eruptives <30,000 cal. yr BP in age. Although analyses of 

individual rhyolitic tephras of this age-range from Taupo or Okataina centres show many to be 

compositionally similar, some are distinguishable using bi-plots such as FeO or K2O vs CaO 

content (Fig. 10), or using canonical discriminant function analysis (DFA) that incorporates eight 

or nine elements (oxides). 

 Detailed studies by EMPA, however, of thick sequences of proximal tephras erupted from 

Okataina have revealed much more compositional diversity and heterogeneity within individual 

lapilli-sized clasts and at different azimuths around the volcanic centre than previously 

recognised (Shane et al., 2008a). This heterogeneity is a consequence of the mingling of separate 

batches of magma that were tapped simultaneously or sequentially, accompanied by changes in 

wind direction, as eruptions proceeded. The recognition of more than one magma type in most of 

the OK-derived tephras has in some circumstances increased their potential for precise correlation 

in that some tephra beds might be identified uniquely, even where stratigraphic control is 

uncertain, because they were derived from two or three magma batches and so have multiple 

fingerprints or ‘handprints’ (Lowe et al., 2008a). For example, Kaharoa and Rotorua tephras are 

each the product of two magmas that can be distinguished on the basis of glass chemistry, one 

high (>4 wt%) and the other low (<4 wt%) in K2O. Similarly, Rerewhakaaitu, Okareka, and Te 

Rere tephras are characterised by three magma types, the high K2O-types (T2) containing 

distinctive biotite as well. However, it is also evident that the newly-recognised heterogeneity has 

increased complexity and potentially ambiguity, and glass compositions of some eruptive phases 

may overlap those for other tephras. An implication is that some tephras may have been 

misidentified (miscorrelated) in the past. The heterogeneity warns of the difficulty of 

characterising (thus fingerprinting) tephra beds using a limited set of distal samples from 

restricted dispersal sectors (Shane et al., 2008a). 
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Table 4. Ferromagnesian mineralogical assemblages and magma temperatures and oxygen fugacities of 

22 marker tephras erupted since c. 30,000 cal. yr BP in New Zealand (from Lowe et al., 2008a)  

Tephra name Relative abundances of 

ferromagnesian minerals
a
 

Eruption  

temperature
b
 

(° C) 

Oxygen 

fugacity fO2 

(NNO)
c
 

 

Taupo Volcanic Centre (rhyolitic)(see Fig. 5) 
Taupo (Unit Y) Opx >> Cpx 862 ± 17 -0.17 ± 0.11 

Whakaipo (Unit V) Opx                                                785 ± 10 -1.06 ± 0.12 

Waimihia (Unit S) Opx >> Hbe 816 ± 10 -0.72 ± 0.08 

Unit K Opx  822 ± 16 -0.59 ± 0.11 

Opepe (Unit E) Opx >> Cpx 812 ± 18 -0.54 ± 0.17 

Poronui (Unit C) Opx >> Cpx   

Karapiti (Unit B) Opx >> Cpx + Hbe 788 ± 33 -0.75 ± 0.24 

Kawakawa/Oruanui Opx > Hbe  774 ± 12 -0.14 ± 0.10 

Poihipi  Opx > Hbe > Bio 771 ±   6  0.07 ± 0.10 

Okaia Opx > Hbe  789 ± 17  0.21 ± 0.09 
 

Okataina Volcanic Centre (rhyolitic) 
Kaharoa           

 
 T1

d
 

                          T2 

Bio >> Hbe >> Cgt ± Opx  

Bio >> Cgt > Hbe ± Opx  

731 ± 10  0.09 ± 0.14 

Whakatane        T1 

                          T2 

                          T3 

Hbe > Cgt > Opx  

Hbe > Cgt > Opx  

Opx > Hbe > Cgt  

746 ± 13 

737 ±   9 

770 ±   5 

 0.33 ± 0.09 

 0.29 ± 0.11 

 0.52 ± 0.05 

Mamaku Hbe > Opx >> ± Cgt  735 ± 19  0.18 ± 0.13 

Rotoma             T1 

                          T2 

                          T3 

Cgt > Hbe > Opx  

Hbe > Opx > Cgt  

Opx > Hbe > Cgt 

752 ± 19 

752 ± 19 

752 ± 19 

 0.47 ± 0.12 

 0.47 ± 0.12 

 0.47 ± 0.12 

Waiohau Opx > Hbe 762 ± 23  0.36 ± 0.22 

Rotorua             T1 

                          T2 

Opx > Hbe >> Cpx  

Bio > Hbe >> Opx 

871 ± 10 

745 ± 30 

 1.11 ± 0.13 

 0.17 ± 0.20 

Rerewhakaaitu T1 

                          T2 

                          T3 

Opx > Hbe   

Hbe + Bio >> Opx  

Opx > Hbe 

721 

750 ± 18 

-0.31 

 0.43 ± 0.14 

Okareka            T1 

                          T2 

                          T3 

Opx + Hbe >> Cgt  

Hbe + Bio >> Opx  

Opx > Hbe  

759 ± 20 

724 ± 14 

794 ± 12 

 0.30 ± 0.20 

 0.05 ± 0.15 

 0.82 ± 0.08 

Te Rere             T1 

                          T2 

                          T3 

Opx + Hbe  

Opx + Hbe + Bio > Cpx 

Opx + Hbe  

801 ± 24 

708 ±   3 

 1.43 ± 0.16 

-0.07 ± 0.01 

 

 

Tuhua Volcanic Centre (peralkaline rhyolitic) 
Tuhua Aeg > Cpx > Opx ± Aen ± Rie ± 

Hbe ± Olv(fa) ± Tuh  
  

 

Tongariro Volcanic Centre (andesitic) 
Okupata Opx > Cpx >> ± Olv(fo) ± Hbe ~900-1100  

 

Egmont Volcanic Centre (andesitic) 
Konini Hbe > Cpx >> ± Opx ~950  

(footnotes contd below) 
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Table 4 (contd) 
a
Opx, orthopyroxene (mainly hypersthene); Cpx, clinopyroxene (mainly augite); Hbe, hornblende; Cgt, 

cummingtonite; Bio, biotite; Aeg, aegirine; Aen, aenigmatite; Rie, riebekite; Olv, olivine (fa, fayalite; fo, forsterite); 

Tuh, tuhualite.  
b
Pre-eruption temperature data (mean ± 1 standard deviation). 

c
Oxygen fugacity data reported in NNO units relative to the NiNiO buffer. 

d
T1–T3 represent separate magma types (early to late eruptive phases, respectively) identified by Smith et al. (2005) 

for some Okataina eruptive episodes. 
 

 

 

 
 

Fig. 9. Biplot of FeO vs MgO (wt%) analyses for biotite obtained using EMPA from four OK-derived 

tephras showing that Okareka (magma type T2), Rerewhakaaitu (magma type T2), and Rotorua (magma 

type T2) are distinguishable from one another, and that Kaharoa Tephra comprises two populations 

relating to early (Kaharoa 1, magma type T1) and late (Kaharoa 2, magma type T2) phases of the eruption 

that correspond to high K2O and low K2O glass compositions, respectively (from Lowe et al., 2008a). 

 

 

 

Fig. 10. Biplot of K2O vs CaO (wt%) analyses for glass obtained using EMPA from five TP-derived 

tephras illustrating that Taupo (Unit Y), Whakaipo (V) and Waimihia (S) generally are able to be 

distinguished from one another but Poronui (C), Opepe (E), and Taupo (Y) partly overlap (from Lowe et 

al., 2008a).   
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The correlation of andesitic tephras using glass chemistry generally has not been 

straightforward for various reasons including the multiplicity of units, the paucity of suitable 

glass for probing (few shards are free of microlite inclusions, and shards may be highly vesicular) 

and its vulnerability to weathering, and wide compositional ranges (SiO2 = ~58–75 wt %) and 

heterogeneity arising from multiple magma-mixing events (e.g., Shane et al., 2008b; Turner et al., 

2008, 2011). Moreover, there are no comprehensive databases for tephras from EG and TG and 

hence direct correlation is uncertain without precise radiometric age or stratigraphic control 

(Shane, 2000; Lowe, 2011). However, analyses of glass from >40 EG-derived tephras by Shane 

(2005) showed them to be enriched in K2O (>4 wt %) and depleted in CaO, TiO2 and FeO in 

comparison with andesitic tephras erupted from TG, and hence easily distinguished (see also 

Donoghue et al., 2007; Lowe et al., 2008a). Further, the compositional variation (heterogeneity) 

in glasses from some individual andesitic tephras allows their identification within short 

stratigraphic intervals of c. 5,000–10,000 cal. years (Shane, 2005). Platz et al. (2007) proposed an 

evaluation procedure using mixing calculations to reduce microprobe-determined glass 

heterogeneity arising from plagioclase microlites, and this method is proving useful in emerging 

cryptotepra studies (e.g., Gehrels et al., 2010). Most recently, Moebis et al. (2011) demonstrated 

that tephras from the three main centres of the Tongariro Volcanic Centre (Ruapehu; Ngauruhoe; 

Red Crater, Tongariro) could be distinguished by major elements, specifically via K2O and FeO 

(Fig. 11). 

Basaltic tephras in New Zealand, of restricted distribution, have been analysed by Shane 

and Smith (2000) and Shane and Zawalna-Geer (2011) and others. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 
 

Fig. 11. Biplot of K2O and FeO (total Fe expressed as FeO) derived by electron microprobe analyses of 

glass from tephras erupted from Ruapehu and Tongariro volcanoes younger than c. 12,000 cal. years, 

showing separation according to three sources (from Moebis et al., 2011, p. 359). 
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Trace- and rare-earth element (REE) data have not been widely employed in New Zealand 

tephrostratigraphy, although comprehensive studies have now been undertaken of Pleistocene 

tephras in the Auckland region (Pearce et al., 2008a) and in a core from ODP Site 1123 in the 

Pacific Ocean east of New Zealand (Allan et al., 2008). Earlier, various REEs and trace elements, 

based on analyses of small, bulk-glass samples, enabled some tephras from TP and OK within the 

<30,000 cal. yr BP time-frame to be distinguished. TP-derived tephras tend to show greater 

abundances of Sm, Eu, Tb, Lu, Hf, and Sc (Shane, 2000). Tuhua Tephra is distinguishable from 

both TP and OK-derived tephras because it has greater abundances of all REEs and other 

elements including U, Th, and Hf.  

Because glasses from many OK-derived tephras are now known to be compositionally 

heterogeneous, the trace-element and REE analyses need to be re-examined and revised, probably 

using inductively coupled plasma mass spectrometry methods (LA-ICPMS). Advances in this 

method now enable it to obtain detailed major- and trace-element compositions from individual 

glass shards and for fingerprinting individual tephra beds or tephra successions of similar 

mineralogy or provenance, i.e., it is probably most useful to separate beds that are 

compositionally similar and not distinguishable using major element chemistry (Pearce et al., 

1999, 2004, 2007, 2011; Allan et al., 2008; Westgate et al., 2008; Kuehn et al., 2009). The main 

advantage of a single-grain technique is that it allows mixed populations to be identified (such 

mixing arising from magmatic or volcanic eruption processes, or from post-depositional blending 

of thin tephras in soil-forming environments or the dissemination of glass shards in peat or in lake 

sediments, e.g., Gehrels et al., 2006).  

Analyses by ion microprobe (secondary ionisation mass spectrometry, SIMS) of tephra 

components are also now being undertaken (e.g., Denton and Pearce, 2008) and look set to 

expand as the technique becomes more readily available (Lowe, 2011). 

 

5. Statistical techniques to aid correlation 

Statistical techniques in New Zealand have been limited mainly to DFA. Whilst not without 

potential flaws (see below), DFA has several advantages, the most important being that all or 

most elements in the analyses are taken into account non-subjectively, samples are able to be 

classified (matched) with known probability, and their degree of similarity is reflected in the 

Mahalanobis multidimensional distance statistic, D
2
, which is preferable to the frequently used 

numerical ‘similarity coefficients’ measure. The efficacy of the technique can be tested using an 

iterative process to measure classification efficiency. DFA has been applied reasonably 

successfully to studies involving major-element analyses of glass, Fe-Ti oxides or hornblende for 

both rhyolitic and andesitic tephras including composite (mixed) tephra deposits. In all these 

studies, many individual tephra layers or groups of tephras were able to be discriminated with a 

high-degree of probability (up to 100% classification efficiency) using either glass or 

titanomagnetite compositions, but some tephras, very similar compositionally, were less-well 

discriminated or unidentifiable using major elements alone.  

The successful use of DFA is directly reliant upon the quality and comprehensiveness of 

the reference datasets against which unknowns are compared (e.g., Lowe, J.J. et al., 2007; Lowe, 

2008a; Bourne et al., 2010). The generally poor analytical precision of some elements obtained 

by EMPA may limit the effectiveness of some DFA models, and the somewhat piecemeal glass 

compositional datasets for New Zealand tephras, acquired over several decades at a number of 

EMPA facilities, are of variable quality for several reasons, including changes in microprobe 

analytical procedures in the mid-1990s. Although further advances using DFA to identify and 

correlate rhyolitic tephras in New Zealand may now be feasible with the acquisition of the new 

glass major-element data (summarised in Smith et al., 2005; Lowe et al. 2008a), the approach 

must be cautionary. Elsewhere, the statistical (or Euclidian) distance function (which is a 

variation of the similarity coefficient method), cluster analysis, or the Student’s t-test have been 

used (e.g., Pollard et al., 2006; Pearce et al., 2008b; Preece et al., 2011). A review paper on 
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statistical correlation methods is being prepared (Lowe et al., in prep), but ultimately such 

statistical techniques will rely on the development of more comprehensive, regional 

tephrostatigraphic and geochemical databases of uniformly high quality (Lowe, 2011).  

 

6. Developments in dating methods and age modelling 

Dating methods relevant to tephra studies have described by Lowe (2011). A key advance has 

been the development of the isothermal-plateau fission-track dating method (ITPFT) for glass 

(Alloway et al., 2007a). It has enabled ages to be obtained on many distal tephras that previously 

were unable to be dated because their main component, glass, was unreliable because of 

annealing (e.g., Westgate et al., 2007). Examples of such applications are the dating of initial 

loess deposition in Alaska at about 3 million years ago (Westgate et al., 1990), dating Quaternary 

glacioeustatic sedimentary cycles in the Wanganui Basin (Pillans et al., 2005), and dating marine 

tephra sequences from ODP sites east of New Zealand, thus testing chronologies based on 

alternative methods (Carter et al., 2004; Alloway et al., 2005; Allan et al., 2008). Another 

promising method for more proximal deposits, until recently used mainly for pre-Quaternary 

petrological or provenance studies, is the use of U-Pb analyses to date zircons using SIMS 

techniques (e.g., SHRIMP: Brown and Fletcher, 1999; Wilson et al., 2008; ID-TIMS: Crowley et 

al., 2007) or LA-ICPMS (e.g., Chang et al., 2006) (see also Dickinson et al., 2010). 

For tephras erupted within the past c. 50,000–60,000 cal. years, the radiocarbon (
14

C) 

technique remains by far the most important method for developing age models (other methods 

are documented by Alloway et al., 2007a; Westgate et al., 2007; Lowe et al., 2008a) (Table 5). 

Calendar dates on two late Holocene tephras, Kaharoa and Taupo, have been obtained by wiggle-

matching log-derived tree-ring sequences dated by 
14

C. The date obtained for Kaharoa (1314  12 

AD) (95% probability) by Hogg et al. (2003) was supported by Bayesian statistical analysis of an 

independent 
14

C-age dataset (Buck et al., 2003). The main plinian phases of the Kaharoa eruption 

took place during the austral winter (on the basis of tree-ring data). The date for Taupo tephra is 

now established as 232  10 AD (Hogg et al., 2012; 95% probability). This date contrasts with 

several other calendar dates suggested for this eruption and indicates that the Greenland ice-core 

date of 181 ± 2 AD, and the Roman and Chinese sunset date of c. 186 AD, are no longer viable. 

Tree-ring data and preserved plant macrofossils have shown that the Taupo eruption took place 

during the austral late summerearly autumn period, i.e. probably late Marchearly April. 
 

Bayesian age modelling  

Together with wiggle-matching methods, Bayesian age modelling, derived ultimately from the 

theorem of 18
th

 Century Englishman, Thomas Bayes, is adding another revolutionary aspect to 

the construction of enhanced and more precise chronologies in tephrochronology (e.g., Blockley 

et al., 2007b, 2008, 2012; Lowe, J.J. et al., 2007; Lowe, 2011). For example, 14 Holocene and 

late Pleistocene tephras comprising a sequence from Waimihia Tephra (33703450 cal. yr BP) to 

Rerewhakaaitu Tephra (17,20018,050 cal. yr BP), preserved in peat at montane Kaipo bog in 

eastern North Island, were dated by using flexible depositional age-modelling (similar to wiggle-

matching) their stratigraphic order and 51 associated 
14

C-age points simultaneously against the 

IntCal04 calibration curve (Hajdas et al., 2006). The flexible depositional age-modelling of the 

Kaipo sequence was undertaken using the programme OxCal3, developed by Chris Bronk 

Ramsey, which utilises a Bayesian statistical framework (successor OxCal4: Bronk Ramsey, 

2008, 2009). Subsequently, Lowe et al. (2008a) analysed the same age data independently using 

an alternative Bayesian age-depth modelling programme, Bpeat (Blaauw and Christen, 2005; 

Wolfarth et al., 2006; Blaauw et al., 2007). The 2-age ranges for the tephras derived from both 

OxCal3 and Bpeat were listed in Lowe et al. (2008a), and are closely aligned.  
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A revised age model for the Kaipo tephra sequence has been developed for the NZ-INTIMATE 

project using another Bayesian programme, Bacon (Blaauw and Christen, 2011), in conjunction 

with OxCal4 and the associated P_Sequence function (Bronk Ramsey, 2009), and was published 

earlier this year (Lowe et al., 2013). Older tephras (those erupted earlier than c. 18,000 cal. yr 

BP) were also re-dated using OxCal4 and the associated Tau_Boundary function (Lowe et al., 

2013) (Fig. 12). 

 
 

Fig.  12. Bayesian-derived age models for nine Lateglacial to Holocene tephras. Ages derived from 

modelling for part of a peat sequence at Kaipo bog in eastern North Island using Bacon (from Lowe et al., 

2013). Probability plots (all are equal in area) are coloured according to tephra source volcanoes: red, 

Okataina; orange, Taupo; green, Egmont/Taranaki; blue, Tongariro. Grey plots show the Bacon-derived 

start and end ages of the Lateglacial cool episode (i.e., New Zealand climate event NZce-3 of Barrell et 

al., 2013) between the Waiohau and Konini tephras. 

 

The new age modelling has shown Waiohau tephra to have been erupted around 14,000 cal. yr 

BP (cf. c. 13,700 cal. yr BP in Lowe et al., 2008a). Regarding the very widespread 

Kawakawa/Oruanui tephra, its age has been problematic (Lowe et al. 2008a, 2010). Wilson et al. 

(1988) published a 
14

C age of c. 22,590 
14

C yr BP, equivalent to about 27,000 cal. yr BP, but 

recent dating of optimal material using the Tau_Boundary function of OxCal4 showed this tephra 

is now dated firmly at 25,358 ± 162 cal yr BP (95% probability) (Vandergoes et al., 2013).  

 

 

7. Tephrochronology as a high-precision synchronization or correlation tool 

A critical recent development has been the enhanced use of tephrochronology to affect more 

precise correlations between marine, ice-core, and terrestrial records. This application holds the 

key to testing the reliability of high-precision correlations between sequences and current theories 

about the degree of synchroneity of climate change at regional to global scales  provided the 

tephra correlation is certain (e.g., see Denton and Pearce, 2008). Numerous studies have utilised 

this unique chronostratigraphic capability (e.g. Lowe, 2008a; Zanchetta et al., 2011).  
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In Europe, Blockley et al. (2007a) for example showed that there is now potential to 

independently test climate synchroneity between Greenland and Europe as far south as the Alps 

via the Vedde ash. Similarly, Rasmussen et al. (2008) correlated the NGRIP, GRIP, and GISP2 

ice core records across marine oxygen isotope stage 2 using mainly tephras as a means of 

applying the recent NGRIP-based Greenland ice-core chronology to the GRIP and GISP2 ice 

cores, thus facilitating the synchronizing of palaeoclimate profiles of the cores in detail. 

Remarkably, Lane et al. (2011, 2012) have now linked northern, central, and southern European 

climate records in part using cryptotephrochronology.  
 

  

 
 

Fig. 13. Compilation of partial high-resolution palaeoenvironmental records spanning the interval c. 

28,000 to 9500 cal. yr BP and showing how sites are linked by one or more tephra isochrons (NZ-

INTIMATE project). Antarctic (EPICA Dome C) and Greenland (GISP2) records shown for comparison. 

The climatic events 1–5 are based on the speleothem record obtained from northwest South Island (NWSI) 

(Williams et al., 2005, 2010). (1) eLGM, ‘extended’ Last Glacial Maximum (Newnham et al., 2007a); (2) 

LGIT, last glacial–interglacial transition; (3) LGWP, late-glacial warm period; (4) LGR, late-glacial 

reversal; (5) EHW, early-Holocene warming. The boundary between events 1 and 2 is marked by 

Rerewhakaaitu Tephra (Newnham et al., 2003); the boundary between events 3 and 4 is marked 

approximately by Waiohau Tephra (Newnham and Lowe, 2000); the end of event 4 is marked by the 

closely spaced couplet of Konini and Okupata tephras, the former tephra essentially marking the start of 

the Holocene at c. 11,700 cal. yr BP in northern New Zealand (Walker et al., 2009). Evidence for event 4 

(late-glacial reversal) (brown shading) is recorded at Kaipo, Otamangakau, MD97-2121 and to a lesser 

degree at Pukaki crater (see also Putnam et al., 2010; Newnham et al., 2012; Barrell et al., 2013; Sikes et 

al., 2013). 

 

The Australasian INTIMATE project, built along similar lines to the very successful INTIMATE 

project (integration of ice-core, marine and terrestrial records) of the North Atlantic (Lowe, J.J. et 

al., 2008; Davies et al., 2012), has developed a climate event stratigraphy for the region for the 

past 30,000 years (Alloway et al., 2007b; Barrell et al., 2013). The role of tephrochronology in 

linking all of the selected palaeoenvironmental records (apart from those based on speleothems) 

has been highlighted (Fig. 12; Lowe et al., 2008a, 2013). The advantage provided by key marker 

tephras in the NZ-INTIMATE project led to the development of new age models based on 

Bayesian probability methods noted above 

Tephras also provide the means to help quantify the marine reservoir effect for correcting 

the marine-based radiocarbon time-scale, as shown by studies in the Mediterranean Sea, the 

Adriatic Sea, the North Atlantic, and the South Pacific Ocean (e.g., Sikes et al., 2000; Lowe, J.J. 

et al., 2007; Carter et al., 2008; Lowe et al., 2013). Further, they enable AMS-based radiocarbon 

dating of pollen concentrates or biological remains to be evaluated, and for demonstrating and 

hence correcting for the ‘hard water’ effect in dating lake sediments (Lowe, 2008a). 
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Tephrochronology, long used to provide ages on early hominins, is being increasingly 

applied to archaeology and studies of humans in antiquity (e.g., Tryon et al., 2008, 2009, 2010), 

including determining the timing and extent of initial human impacts on landscapes and 

ecosystems such as those of Great Britain, Ireland, Iceland, and New Zealand (e.g., Dugmore et 

al., 2000, 2007; Lowe et al., 2000; Hogg et al., 2003; Wastegård et al., 2003; Edwards et al., 

2004; Lowe and Newnham, 2004; Lowe, 2008b; Streeter et al., 2012). The potential key role of 

cryptotephrochronology in underpinning the study of the adaptation of humans to climatic change 

in Europe since about 20,000 years ago was highlighted by Blockley et al. (2006), and most 

recently further findings from the RESET project were published in a remarkable paper by Lowe 

et al. (2012). Noteworthy tephrochronological studies with a disease and medical focus have also 

been undertaken recently (D’Costa et al., 2011; Streeter et al., 2012). 

 

 

 

8. Summary and conclusions 

Tephrochronology, the characterisation and use of volcanic-ash layers as a unique 

chronostratigraphic linking, synchronizing, and dating tool, has become a globally-practised 

discipline of immense practical value in a wide range of subjects including Quaternary 

stratigraphy, palaeoclimatology, palaeoecology, palaeolimnology, physical geography, 

geomorphology, volcanology, geochronology, archaeology, human evolution, anthropology, and 

human disease and medicine. The advent of systematic studies of cryptotephras – the 

identification, correlation, and dating of sparse, fine-grained glass-shard concentrations ‘hidden’ 

within sediments or soils – over the past 10–15 years has been revolutionary (Table 5). New 

cryptotephra techniques developed in northwestern Europe and Scandinavia in particular, adapted 

or improved to help solve problems as they arose, have now been applied to sedimentary 

sequences (including ice) on all the continents of the world. The result has been the extension of 

tephra isochrons over wide areas hundreds to several thousands of kilometres from source 

volcanoes. Taphonomic and other issues, such as understanding and quantifying uncertainties in 

correlation, provide plenty of scope for future work (Lowe, 2011).  

Developments in dating and analytical methods have led to important advances in the 

application of tephrochronology in recent times.  In particular, the ITPFT (glass fission-track) 

method has enabled landscapes and sequences to be dated where previously no dates were 

obtainable or where dating was problematic; the LA-ICPMS method for trace element analysis of 

individual shards ~10 μm in diameter or smaller is generating more detailed and more robust 

‘fingerprints’ for enhancing tephra-correlation efficacy (Pearce et al., 2011); and the 

revolutionary rise of Bayesian probability age modelling has helped to improve age frameworks 

for tephras of the late-glacial to Holocene period especially.  

Developments in the understanding of magmatic heterogeneity at some volcanoes have 

shown that multiple fingerprints may arise according to tephra-dispersal direction during a 

‘single’ eruption episode, adding complexity and the need for a careful approach in making long-

range correlations. New debates on how various statistical methods should be used to aid 

correlation have emerged recently. The applications of tephrochronology and 

cryptotephrochronology are now seen as key correlation or ‘synchronization’ tools in high-

resolution palaeoclimatic projects such as INTIMATE (Integration of ice-core, marine and 

terrestrial records since 30,000 years ago) and in dating, integrating and interpreting human-

environmental interactions in antiquity. New INQUA-based projects SHAPE (Southern 

Hemisphere assessment of palaeoenvironments) and CELL50K (Calibrating environmental leads 

and lags over the last 50 ka) will utilise tephrochronology and cryptotephrochronology as well as 

other dating methods to meet their objectives. 
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 INTAV, the leading INQUA-based global group of >100 tephrochronologists (Table 6), 

remarkably, now contains many geoscientists working in non-volcanic countries. These ‘neo-

tephrochronologists’ have added new enthusiasm and skills to those of the geoscientists working 

on the typically thick, complex, multi-sourced tephrostratigraphic sequences in ‘traditional’ 

volcanic regions – Japan, New Zealand and western USA, for example – in an excellent example 

of intra-disciplinary mutualism (Froese et al., 2008; Lowe, 2008a).  

An INTAV-led project INTREPID (Enhancing tephrochronology as a global research tool 

through improved fingerprinting and correlation techniques and uncertainty modelling) was 

initiated in 2009 and will continue to 2015. Some results were presented at the Inter-INQUA 

INTAV conference “Active Tephra” held in Kirishima, Kyushu Island, southern Japan, in
 
May 

2010. Papers from that meeting were published by Quaternary International (Lowe et al., 2011a). 

An INTREPID-led Bayesian age-modelling course was held in San Miguel de Allende, Mexico, 

in August 2010. In May, 2011, a workshop on the Eyjafjallajökull eruptions of 2010, and their 

implications for tephrochronology, volcanology, and Quaternary studies, was held in Edinburgh, 

U.K., by the ‘Tephra in Quaternary Science’ (TIQS) group (e.g., see Stevenson et al., 2012). This 

meeting was also sponsored in part by the INTREPID project. 

 

 
Table 5. Some recent advances in methodology and applications in global tephra studies (after Lowe, 

2008a) (table contd on next page). 
 

Advance/method Application 
1. Cryptotephra studies: identifying, correlating, 

and dating ash-sized glass-shard and/or crystal 

concentrations (not visible as layers) ‘hidden’ 

within sediments (including ice) or soil 

Extending isochrons over wider areas, some 

>1000 km from volcano source including ‘ultra-

distal’(hence see 4), and improving records of 

volcano eruption history and thus developing 

better models of volcanic hazards and their 

mitigation 

2. Isothermal-plateau fission-track dating of glass 

(ITPFT) 

Dating tephras (especially those comprising only 

glass shards), hence dating landscapes or 

palaeoenvironmental or geoarchaeological 

sequences not previously datable at distal and 

other locations 

3. Laser-ablation inductively-coupled plasma mass 

spectrometry (LA-ICP-MS) and ion microprobe 

(SIMS) analysis of single grains 

Correlation of tephras using trace elements and 

REEs of glass shards (especially of tephras with 

similar major-element compositions as determined 

by electron microprobe), with enhanced reliability 

obtained using single-grain analysis that can 

reveal magma mingling or contamination 

4. Connecting and dating palaeoenvironnmental 

sequences and geoarchaeological deposits with 

high precision using tephras or cryptotephras as 

isochrons 

Classical tephrochronology applied in high-

resolution palaeoclimatic projects such as 

INTIMATE to test synchronization of various 

stratigraphic records, correcting for marine 

reservoir or hard-water effects, and dating, 

integrating and interpreting human-environmental 

interactions in antiquity 

5. Bayesian probability analysis of age sequences 

involving tephras 

Bayesian methods are providing enhanced and 

more precise chronologies for tephrostratigraphic 

sequences via OxCal, BCal, Bacon (etc) 
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6. Recognition of heterogeneity in the composition 

of some tephras, especially high vs low K2O 

contents; mainly by analysis of glass components 

but also of some minerals (e.g., biotite)  

Petrological insight into magma processes such as 

mingling and volcano eruptive histories, including 

the finding that multiple fingerprints of some 

tephras differ according to direction of dispersal 

7. Improving the reliability of electron 

microprobe-derived analyses of andesitic glass 

using geochemical models 

Novel procedure to evaluate and correct for 

common microlite contamination in andesitic glass 

shards, thereby increasing the potential of 

andesitic tephras as marker beds  

8. ‘Neoformation’ of International Focus group on 

Tephrochronology and Volcanism (INTAV) in 

2007 (previously known as SCOTAV and COT: 

see Lowe et al., 2011b) 

INQUA*-based global group of 

tephrochronologists with interests in developing 

and improving analytical techniques of known 

reliability to characterize tephras, to map their 

distributions and improve volcano eruptive 

histories, to develop high-precision age models for 

tephras, and to apply tephrochronology to 

numerous disciplines as a precise correlation and 

dating tool  
 

*International Union for Quaternary Research 
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