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Abstract. Several works have proposed process mining techniques to discover 
process models from event logs. With the existing works, mined models can be built 
based on analyzing the relationship between any two events seen in event logs. 
Being restricted by that, they can only handle special cases of routing constructs 
and often produce unsound models that do not cover all of the traces in the logs. In 
this paper, we propose a novel technique for process mining based on using a 
pattern recognition technique called Maximal Pattern Mining (MPM). Our MPM 
technique can handle loops (of any length), duplicate tasks, non-free choice 
constructs, and long distance dependencies. Furthermore, by using the MPM, the 
discovered models are generally much easier to understand.  

1. Introduction  

Since the mid-nineties, several techniques have been proposed to automatically 
discover process models from event logs in both software processes and business 
process domains [2, 3, 4]. Several algorithms are variants of the 𝛼𝛼-algorithm (e.g., in 
[5, 6, 7, 8]), which is regarded as a well-known technique for process discovery that 
pioneered studies in this field. Nevertheless, due to the fact that the 𝛼𝛼-algorithms face 
problems dealing with complicated routing constructs, noise, and incompletes [1], more 
advanced techniques, such as region-based approaches (e.g., [14, 15, 16, 18]), heuristic 
mining [9], fuzzy mining [10], and genetic mining [11], have been proposed to tackle 
these aforementioned problems. 

We argue that the existing algorithms for discovering process models are still unable 
to efficiently and accurately handle loops (of any length), duplicate tasks, concurrency, 
long dependencies and complex routing constructs. In fact, some of these algorithms 
may produce unsound models. To address these problems, we propose a novel process 
mining technique called Maximal Pattern Mining (MPM). Instead of mining the 
relationship between two events, MPM mines a set of patterns that could cover all of 
the traces seen in an event log. The time needed by our algorithm to process mine and 
generate a process model is also significantly shorter than all the existing algorithms. 

The remainder of the paper is organized as follows. Section 2 reviews and discusses 
the work that has been done in the process mining area. Section 3 proposes our MPM 



technique for process discovery. Section 4 discusses our preliminary evaluation. 
Finally, the conclusion and future works are given in Section 5. 

2. Background and Related Work 

Van der Aalst et al. [5] proposed 𝛼𝛼-algorithm to discover structured workflow nets from 
complete event logs. However, the 𝛼𝛼-algorithm cannot cope with noise, incompleteness 
of workflow logs, short loops, and non-free choice constructs. Later, Alves de Medeiros 
et al. [6] developed 𝛼𝛼+ -algorithm, an improved version of 𝛼𝛼 -algorithm, which is 
capable of detecting short loops. Further, Wen et al. [7, 8] proposed 𝛼𝛼++-algorithm to 
discover non-free choice constructs and 𝛽𝛽-algorithm to detect concurrency. Due to the 
fact that all 𝛼𝛼-algorithms face the same robustness problem, Weijters et al. [9] proposed 
Heuristics Miner by extending the 𝛼𝛼-algorithm to analyze the frequency of the three 
types of relationships between activities in a workflow log: direct dependency, 
concurrency, and not-directly connectedness. In contrast to the 𝛼𝛼-algorithms, Gunther 
and van der Aalst [10] proposed Fuzzy Miner, an adaptive technique to discover 
behavior models from an event log using significance and correlation measures. 

Van der Werf et al. [16] proposed a discovery technique using Integer Linear 
Programming (ILP) based on the theory of regions. Van der Aalst et al. [14] proposed 
a Finite State Machine (FSM) Miner/Petrify two-step approach to find a balanced trade-
off between generalization and precision of discovered process models. The theory of 
region is used in their approach as a method to bridge FSM and Petri-Net models as 
also proposed in [15]. Sole and Carmona [18] presented an aggressive folding region-
based technique, which is based on the theory of region, to reduce the total number of 
states of a transition system and speed up the discovery process. Alves de Medeiros et 
al. [11] proposed a genetic algorithm which performs a global search based on the use 
of fitness function using both a recall and a precision measure to find the best matched 
models. The DT Genetic and Genetic Miner can detect non-local patterns and, due to 
its post-pruning step, it has a reasonable robustness. While the latter cannot detect 
duplicate tasks, the former can detect them. Similarly, Goedertier et al. [12] proposed 
AGNEsMiner to deal with problems such as expressiveness, noise, incomplete event 
logs, and the inclusion of prior knowledge by representing process discovery as a multi-
relational classification problem [13] on event logs supplemented with Artificially 
Generated Negative Events (AGNEs). This technique can learn the conditions that 
distinguish between the occurrence of either a positive or a negative event. 

Based on the above discussion, we have observed that only the DT Genetic Miner 
[11] can tackle all of the typical process mining problems, i.e., noise, duplicate tasks, 
hidden tasks, non-free choice constructs, and loops. However, because of the nature of 
the genetic algorithm, it consumes much more processing time and space in order to 
learn and construct a model. Mining efficiency is considered a major drawback of this 
approach in which it is undesirable, especially when it is applied to a complicated real-
life log. To overcome such issues, we need to develop a better technique that not only 
solves all the typical process mining problems but also requires far less processing time. 



3. Maximal Pattern Mining (MPM) 

Instead of looking at the relationship between two events which is what most of the 
existing process mining techniques focus on, we propose a pattern mining technique to 
analyse the whole sequence of events in all of the traces and find the optimal set of 
“regular expression”-like patterns that would cover them. Our MPM technique is 
described in Sections 3.1. Assumptions and limitations of the technique are discussed 
in Section 3.2. 

3.1. Overview 
Let T = {t0, t1 … tn} be the collections of all the traces in an event log that is ordered 
first by the value of the events in the trace and then by the number of events in the trace. 
A trace tn is an ordered sequence of events or completed tasks, tn = 〈z0, z1 … zm〉. We 
denote |tn| as the number of events in a trace. An event zm only contains 1 event type, 
i.e. |zm| = 1. All the traces and events in T and tn are not unique, i.e. it is possible to have 
T = {〈a,b,c,b,b,c,d,e〉,〈a,b,c,b,b,c,d,e〉,〈a,b,b,c,e,d〉}. Given an input T, our algorithm 
will first create a list of unique patterns P = {p0, p1 … pi} and then generate a graph 
based on P. The following sections will describe each of them. A pattern pi = 〈e0, e1 … 
ej〉 is an ordered sequence of elements, |pi| is the number of elements in the pattern and 
pi.support is the number of traces covered by the pattern. An element ej = {v0, v1 … vk} 
contains k number of unique event types (i.e. |ej| = k) and ej.loop is a list of 〈vk: w〉 tuples 
that indicate whether vk is self-looping (w = {vk}) and/or is the last element of a 
sequence-loop (w = {ex ex+1 … ex+y} and ex+y = vk). The loop list is ordered first by the 
event value and then by the number of elements in w (|w|). An element’s value vk only 
contains 1 event type. All the elements inside pi might not be unique. For instance, 
given the T = {〈a,b,c,b,b,c,d,e〉, 〈a,b,c,b,b,c,d,e〉, 〈a,b,b,c,e,d〉} specified above, our 
algorithm will only produce 1 pattern in P. p0 = 〈e0, e1, e2, e3〉, where e0 = a and e0.loop 
= ∅;  e1 = b and e1.loop = ∅; e2 = c and e2.loop = {〈c: {bc}〉}; and e3 = {d, e} and e3.loop 
= ∅. Elements with more than one event type indicate a parallelization. In our example, 
e3 shows that in the last 2 events of our model the values could be either de or ed. 
Because p0 covers all the traces in T, p0.support = 3. 

Our graph algorithm will then generate the following model (Fig. 1) based on p0. 
We use the operator AND to indicate the set of tasks that are running at the same time, 
and XOR to indicate a path selection. 

 
 

Figure 1. The generated model for {〈a,b,c,b,b,c,d,e〉,〈a,b,c,b,b,c,d,e〉,〈a,b,b,c,e,d〉} 
 

The algorithm we use to construct the most optimal patterns for a given trace of events 
has five main phases: finding self and/or sequence loops, storing the pattern in a vertical 
format, identifying events that should be done concurrently, investigating whether a 
trace is covered by a pattern in P, and pruning non-maximal patterns. 
Loops. A sequence of elements S = 〈s0, s1 … sq〉 is in a loop in the trace tn = 〈z0, z1 … 
zm〉 or in the pattern pi = 〈e0, e1 … em〉 if and only if there is a sequence of elements such 



that for all b ∈ {0…q}and q ≤ (m – a)/2, za+b = sb and za+q+b = sb or ea+b = sb and ea+q+b 
= sb, where a is the starting index where S occurs in the trace or in the pattern (0  ≤ a  ≤ 
m). The first phase of our pattern mining is to identify these loops. For every S+ 
occurring in tn and pi, we replace it with S and set the loop property of the last element 
in S. For instance, given a pattern 〈a,b,b,c,d,{e,f},c,d,{e,f}c,d,{e,f}g〉, the pattern 
becomes 〈a,b,c,d,{e,f}g〉 where the loop property for b is b, and the loop property for 
{e,f} is cd{e,f}. By identifying loops first, MPM would be able to deduce that traces 
〈a,b,d,d,c,b,b,b,d,c,b,d,c,e〉 and 〈a,b,d,c,b,d,d,c,e〉 are the same and are both covered by 
the pattern 〈a,b,d,c,e〉. 
Vertical Representation. Existing process mining algorithms require several scans of 
the event logs or need to maintain large amounts of intermediate candidates in the main 
memory to generate process models [7, 8, 11, 13]. To alleviate this problem, MPM 
stores all patterns in the vertical format as an IdList in bitset representation [20] where 
each entry represents an element with the id of the trace where the element appears (id) 
and the position (pos) where it appears. The support of a pattern is calculated by making 
joint operations with IdLists of smaller patterns. Thus, MPM would only need to 
perform a single scan through the log to generate an IdList of patterns containing single 
elements (see [20] for details). To make it more verbose, MPM uses the symbol $ to 
indicate the end of a trace. Given T = {〈a,b,c,b,b,c,d,e,a〉,〈a,b,b,c,e,d,a〉,〈e,d,a〉}, the 
vertical representation (VT) of it is represented as follows:  
 

A  b  c  d  e  $ 
id pos  id pos  id pos  id pos  id pos  id pos 
0 0, 5  0 1  0 2  0 3  0 4  0 6 
1 0, 5  1 1  1 2  1 4  1 3  1 6 
2 2        2 1  2 0  2 3 

 

Concurrency. The next phase of our pattern mining is to identify tasks that should be 
done in parallel. A set of events V = {v0, v1 … vq} are performed at the same time if and 
only if there are at least q number of unique traces with the following sequence 〈z0, z1 
… za-1 za, za+1 … za+q za+q+1, za+q+2 … zm〉, where the sequence 〈z0, z1 … za-1〉 and 〈za+q+1, 
za+q+2 … zm〉 have the same pattern across those traces, there are no events mentioned 
more than once in 〈za, za+1 … za+q〉, and for all b ∈ {0…q}and q ≤ (m – a), za+b ⊆ V, 
where a is the starting index where a combination of all the events in V occur (0  ≤ a  ≤ 
m). Sequence 〈z0, z1 … za-1〉 and 〈za+q+1, za+q+2 … zm〉 may be ∅. Instead of za+b = V, we 
relax the criteria to za+b ⊆ V with the assumption that if we see almost all of V possible 
events combined in T, it must be that the trace log is incomplete. For example, given a 
set of traces {〈a,b,c,d,e〉,〈a,b,d,c,e〉,〈a,c,d,b,e〉}, we first look at the first two traces 
where we get 〈a,b,{c,d},e〉 as it is possible to switch the position of task c and d around. 
We then compare it with the last trace where we get 〈a,{b,c,d},e〉 as we can switch the 
position of task c and d around with b. In the future, we may use the trace frequency to 
help us decide when we should use the strict or relaxed criteria. 
Coverage. A pattern pi = 〈e0, e1 … en〉 specifies the sequence of patterns that covers 
some of the traces in T and it can be represented as a deterministic finite automata DFAi 
with (a) a well-defined start state, (b) one or more accepted states and (c) deterministic 
transitions across states on symbols of the event values. A trace tn = 〈z0, z1 … zm〉 is 
covered by the pattern pi if and only if the sequence of transitions for the elements of tn 



from the start state results in an accepted state. Fig. 2 illustrates the deterministic finite 
automaton for the pattern 〈a,b,{c,d},e〉 with the loop property for b to be b. We use > to 
indicate the start state and double circles for the accept state. The diagram shows that 
the pattern covers the following set of traces {〈a, b, c, d, e〉, 〈a, b, d, c, e〉, 〈a, b, b, c, d, 
e〉, 〈a, b,…,b, c, d, e〉, 〈a, b,…,b, d, c, e〉}. However, it will reject the following set of 
traces {〈a,b〉, 〈e〉, 〈a,b,h〉, 〈a,b,c,d〉, 〈a,b,b,d,c〉, 〈a,b,a,d,c,e〉}. Because we have to go 
through each of the elements of tn to identify events that should be done in parallel, we 
perform both tasks simultaneously. 
 

 
Figure 2. The deterministic finite automata model for pi = 〈a,b,{c,d},e〉 

 

Maximal Patterns. A pattern pi is said to be maximal if and only if there is no other 
pattern pj in P that has the same start and accept states and covers the same or more 
traces in T. Given P =  {〈a,b,c,d〉,〈a,{b,c},d〉,〈a,b,c〉}, only p1 and p2 are maximal because 
p0 is a sub-pattern of p1.  
Noise. To further filter P from noisy data, we set a support threshold value, thresh, such 
that we would only keep frequent patterns pi and events vk, i.e. pi.support ≥ thresh and 
vk.support ≥ thresh. All patterns and events are accepted if the threshold value is 0.  

3.2. Assumptions and Limitations 
An event in a transactional log usually contains information such as the event 
type/value (e.g. apply for a drivers licence or update a patients information), the 
agent/performer that initiates the event, timestamp and the data element being modified 
or accessed (e.g. the age of a patient, the driving test result). Because the goal of MPM 
is to find all possible orderings of the logged events in the system, only the event’s type 
or value are mined. Other information, such as the timestamp and agent, are removed 
from the logs. In our setting, we know the original model that our algorithm should 
strive to construct, the complete list of traces that the model can generate, and the 
instances in a log that are negative examples. But in real life scenarios, no original 
model is available. Logs may contain noise such as mislabelled events, incorrectly 
logged sequences of events and exceptions. In fact, a particular trace of events observed 
does not mean that the model should be able to reproduce it. Furthermore, in a complex 
process with many possible paths, only a fraction of those paths may be present in the 
log, i.e., the log is incomplete. Thus, it is undesirable to construct a model that allows 
only for the observed instances in the log. Since we do not know which instance in the 
log is noise, we assume that every trace/event that is recorded in the log and appears no 
less than a user’s specified threshold frequency is correct (positive examples). 
However, unobserved traces of events are not considered as negative examples. Our 
MPM algorithm can construct a model that can explain all the traces of events found in 
the logs while also allowing for any unobserved behaviour.  

4. Preliminary evaluation 



We evaluated the quality of the mined model produced by MPM, α++, DT genetic miner, 
AGNEs and heuristic miners according to logs that are mentioned in their respective 
publications. We did not perform the evaluation on α and α+ as [7, 8] have reported that 
α++ can construct a model that handles more complex control-flow constructs. Similar 
to other discovery algorithms, our MPM algorithm is implemented as a plugin of ProM 
[19]. In our initial evaluation, we use synthetic log data to demonstrate the fact that the 
MPM algorithm can significantly improve the performance of the existing approaches, 
especially the α-algorithm and its variants. We do not use parameter fine-tuning or 
metadata to enhance the performance of our algorithm. We have also used the default 
settings for α++, genetic miner and AGNEs. To further extend the capability of Heuristic 
Miners, we configure it to discover long distance dependencies based on completed 
events’ values and positions on a trace. Due to the fact that the α++ algorithm builds a 
process model based on the relationship between any two events so that it does not 
allow an event to occur more than once in the model, it requires additional heuristics to 
handle long distance dependency, short loops (maximum of two events) and non-free-
choice constructs (combination of choice and concurrency); and assumes that two or 
more events must occur concurrently if they have the same parents (i.e. low precision). 
Therefore, it is possible for the α++ algorithm to produce unsound workflow nets as 
shown Figures 3 and 4. Similarly, because Heuristic Miners also builds a casual matrix 
that represents the relationship between any two events, it cannot handle duplicate tasks 
as illustrated in Figure 5. Although AGNEs is more versatile than Heuristic Miners, it 
is still incapable of handling a complex non-free choice construct such as is displayed 
in Figure 6. 

 
a) α++ algorithm 

 
 

b) MPM algorithm 
Figure 3. Log T = {ABCE, ACBE, ABDDCE} 

 

 
a) α++ algorithm 

 
 

b) MPM algorithm 
Figure 4. Log T = {ABDEHFI, ADBEHFI, ACDFGEI, ADCFGEI} 
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a) Heuristic Miner 
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b) MPM algorithm 
Figure 5. Log T = {ADAF, AEAF, AHBAG, AHCAG} 
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b) MPM algorithm 

Figure 6. Log T = {ABC, ABDE, ADBE} 
 
Our MPM algorithm discovers a process model by reading patterns from the whole 

sequence of events in the traces. Thus, its criteria is more stringent than Heuristic 
Miners or α++; it can handle duplicate tasks, long distance dependencies, loops of any 
length and non-free choice constructs. The process model discovered by MPM is 
always sound, and it is generally more accurate and readable than the models mined by 
AGNEs, Heuristic Miners or α++. However, MPM is incapable of generating a model 
that accurately represents duplicate tasks in a parallel process structure, as shown in 
Figure 7.  DT Genetic Algorithm is the only algorithm that can correctly mine this log. 
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a) DT Genetic Miner 
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b) MPM algorithm 

Figure 7. Log T = {ABC, ABDE, ADBE} 
While DT Genetic Miner will sometimes produce a model that is more accurate than 

MPM, MPM can generate a similar model in significantly less time. Furthermore, MPM 
can build and improve the mined model incrementally in near real time as it receives 
new traces of events, i.e. the model becomes more accurate as it sees more unique traces 
of events. 

5. Conclusion and Future work 

In this paper, we propose a novel technique called Maximum Pattern Mining (MPM) to 
discover a process model from event logs. We have implemented our technique with 
preliminary evaluations against well-known process discovery algorithms: α++, DT 
genetic miner, AGNEs and the Heuristic Miners algorithm. Our results show that it can 
handle more general cases, such as loops of any length and long distance dependencies. 
In the future, we will implement and improve this technique with evaluations on real-
life logs to see if our algorithm can handle very complex and very large logs. 
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