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Abstract

This thesis investigates the use of machine learning techniques in computer games
to create a computer player that adapts to its opponent’s game-play. This includes
first confirming that machine learning algorithms can be integrated into a modern
computer game without have a detrimental effect on game performance, then
experimenting with different machine learning techniques to maximize the
computer player’s performance. Experiments use three machine learning
techniques; static prediction models, continuous learning, and reinforcement
learning. Static models show the highest initial performance but are not able to
beat a simple opponent. Continuous learning is able to improve the performance
achieved with static models but the rate of improvement drops over time and the
computer player is still unable to beat the opponent. Reinforcement learning
methods have the highest rate of improvement but the lowest initial performance.
This limits the effectiveness of reinforcement learning because a large number of
episodes are required before performance becomes sufficient to match the

opponent.
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1 Introduction

This report investigates the use of machine learning techniques in a computer
game (BZFlag) to produce a computer controlled player that adapts to an
opponent’s style of game-play. Added constraints are that the computer player is
limited to the same in-game capabilities, degree of control, and information as the
human opponent. The game used is BZFlag which provides competitive one-on-

one game-play in a complex 3D environment.

Three machine learning techniques are tested; static prediction models, continuous
learning, and reinforcement learning. Static models have the best initial in-game
performance but are not able to beat the opponent. Continuous learning shows an
improvement in performance over time, but the initial performance is less than
that of static models and the rate of improvement drops as the duration of the
experiments is extended. Reinforcement learning shows the highest rate of
improvement, but has the worst initial performance. This highlights a limitation in
reinforcement learning; that an extremely large number of iterations are often

required before the performance becomes adequate.

1.1 Context in Games

Sweetser [2002] states:

“The next industry breakthrough will be with characters that behave
realistically and that can learn and adapt, rather than more polygons, higher
resolution textures and more frames-per-second.” (Cited in [Ponsen &
Spronck, 2004])

Computer controlled players are used in all forms of computer games. This can
involve anything from simple fixed behaviour to complex sets of rules designed to
alter behaviour depending on the state of the game. Machine learning (ML)
techniques have been used to create computer opponents and have shown success
in simple games, such as board games and card games, but the complexity of

1



modern 3D games often limits the feasibility of creating computer players that use
ML.

Methods used in modern 3D games generally provide an enjoyable experience to
the human player. However, these systems are typically complex and are both
time consuming and costly to produce. As games continue to increase the scope of
their virtual worlds there is an increasing need for computer-controlled characters
that can adapt to different situations and even develop unique ‘personalities’ to
provide a more realistic environment for a human player. The use of ML
techniques in complex 3D games to create computer-controlled characters is

becoming a more popular area of research to solve this problem.

1.2 Context in Machine Learning

Manslow [2002] states:

“It is anticipated that the widespread adoption of [machine] learning in
games will be one of the most important advances ever to be made in game
Al. Genuinely adaptive Als will change the way in which games are played
by forcing the player to continually search for new strategies to defeat the

Al, rather than perfecting a single technique.”

Games often use ‘expert systems’ to control computer character behaviour. An
expert system uses a set of rules written by an ‘expert’ with domain knowledge.
These systems are widely used as a way to provide access to domain knowledge
without having an expert present ‘in the flesh’. The rules are written by hand
which is inherently time consuming and often requires extensive ‘debugging’
before the system is released for use. The rules are also fixed, making them unable

to adapt and they typically repeat any mistakes that they might make.

Machine learning (ML) algorithms can help overcome these limitations. ML
algorithms generally try to learn a function that maps input values to an output

value. In supervised learning this is done by inferring a function from sets of



known examples. Alternatively, reinforcement learning allows an algorithm to

learn a function by ‘trial and error’.

Complex 3D games provide an interesting, and somewhat unexplored,
environment for ML research. Games often have strict requirements on CPU time
and memory resources; whereas traditional ML research often involves an entire
machine being devoted to a single algorithm. This may sound like ML techniques
are not useful in computer games, but one must also consider that with these
increased physical demands comes a decreased performance demand. That is to
say; in a real-time game, decisions are made repeatedly (often second-by-second
or faster), and this large number of decisions means a large number of ‘bad’

decisions can go unnoticed by a human user.

1.3 The Problem Domain

The problem domain addressed by this thesis is that of creating a computer
opponent in BZFlag able to adapt to a human player’s style of game-play. An
added constraint is that the computer opponent is not given an advantage over the
human player. That is, the computer opponent must use the same controls and

information that a human player would have in the same situation.

The overall aim of this study is to create a computer controlled opponent (using
ML techniques) capable of adapting to a human player’s style of game-play,
ideally resulting in a computer opponent that can beat the human player.

Creating a computer opponent includes first determining whether ML algorithms
can be used in BZFlag without having a detrimental effect on game performance,
then experimenting with various ML techniques to determine the in-game
performance that can be achieved and adjustments to maximize performance. The
ML approaches used in experiments are; static prediction models, continuous

learning, and reinforcement learning.

1.4 Thesis Outline



Chapter 2 gives some background on computer players produced by game
developers as well as systems created for academic studies. A brief overview of
the WEKA machine learning workbench, the source used for many of the ML
algorithms, is given, followed by a description of PIQLE and Connectionist which

are two reinforcement learning frameworks.

Chapter 3 describes initial attempts to integrate an ML algorithm into BZFlag as a
proof of concept. This includes separation of tank controls into steering, shooting,
and rotation. The methods used to gather training data are discussed, as well as
preliminary results which show that ML algorithms can be used to control
shooting without affecting game performance. Modifications to data collection for
the speed control are described, as well as the development of the online and
offline training approaches which allow a wide range of ML algorithms to be

used. Finally some limitations observed during experimentation are discussed.

Chapter 4 describes attempts to create a computer player that uses static prediction
models to determine its actions. The limitations mentioned in Chapter 3 are
described in more detail and solutions used are presented. Results using a static
prediction model to control a single aspect of tank behaviour are presented,
showing that the performance achieved is not terrible but is insufficient to beat the
opponent. This is followed by results when two static models are used which
show the performance using two static models can be better or worse than the
performance either model alone. A problem observed when the models are not
independent is discussed, as well as the solution used and the results obtained.
These independent results show an improvement in performance over the previous

results, but the computer player is unable to beat the opponent.

Chapter 5 describes attempts to improve performance achieved in Chapter 4 using
continuous learning for one of the prediction models. The method used to select
algorithm combinations is discussed, and results when continuous learning is used
for short duration tests and longer duration tests are presented. The results from
the short duration tests generally show an improvement in performance over time,
but this is not maintained in the longer duration tests indicating there is a limit to

the performance increased that can be gained by continuous learning.
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Chapter 6 describes experiments that use reinforcement learning to control a tank.
The initial configuration used with the Connectionist framework is described, and
results are presented showing that the computer player does not demonstrate a
steady improvement in performance. A problem with the behaviour of the tank
using the initial configuration is described, as well as the changes made to
overcome the problem and the results obtained which show a decline in the
overall performance. The initial configuration used with the PIQLE framework is
described along with results obtained which show very poor performance by the
computer player. An altered configuration to improve performance is described
and the results of a longer test run are presented which show a gradual
performance improvement over time but the overall performance is less than that

achieved when using Connectionist.

Chapter 7 gives a summary of this thesis and discusses achievements made during
the research. These include; showing that machine learning algorithms can be
used in a complex, modern game without having a detrimental effect on game
performance, the use of only static prediction models to control a tank, and
highlighting some limitations in both continuous learning and reinforcement
learning when they are applied to games. Possible areas of future work are also
discussed showing the research area using ML in computer games is vast and
presents many avenues that can be explored.



2 Background

This chapter defines artificial intelligence in the context of computer games and
describes some common approaches used by game developers and academic
researchers. A general description of BZFlag is given, along with limitations that
arise from using it for experimentation. A brief overview of the WEKA machine
learning workbench is given, as well as an overview of reinforcement learning

and the two reinforcement learning frameworks used in experiments.

2.1 Game Al

For the purposes of this discussion, artificial intelligence in games (game-Al) is
defined as: a system to dictate the behaviour of a character inside a computer

game, as distinct from characters controlled by a human user.

Game-Al can involve a multitude of different approaches, from rule-based expert
systems to reinforcement learning agents. The development of game-Al can be
separated into two categories based on the main objective in developing the game-
Al. They are referred to here as commercial game-Al, which is done to create an
opponent that is enjoyable to play against, and academic game-Al, which is done

to create a computer player that plays the game well.

2.1.1 Commercial Game-Al

Commercially developed game-Al is perhaps the most prolific of game-Al
systems. The term ‘commercial’ here is used to mean any computer game
produced for its appeal to potential users (this includes games not necessarily
made for profit, such as free or open source games). The main objective of game-
Al in commercial games is to create computer players that a human player finds

enjoyable to play against.



How enjoyable a player is to play against cannot be quantified directly and
developers have many considerations when designing game-Al, often involving
constraints at both upper and lower limits. For instance, human players want a
computer opponent that is challenging to beat, but not so difficult that the game
becomes frustrating. Human players also want game-Al that behaves
‘realistically’; this can be things like ‘taking cover’ in first person shooter (FPS)
games, or cooperating with other computer team-mates to meet objectives rather

than behaving as a group of individuals.

Commercially developed game-Al is often complex, but the focus is on creating
the appearance of learning (or adaptation) from the player’s point of view. The
game-Al itself usually behaves deterministically regardless of previous world
state. In this sense the game-Al does not ‘learn’ how to play and typically repeats

any mistakes it has made.

Three methods often used in commercial game-Al are; scripting, cheating, and
rule-sets.* These distinctions are made here to aid discussion of game-Al
techniques but modern games often combine these methods together in various

ways.

Scripting

Scripting refers to a fixed ‘script’ that is created by a developer to dictate a non-
player character’s (NPC’s) behaviour, where the ‘script’ is something set by a

developer that does not take into account the current game state. One method of
scripting is hand-coded instructions that dictate the exact position and actions of

an NPC, another common method is ‘way-points’ for NPCs to use.

Hand-coding an NPC’s actions has numerous limitations, most notably poor
scalability. This also does not work well when the human player has a large
amount of in-game freedom. For example, an NPC might be talking to the human

player but facing another direction. Modern games still use this technique but,

! In this report scripted actions are separated from rule-sets that determine behaviour but among
game developers ‘scripting’ is often used to refer to a combination of the two.
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because of these limitations, long scripted scenes are often replaced with ‘cut

2
scenes’.

Way-points are often used in ‘death-match®’ style shooting games where
destinations have multiple paths. Way-points are points placed in the ‘map’ by
designers at strategic places, typically intersections of paths and half-way points
between those intersections. The way-points can then be viewed as a graph which
allows for faster path-finding algorithms in NPC navigation.

Firing points, a slight variation of way-points, are points placed on the map that
dictate positions that are good strategically, such as areas with good cover for
defence. This helps reduce the complexity of game-Al calculations and was used

extensively in the FPS game Halo [Butcher & Griesemer, 2002 pg 22].

Cheating

Cheating is where an NPC is given an unfair advantage over the human player.
This creates NPCs that are more difficult to beat without requiring complex
calculations. Cheating can be narrowed into three subcategories; capability,
‘rubber-band game-AI’ and knowledge.

Capability refers to a difference in abilities between the human player’s character
and NPCs. This can be a range of things depending on the game type. In an FPS
game, for instance, the ‘harder’ opponents may have weapons that are not
available to human players, or they may have more ‘hit points’ so they can
survive more damage than human players. Another example is real-time strategy
(RTS) games where a ‘harder’ computer opponent is given a better starting state

such as more ‘units’ Or more resources.

This technique sounds very simplistic but playtests carried out during

development of Halo found that simply making enemy NPCs ‘tougher’ (i.e. able

2 A “cut scene’ is where the human player’s controls are limited or disabled (‘cut’) and they
observe what happens on the screen (like a movie), generally this is done to show scenes that
develop characters or advance the plot of the game.

® Death-match games (also known as free-for-all or all-against-all games), are games where the
objective is simply to kill as many opponents as possible within a given time limit.

8



to survive more damage) generally causes human players to think the NPCs are
more intelligent [Butcher & Griesemer, 2002 pg 16].

‘Rubber-band game-AI’ (also known as ‘catch-up AI’) is often seen in racing and
sports games, but is also used in other games. Rubber-band game-Al is a
technique where the NPC’s performance is adjusted to be similar to the human
player’s performance. For instance, in a racing game where the human player has
a large lead (e.g. after the NPC has crashed into a wall), the NPC is able to catch
up in a short amount of time, which would require the NPC’s car to be going
faster than the maximum speed permitted by the game (as though the two
characters are connected by a rubber-band). Similarly, rubber-band game-Al can
be applied in the opposite scenario, where the human player is doing poorly and

the NPC reduces its performance so the human player still has a chance to win.

The idea of rubber-band game-Al is to regulate the game difficulty to match the
human player’s ability (and is often listed as a positive feature of the game). If
done well this can make the game more enjoyable by ensuring the game is never
‘too easy’ or ‘too hard’, but often the NPC’s ‘miraculous’ improvement in
performance creates a feeling of unfairness and is less enjoyable to play against,
or the other extreme where the NPCs ‘dumbing down’ makes the NPC too easy to
beat and reduces the game’s challenge.* Note that rubber-band game-Al is similar
to capability cheats described previously, but rubber-band game-Al only affects
the game when there is a large difference in performance between players. Once
the NPC and human player are even (or close to it), rubber-band game-Al is

suspended and the NPC’s performance becomes normal again.

A good example of rubber-band game-Al is present in the well known Need for
Speed racing game series to ensure the human player is never too far in front of (at
least) one NPC. An example of rubber-band game-Al used in a genre other than
racing is the third person shooter Max Payne, where the difficulty level of the

NPCs is determined by the human player’s performance. This technique is even

* Many gamers, typically of intermediate or advanced level, do not like any form of rubber-band
Al in games because it can reduce the skill required to complete the game and is often seen as
unrealistic and somewhat patronising.



mentioned in the game’s publicity material as a feature of the game (referred to as

“auto-adjusting gameplay™).>

Knowledge-based cheats are often used in real-time strategy games (RTS) to
enhance the performance of the game-Al. Knowledge cheats refer to the game-Al
having access to more data than its human opponent does. For example, many
RTS games use a mechanism called ‘fog of war’ that obscures large portions of
the map for the player (unless one of the player’s units is in the area), while the Al
knows the exact layout of the map and the locations of the human player’s units.
Another example is an FPS game where the human player only has knowledge of
what they can see (line-of-sight), whereas NPCs in the game know exactly where

the human player is at all times.

Rule-Sets

Rule-set systems are similar to scripting discussed previously but allow for more
variation based on the current environment. Rule-set systems use a set of rules
(IF...THEN) that determine the NPC’s actions based on the current environment.
The ability to alter behaviour based on world state allows for variations in

behaviour that cannot be achieved with scripting.

Rule-set systems are known as ‘expert systems’ in machine learning, where a
human ‘expert’ uses domain knowledge to define what actions should be taken
depending on the world state. Creating expert systems is inherently time
consuming and often requires ‘debugging’ to adjust the rule-set. The rule-set is
also highly specific to the situation, meaning new rule-sets must be created for

each new game, and often different NPCs each require their own specific rule-set.

An example of rule-sets in game-Al is in Halo, which makes use of a rule-set for
NPCs to complete their current goal (such as fight, hide, or search), though Halo
also makes use of many other techniques as well [Butcher & Griesemer, 2002 pg

> Can be seen on the Max Payne homepage: http://www.rockstargames.com/maxpayne/main.html
on the fourth slide (‘Make your own levels’).
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21]. A simpler example is BZFlag which has two built-in NPCs that use only rule-
sets to determine actions to take during a game (discussed further in Section 2.2).

2.1.2 Academic Game-Al

Academic game-Al refers to non-human players developed where the
performance of the non-human player is the main focus. Unlike commercially
developed game-Al (discussed in Section 2.1.1) there is little or no concern for
the enjoyment of a human player. The goal is generally that the game-Al be
capable of beating any human player (i.e. the world champion). To aid discussion
academic game-Al is separated into three categories based on the games used;

turn-based competition, real-time competition, and solo.

Turn-Based Competition

Turn-based games are perhaps some of the oldest games known to man and, not
surprisingly, are popular as academic studies in machine learning. Turn-based
competition games (TBCs) are games where two or more players take turns
performing actions that alter the game’s state. TBCs include most board games,
card games, turn-based strategy games, and even some physically oriented games

like Jenga.

TBCs can easily use traditional machine learning because each player must wait
for their turn to perform an action, effectively giving a computer opponent ample
time to determine its next action. Even if the decision time is limited (as is often
the case when a computer plays against a human) the board state will not change
until the action is taken, meaning that although the ‘thought’ time is limited the
computer player is not punished for taking the maximum time allowed to

determine its next move.

Many TBCs used in machine learning experiments are also ‘perfect information’
games, where the entire world state is known at all times. For example, in chess

both players know the position of all pieces on the board at all times. ‘Perfect
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information’ and relatively low time constraints often allow computer game-Al to
use the ‘brute-force’ technique, where all game states that can be reached from the

current state are computed, with the best possible move then being selected.

Deep Blue created by IBM is perhaps the most famous TBC academic game-Al
system. Deep Blue played chess using the brute-force technique® and was able to

beat the grand master at the time.

Tesauro’s TD-Gammon is another example of an academic game-Al system for a
TBC (backgammon). TD-Gammon uses temporal-difference learning to play
backgammon. Temporal-difference learning is a form of reinforcement learning
where learning is based on observed values that change over time (i.e. from one
time-step to the next). TD-Gammon can learn to play backgammon successfully
by playing repeated games against itself and, if combined with a shallow look-
ahead function, is able to beat the top world players [Tesauro, 2002].

Real-Time Competition

Real-time competition games (RTCs) are games where all players carry out
actions that affect the game state simultaneously. These are more complex than
TBCs discussed previously and require actions to be chosen rapidly. The real-time
nature of these games combined with the large number of variables involved
makes the brute-force technique and some other machine learning techniques

unfeasible.

Many computer games are RTCs, including most shooting games, RTS, and some
racing games (if there is an opponent). Academic studies on RTCs often use RTS
games to test machine learning performance. RTS games typically take a
(relatively) long time to complete, and poor decisions are not as quickly
‘punished’ as they might be in other games (such as shooting games). This means

that of all real-time games, RTS games are perhaps the least demanding on time.

® Deep Blue also had several thousand opening moves and end-game moves stored persistently,
rather than having to compute them all repeatedly.
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The focus of machine learning in RTCs is often limited to a single aspect of
game-Al behaviour (such as path-finding or resource management). The games
can also be changed to ‘solo’ games by removing the opponents (the algorithms
are then scored by some metric, for example the amount of gold mined by the

computer player after 10 minutes of game time).

One example of academic research in RTCs is the study done by Forbus et al.
[2002] into the use of spatial reasoning to improve game-Al in RTS games. This
aims to improve, among other things, path-finding in RTS games which typically

use the A* algorithm and a variation of way-points (described in Section 2.1.1).

Another example is the annual RoboCup competition which aims to create a team
of humanoid robots capable of beating a human team in a game of soccer by 2050.
RoboCup has many categories based on the hardware used and is more of a

robotics challenge, but also includes a simulation category which is based only on

software and so falls into the academic game-Al RTC category.

Solo

Solo games are any games where there is no opponent, often using beat-the-clock
style games such as racing games. In academic studies solo games are often used
because they provide a static environment that is only changed by the agent’s
actions. This allows for ‘incremental-improvement’ systems, like reinforcement

learning, to be used effectively.

One example of this is the Robot Auto Racing Simulator’ (RARS) which was
designed to provide researchers an easy way to apply machine learning algorithms
to a racing game. Many academic studies have been done using RARS as a test
environment, Cleland [2006] shows that an agent using reinforcement learning
(Q-Learning) can learn to drive around a simple track and is able to beat basic

heuristic robots.

" RARS has since been superseded by The Open Racing Car Simulator (TORCS) available online
at http://torcs.sourceforge.net/
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2.2 Objective

Game-Al has been developed for all types of computer games. Commercial game-
Al is used in complex 3D games, but is costly and time consuming to create. It is
also often highly tailored to one particular game. By contrast, academic game-Al
often makes use of versatile machine learning techniques, but is generally applied
to less complex games or learning is isolated to a particular task (such as path-
finding).

This study aims to determine whether a computer controlled opponent can adapt
to a human player’s style of game-play in a complex 3D game. Furthermore the
computer opponent must use the same level of information and control the human
player is given (i.e. not cheating game-Al described in Section 2.1.1). Several
machine learning techniques are used; static prediction models, continuous

learning, and reinforcement learning.

2.3 BZFlag

BZFlag (short for BattleZone Flag) is a free, open source, and cross-platform
multiplayer 3D tank battle game based on a previous game called BattleZone and
released under the GNU LGPL. Using the terminology from Section 2.1 BZFlag
is a commercial real-time competition game that uses rule-sets to control NPCs.
The basic game-play of BZFlag is to have two or more tanks whose objective is to
shoot each other, but there are several variations of this basic theme including
teams, capture-the-flag (CTF), and ‘rabbit hunt’.

2.3.1 Client-Server Architecture

BZFlag uses client-server architecture for all games, though both client and server
programs can run on the same machine. The client can be considered a ‘fat client’,
whereby a large amount of processing is done in the client program while the

server program mainly handles synchronization of the game state between
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multiple clients.® In this report BZFlag refers to the client program, while BZFS
refers to the server program. All discussions of BZFlag and BZFS in this report

refer to version 2.0.10.

2.3.2 World Configuration

The world configuration refers to the characteristics of the virtual world created
by BZFS. This includes aspects such as size, obstacles, tank abilities, flags, and
game-play modes. Due to the large number of parameters that can be set in BZFS

only a brief overview is given here.’

Ready

All

Keyboard movement
Got shot by AutoPilot Robot PlayerB8 (Red Team)
: killed by

Mouse movement

Keyboard movement

Mouse movement

Keyboard movement

Mouse movement

Keyboard movement

Figure 2.1 Screenshot of BZFlag

® This approach, combined with the open source nature of BZFlag, makes it possible for a player to
cheat by recompiling their client with altered code. As a result the ‘division of labour’ between the
client and server may change in future versions.

% A thorough list of BZFS configuration settings is available online at
http://my.bzflag.org/w/BZFS_Command_Line_Options
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Figure 2.1 shows a screen created by BZFlag. The red and purple writing on the
top half of the screen is score information. The orange squares show tank aiming
information, with the smaller square showing where a shot would go if the tank
fired one. The world in Figure 2.1 is randomly generated, with pyramids in blue
and boxes in brown. The X-Y plane (ground) is green. Left of centre is the
opponent tank in red. Bottom left shows the ‘radar’ that gives the positions of all
other tanks (red dot) as well as all obstacles in the world (blue boxes). To the right
of the radar is the message area which provides information such as server

messages and chat facilities between players.

World Size

World size is the size of the virtual world created by BZFS. This is measured in
‘BZFlag units’ which have no real-world counterpart (though it is suggested that

if the tank was life-sized one BZFlag unit would be approximately one meter).

The world size is set on the X and Y coordinate planes, the Z-axis size cannot be
set by the user. The coordinates on all three axes can be positive or negative, so a
world with a size of 200x200 is effectively 400x400 units (on the X-Y plane,
green in Figure 2.1) with coordinates ranging from -200,-200 to 200,200.

The terrain is always flat, though obstacles can be placed within the world
depending on the configuration. Terrain is uniform in all areas, meaning the
characteristics (such as traction) are consistent regardless of position in the world.
The world is enclosed on all four sides by ‘walls” which cannot be damaged,

destroyed, or breached in any way.
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Obstacles

BZFlag has several types of obstacles that can be placed within the virtual world.
These include boxes, cones, pyramids, arcs, and spheres. All obstacles are solid
and cannot be moved or damaged by tanks regardless of the world configuration.
Randomly generated worlds in BZFlag use only boxes and pyramids (randomly
placed), but boxes are the only type of obstacle used for experiments described in
this report.

Tank Abilities

Most tank characteristics are fixed (e.g. maximum speed), but some can be set by
BZFS when starting the server, such as jumping and the shot-count. Jumping

allows the player to ‘jump’ the tank upwards (increasing Z-axis values), which is
often useful in dodging an opponent’s shot. If jumping is turned off the tank stays

on the ‘ground’ at all times (except when blown up by the opponent).

The shot-count is the number of shots each tank has available. This can be thought
of as the number of chambers the turret has, where each chamber has to be
reloaded after it has been fired. Each shot is reloaded independently of any other

shots, with a fixed reloading delay of approximately four seconds.

Experiments discussed in this report have jumping disabled and the number of

shots set to one for simplicity of testing.

Flags

Flags can be turned on or off in BZFS. If flags are turned on, BZFS randomly
places several flags throughout the world at the start of a game. Both ‘good’ and
‘bad’ flags can be used, where a ‘good’ flag gives the player some kind of
enhancement that makes game-play easier, while ‘bad’ flags do the opposite,
making game-play harder for the player (often by manipulating the controls or

making it easier for opponent tanks to shoot the player’s tank).
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There are a large number of flags available and they will not be listed here but, to
give an idea of the effects, two ‘good’ flags are ‘Cloaking’ and ‘Shield’, while
two ‘bad’ flags are ‘Left Turn Only’ and ‘Reverse Only’.

It should be noted that the flag used in CTF games is a special flag, which is not
placed randomly™ by the server and is neither ‘good’ nor ‘bad’ (as it has no effect

on the tank abilities or controls).

Respawning

Respawning is a term in games that refers to a player’s character coming back to
life after they have died in the game. Some games use fixed points (‘respawn
points’) where the characters are placed after respawning, while other games place
the character randomly in the world. BZFlag can use different types of
respawning but the one used during experiments in this report is semi-random
respawning. This attempts to find a position that is away from the opponent tank
by randomly (using pseudorandom number generation) picking places in the
world. A time limit of 10 milliseconds is used, after which the tank is placed in

the world regardless of opponent position.

2.3.3 Game-Play

Games in BZFlag are generally one of two varieties; death-match and capture-the-
flag (CTF). Death-match games are free-for-all games where each tank is trying to
shoot every other tank. One variation of this is team death-match, which is the
same as standard death-match except each tank is part of a team and is penalized
for shooting team-mates. Another variation is ‘rabbit hunt’, where one player is
the ‘rabbit’ and is hunted by all other players. When the rabbit is shot, the shooter
becomes the rabbit and the process begins again, where the aim is to spend as

much time as possible being the rabbit.

19 The CTF flags are always placed on the team bases, the bases themselves however can be
randomly placed on the map.
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CTF always uses teams, although a team can be composed of a single player
(BZFlag supports up to four teams). Each team has a ‘base’ on the map that has a
flag bearing the team colour. The aim is to retrieve an opponent’s flag and return

it to the player’s base.

2.3.4 Computer Players

BZFlag comes with two built-in computerized players. In this report they are
referred to as basic-pilot and autopilot. Both players use rule-sets to determine
behaviour, though the rule-sets of the two are different. Basic-pilot is the standard
computer opponent during single player games. It has some simple dodging code

but overall performs poorly and is easily beaten by a human player.

Autopilot exists to take over a human player’s tank when desired (for instance, to
answer the phone during a multiplayer game). Autopilot is superior to basic-pilot
and easily beats basic-pilot in a one-on-one match. Autopilot uses a fixed rule-set
that creates predictable behaviour and can be beaten by an intermediate human

player'! without much difficulty.

2.3.5 Limitations

Games used in academic studies, particularly those that deal with reinforcement
learning, often increase the execution speed of the game because of the large
amount of game-play required for learning. Unfortunately, the synchronization
performed by BZFS makes it difficult to change the operating speed of BZFlag so

some experiments in this study have a limited duration.

11 Al observations based on an ‘intermediate human player’ are from playing the game myself.
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2.4 WEKA

WEKA is a machine learning workbench written in Java and released as open-
source under the GNU GPL. WEKA is widely used in machine learning research
so only a brief description is given here. For a more comprehensive description of
WEKA and the algorithms included with it, see Witten & Frank [2005].*2

WEKA includes various machine learning algorithms, data pre-processing tools,
and applications for trialling learning algorithms on user provided datasets. The
pre-processing tools include functions such as discretization or removal of

attributes from a dataset.

WEKA uses a two step train-test approach. The first step is to ‘train’ the

algorithm on a given dataset. Once the training completes, the learning algorithm
is fixed (static) and does not change for the duration of the tests. The second step
is the ‘test’ or ‘prediction’ phase, where the trained learning algorithm is used on
the test dataset. The two datasets (test and train) can be the same dataset, separate

datasets, or sub-sections of a larger dataset (such as in cross-validation tests).

2.5 Reinforcement Learning

Parts of this report use reinforcement learning. It is useful therefore to provide a
definition of the term as well as a description of the two frameworks used. A
detailed explanation of reinforcement learning is beyond the scope of this report,

for more information see Sutton & Barto [1998].

12 Information is also available online at http://www.cs.waikato.ac.nz/ml/weka/
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2.5.1 Definition

Reinforcement learning (RL) is a method which matches a situation (world state)
to an action in order to maximize some reward function. Furthermore the learner
(agent) is not told the right action to take but rather must learn through trial and
error which actions maximize the reward function [Sutton and Barto, 1998].

The lack of known ‘correct’ examples often results in slower learning than in
supervised learning but, given sufficient learning time, RL is capable of exploring
the entire search space and so is guaranteed to find the optimum solution (if one

exists).

One method to achieve this is referred to as state-action pairs whereby all possible
combinations of states and actions are kept in memory along with the observed
reward for each state-action pair (i.e. the reward the agent received the last time
the action was taken from that state). Another method used is similar to state-
action pairs but uses a neural network to generalize the learning. This has the
advantage of a lower memory requirement, since state-action pairs do not need to

be kept in memory.

252 PIQLE

PIQLE (Platform Implementing Q-Learning) is a Java framework that is designed
to separate problems from algorithms, allowing researchers to easily test new

algorithms using standard problems or vice-versa.®

PIQLE includes implementations of various RL algorithms (generally those
described in Reinforcement Learning, an Introduction [Sutton and Barto, 1998]),
but because of time constraints only the state-action pair algorithm in PIQLE is

used in this report.

The state-action pair method stores all combinations of states and actions along

with the maximum expected reward for each state-action pair. PIQLE uses

13 Only a brief overview is given here, for more information see the PIQLE homepage at
http://sourceforge.net/projects/piqle
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hashing to reduce the memory requirement so that only observed state-action pairs
are stored, but the memory requirement can still be quite large.

The state-action pair approach works well on small or simplified problems but
does not scale well to more complex areas. The reasons for this are firstly that a
large number of states or actions (or both) increases the memory requirement, and
secondly all state-action pairs must be visited repeatedly in order for the algorithm

to converge.

PIQLE allows the number of actions available to be set on a state-by-state basis.
This is particularly beneficial for use in the research described in this report
because of the reloading delay (described in Section 2.2.2) which means a tank

cannot fire in all world states.

2.5.3 Connectionist

Connectionist is a Java RL framework that uses Connectionist Q-Learning as
described by Kuzmin [2002] where a neural network is used to allow
generalization of the state-action pairs used for learning. It should be noted that
PIQLE also has neural network based algorithms but Connectionist is
experimented with first as it is less complex than PIQLE.**

Figure 2.2 shows the neural network at the centre with sensors on the left and
actions on the right. The neural network has an arbitrary number of inputs
(sensors) that represent the current world state, with the reward value received
from previous states as an additional input. The output of the neural network
corresponds to an action the agent can perform. The actions are fixed at the start

of the experiment and it is assumed the actions are always available.

“Only a brief overview of Connectionist is given here, for information see the Connectionist
homepage at http://elsy.gdan.pl/
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Figure 2.2 Connectionist Brain®®

The neural network approach has the benefit of a reduced memory requirement
over state-action pairs used in PIQLE (see Section 2.4.2). However, generalization
by the neural network adds a level of complexity that can make it difficult to

adjust for a particular learning problem.

Connectionist also allows for the neural network weights to be saved and restored
during experiments. This allows for the neural network to be restored to a known
‘good’ state if the performance begins to deteriorate due to exploration of the

search space.

The neural network approach®® was used by Tesauro’s TD-Gammon backgammon
player (described in Section 2.1.2) which is capable of beating the top world
players, proving that the neural network approach can be used successfully at least

for simple 2D games.

1> Obtained From
http://elsy.gdan.pl/index.php?option=com_content&task=view&id=19&Itemid=32

18 TD-Gammon uses the neural network approach to reinforcement learning, but does not use the
Connectionist framework.
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2.6 Chapter Summary

Game-Al has been developed for all kinds of computer games. Often the creation
of these systems is both costly and time consuming. Research has been done using
machine learning techniques to create computer opponents, but this is generally
applied to simpler games. Use of machine learning techniques in a complex
computer game raises many interesting questions and is largely an unexplored

area of machine learning research.

This study aims to develop game-Al for BZFlag that is able to adapt to the game-
play of a human opponent. An additional constraint is the game-Al will have the
same in-game capabilities, information, and controls as a human player (i.e. not
cheating). BZFlag is used because it provides competitive game-play in a complex
3D environment. The experiments described in this report make use of the WEKA
machine learning workbench, and the PIQLE and Connectionist reinforcement

learning frameworks.
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3 Integration of Machine Learning in BZFlag

This chapter describes initial attempts to use machine learning (ML) algorithms to
control a tank in BZFlag. It includes a description of how tank controls are
separated, the selection of attributes used to train the algorithms, and development

of online and offline approaches to training.

The goal at this stage is to determine whether an ML algorithm can be used to
control a tank in BZFlag. This includes determining what attributes are available
in BZFlag and confirming that an ML algorithm can be used to control a tank in
real-time without having a detrimental effect on the performance of BZFlag. In-
game performance of the ML-controlled tank is also observed but is of secondary

importance at this point.

Section 3.1 explains how tank controls are separated into three categories; speed,
shooting, and rotation. Section 3.2 describes the attempts to use an ML algorithm
to control tank shooting and the observed in-game performance. Section 3.3
describes attempts to use an ML algorithm to control speed and the online and
offline training approaches developed to accomplish it. Section 3.4 describes
some limitations observed during the experimentation described in the previous

sections. Section 3.5 is a brief summary of this chapter.

3.1 Separation of Controls

BZFlag allows players to control a tank inside the virtual world created by BZFS
(discussed in Section 2.3). For this study controls are separated into three distinct
categories; speed, shooting, and rotation. Separation simplifies the complexity of
controlling a tank in the 3D environment in the hope that this improves an ML

algorithm’s ability to learn tank behaviour.

Speed is defined as the tank’s velocity along the line it is facing. It is adjusted by
setting a floating-point number representing the fraction of the maximum possible
speed. This can be set to a maximum of 1.0 and a minimum of -0.5, with 1.0 being

full speed ahead and -0.5 being full speed backwards (the tank can only go half as
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fast in reverse). Changes to speed happen instantaneously (that is to say, to the

user acceleration appears to be instantaneous).

Shooting is the ability to fire a projectile from the tank. Once fired the projectile
continues along a straight-line path until it either hits something (an obstacle,
tank, or wall) or reaches its maximum range. T