Working Paper Series
ISSN 1170-487X

Generating Accurate Rule Sets
Without Global Optimization

by Eibe Frank and
Ian Witten

Working Paper 2/98
January 1998

© 1998 Eibe Frank and Ian Witten
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

Generating Accurate Rule Sets
Without Global Optimization

Eibe Frank and Ian H. Witten
Department of Computer Science
University of Waikato
Hamilton, New Zealand
{eibe, ihw }Qcs.waikato.ac.nz

Abstract

The two dominant schemes for rule-learning, C4.5 and RIPPER,
both operate in two stages. First they induce an initial rule set and
then they refine it using a rather complex optimization stage that dis-
cards (C4.5) or adjusts (RIPPER) individual rules to make them work
better together. In contrast, this paper shows how good rule sets can
be learned one rule at a time, without any need for global optimization.
We present an algorithm for inferring rules by repeatedly generating
partial decision trees, thus combining the two major paradigms for
rule generation—creating rules from decision trees and the separate-
and-conquer rule-learning technique. The algorithm is straightforward
and elegant: despite this, experiments on standard datasets show that
it produces rule sets that are as accurate as and of similar size to those
generated by C4.5, and more accurate than RIPPER’s. Moreover, it
operates efficiently, and because it avoids postprocessing, does not suf-
fer the extremely slow performance on pathological example sets for
which the C4.5 method has been criticized.

Keywords: Rules, global optimization, partial decision trees.

1 Introduction

[f-then rules are the basis for some of the most popular concept description
languages used in machine learning. They allow “knowledge” extracted from
a dataset to be represented in a form that is easy for people to understand.
This gives domain experts the chance to analyze and validate that knowledge,
and combine it with previously known facts about the domain.

A variety of approaches to learning rules have been investigated. One
is to begin by generating a decision tree, then to transform it into a rule
set, and finally to simplify the rules [9]; the resulting rule set is often more
accurate than the original tree. Another is to use the “separate-and-conquer”
strategy [8] first applied in the AQ family of algorithms [7] and subsequently
used as the basis of many rule learning systems [3]. In essence, this strategy
determines the most powerful rule that underlies the dataset, separates out
those examples that are covered by it, and repeats the procedure on the
remaining examples.

Two dominant practical implementations of rule-learners have emerged
from these strands of research: C4.5 [11] and RIPPER [1]. Both perform a
global optimization process on the set of rules that is induced initially. The
motivation for this in C4.5 is that the initial rule set, being generated from
a decision tree, is unduly large and redundant: C4.5 drops some individual
rules (having previously optimized rules locally by dropping conditions from
them). The motivation in RIPPER, on the other hand, is to increase the
accuracy of the rule set by replacing or revising individual rules. In either
case the two-stage nature of the algorithm remains: as Cohen [1] puts it,
“... both RIPPERK and C4.5rules start with an initial model and iteratively
improve it using heuristic techniques.” Experiments show that both the size
and the performance of rule sets are significantly improved by post-induction
optimization. On the other hand, the process itself is rather complex and
heuristic.

This paper presents a rule-induction procedure that avoids global opti-
mization but nevertheless produces accurate, compact rule sets. The method
combines the two rule learning paradigms identified above. Section 2 dis-
cusses these two paradigms and their incarnation in C4.5 and RIPPER. Sec-
tion 3 presents the new algorithm, which we call “PART” because it is based
on partial decision trees. Section 4 describes an experimental evaluation on
standard datasets comparing PART to C4.5, RIPPER, and C5.0, the com-

mercial successor of C4.5.1 Section 5 summarizes our findings.

2 Related Work

We review two basic strategies for producing rule sets. The first is to begin
by creating a decision tree and then transform it into a rule set by generating
one rule for each path from the root to a leaf. Most rule sets derived in this
way can be simplified dramatically without losing predictive accuracy. They
are unnecessarily complex because the disjunctions that they imply can often
not be expressed succinctly in a decision tree. This is sometimes known as
the “replicated subtree” problem [8].

When obtaining a rule set, C4.5 first transforms an unpruned decision tree
into a set of rules in the aforementioned way. Then each rule is simplified
separately by greedily deleting conditions in order to minimize the rule’s
estimated error rate. Following that, the rules for each class in turn are
considered and a “good” subset is sought, guided by a criterion based on
the minimum description length principle [12] (this is performed greedily,
replacing an earlier method that used simulated annealing). The next step
ranks the subsets for the different classes with respect to each other to avoid
conflicts, and determines a default class. Finally, rules are greedily deleted
from the whole rule set one by one, so long as this decreases the rule set’s
error on the training data.

The whole process is complex and time-consuming. Five separate stages
are required to produce the final rule set. It has been shown that for noisy
datasets, runtime is cubic in the number of instances [1]. Moreover, despite
the lengthy optimization process, rules are still restricted to conjunctions of
those attribute-value tests that occur along a path in the initial decision tree.

Separate-and-conquer algorithms represent a more direct approach to
learning decision rules. They generate one rule at a time, remove the in-
stances covered by that rule, and iteratively induce further rules for the
remaining instances. In a multi-class setting, this automatically leads to an
ordered list of rules, a type of classifier that has been termed a “decision list”
[13]. Various different pruning methods for separate-and-conquer algorithms
have been investigated by Firnkranz [2], who shows that the most effective
scheme is to prune each rule back immediately after it is generated, using

'A test version of C5.0 is available from http://www.rulequest.com.

Rule Coverage
Training Set Pruning Set
D S @ S

l: a = true = @ 90 8 30 5
2: a="Tfalse AN b=true= & 200 18 66 6
3: a = false A b = false = © 1 10 0 3

Figure 1: A hypothetical target concept for a noisy domain.

a separate stopping criterion to determine when to cease adding rules [4].
Although originally formulated for two-class problems, this procedure can be
applied directly to multi-class settings by building rules separately for each
class and ordering them appropriately [1].

RIPPER implements this strategy using reduced error pruning [10], which
sets some training data aside to determine when to drop the tail of a rule, and
incorporates a heuristic based on the minimum description length principle
as stopping criterion. It follows rule induction with a post-processing step
that revises the rule set to more closely approximate what would have been
obtained by a more expensive global pruning strategy. To do this, it considers
“replacing” or “revising” individual rules, guided by the error of the modified
rule set on the pruning data. It then decides whether to leave the original
rule alone or substitute its replacement or revision, a decision that is made
according to the minimum description length heuristic. It has been claimed
[1] that RIPPER generates rule sets that are as accurate as C4.5’s. How-
ever, our experiments on a large collection of standard datasets—reported in
Section 3—do not confirm this.

As the following example shows, the basic strategy of building a single
rule and pruning it back can lead to over-pruning on noisy datasets—even
if the pruning operator is more conservative than RIPPER’s. Consider a
Boolean dataset with attributes a and b built from the three rules in Figure 1,
corrupted by ten percent class noise. Assume that the pruning operator is
conservative and can only delete a single final conjunction of a rule at a time

(not an entire tail of conjunctions as RIPPER does). Assume further that
the first rule has been generated and pruned back to

a=true= &P

(The training data in Figure 1 is solely to make this scenario plausible.)
Now consider whether the rule should be further pruned. Its error rate on
the pruning set is 5/35, and the null rule

= @

has an error rate of 14/110, which is smaller. Thus the the rule set will be
pruned back to this single, trivial, rule, instead of the patently more accurate
three-rule set shown in Figure 1.

This phenomenon is not just an artifact of reduced error pruning: it can
happen with pessimistic pruning [11] too. Because of variation in the number
of noisy instances in the data sample, one can always construct situations
in which pruning causes rules with comparatively large coverage to swallow
rules with smaller (but still significant) coverage. This can happen whenever
the number of errors committed by a rule is large compared with the total
number of instances covered by an adjacent rule.

3 Obtaining Rules From Partial Decision Trees

The new method for rule induction, PART, combines the two approaches dis-
cussed in Section 2 in an attempt to avoid their respective problems. Unlike
both C4.5 and RIPPER it does not need to perform global optimization to
produce accurate rule sets, and this added simplicity is its main advantage.
It adopts the separate-and-conquer strategy in that it builds a rule, removes
the instances it covers, and continues creating rules recursively for the re-
maining instances until none are left. It differs from the standard approach
in the way that each rule is created. In essence, to make a single rule a
pruned decision tree is built for the current set of instances, the leaf with the
largest coverage is made into a rule, and the tree is discarded.

The prospect of repeatedly building decision trees only to discard most
of them is not as bizarre as it first seems. Using a pruned tree to obtain
a rule instead of building it incrementally by adding conjunctions one at a

Procedure Expand Subset

choose split of given set of examples into subsets
while there are subsets that have not been expanded and
all the subsets expanded so far are leaves
choose next subset to be expanded and expand it
if all the subsets expanded are leaves
try to replace node by leaf

Figure 2: Method that expands a given set of examples into a partial tree

time avoids the over-pruning problem of the basic separate-and-conquer rule
learner. Using the separate-and-conquer methodology in conjunction with
decision trees adds flexibility and speed. It is indeed wasteful to build a full
decision tree just to obtain a single rule, but the process can be accelerated
significantly without sacrificing the above advantages.

The key idea is to build a “partial” decision tree instead of a fully ex-
plored one. A partial decision tree is an ordinary decision tree that contains
branches to undefined subtrees. To generate such a tree, we integrate the
construction and pruning operations in order to find a “stable” subtree that
can be simplified no further. Once this subtree has been found, tree-building
ceases and a single rule is read off.

The tree-building algorithm is summarized in Figure 2: it splits a set of
examples recursively into a partial tree. The first step chooses a test and di-
vides the examples into subsets accordingly. Our implementation makes this
choice in exactly the same way as C4.5. Then the subsets are expanded in or-
der of their average entropy, starting with the smallest. (The reason for this
is that subsequent subsets will most likely not end up being expanded, and
the subset with low average entropy is more likely to result in a small subtree
and therefore produce a more general rule.) This continues recursively until
a subset is expanded into a leaf, and then continues further by backtracking.
But as soon as an internal node apears which has all its children expanded
into leaves, pruning begins: the algorithm checks whether that node is better
replaced by a single leaf. This is just the standard “subtree replacement” op-
eration of decision-tree pruning, and our implementation makes the decision

Stage 1 Stage 2 Stage 3

=

Stage 4

o

Figure 3: Example of how our algorithm builds a partial tree

in exactly the same way as C4.5. (C4.5’s other pruning operation, “subtree
raising,” plays no part in our algorithm.) If replacement is performed the
algorithm backtracks in the standard way, exploring siblings of the newly-
replaced node. However, if during backtracking a node is encountered all of
whose children are not leaves—and this will happen as soon as a potential
subtree replacement is not performed—then the remaining subsets are left
unexplored and the corresponding subtrees are left undefined. Due to the
recursive structure of the algorithm this event automatically terminates tree
generation.

Figure 3 shows a step-by-step example. During stages 1-3, tree-building
continues recursively in the normal way—except that at each point the
lowest-entropy sibling is chosen for expansion: node 3 between stages 1 and
2. Gray nodes are as yet unexpanded; black ones are leaves. Between Stages
2 and 3, the black node will have lower entropy than its sibling, node 5; but
cannot be expanded further since it is a leaf. Backtracking occurs and node
5 is chosen for expansion. Once stage 3 is reached, there is a node—node 5—
which has all of its children expanded into leaves, and this triggers pruning.
Subtree replacement for node 5 is considered, and accepted, leading to stage
4. Now node 3 is considered for subtree replacement, and this operation is

again accepted. Backtracking continues, and node 4, having lower entropy
than 2, is expanded—into two leaves. Now subtree replacement is considered
for node 4: let us suppose that node 4 is not replaced. At this point, the
process effectively terminates with the 3-leaf partial tree of stage 5.

This procedure ensures that the over-pruning effect discussed in Section 2
cannot occur. A node can only be pruned if all its successors are leaves. This
can only happen if all its subtrees have been explored and either found to be
leaves, or are pruned back to leaves. Situations like that shown in Figure 1
are therefore handled correctly.

If a dataset is noise-free and contains enough instances to prevent the
algorithm from doing any pruning, just one path of the full decision tree
has to be explored. This achieves the greatest possible performance gain
over the naive method that builds a full decision tree each time. The gain
decreases as more pruning takes place. For datasets with numeric attributes,
the asymptotic time complexity of the algorithm is the same as for building
the full decision tree® because in this case the complexity is dominated by
the time needed to sort the attribute values in the first place.

Once a partial tree has been built, a single rule is extracted from it.
Each leaf corresponds to a possible rule, and we seek the “best” leaf of
those subtrees (typically a small minority) that have been expanded into
leaves. Our implementation aims at the most general rule by choosing the
leaf that covers the greatest number of instances. (We have experimented
with choosing the most accurate rule, that is, the leaf with the lowest error
rate, error being estimated according to C4.5’s Bernoulli heuristic, but this
does not improve the rule set’s accuracy.)

Datasets often contain missing attribute values, and practical learning
schemes must deal with them efficiently. When constructing a partial tree we
treat missing values in exactly the same way as C4.5: if an instance cannot be
assigned deterministically to a branch because of a missing attribute value, it
is assigned to each of the branches with a weight proportional to the number
of training instances going down that branch, normalized by the total number
of training instances with known values at the node. During testing we apply
the same procedure separately to each rule, thus associating a weight with
the application of each rule to the test instance. That weight is deducted
from the instance’s total weight before it is passed to the next rule in the

2 Assuming no subtree raising.

(ab+bed+defg) with 12 irrelevant binary attributes and uniformly distributed examples
T Ll T T

1e+06 T]
PART with no class noise -e— |
PART with 20% class noise -+-
3 13'”\2
a‘x‘ K)o
100000 - et
10000 | 4
g >
E
g 1000 L i
5 s
o
(5]
1 L 1 1 1 1

625 1250 2500 5000 10000 20000 40000
number of examples

Figure 4: CPU times for PART on artificial dataset

list. Once the weight has reduced to zero, the predicted class probabilities
are combined into a final classification according to the weights.

The algorithm’s runtime depends on the number of rules it generates.
Because a decision tree can be built in time O(anlogn) for a dataset with
n examples and a attributes, the time taken to generate a rule set of size k
is O(kanlogn). Assuming (as the analyses of [1] and [2] do) that the size
of the final theory is constant, the overall time complexity is O(anlogn),
as compared to O(anlog®n) for RIPPER. In practice, the number of rules
grows with the size of the training data because of the greedy rule learning
strategy and pessimistic pruning. However, even in the worst case when
the number of rules increases linearly with training examples, the overall
complexity is bounded by O(an?logn). In our experiments we only ever
observed subquadratic run times—even for the artificial dataset that Cohen
[1] used to show that C4.5’s performance can be cubic in the number of
examples. The results of timing our method, PART, on this dataset are
depicted on a log-log scale in Figure 4, for no class noise and for 20 percent
class noise. In the latter case C4.5 scales as the cube of the number of
examples.

4 Experimental Results

In order to evaluate the performance of PART on a diverse set of practi-
cal learning problems, we performed experiments on thirty-four standard
datasets from the UCI collection [6].> The datasets and their characteristics
are listed in Table 1.

As well as the learning algorithm PART described above, we also ran
C4.5,* C5.0 and RIPPER on all the datasets. The results are listed in Ta-
ble 2. They give the percentage of correct classifications, averaged over ten
ten-fold cross-validation runs, and standard deviations of the ten are also
shown. The same folds were used for each scheme. Results for C4.5, C5.0
and RIPPER are marked with o if they show significant improvement over
the corresponding results for PART, and with e if they show significant degra-
dation. (The { marks are discussed below.) Throughout, we speak of results
being “significantly different” if the difference is statistically significant at
the 1% level according to a paired two-sided t-test, each pair of data points
consisting of the estimates obtained in one ten-fold cross-validation run for
the two learning schemes being compared. Table 3 shows how the differ-
ent methods compare with each other. Each entry indicates the number
of datasets for which the method associated with its column is significantly
more accurate than the method associated with its row.

We observe from Table 3 that PART outperforms C4.5 on nine datasets,
whereas C4.5 outperforms PART on six. The chance probability of this dis-
tribution is 0.3 according to a sign test: thus there is only very weak evidence
that PART outperforms C4.5 on a collection of datasets similar to the one
we used. According to Table 3, PART is significantly less accurate than C5.0
on ten datasets and significantly more accurate on six. The corresponding
probability for this distribution is 0.23, providing only weak evidence that
C5.0 performs better than PART. For RIPPER the situation is different:
PART outperforms it on fourteen datasets and performs worse on six. The
probability for this distribution is 0.06, a value that provides fairly strong
evidence that PART outperforms RIPPER on a collection of datasets of this

3Following Holte [5], the G2 variant of the glass dataset has classes 1 and 3 combined
and classes 4 to 7 deleted, and the horse-colic dataset has attributes 3, 25, 26, 27, 28
deleted with attribute 24 being used as the class. We also deleted all identifier attributes
from the datasets.

4We used Revision 8§ of C4.5.

10

Table 1: Datasets used for the experiments

Dataset Instances Missing Numeric ~ Nominal Classes
values (%) attributes attributes
anneal 898 0.0 6 32 5
audiology 226 2.0 0 69 24
australian 690 0.6 6 9 2
autos 205 1.1 15 10 6
balance-scale 625 0.0 4 0 3
breast-cancer 286 0.3 0 9 2
breast-w 699 0.3 9 0 2
german 1000 0.0 7 13 2
glass (G2) 163 0.0 9 0 2
glass 214 0.0 9 0 6
heart-c 303 0.2 6 7 2
heart-h 294 20.4 6 7 2
heart-statlog 270 0.0 13 0 2
hepatitis 155 5.6 6 13 2
horse-colic 368 23.8 7 15 2
hypothyroid 3772 5.5 7 22 4
ionosphere 351 0.0 34 0 2
iris 150 0.0 4 0 3
kr-vs-kp 3196 0.0 0 36 2
labor 57 3.9 8 8 2
letter 20000 0.0 16 0 26
lymphography 148 0.0 3 15 4
mushroom 8124 1.4 0 22 2
pima-indians 768 0.0 8 0 2
primary-tumor 339 3.9 0 17 21
segment 2310 0.0 19 0 7
sick 3772 5.5 7 22 2
sonar 208 0.0 60 0 2
soybean 683 9.8 0 25 19
splice 3190 0.0 0 61 3
vehicle 846 0.0 18 0 4
vote 435 5.6 0 16 2
vowel 990 0.0 10 3 11
waveform-noise 5000 0.0 40 0 3
Z00 101 0.0 1 15 7

11

Table 2: Experimental results: percentage of correct classifications, and stan-
dard deviation

Dataset PART C4.5 C5.0 RIPPER
anneal 98.44+0.3 98.640.2 T 98.7+0.3 o 98.3%0.1
audiology 78.7+1.1 76.3+1.2 of 773412 t 723422 e
australian 84.3+1.2 84.841.1 e 85.440.7 85.34+0.7
autos 745414 765429 t 79.142.1 of 72.04£2.0 e
balance-scale 82.3+1.2 78.0+£0.7 e 79.0£1.0 e 81.0+1.1
breast-cancer 69.6+1.6 70.3+1.6 73.6+1.6 o T1.8+1.6 o
breast-w 94.940.4 955406 t 955+0.3 o 95.640.7
horse-colic 84.440.8 83.040.6 e 85.0+0.5 85.040.8
german 70.0+1.4 719414 o 72.3+0.5 o 71.4£0.7 o
glass (G2) 80.0£3.6 79.4+23 T 80.241.8 T 80.9+1.4
glass 70.0+£1.6 67.342.4 68.4+2.8 T 66.7£2.1 e
heart-c 78.5+1.7 79.7+1.5 79.140.9 78.54+1.9
heart-h 80.5+1.5 79.7+1.7 80.7+1.1 78.7+1.3 e
heart-statlog 78.9+1.3 812413 o 81.9+14 o 79.0+1.4
hepatitis 80.24+1.9 79.741.0 t 81.140.7 77.242.0
hypothyroid 99.54+0.1 99.54+0.1 T 99.5+0.0 ef 99.440.1
ionosphere 90.6+1.3 89.94+1.5 t 89.3+1.4 ef 89.240.8
iris 93.7+£1.6 95.141.0 of 944407 1 94.441.7
kr-vs-kp 99.3+0.1 99.440.1 of 99.3+0.1 99.140.1
labor 77.3+3.9 81.4+426 of 77.14£3.7 ' 83.5+3.9
lymphography 76.54+2.7 78.042.2 76.842.7 1 76.1+24
mushroom 100.040.0 100.0+0.0 o' 99.940.0 ' 100.040.0
pima-indians 74.0+£0.5 742412 1 75540.9 of 752411 o
primary-tumor 41.7+1.3 40.1+1.7 e 28.7425 e 38.54+0.8 e
segment 96.6+0.4 96.1£0.3 of 96.3+04 ' 952405 e
sick 98.64+0.1 98.440.2 e 98.4+40.1 e 98.3+0.2 e
sonar 76.54+2.3 744429 t 753422 t 75.7+1.9
soybean 91.440.5 91.940.7 92.240.6 T 92.0+0.4
splice 92.54+0.4 93.440.3 o 94.3+0.3 o 93.4402 o
vehicle 72.4+0.8 72.940.9 72.440.8 T 69.0£0.6 e
vote 95.940.6 95.94+0.6 ' 96.0+0.6 ' 95.64+0.3
vowel 78.1£1.1 779413 T 799412 of 69.6+1.9
waveform-noise ~ 78.0£0.5 76.3+0.4 e 79.440.5 o 79.140.6
700 92.241.2 90.9+1.2 o' 91.5+1.2 t 87.8424

12

Table 3: Results of paired ttests (p=0.01): number indicates how often
method in column significantly outperforms method in row

PART C4.5 C5.0 RIPPER

PART = 6 10 6
C4.5 9 == 9 4
C5.0 6 5 - 4

RIPPER 14 10 12 =

type.

As well as accuracy, the size of a rule set is important because it has a
strong influence on comprehensibility. The { marks in Table 2 give informa-
tion about the relative size of the rule sets produced: they mark learning
schemes and datasets for which—on average—PART generates fewer rules
(this never occurs for RIPPER). Compared to C4.5 and C5.0, the average
number of rules generated by PART is smaller for eighteen datasets and
larger for sixteen.

5 Conclusions

This paper has presented a simple, yet surprisingly effective, method for
learning decision lists based on the repeated generation of partial decision
trees in a separate-and-conquer manner. The main advantage of PART over
the other schemes discussed is not performance but simplicity: by combining
two paradigms of rule learning it produces good rule sets without any need
for global optimization. Despite this simplicity, the method produces rule
sets that compare favorably with those generated by C4.5 and C5.0, and are
more accurate (though larger) than those produced by RIPPER.

An interesting question for future research is whether the size of the
rule sets obtained by our method can be decreased by employing a stopping
criterion based on the minimum description length principle, as is done in
RIPPER, or by using reduced error pruning instead of pessimistic pruning.

13

References

1]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

William W. Cohen. Fast effective rule induction. In Prieditis A. and
Russell S., editors, Proceedings of the 12th International Conference on
Machine Learning (ML95), pages 115-123, San Francisco, CA, 1995.
Morgan Kaufman.

Johannes Fiirnkranz. Pruning algorithms for rule learning. Technical
Report TR-96-07, Austrian Research Institute for Artificial Intelligence,
Vienna, 1996. [available online at ftp://ftp.ai.univie.ac.at/papers/oefai-
tr-96-07.ps.Z].

Johannes Fiirnkranz. Separate-and-conquer rule learning. Technical
Report TR-96-25, Austrian Research Institute for Artificial Intelligence,
Vienna, 1996. [available online at ftp://ftp.ai.univie.ac.at/papers/oefai-
tr-96-25.ps.Z].

Johannes Firnkranz and Gerhard Widmer. Incremental reduced error
pruning. In Proceedings of the 11th International Conference on Machine
Learning, pages 70-77 New Brunswick, NJ. Morgan Kaufmann, 1994.

Robert Holte. Very simple classification rules perform well on most
commonly used datasets. Machine Learning, 11:63-91, 1993.

Christopher J. Merz and Patrick M. Murphy. UCI Repository of Ma-
chine Learning Data-Bases. University of California, Department of
Information and Computer Science, Irvine, CA, 1996. [available online
at http://www. ics.uci.edu/~mlearn/MLRepository.html].

Ryszard S. Michalski. On the quasi-minimal solution of the covering
problem. In Proceedings of the 5th International Symposium on Infor-
mation Processing (FCIP-69), pages 125-128 Bled, Yugoslavia, Vol. A3
(Switching Circuits) 1969.

Giulia Pagallo and David Haussler. Boolean feature discovery in empir-
ical learning. Machine Learning, 5(1):71-99, 1990.

J. Ross Quinlan. Generating production rules from decision trees. In
Proceedings of the 10th International Joint Conference on Artificial In-
telligence (IJCAI-87), pages 304-307. Morgan Kaufmann, 1987.

14

[10] J. Ross Quinlan. Simplifying decision trees. International Journal of
Man-Machine Studies, 27:221-234, 1987.

[11] J. Ross Quinlan. C{.5: Programs for Machine Learning. Morgan Kauf-
mann, San Mateo, CA, 1994.

[12] Jorna Rissanen. Modelling by shortest data description. Automatica,
14:465-471, 1978.

[13] Ron L. Rivest. Learning decision lists. Machine Learning, 2:229-246,
1987.

15

