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The boundedness principle

characterizes second
category subsets

Kevin A. Broughan

Converses are proved for the Osgood (the Principle of Uniform

Boundedness), Dini, and other well known theorems. The notion of

a continuous step function on a topological space is defined and

a class of spaces identified for which each lower semicontinuous

function is the pointwise limit of a monotonically increasing

sequence of step functions.

Introduction

Let X and Y be T topological spaces. Thornton has proved in

[4] that X is homeomorphic to Y if and only if the semiring of positive

lower semicontinuous functions on X is isomorphic to the semiring of

positive lower semicontinuous functions on Y . (His theorem is stronger

than this.) Because of this result many topological properties will have

equivalent formulations in terms of lower semicontinuous functions. We

illustrate this idea by characterizing countably compact topological spaces

and subsets of the second category in topological spaces. We include a

theorem showing that a positive lower semicontinuous function on a Cech

dimension zero metrizable space can be expressed as the pointwise limit of

a sequence of monotonically increasing locally constant functions.
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Boundedness principle

The statement of a well known boundedness principle is as follows.

Let (X, T ) be a topological space and let S be a nonempty second

category subset of X . Let (A K g A b e a fam1' l v o f lower semicontinuous

functions on X with the following property: for each a; in 5 there is

a real number m with /. (x) 5 m for all X in A . Then there exists

a nonempty open subset P of X and a real number M such that

/. (x) 5 A? for all X in A and x in P . Theorem 1 provides a

converse to this theorem.

THEOREM 1 . Let {X, T ) be a topological space and let S c X be a

nonempty subset. Then the following conditions are equivalent:

(1) the subset S is of the second category in X ; and

(2) for each family (AKfA °f ̂ owsr semicontinuous functions

which is pointwise bounded on S there is a nonempty open

subset P of X and a number M such that fAx) 5 M for

all X in A and x in P .

Proof. (1) ** (2). This is known as the Uniform Boundedness Principle

or Osgood's Theorem [3, Theorem 17, p. lUO].

oo

(2) °* (1). Let S = U S- where each 5. has an empty interior.

n _
For each n in N , the positive integers, let A = X ~ U S. and let

n i=\ %

fn{x) - nXAJx) ;

that i s , f is n times the characteristic function of the complement of

n _
U S. . Then, for each n , f is lower semicontinuous on X . Let

^=l

x € S and let j be the first integer j with the property x € S. .
x 3

If m =3 - 1 , then f (x) S m for all n in N . Therefore the
XX Yl X

family of functions (/ ) ,«. is pointwise bounded on S . By hypothesis
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there is a real number M and a nonempty open set P with / (x) 2 M for

all n and all a; in P . If t E N is greater than M then / (x) < t

t _
for all x in P . This implies P c U 5. , a contradiction. Therefore

i=l t

S is of the second category in X . This completes the proof.

THEOREM 2. Let (X, T ) be a -perfectly normal topologiaal space and

let S c x be a nonempty subset. Then the following conditions are

equivalent:

(1) the subset S is of the second category in X ; and

(2) each family of continuous functions on X which is pointwise

bounded from above on S is uniformly bounded on some

nonempty open subset of X .

Proof. (l) =* (2). This follows immediately from Theorem 1 above.

(2) °* (l). Suppose that S has the given property but is not of the

second category in X . Then there exists a family of nonempty sets

[s } ... with £r = 0 for each n , S c 5 for each n and

GO

U 5 = S . Because each 5 is a C, there exists a denumerable family
n=l " 6

CO

.) .,.. of open subsets of X satisfying S = f\ G . and
3>3tW y n j=1 n ,j

G . 3 G . . for each j in N . For each n and j there is a
no nj+l

continuous function <p . : X •*• [0, l ] satisfying <p .{S J = 0 and
n jj n ,j n

<p .{X-G . 1 = 1 .

Define a family of continuous functions on X by the rule

/ .(x) = ncp .(x) for each x in X .
ft jj n ij

If x € S let n be the first integer satisfying x f S . Then
X nx

ID .(x) = 0 for all w i n and therefore f .(x) 5 n -1 for all n
n,j x n,o x

and j . Thus [f .) is pointwise bounded on S . Therefore there
n yj

exists a number M and a nonempty open subset P c X such that
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/ .(x) 5 M for al l x in P and n, j in N .

In par t icular i f n > M and x € P then cp .(x) < 1 for a l l j in N .

n , Q

GO

Thus, if n > M , P c D G . = S , which is a contradiction. Therefore

,7=1 W'J M

S is of the second category in X . Let X be a perfectly normal space

and let E c C(X) be a subspace of the space of continuous real valued

functions on X . We say E is a test space for second category subsets

of X if the following condition is satisfied: whenever S c X is such

that any family F c E which is pointwise bounded on S is uniformly

bounded on a nonempty open subset of X , then S is necessarily of the

second category in X . For specific spaces X it is possible to find

test spaces which are smaller than C(X) itself.

THEOREM 3. The space of analytic functions on Rn is a test space

for second category subsets of Rn .

Proof, (a) The space C°°(RW) is a test space for Rn : let S c Rn

and suppose that subfamilies of C (R ) which are pointwise bounded on 5

are uniformly bounded on open subsets of R . Let F c c(R ) . For each

f in F there is a gf in C°°(Rn) with |/(x)-#(x) | < 1 for all x in

Rn . Let G = {g~ : f € F} . Then because G is uniformly bounded on an

open subset of R , so also is F . Thus S is a second category subset.

This proves (a).

(b) The space D(R ) of functions in C (R ) with compact support

is a test space for Rn : let F c C (RM) be pointwise bounded on S .

For each m in N let X € D[Rn) satisfy 0 5 X (x) £ 1 for all x ,

X (x) = 0 when Ix'l > m+1 and X (x) = 1 when |x| S m . Let
m m

G = {X •/ : m € N, / 6 F] . Then G c D[Rn) is uniformly bounded on an

open subset of Rn and therefore F is also. Thus, by (a), S is second

category. Therefore D[R ) is a test space for second category subset of
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R" .

(c) The space Cr (R ) of analytic functions on R is a test space.

Let i>(x) = exp(-|a;| ) when x € R . We will prove that the algebra A

generated by {l, i|)} is a test space of R . This will prove (c) as if

E and F are subspaces of C(X) with E c F and £ is a test space

then F is also a test space. Let S c Rn and let F c D[Rn) . By an

extension of the Stone-Weierstrass Theorem, for each f in F there is a

g. in A with \f{x)-gf(x)| < 1 for all x in Rn . The proof of (c)

follows from this. This completes the proof.

COMPACTNESS PRINCIPLE. We will prove the converse to the following

theorem. If f is a lower semicontinuous function on a countably compact

space {X, T) then f is bounded from below.

THEOREM 4. Let (X, T) be a topological space. Then the following

conditions are equivalent:

(1) the space X is countably compact; and

(2) every lower semicontinuous function on X is bounded from

below.

Proof. (1) "* (2). See [3, Proposition 10, p. l6l].

(2) ** (l). Suppose that X is not countably compact but satisfies

the hypothesis of the theorem. Then there exists a countable family

[o ) ,„ of nonempty open subsets of X with 0 c 0 , for all n ,v n'ntn n n+±

X = U 0 and such that X is not equal to U 0 for any integer i
«=1 n n=l n

Define a family of lower semicontinuous functions as follows:

where Xo i-s tQ e characteristic function of 0. for each i in N .
°i %

Then / + i ^ - f ^ for a11 x and a11 n •

Let x € X and let j be the first j in N for which x € 0
x g
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Then if 1 £ n < j ,

If j 5 n then
x

fnix) = -n > 1-4 .

%=n

<*)-{I)
Thus lim / (x) = 1 - «/ for each x in X . Let f(x) =1-3 . We

n x x

will prove that f is lower semicontinuous on X . Let a; € X and let

e > 0 be given. If y £ 0 . then j S j and thus, for sufficiently
3x y X

large n , f (y) = 1 - j > 1 - j = / (x) . Therefore f(y) > f(x) - e
it y X •*

for each y in 0. and thus f is lower semicontinuous on X . But /
3x

is not bounded from below. This contradiction completes the proof.

THEOREM 5. Let (X, x) be a normal topological space. Then the

following conditions are equivalent:

(1) X is countably compact; and

(2) each continuous function on X is bounded from below.

Proof, (l) °* (2). See Theorem It.

(2) °* (l). Any pseudo compact normal space is countably compact.

THEOREM 6. Let {X, T ) be a topological space. Then the following

conditions are equivalent:

(1) X is aountably compact; and

(2) if [f ) is a sequence of upper semicontinuous functions on X

which converges monotonically to zero at each point of X

then (f ) converges uniformly to zero on X .

Proof. (1) "* (2). See Dini's Theorem [3, Proposition 11, p. 162].

(2) °* (l). Let [F ) be a nested sequence of closed sets in X with
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fi F = 0 . Let f = x , the characteristic function of F for each
n=l n n n n

n in N . Then f (a:) •+ 0 monotonically for each a; in X . By (2)

there exists an N in N such that / (x) < % for all a; and n > N .

N

But this means ("I F = 0 , and therefore X is countably compact.
w=l n

THEOREM 7. Let X be a perfectly normal topological space. Then

the following conditions are equivalent:

(1) X is countably compact; and

(2) if [f ) is a sequence of continuous functions on X

which converge montonically to zero at each point of X

then [f ) converges uniformly to zero on X .

Proof. We need only show that (2) m (1). Let [F ) be a nested

00

sequence of closed sets in X with fl F = 0 . For each n let
n

[G .) ... be a nested family of open subsets with F = fl G . . Let
*• n,o'oZN n .± n,j

u> . : AT -• [0, l] be a continuous function satisfying (p .(F } = 1 and
n,o n,oK n>

cp .{X-G . 1 = 0 for each n and j in N . Let
*n,oK n,o} J

Then [f (a;)) converges monotonically to zero for each x in X . By (2)

there exists an integer N such that / (x) < % for each x in X and

N
n 2 N . But then necessarily fl .F = 0 . This completes the proof that

n=l n

X is countably compact.

Step functions

Let X - [a, b] be a closed interval of real numbers with the usual

topology. A step function on X can be made into a lower semicontinuous
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step function by altering its values if necessary at the endpoints of the

subintervals of X upon which it takes constant values. The following

theorem characterizes lower semicontinuous functions on X . Let f be a

real valued function on X . Then f is lower semicontinuous if and only

if it is the pointwise limit of a monotonically increasing sequence of

lower semicontinuous step functions. We will define the notion step

function for a different class of spaces and prove an analogous theorem.

Let (X, T ) be a metrizable space having large inductive dimension

zero. Then there exists a sieve for X , [/]; that is to say a family

(V ) of open covers of X , where V = [B \)\c T » satisfying

' n

(i) PMJ-1 refines V for a l l n ,

( i i ) B , n B „ = 0 if A * y , and
M,A n,y

( i i i ) {V ) is a base for the topology T .

We say a function cp : X •* R is a step function if i t is locally

constant; that i s , <p ip(x) is open for each x in X . Then each step
function is continuous. The spaces for which these functions are
interesting are clearly highly disconnected. We do not place restrictions
on the range of tp . If {<P } is a monotonically increasing sequence of

step functions and lim (p (x) = f{x) < °° for each x in X then f(x)

is a real valued lower semicontinuous function on X . We will show that
every positive lower semicontinuous function arises in this manner.

THEOREM 8. Let {X, T) be a metrizable space. Then the following
conditions are equivalent:

(1) X has large inductive dimension zero; and

(2) if f is a positive, real valued, lower semicontinuous
function on X then there exists a monotonically increasing
sequence {ip } of positive step functions on X with

f{x) = lim cp (x) for each x in X .
n

Proof. (1) "* ( 2 ) . Let V = (B . : n € N, A € J 1 be a compatible
v n,A n
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sieve for X . If n € N and x £ B . let
n,\

<pn(x) = inf{/(2/) : y € B ^ } .

Then cp is a step function and cp (a;) 2 cp (x) 5 /(x) . We will prove

that lim cp (x) = /(x) . Given e > 0 and x in X there is an open set

0 with x in 0 and f{y) > fix) - e for y in 0 . There is an rz

in N and a X € J with x € B , c 0 . Then

cp (x) = ±nf{f(y) : y € B ,} 2: /(x) - e .

Thus lim cp (x) = /(x) for each x in T̂ . This completes the proof.
n

(2) •* (1). Let P c X be a nonempty open set and l e t / be the

characterist ic function of P . If {ip } i s the sequence of step

functions given by (2) l e t B = {x € X : cp (x) > l - ( l /n )} . Then B is

GO

open and closed and P = U B . Since this is true for any open subset

n=l n

we can transform a a-locally finite base for X into a 0-locally finite

base consisting of sets which are both open and closed. Thus, by [2,

Theorem 5» p. 291], X has large inductive dimension zero.
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