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 The efficiency of Bresenham algorithm for plotting a 2D line is examined. 

 An extension of the algorithm for representing a 3D line is proposed. 

 The efficiency of the algorithm is based on the space symmetry. 

 It is further improved by setting a simple grid point hierarchy and Voronoi diagram. 
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Abstract 

Bresenham’s Algorithm for plotting a two-dimensional line segment is elegant and efficient 

in its deployment of mid-point comparison and integer arithmetic. It is natural to investigate 

its three-dimensional extensions. In so doing, this paper uncovers the reason for little prior 

work. The concept of the mid-point in a unit interval generalizes to that of nearest neighbours 

involving a Voronoi diagram. Algorithmically, there are challenges. While a unit interval in 

two-dimension becomes a unit square in three-dimension, “squaring” the number of choices 

in Bresenham’s Algorithm is shown to have difficulties. In this paper, the three-dimensional 

extension is based on the main idea of Bresenham’s Algorithm of minimum distance between 

the line and the grid points. The structure of the Voronoi diagram is presented for grid points 

to which the line may be approximated. The deployment of integer arithmetic and symmetry 

for the three-dimensional extension of the algorithm to raise the computation efficiency are 

also investigated. 
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1. Introduction 

Bresenham’s algorithm
1
 is efficient in generating straight lines and quadrics on a raster 

system. Furthermore, its concept has a wide range of applications such as re-sampling of 

structured grids
2
, line of sight calculation between a sensor and a target

3
, interpolation in 

computer numerical control systems
4
, ray casting

5
, ray tracing

6
, volume rendering

7
, 

three-dimensional map representation
8
, occlusion checking in re-constructing a three 

dimensional object
9, 10

, navigation for autonomous flight
10

 and collision detection
11

.  

All these applications involve casting a line between two points and employ a “half and half” 

approach to extend the Bresenham’s Algorithm in a three-dimensional space. A line is 

sampled by a set of points in the three-dimensional space with a grid. The grid points are 

selected with respect to the sample points to represent the line. Figure 1 shows the “half and 

half” grid point selection process. One of the coordinate directions (assume y coordinate as 

shown in figure 1) is used as a driving axis and the line is sampled along that direction. {Pi, 

Qi, Ri, Si} and {Pj, Qj, Rj, Sj} are two sets of grid points. Point Ti and Tj are two sample 

points from the line. Since Ti, Pi, Qi, Ri and Si are on the same plane so that they have the 

same y coordinate. The sample point Ti is then projected onto the edges PiSi and PiQi. The x 

and z coordinates of the grid points, which are closest to the projected sample point, will be 

adopted. Hence, the grid point Si  and Rj will be selected in this example. Obviously, the 

error is faced with a threshold of 
2
1  for each coordinate. 
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Figure 1. The “half and half” approach for 3D Bresenham algorithm 

This three-dimensional extension is equally efficient as the Bresenham’s algorithm. Both 

approaches employ the same mechanism to select the appropriate grid points with a threshold 

error of 
2
1 . Using this threshold error for two-dimensional implementation is natural. 

However, there is no evidence to show that threshold error of 
2
1  is equally applicable in the 

three-dimensional implementation. In fact, this heuristic approach does not select the 

appropriate grid points to properly represent a straight line in a three-dimensional space. This 

paper discusses a grid point selection mechanism to represent a straight line in a 

three-dimensional space. An algorithm, which follows the Bresenham’s Algorithm approach, 

is developed. A Voronoi diagram is established to partition the space with respect to the grid. 

The grid points, which possess the minimum distance from the line, are selected based on the 

membership of the sample point. An example is raised to compare the proposed algorithm 

and the current implementation. 

Projected sample 

point Ti on PiSi 

Rj 

z 
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y 
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2. Bresenham’s Algorithm 

Bresenham’s Algorithm is efficient at selecting a set of grid points to represent a straight line 

in a two-dimensional space. Space symmetry and computation are two major aspects for the 

algorithm to earn efficiency. 

2.1 Symmetry in two-dimensional Space 

The Bresenham’s algorithm maps a given line segment to the first octant, beginning at (0, 0) 

and ending at (a, b) by exploiting eight-fold symmetry (on octants). Figure 2(a) shows a 

two-dimensional plane. The shaded area is an octant of the plane with a rectangular array of 

grid points. A line with positive slope less than one is mapped to the first octant for grid point 

selection. A set of sample points, which is shown as a white dot in the figure, on the line is 

generated along the x axis with unit interval. The algorithm determines a sequence of grid 

points with an error no greater than 
2
1  as shown in figure 2(b) and 2(c). For a line segment 

with slope greater than one, the roles of the x and y coordinates in the algorithm swap. Hence, 

the sample points are generated along the y axis. Furthermore, the grid point selections must 

be consistent when a sample point is in the middle of two consecutive grid points so that the 

same sequence of grid points are selected regardless of the starting end point. For a line with 

negative slope, the algorithm is modified so that one coordinate decreases and the other 

increases. Finally, the vertical line, diagonal line and horizontal line are all considered as 

special cases to handle. A detailed explanation of the implementation can be found in 

reference 12.  
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(a) An octant (shaded area) 

 

(b) The upper grid point is selected 

 

(c) The lower grid point is selected 

Figure 2. The octant and the grid point selection mechanism 

2.2 Computation Efficiency 

There are two key ideas in Bresenham’s algorithm computation, one for computing the 

distance efficiently and the other for enabling integer arithmetic. They are inter-related. 

The first idea involves converting the perpendicular distance between a point and a line to the 

y-intercept of the line for mid-point comparison with the value 
2
1 . Figure 3 illustrates the 

selection rule for the two choices P and Q, with the corresponding perpendiculars P’ and Q’ 

on the line: 

Two points and two magnitudes: if 'PP  < 'QQ  then choose P  

         else     choose Q   

Mid-point 

This grid point 

will be selected 

line 

Mid-point 

This grid point 

will be selected 

Line 

y = 0 

x = 0 
y = x 

y = -x 

O 
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Rather than calculating the magnitudes 'PP  and 'QQ , the y-intercept, which involves 

only one point T, is computed. In particular, 
QT

'QQ

PT

'PP
  since TPP'  and TQQ'  are 

similar. The selection rule becomes: 

 One point and two y-intercepts: if PT  < QT  then choose P 

         else    choose Q 

Assuming PT  + TQ  = 1 unit of grid spacing, a further improvement in the efficiency 

can be made by eliminating one of the two y-intercepts. 

 One point and one y-intercept:  if PT  < ½  then choose P 

         else    choose Q 

 

Figure 3. Perpendicular distances as y-intercept due to similarity in TPP'  and TQQ'  

The above improvements also reduce the arithmetic complexity in the operations. The 

coordinates of point P’(x’,y’) adopts a parametric value u in the linear equation for the line 

from A(0,0) to B(a,b) such that (x’, y’)=(ua, ub). The parametric value u is expressed as 

T 

 P (x, y) 

Q 

Q’ 
P’ (x’, y’) 

A 

B 



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

  7 

22 ba

byax
u




 . By contrast, finding the y-intercepts T of a line from (0, 0) to (a, b) at the 

various x-coordinate xi involves only: ii x
a

b
y  . 

This leads to the second idea in Bresenham’s Algorithm of using integer arithmetic. A glance 

at the assignment statement ii x
a

b
y   reveals that xi on the right hand side are integer. But 

the y-intercept on the left-hand side must necessarily be a real number. Revisiting the one 

point and one y-intercept statement: “if PT  < ½ then choose P” provides a solution to 

enable the integer arithmetic. The right-hand side is converted to an integer by multiplying 

the left hand side of the comparison by 2 (which amounts to a left-shift by 1 bit) then 

One point and one y-intercept:  if  2 PT  < 1   then choose P 

         else     choose Q 

Rather than comparing the magnitude PT  with 
2

1
, scaling the difference PT  by 2 

(corresponding to a left-shift) allows comparison with the integer 1. In implementation, twice 

the magnitude PT  is stored in an accumulator  which overflows when it exceeds 1. 

Bresenham’s Algorithm between two points A(0,0) and B(a,b) in the first octant is now ready 

for presentation in pseudo-code. 
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Procedure BresenhamLine { A(0, 0) B(a, b) } 

 x  = a           ; initialization 
 y  = b 

 0  = 2 y – x       

 for i = 0 to a  do begin 

  if  i < 0 then  choose P 

i+1 =  i + 2 y   ; update difference 

              else   choose Q 

i+1 =   i + 2 y – 2 x ; update difference 

 end-do 
 EndProcedure 
 

3. Voronoi Diagram 

A Voronoi digram
13

 shows the partitioning of a two-dimensional space 2 . Each partition is 

determined by distances to a specific discrete set of points which are called sites. Two 

Voronoi regions R(P, Q) and R(Q, P) are defined between any two sites P and Q (Q  P) as, 

 22 ,),,(),(|),(  QPQDPDDQP distdistR   (1a) 

 22 ,),,(),(|),(  QPPDQDDPQ distdistR   (1b) 

where ),( PDdist  and dist(D,Q) are distance functions of the point D from the sites P and Q 

respectively. Therefore, two regions are defined for every two sites and 

  2,),( QPPQ RR  . (2) 

A Voronoi curve is defined between two Voronoi regions 

 ),(),(|),( QDPDDQP distdistR   (3) 

Hence, ),(),( PQQP RR  . 
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A Voronoi diagram )(GV  of a given set G of sites consists of the set of Voronoi cells 

)(PV  ( GP ) which is the boolean intersection of all the Voronoi regions ),( QPR  

PQ   and GQ . 

 ),()( QPP RV  , QP   and GQ  (4) 

Hence, a Voronoi cell )(PV  of a specific site P is given as 

 GQGPQPQTPTTP  ,,),,(),(|)( distdistV  (5) 

The boundary of a Voronoi cell )(PV  is composed of various segments of Voronoi curves 

),( QPR  ( PQ   and GQ ). 

4. Extension of Bresenham’s Algorithm to Three-dimensions 

Similar to sampling a two-dimensional line by y-intercept, a three-dimensional line is 

sampled by a set of intersection points as it pierces a series of planes (parallel to one of the 

principal planes) through the grid points. The grid points which are nearest to the line are 

selected to represent a line in three-dimensional space. 

Figure 4 shows a line segment AB originating from the origin A(0, 0, 0) and making an angle 

with a square PQRS (which are the grid points). Let the coordinates of the point of 

intersection T (which is a sample point) between the given line segment and a square be (x, v, 

w) and the foot of the perpendicular of P, Q, R and S onto the line be P', Q', R' and S' 

respectively (only P’ is shown in figure 4).  
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Figure 4. A line passes through a plane  

The perpendicular distance from P to the line segment AB is psinTP , where p  is the 

angle of intersection given by: 

 22222 )()()(

)()(
cos

wzvywvx

wzwvyv
p




  (6) 

Similarly, there are three other perpendicular distances: qsinTQ , rsinTR  and 

ssinTS  from the other three grid points Q, R and S, respectively. The expressions of the 

angle q , r  and s  are listed in Appendix A. 

A Voronoi diagram can be generated on the square PQRS to determine the membership of 

the sample point T by defining the distance function as: 

Ddist sin)(  TDTD ,     , , , SRQPD  (7) 

Because the grid point with the shortest perpendicular distance to the line is the best 

approximation, this is where the Voronoi curves come in. As there are four grid points, there 

Perpendicular 

distance 
Apparent distance 

on the plane 

p 

T(x,v,w) 

P(x,y,z) 

Q(x,y+1,z) 
P’ 

S(x,y,z+1) 

R(x,y+1,z+1) 

B 

A (0,0,0) 
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will be 6
2

4









 Voronoi curves for discriminating the pairs: P versus Q gives curve PvQ, P 

versus R gives curve PvR, P versus S gives PvS, Q versus R gives QvR, Q versus S gives 

QvS, and R versus S gives RvS. The equations of the curves PvQ is obtained from equation 

(3) and is given below while the rest of the Voronoi curve equations are listed in Appendix B. 

P versus Q (cure PvQ) 

        0sin)()1(sin 222222
 qp zwyvzwyv   (8) 

 

Figure 5. Voronoi curves on the x = 1 square PQRS 

These Voronoi curves are expressed in terms of the local co-ordinates ),( wv  on the square 

PQRS. Each curve consists of the terms x, y and z which are the grid co-ordinates of grid 

point P ),,( zyx  as depicted in figure 5 with grid points shown as back dots. It is noted that 

the Voronoi curve QvS does not contribute to any boundaries of the Voronoi cells. A grid 

point  SRQPD ,,,  is selected if the sample point T is a member of a Voronoi cell )(DV  

or  DT V . 

5. Symmetry in Three-Dimensional Space 

P Q 

R 

0 

0.5 

1.0 

0 

0.5 

1.0 

0 0.5 1.0 

0 0.5 
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  S 
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PvS 
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V(R) 
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V(P) V(Q) 
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It is useful to re-visit the Bresenham’s Algorithm in two dimensions. Without exploiting 

symmetry, there are eight candidate grid points to select at the origin O. In figure 6(a), the 

white dot represents the grid point at the origin O while the eight candidate grid points are 

shown as black dots. Using a principal axis for a two-fold symmetry gives two half planes. 

Each half plane has five candidate grid points in order to reduce the approximation error to 

within ½ as depicted in figure 6(b). A four-fold symmetry is obtained by using two principal 

axes. The plane is partitioned into four quadrants with each offering three candidate grid 

points as shown in figure 6(c). Three lines such as two principal axes and one diagonal do not 

provide symmetry. Finally, four lines of symmetry (two principal axes and two diagonals) 

give an eight-fold symmetry. Each octant has two choices in Bresenham’s Algorithm as 

illustrated in figure 6(d).  

 

(a) No symmetry line 

 

(b) 1 symmetry line 

 

(c) 2 symmetry lines 

 

(d) 4 symmetry lines 

Figure 6. The number of candidate grid points with various symmetries applied. 

Table 1 lists the number of symmetric lines, number of symmetry and number of grid point 

choices in each octant. 

No. of lines of symmetry No. of symmetries choices in each octant 

0 1 8 

1 2 5 

2 4 3 

4 8 2 

   Table 1 Line symmetries in two-dimensional space. 

O 
 O  O  O 
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A three-dimensional grid point has twenty six neighbours as choices as shown in figure 7(a). 

Using one principal plane gives two rectangular parallelepipeds. Each parallelepiped has nine 

choices plus eight that lie in the plane as seen in figure 7(b). Figure 7(c) depicts the symmetry 

resulting from using two principal planes. Six plus five or eleven choices arise. Eight-fold 

symmetry from three principal planes yields a smaller cube with seven choices to make as 

shown in figure 7(d). In addition to the principal planes, there are the “diagonal” planes. 

Slicing the small cube into two “wedges” gives six vertices each. Five of them are choices as 

shown in figure 7(e). Slicing the small cube with two “diagonal” planes gives a “four-sided 

pyramid” with five vertices. Four of which are candidates for choice as illustrated in figure 

7(f). 

 

(a) 0 plane, 26 choices 

 

(b) 1 plane, 17 choices 

 

(c) 2 plane, 11 choices 

 

(d) 3 planes, 7 choices 

 

(e) 4 planes, 5 choices 

 

(f) 5 planes, 4 choices 

Figure 7. Plane symmetries in three-dimensional space 

Missing in figure 7 is the 64-fold symmetry, given as the last row of table 2. It turns out that 

there are four ways to construct a tetrahedron (half of a four-sided pyramid); this deserves 

some clarifications. 
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No. of planes No. of symmetries Choices in each partition 

0 1 26 (as shown in figure 7(a)) 

1 2 17 (as shown in figure 7(b)) 

2 4 11 (as shown in figure 7(c)) 

3 8 7 (as shown in figure 7(d)) 

4 16 5 (as shown in figure 7(e)) 

5 32 4 (as shown in figure 7(f)) 

6 64 3 

Table 2.  Symmetries in three-dimensional space. 

Geometrically, three grid points form a triangle. For instance, a four-sided pyramid shown in 

figure 7(f) is considered. Together with the origin O (shown as white dot in figure 8), the four 

points form a tetrahedron. But there are two ways to partition a square into two triangles as 

illustrated in figure 8. 

 

(a) Through diagonal SQ with grid points 

P, Q and S 

 

(b)  Through diagonal SQ with grid points 

Q, R and S 

 

(c) Through diagonal PR with grid points 

P, S and R 

 

(d) Through diagonal PR with grid points 

P, Q and R 

Figure 8.  Two ways of partitioning the base of a tetrahedron. 

P 
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Q 

o 

R 

o 

P 

o 
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Now, when the Voronoi diagram in the square (with grid points P, Q, R and S) is taken into 

account, it can be seen that partitioning by the diagonal SQ is inferior to the diagonal PR.  

As shown in figure 9(a), there is a finite probability of resulting in an incorrect grid point 

selection. The intersection point (between the line segment and the square) might fall in the 

lens-like area between SQ and the Voronoi curve which will be mapped to grid point R 

incorrectly instead of grid point P. Therefore, the other diagonal PR as shown in figure 9(b) 

is chosen to avoid this situation. Such a selection is achieved by choosing the grid points with 

coordinates (x, y, z) and (x, y+1, z+1). 

 
(a) Incorrect partition 

 
(b) Correct partition 

Figure 9. Partitioning due to asymmetry 

In fact, the positive rectangular parallelepiped (x > 0, y > 0, z > 0) in three-dimensional space 

(as shown in figure 7(d)) is partitioned into three four-sided pyramids. The selection of the 

four-sided pyramids depends on the orientation of a line which is represented by the direction 

cosine (, , ). Each four-sided pyramid is characterized by the ranges of the direction 

cosine as shown in figure 10. 

P Q 

R S 

Intersection point in 

this lens-like area will 

be mapped incorrectly 

P Q 

R S 
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(a) direction cosine 

of a line 

 
(b)  

3

11   

 0
2

1    

 0
2

1    

 
(c)  0

2

1   

 0
2

1    

 
3

11    

 
(d)  0

2

1   

 
3

11    

 0
2

1    

Figure 10. Partitioning of the rectangular parallelepiped 

Consequently, the grid point selection to partition the square (into two triangles) is four-sided 

pyramid dependent. The grid point pair (x, y, z), (x+1, y+1, z) and (x, y, z), (x+1, y, z+1) 

should be selected for the four-sided pyramids shown in figure 10(c) and 10(d) respectively. 

Bresenham’s algorithm for a two-dimensional line adopts an eight-fold symmetry in the plane 

and there are two choices to make in each octant. A three-dimensional version involves 

sixty-four-fold symmetry with three choices in each tetrahedron. From two-dimensional to 

three-dimensional, a unit length becomes a unit square and the number of symmetry lines 

doubles from three to six symmetry planes, while the number of symmetries increases 

quadratically from eight to sixty four. Since making a selection involves computing the 

distance between the candidate grid point and the given line segment, it stands to reason that 

such computations should be minimized. It follows that the Bresenham’s algorithm for a 

three-dimensional line should also minimize the number of selections which is the case of 

three choices in a 64-fold symmetry as listed in the last row of table 2. 

6. The Algorithm 

The original approach
1
 of Bresenham’s algorithm for plotting a two-dimensional line 

between grid origin (0, 0) to a grid point (a, b) is adopted to present the three-dimensional 

x 

y 

z 

x 

z 

x 

y 

z 

 

 
 
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x 
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extension of the algorithm. Any line which does not originate from the grid origin needs to do 

a transformation. Given that the line segment goes from grid point A (0, 0, 0) to point B (a, b, 

c) in the four-sided pyramid shown in figure 10(b), with a  b and a  c, there are a iterations. 

 
Procedure 3DBresenhamLine { A (0, 0, 0), B ( a, b, c) } 

  Output A 
  for j = 1 to a do begin 
Step 1  T(u, v, w) = Intersect {line AB, plane x = j} 
Step 2 Identify the square PQRS of consecutive grid points on the plane x = j 

that contains T 
Step 3  Construct two triangles and identify the one containing T 

Step 4  if T is in PQR then 
 Output {P, Q or R} based on the membership of T in the Voronoi diagram 
Step 5  else 

Output {P, R or S} based on the membership of T in the Voronoi diagram 
  end do 
 EndProcdure 

 

In Step 1, line-plane intersection can be done with multiplication and division, as T (u, v, w) 

= T 









a

c
j

a

b
jj ,, . In Step 2, the coordinates of the corners of the square are found from 

the point of intersection by rounding: x = j, y =v and z = w. Step 3 involves the 

construction of a diagonal plane (v – w – y + z = 0) through PR for determining in which side 

T lies (refer to figure 8(c) and 8(d)). Step 4 and 5 decide which grid point will be selected 

based on the membership of T. 

Figure 11 shows the partitions with the Voronoi curves as the partition boundaries. The 

conditions for having the sample point T in the partition are listed in the figure. 



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

  18 

 

Figure 11. Partitioning of the triangle PQR and PRS 

For illustration, the function PvQ for discriminating the two grid points P(x, y, z) and Q( x, 

y+1, z+1) returns a numerical value: greater than zero, equal to zero and smaller than zero. 

 Function PvQ ( u, v, w ) 

  return         qp zwyvzwyv  222222
sin)()1(sin   

End - function 

The details for the three-dimensional Bresenham line algorithm are ready: 

  

P 

R S 

P Q 

R 

PvQ 

PvR 

QvR 

PvQ(u,v,w) > 0 

PvR(u,v,w) > 0 

PvQ(u,v,w) < 0 

QvR(u,v,w) > 0 

PvR(u,v,w) < 0 

QvR(u,v,w) > 0 

PvR(u,v,w) <0 

RvS(u,v,w) > 0 
 

PvR(u,v,w) > 0 

PvS(u,v,w) > 0 
 

RvS(u,v,w) < 0 

PvS(u,v,w) < 0 

RvS 

PvR 

PvS 
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Procedure 3DBresenhamLine { A (0, 0, 0), B ( a, b, c) } 
   Output A 
   for j = 1 to a do begin 

Step 1   T(u, v, i) = T ( j, j  b/a, j  c/a) 

Step 2   x = j; y =  v;  z = w; 
Step 3 & 4 if (v - w  - y + z) < 0, then 
     if PvQ(u,v,w) > 0 and PvR(u,v,w) > 0 then choose P 
     if PvQ(u,v,w) < 0 and QvR(u,v,w) > 0 then choose Q 
     choose R 
Step 5   else 
     if PvR(u,v,w) > 0 and PvS(u,v,w) > 0 then choose P 
     if PvR(u,v,w) < 0 and RvS(u,v,w) > 0 then choose R 
     choose S  
  end-do 
End-Procedure 

 

For the line in the other two four-sided pyramids, the algorithm can be modified by a cyclic 

rotation of the x, y, z coordinate. For instance, if the line is in the four-sided pyramid shown 

in figure 10(c), the x, y, z coordinates will be rotated to z, x, y coordinates. And the sampling 

is performed along the z axis. 

7. Discussion 

It is necessary to inquire if the Bresenham’s algorithm can be extended to three dimensions 

since the line representation in a discrete three-dimensional space arises in many engineering 

applications. A reasonable place to start is to employ a “squaring” heuristic. If the 

two-dimensional selection is formulated as a comparison between the y-intercept of the given 

line with the value of 
2
1  (in the y-axis), then the three-dimensional selection is one on a 

square of unit area (involving both x and y). Reasoning suggests that the number of choices 

should also be "squared". The two-dimensional selection in each octant has two choices; the 

three-dimensional problem should have four candidates. A simple algorithm for candidate 

(grid point) selection is to obtain the grid point (among four candidates) which has the 
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shortest perpendicular distance to the line. Hence, there are totally four distance computations 

and six comparisons for every sample point. The proposed algorithm suggests a more 

efficient implementation involves 3 grid points for choosing. Of the 3 grid points, there must 

be pair-wise discriminations, involving 








2

3
 = 3 Voronoi curves. The Voronoi curve 

(equation (8) for instance) is actually a comparison of two squared perpendicular distances 

from two grid points. The elimination of the square roots in the expression (compared with 

direct perpendicular distance computation and comparison) simplifies the computation a bit. 

More importantly, only three distance computations and three comparisons are involve in the 

worst case (and three distance computations and two comparisons are involved in the best 

case). As a result, the proposed algorithm is more efficient than direct distance computation 

and comparison by setting up this simple hierarchy (four candidates are separated into two 

groups and each group consists of three candidates), especially when there are huge number 

of sample points. 

 
(a) A line segment 

intersects the square 

in the plane x = 1.   

 
(b) Four selection regions in 

the plane x = 1 with angle 

of intersection equal to 

90
0
. 

 
(c) Four selection regions 

in the plane x = 1 with 

angle of intersection not 

equal to 90
0 

Figure 12. Nearest neighbor as the 3D selection 

Figure 12(a) shows a line segment beginning at A = (0, 0, 0) “piercing” a unit square, in the 

plane x = 1, with coordinates for its four corners P, Q, R and S at (1, 0, 0), (1, 0, 1), (1, 1, 1), 
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and (1, 1, 0). If the given line segment intersects a plane at exactly 90
0
, the partitioning of the 

square looks like a "cross", as shown in figure 12(b). This is the special three-dimensional 

case in which the two-dimensional idea extends directly. In general, the partitions are 

bounded by algebraic curves as shown in figure 12(c).  

The Voronoi diagram for the “half and half” approach which projects the sample point onto 

the edges of the square PQRS to determine the grid point is shown in figure 13. The Voronoi 

cells for each grid point are constant and identical. The Voronoi cells containing the sample 

point are coloured as white in the figure. 

 
 

Figure 13. The Voronoi diagram for grid point selection in “half and half” approach for 3D 

Bresenham algorithm 

However, such an approach does not give an accurate line representation in 

three-dimensional space. Figure 14 shows the difference between two approaches for 

representing a line from A(0, 0, 0) to B(80, 72, 75). Figure 14(a) shows the first eight grid 
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points (black dots) based on the “half and half” heuristic while figure 14(b) shows the line 

representation by the proposed three-dimensional Bresenham algorithm.  



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

  23 

 

Figure 14. Line representation in three-dimensional space. 
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The line is sampled and the grid points are selected. The coordinates and distances from the 

first eight grid points to the line are listed in table 3. 

 Sample 

point 

Half and half approach Proposed approach 

 

Grid point Distance 

from grid 

point to line 

Grid point Distance 

from grid 

point to line 

1 (1, 0.9, 0.93 (1, 1, 1) 0.08 (1, 1, 1) 0.08 

2 (2, 1.8 1.88) (2, 2, 2) 0.15 (2, 2, 2) 0.15 

3 (3, 2.7, 2.81) (3, 3, 3) 0.23 (3, 3, 3) 0.23 

4 (4, 3.6, 3.75) (4, 4, 4) 0.30 (4, 4, 4) 0.30 

5 (5, 4.5, 4.69) (5, 5, 5) 0.58 (5, 5, 5) 0.58 

6 (6, 5.4, 5.63) (6, 5, 6) 0.55 (6, 6, 6) 0.45 

7 (7, 6.3, 6.56) (7, 6, 7) 0.52 (7, 6, 6) 0.41 

8 (8, 7.2, 7.50) (8, 7, 8) 0.51 (8, 7, 7) 0.37 

Table 3. The coordinates of grid points and sample points of a line based on two 

three-dimensional Bresenham algorithms 

It can be seen that both approaches select the same grid points (these are grid point 1 to 5 in 

this example) initially. The selection (staring from grid point 6 in the example) differs as the 

sample points are further away from the line origin O. Clearly, the proposed algorithm selects 

the grid points which are closer to the line than that of the “half and half” approach. In fact, 

the equations of the Voronoi curves explain the reason. Equations (8), (B1) to (B5) are the 

mathematical forms of the Voronoi curves in the square iiii SRQP  with the coordinate of 

grid point Pi as ),,( iii zyx . The dependence of the Voronoi curves on the x, y and z 

-coordinate are shown in figure 15. Figure 15(a), 15(b) and 15(c) show the Voronoi cells with 

x = 1, x = 2 and x = 3 respectively. The shapes of the Voronoi cells are not constant and 

non-identical. The progression of 11, 22, and 33 squares is to suggest that the deviation 

of the Voronoi cell shape from a square increases with the length of the line. Therefore, if the 
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sample point is close to the centre of square PQRS, the “half and half” approach will most 

likely choose an inappropriate grid point (the selected grid point is not the closest to the line). 

 

(a) Voronoi cells in x = 1 

plane 

 

(b) Voronoi cells in the x = 2 

plane 

 

(c) Voronoi cells in the x = 3 

plane 

Figure 15. Voronoi diagram among the grid point at x = 1, x = 2 and x = 3 

Figure 16 shows the arrangement of the Voronoi cells in two-dimensional and 

three-dimensional space. Figure 16(a) shows the Voronoi cells of grid points at x = 1, x = 2 

and x = 3 in two-dimensional space. The Voronoi cells are vertical lines (which is one 

dimensional) with mid-points between two adjacent grid points as Voronoi boundaries 

(which is zero dimension) as shown in the circle diagram. Figure 16(b) shows the 

three-dimensional situation. The circle diagram in figure 16(b) contains a “four-sided 

pyramid” from figure 7(f) for comparison. The Voronoi curves approach a “cross”, as the 

angle of intersection approaches 90
0
, as in the lower-left square in the figure. 
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(a)  Voronoi cells of each grid point with x = 

1, 2 and 3 in two-dimensional space. 

 

(b)  Voronoi cells of each grid point with x = 

1, 2 and 3 in three-dimensional space. 

Figure 16. Voronoi cells for line representation in two-dimensional and three-dimensional 

space. 

It may be said that the Voronoi cell )(DV  has different distance metrics 








D

D





sin0

0sin
 

(    , , , SRQPD ) for measuring distances to the given line segment. Re-consider the grid 

point P in figure 4. Since the line PP’ is not in the square PQRS, the apparent distance 

measured from P to the intersection point is distorted due to the projection of the length PP’ 

on to the plane of the square. The amount of distortion is different for the other grid points 

owing to their different locations, hence different distance metrics and non-identical Voronoi 

cells arise. 

It is comforting to note, however, that four of the five curves terminate on the boundary of 

the unit square at exactly 
2

1 the distance between the two adjacent grid points. In other words, 

the three-dimensional selection (involving Voronoi cells in a unit square) degenerates to a 

two-dimensional selection (involving mid-point comparison in the unit interval), but the 

0 
1 

2 

x 

2 

3 

y = x 

z = x 

1 

3 

z 

0 

y y = x 

x 
1 2 3 

One-dimensional Voronoi cell 

of a grid point (black dot) in 

2D space with points (white 

dots) as Voronoi boundaries  



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

  27 

two-dimensional technique does not extend readily to three-dimensions. Hence, the “half and 

half” approach does not really select the right set of grid points, which should possess the 

minimum distances from the line, to represent a line in three dimensions. 

Summary 

The generalization of Bresenham’s algorithm to three-dimensional has been manifested. A 

Voronoi diagram is employed for grid point selection. The proposed algorithm yields a more 

accurate grid point representation for a three-dimensional line. Similar to the Bresenham’s 

algorithm, the three-dimensional algorithm also makes use of the symmetry to raise the 

computation efficiency. In addition, the computation efficiency is further improved by setting 

up a simple hierarchy to reduce the number of distance computation and comparison. 

However, the deployment of integer arithmetic does not seem encouraging due to the 

algebraic Voronoi curves. 
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Appendix A 

The expressions of the angle q , r  and s  are  

 22222 )()1()(

)()1(
cos

wzvywvx

wzwvyv
q




  (A1) 

 22222 )1()1()(

)1()1(
cos

wzvywvx

wzwvyv
r




  (A2) 

 22222 )1()()(

)1()(
cos

wzvywvx

wzwvyv
s




   (A3) 

 

Appendix B 

The equations of the curves are listed:  

P versus R (curve PvR) 

          0sin)1()1(sin 222222
 rp zwyvzwyv   (B1) 

P versus S (curve PvS) 

          0sin)1(sin 222222
 sp zwyvzwyv   (B2) 

Q versus R (curve QvR) 

          0sin)1()1(sin)1( 222222
 rq zwyvzwyv   (B3) 

Q versus S (curve QvS) 
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          0sin)1(sin)1( 222222
 sq zwyvzwyv   (B4) 

S versus R (curve SvR) 

          0sin)1(sin)1()1( 222222
 rs zwyvzwyv   (B5) 

 


