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Transport of solar wind fluctuations: A two-component model
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[1] We present a new model for the transport of solar wind fluctuations which treats them
as two interacting incompressible components: quasi-two-dimensional turbulence and a
wave-like piece. Quantities solved for include the energy, cross helicity, and characteristic
transverse length scale of each component, plus the proton temperature. The development of
the model is outlined and numerical solutions are compared with spacecraft observations.

Compared to previous single-component models, this new model incorporates a more
physically realistic treatment of fluctuations induced by pickup ions and yields improved
agreement with observed values of the correlation length, while maintaining good
observational accord with the energy, cross helicity, and temperature.

Citation: Oughton, S., W. H. Matthaeus, C. W. Smith, B. Breech, and P. A. Isenberg (2011), Transport of solar wind
fluctuations: A two-component model, J. Geophys. Res., 116, A08105, doi:10.1029/2010JA016365.

1. Introduction

[2] Fluctuations in the velocity and magnetic fields of the
solar wind play important roles in various processes in the
heliosphere, including scattering of solar energetic particles
[Bieber et al., 1994; Droge et al., 2010], modulation of
galactic cosmic rays [Zank et al., 1998; Pei et al., 2010], and
heating of the solar wind itself [Coleman, 1968; Matthaeus
et al., 1999; Cranmer and van Ballegooijen, 2003]. The
spatial transport and evolution of these fluctuations is thus a
topic of some importance in heliospheric physics. Here we
present such a transport model, specifically, one that treats the
fluctuations as an admixture of two incompressible compo-
nents: quasi-two-dimensional (quasi-2-D) turbulence and
(Alfvén) wave-like fluctuations [Matthaeus et al., 1990; Tu
and Marsch, 1993; Bieber et al., 1994]. For each compo-
nent, transport equations for its energy, cross helicity, and
correlation length are developed, and numerical solutions are
shown to compare favorably with observations.

[3] Early transport models assumed that (parallel-
propagating) Alfvén waves were the dominant fluctuation
type and used WKB-based approaches [Parker, 1965;
Belcher, 1971], eventually supported by evidence for Alfvén
waves [e.g., Belcher and Davis, 1971]. On the other hand,
observations also suggested that turbulence was present and
may have contributed to heating [e.g., Coleman, 1968].
Subsequent observational studies indicated that at magne-
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tohydrodynamic (MHD) scales there are at least two distinct
types of fluctuation and that the wave-like energy may be a
minor component [Matthaeus et al., 1990; Bieber et al.,
1996; Smith, 2003; Milano et al., 2004; Dasso et al.,
2005; Horbury et al., 2005, 2008; Podesta, 2009; Osman
and Horbury, 2009; Narita et al., 2010]. This encouraged
development of more complete transport theories for the
energy-containing range quantities [e.g., Tu and Marsch,
1993; Matthaeus et al., 1994, 1996, 1999, 2004; Zank
et al., 1996; Smith et al., 2001, 2006; Isenberg et al.,
2003, 2010a; Isenberg, 2005; Breech et al., 2005, 2008;
Yokoi and Hamba, 2007; Usmanov and Goldstein, 2010; Ng
et al., 2010], in which turbulence properties are built in,
contrasting with WKB theory, in which the waves are
noninteracting at leading order. The agreement between
observations made from 0.3 to 80 AU and numerical solu-
tions to these models has also improved, with reasonable
accord achieved for the radial evolution of the energy, cross
helicity (H,.), and correlation length of the fluctuations and
also for the proton temperature. Turbulence transport models
have also been used in scattering theory to obtain cosmic
ray mean-free paths in various heliospheric positions and
conditions [Florinski et al., 2003; Florinski and Pogorelov,
2009; Pei et al., 2010]. In this way, energetic particle
observations and models provide, in effect, an additional
type of observational constraint on transport modeling. In
general, as additional physical effects have been incorpo-
rated, this family of transport models has been able to better
account for observational constraints.

[4] Nonetheless, various shortcomings in the models
remain to be addressed. For example, driving of the fluctua-
tions enters in at least two separate ways: Stream shear injects
energy into low-frequency fluctuations, whereas pickup ions
couple to fluctuations with much higher frequencies and
shorter length scales. Accounting consistently for both types
of driving in models with only a single type of fluctuation is
clearly problematic. In a two-component model, however,
the physics of the driving processes can be cleanly assigned
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to the appropriate component, and this is an important
advantage of the model described herein.

[5] Note that the wave-like fluctuations will typically not
strictly obey a dispersion relation for linearized wave modes,
since there are nonlinear effects. The moniker is intended to
indicate that although there are wave aspects (such as prop-
agation) to these fluctuations, there are also other important
features of their dynamics. It is perhaps more helpful to think
of the quasi-2-D and wave-like components as being the
low-frequency and high-frequency contributions, respec-
tively, to the incompressible fluctuations.

[6] The remainder of this paper is structured as follows. In
section 2 we sketch the model’s derivation and then, in
section 3, compare numerical solutions with observational
data. A discussion section follows, and the paper closes with
an appendix that presents the incompressible, homogeneous
two-component phenomenology for the H. # 0 case. Our
focus herein is on development of a model for the transport of
quantities at the energy-containing scales. For discussion of
solar wind transport models for spectra or correlation func-
tions, see, e.g., Tu and Marsch [1993, 1995]. An H. = 0
version of the present model was also recently presented by
Isenberg et al. [2010Db].

2. Model

[7] Here we outline the derivation of the two-component
transport model. Since much of this development parallels
that of the single-component models, we refer readers
desiring more details to a study by Breech et al. [2008], which
contains a thorough account of the derivation of (single-
component) transport equations for incompressible solar
wind fluctuations. It is, however, helpful to list some key
approximations used in developing the model: (1) scale
separation between the fluctuations and the background
fields, (2) locally incompressible fluctuations, (3) large-scale
fields specified and time steady (density p, wind speed U,
Alfvén speed V), with U > V,, (4) assumption that large-
scale gradients are in the radial direction, and (5) assumption
that turbulent decay leads to proton heating. See the work of
Breech et al. [2008] for detailed discussion of the approx-
imations and simplifications used.

[8] There are essentially two sets of terms in the transport
model: (1) terms that couple the fluctuations and the large-
scale fields and (2) self-interaction terms for the fluctuations.
The former are primarily linear and the latter are primarily
nonlinear with respect to the fluctuation energies. Fortu-
nately, modeling of the self-interaction terms can take place
without consideration of transport effects, and in section 2.1
we first recap the development of a de Karman—Howarth
phenomenology for single-component MHD and then out-
line our generalization to the two-component case. The full
transport model is considered in section 2.2.

2.1. Incompressible Two-Component Turbulence
Model

[v] Consider incompressible homogenecous 3-D MHD
turbulence, with the governing equations expressed in terms
of the Elsésser variables, 7°(x, f) = v+ b; here b is the magnetic
fluctuation in Alfvén speed units. Denote the energy of the
fluctuations as Z°/2 = (" -z +7 -z )/4, where angle brackets
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denote a Reynolds decomposition, often taken to be well
approximated by an appropriate average over x. Note that we
develop the local turbulence model with the average mean
flow set to zero, so that the turbulence is temporarily treated
as homogeneous. Let £ be a characteristic length scale for the
fluctuations (e.g., a correlation length). The associated eddy-
turnover time scale for the fluctuations is thus 7= ¢/Z.

[10] The de Karman and Howarth [1938] approach is to
use the characteristic speed (Z) and length scale (¢) of the
energy-containing scales of the flow to construct a simple
phenomenology for the evolution of Z* and ¢ by assuming
that they both relax on the time scale 7:

dz? 72 73
FTER M
d/ /¢

with o and 3 constants. Indeed, if we identify Z°/2 with
just the kinetic energy, equations (1) and (2) express precisely
the de Karman and Howarth [1938] phenomenology for the
Navier—Stokes equations; they give good agreement with
experimental results for high enough Reynolds numbers [e.g.,
Sreenivasan, 1995]. Associated with this phenomenology
is the conservation law ¢Z*” = const. Physically, 23/a = 1
corresponds to decay at constant Reynolds numbers, and
23/a =2 corresponds to decay subject to constant area under
the sum of the v and b correlation functions [Zank et al., 1996;
Matthaeus et al., 1996].

[11] A key element of the modeling is the replacement of
terms like (z" - (z7 - V)z"), in the exact equation for Z°, with
Z°/¢. This involves treating Z" ~ 7, i.e., assuming small cross
helicity. Extensions that support arbitrary cross helicity and a
mean magnetic field By have been proposed [Dobrowolny
et al., 1980; Hossain et al., 1995; Matthaeus et al., 1994].

[12] Our objective here is to generalize this approach to
encompass decomposition of the fluctuations into two pre-
cisely defined incompressible components, the quasi-2-D
and wave-like contributions, each with arbitrary cross heli-
city. The starting point is again incompressible 3-D MHD,
with a uniform magnetic field B, (and associated Alfvén
speed V,). The zero-cross-helicity case is developed by
Oughton et al. [2006] and is also sketched below. Develop-
ment of the arbitrary cross helicity case is straightforward but
more algebraically involved.

[13] Let the total Elsésser fluctuation(s) be written as

=g, 3)

where ¢ are the quasi-2-D (nominally low-frequency)
components and w" are the wave-like (high-frequency)
components. Propagation and other features of waves may be
important in the wave-like component, whereas nonlinear
processes predominate for the quasi-2-D component.

[14] The ¢ and w" can be rigorously defined, within the
context of the incompressible model, using Fourier decom-
position and the ratio of the nonlinear time scale 7,,;(k) and
Alfvén time scale 74(k) = 1/(k - V) for each Fourier mode
[Oughton et al., 2006]. When the time scales at a specific
wave vector k are such that 7, < 74, then the fluctuations at
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Table 1. Definitions of Some Important Physical Variables for the
Quasi-2-D and Wave-Like Components®

Z Quantity Description W Quantity
72 =(q. " q.) Elsésser “energies” W2 = (w. - w.)
27% = Zi + 72  total energy 2WP = Wi + W2
4H(Z, = Zf -7 cross helicity 4H(V,V = Wi - w2

_ ZE‘,ZZ lized helici ~ W%*W2
Oe=7im normalized cross helicity Ge =
op= (e Z;’ ) normalized energy difference 6p = (W*W—w’)

“The normalized energy difference is equal to the (kinetic — magnetic)/
(kinetic + magnetic) energy in the component.

that &k belong to the quasi-2-D population, since the nonlinear
dynamics is fast compared to the wave dynamics. This is
more likely to occur when k is quasi-perpendicular to V,,
which motivates the name for the component. When 7,,(k) >
74(k), the fluctuations are grouped with the wave-like pop-
ulation. Note that the components are mutually exclusive.
An important property of the components is that they obey
orthogonality relations such as (g - w") = 0. However, mixed
inner product terms such as (g' - w) # 0 do not vanish, in
general. A proof of the orthogonality is outlined at the end
of Appendix A.

[15] To develop the phenomenology, first substitute the
decomposition (equation (3)) into the equations for 3-D
incompressible MHD with a uniform magnetic field. Next,
take dot products of the MHD equations with ¢* and w*
(separately), and average them over space. This process
yields equations for the evolution of the Elsésser energies for
each component, e.g., Z> and W7 (see Table 1). These equa-
tions contain terms like (w" - (z_ - V)w"), which are to be
modeled. A naive modeling is WﬁZ,/ A, where \ is the char-
acteristic length scale of the wave-like component. In fact, a
multiplicative factor should be included to account for the
shortening of the triple correlation time scale (see
equation (A4)) associated with the wave-like propagation
effects for this nonlinear term [Kraichnan, 1965; Grappin
et al., 1982, 1983; Matthaeus and Zhou, 1989; Zhou et al.,
2004]. Generically, these factors are I' = (1 + 7',11/7/1)7l <1,
so that for this example term our modeling yields T2 W2 Z_/\.
Using this modeling approach for all the nonlinear terms
yields the energy-like equations for the phenomenology (see
Appendix A).

[16] The physical features of the two-component phe-
nomenology can be appreciated by considering the simpler
zero-cross-helicity version, which we now address. We
denote the energy in the quasi-2-D fluctuations as Z*/2 and
that in the wave-like component as #?/2, with respective
perpendicular (relative to By) length scales ¢ and A. The zero-
cross-helicity and strong ¥, version of the phenomenology
has [Oughton et al., 2006]

a2 B w2 2

= -z = __° __ix, 4
dr ¢ Tazw T “)
dw? Zw? 2 2w >\H

1+ A0 XV,

In these equations, ) is the characteristic parallel length

scale of the wave-like piece, and Xo = 2WZ(W* + Z°) (5 — )?,—l

is the “exchange” term between the two components, which
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can be positive or negative. The other terms on the right-hand
side (RHS) are the decay rates associated with the Z-Z, W-Z,
and W-W interactions and energy cascades. Terms with a Z
in the numerator are due to resonant interactions between the
Z component and either itself or the /' component. Since V,
is large, the Z component is localized about the 2-D plane,
and thus the resonant terms correspond to approximately
perpendicular cascades; they are typically the leading-order
terms in this model.

[17] The physics of each term is, naturally, of interest.
In equation (4), the first term is a de Karman and Howarth—
Taylor model [de Karmdn and Howarth, 1938; Taylor, 1938]
for the self-decay of the Z component and is very similar to
the RHS of equation (1). The second term represents decay
of Z due to Z-W interactions. Similarly, in equation (5) the
first term models the resonant perpendicular cascade of #*
mediated by Z [Shebalin et al., 1983; Bondeson, 1985;
Grappin, 1986], sometimes referred to as weak turbulence
[Galtier et al., 2000, 2002]. The term ~¥ */V; in equation (5)
models an Iroshnikov—Kraichnan-type (IK-type) decay of the
fluctuations [[roshnikov, 1963; Kraichnan, 1965]. It is the
only term that is independent of Z. The factors 2/(1 + Z/W)
and 2/(1 + W) are the explicit forms for the triple correlation
I"-factors introduced above.

[18] Various limits of the model are also of interest. The
large V4 version given above as equations (4) and (5) reflects
the well-known anisotropy of spectral energy transfer in
incompressible MHD [Shebalin et al., 1983; Bondeson,
1985; Oughton et al., 1994; Goldreich and Sridhar, 1995],
with the weak IK term being the only nonperpendicular
cascade. If, in addition, Z/W < 1, that is, we have an ener-
getically weak quasi-2-D component and a strong mean field,
then the behavior corresponds to weak turbulence [Galtier
et al., 2000, 2002]. If the Z component is zero, or at least so
small that the IK-type term dominates, then the energy decay
rate has the Alfvén speed modified form ~ /¥, introduced
by Dobrowolny et al. [1980]. This condition is often viewed
as leading to an IK-type inertial range [e.g., Ng et al., 2010].
In the general model derived by Oughton et al. [2006], the
strength of 7, is arbitrary. Under conditions where V7 is small
and Z/W > 1, the quasi-2-D region expands to occupy more
and more of Fourier space, with the wave-like component
becoming negligible. The phenomenology then effectively
reduces to the single-component model of equations (1) and
(2), which would normally be associated with an underlying
Kolmogorov-type inertial range [Kolmogorov, 1941].

[19] As noted above, generalizing this homogeneous two-
component model so that it supports nonzero cross helicities,
as are often observed in the solar wind, is straightforward.
The equations are given in Appendix A, where it can be seen
that the structure of the equations is unchanged. The impor-
tant point to note is that cross helicity weakens the nonlinear
interactions so that the modeled terms now each have a
multiplicative (cross-helicity-dependent) attenuation factor.
These attenuation factors are denoted by f, f, etc.; they
approach zero or unity in appropriate limits for the cross
helicities. See Matthaeus et al. [2004] for discussion of these
attenuation factors in the context of a single-component
transport model.

[20] To close the model, one requires equations for the
perpendicular length scales ¢ and A and the parallel length
scale of the wave-like component, ). Such equations are
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analogs of equation (2). The versions for the H,. = 0 case are
given by Oughton et al. [2006], and their H,. # 0 extensions
are stated in Appendix A.

[21] Finally in this section, we comment briefly on the
suitability of using incompressible MHD to model solar wind
fluctuations. Observationally, density fluctuations are fre-
quently S10% [Roberts et al., 1987a], so it seems reason-
able to neglect magnetosonic activity at this level. Results
from nearly incompressible theory [Zank and Matthaeus,
1992a, 1992b, 1993] indicate that 3-D incompressible MHD
is a leading-order description when the plasma beta is large
(>1). Note that this situation can still have a sizable mean
magnetic field, and thus a Fourier mode can have an Alfvén
time scale that is short or long compared to the nonlinear
time of the mode, depending on both the parallel wave-
number and the spectral amplitude. When the plasma beta is
less than unity, the leading-order description is incom-
pressible 2-D MHD, with “high”-frequency (shear) Alfvén
waves entering at higher order. In either case, modeling the
system as we do herein, i.e., using incompressible quasi-2-D
and incompressible wave-like components, is consistent
with the nearly incompressible results.

2.2. Transport Model

[22] As is well known, solar wind fluctuations evolve due
to a handful of important effects, including wind expansion
and advection, stream shear driving, nonlinear interactions
(turbulent cascades), and, in the outer heliosphere, pickup ion
driving. Assuming that there is scale separation between the
fluctuations and the large-scale fields, transport equations for
general incompressible fluctuations can be readily derived
[Zhou and Matthaeus, 1990; Zank et al., 1996; Matthaeus
et al., 1996; Tu and Marsch, 1993]. A comprehensive deri-
vation and discussion of the approximations used is given by
Breech et al. [2008].

[23] Here we employ the same approach, except that from
the outset the fluctuations are decomposed into two precisely
defined incompressible components: quasi-2-D turbulence
and a complementary wave-like component. More specifi-
cally, starting from the Elsésser form for the MHD equations
(with large-scale velocity and magnetic fields included), we
express the fluctuations as

T (rx) =g +w, (6)

where ¢ and w* are the quasi-2-D and wave-like compo-
nents; both quantities are functions of the (large-scale)
heliocentric radius 7 and the small-scale displacements x from
each 7. For each component, Table 1 collects the definitions
of the major energy-related quantities that appear in the
transport model.

[24] Our aim is to derive transport equations for the ener-
gies and length scales (and related quantities) characterizing
the fluctuations. Taking the dot product of the MHD equa-
tions with ¢~ and (separately) w", averaging over the small
scales, and making use of the orthogonality properties men-
tioned in section 2.1 eventually gives transport equations for
the Elsdsser energies of each component. Adding and sub-
tracting these produces equations for the total energy of each
component and the cross helicity of each component.
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[25] The next step is to model the nonlinear terms. This is
done using the nonzero-cross-helicity versions of equations (4)
and (5) (see Appendix A). Finally, we incorporate models for
the driving effects of large-scale shear and pickup ions [e.g.,
Breech et al., 2008]. Specializing to steady state yields the
transport equations for the energies and (normalized) cross
helicities:

dz? 7 of 7
= e N +Mop—C2]2 L2
dr [ +Mop CS‘J r U/
2af wz2 1 2aXx*
2 B2 L (7)
u ¢ 1+z/w U
daw? w2 af Zw? 2
——=—[1+Mép—-Cl|— ==
dr [t+Mdp - Gy U X 1+0/L
26(1 = 62) WA\ 20Xt Ep ®)
U 2V, U U’
do. _a[fZ folV 2 2o Xt —X7)
dr U ¢ ¢ 1+zZ/w 72

_ {M} oo, ©)

r

ds. 2al| f zZ DN 2a(6.XT —X7)
- L L45.(1-5
o U [T 0 Sy |
oo
_ (G Mop | Ew g (10)
r uw?

We denote the heliocentric distance as 7 and the uniform
radial solar wind speed as U, with the latter assumed to be
much larger than the Alfvén speed V(7), as is observed for
rz 0.3 AU.

[26] Appendix A and key preceding references [e.g.,
Breech et al., 2008] clarify many of the steps leading to the
above equations, although various quantities have yet to be
defined here. For the quasi-2-D component, o, is the nor-
malized cross helicity, op is the normalized energy differ-
ence, and «, 8 are O(1) constants. In general, the analogous
quantity for the wave-like component is indicated by a tilde or
a superscript W (see Table 1). The strength of the large-scale
shear driving is controlled with the constants C%, and Cl.. The
factor M = cos 1 arises from the coupling of the fluctuations
to the large-scale gradients of the large-scale fields. Here 1
is the winding angle of the large-scale magnetic field, and
the fluctuation amplitudes for both the Z and W components
are assumed to be transverse to it (i.e., parallel variances are
neglected). As discussed in Appendix A, the factors £, f”, etc.,
that appear in the modeled nonlinear terms depend on one or
both of ¢. and 7, and they are bounded by £1. We refer to
these as attenuation factors; they represent the weakening of
the nonlinear terms as the cross helicity approaches extremal
values. The terms modeling exchange of energy between the
two components (X ) are defined in equation (A9).

[27] Energy injection due to coupling of the fluctuations
with pickup ions, Epj, is approximated as in earlier works
[e.g., Williams and Zank, 1994; Williams et al., 1995; Zank
et al., 1996; Matthaeus et al., 1999, 2004; Smith et al.,
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2001, 2006; Isenberg et al., 2003; Isenberg, 2005; Breech
et al., 2005, 2008], although as discussed below, the impact
on the length scales is modeled in a much-improved fashion.
Recall that only a small fraction of the ostensibly available
pickup ion energy is actually transferred to the wave-like
component [Isenberg et al., 2003; Isenberg, 2005]. See
section 3 for the functional form of Epy.

[28] Equations for the evolution of the length scales
are obtained in the standard way [e.g., Breech et al., 2008],
with the nonlinear terms approximated using the homoge-
neous, incompressible two-component phenomenology (see
Appendix A). This yields

& .zt0 B 2w 20X

& 11

dr th += |:fZ+zw1+Z/W Zz :|7 ( )
d\ w28 fZ N YIR)Y 6
—=-Cy=-+=|= - 12
dr shje 1+ M/t ( )AVA+&W2 » (12)
A _ e A > Ep
- = — - 1 - —Ares) T2 0
5 = Ca +2a(1-4 o v, )\z)‘\l (N = ) 772

(13)

For the solutions presented in section 3, we assume that the
shear driving is at approx1mately the correlatlon scale and
therefore set C%, = C = 0. Generalizations that support shear
driving at other length scales are straightforward to obtain
[e.g., Matthaeus et al., 2004; Breech et al., 2005].

[20] A feature of the present formulation is that the pickup
ion effects enter into the A equation, as is appropriate
physically. Equation (13) also involves the quantity .,
which is the (parallel) length scale at which the waves reso-
nate with pickup ions. We are assuming that the energy
injected by the pickup scattering process appears mainly in
the spectrum of the wave-like component, at the A corre-
sponding to this resonance. We take A = 2mU/S),, where €2,
is the proton cyclotron frequency in the Parker spiral mag-
netic field [Isenberg, 2005; Isenberg et al., 2010b]. At larger
distances, A is essentially linear in ». The final term in
equation (13) models the pickup ion energy injection as
causing ) to relax toward A on the time scale associated
with the rate of energy injection. As noted in section 1, this
novel aspect of the present model significantly improves the
handling of pickup ion physics by allowing pickup ions to
directly influence quasi-parallel wave vector fluctuations.
This is not the case for some earlier models [e.g., Zank et al.,
1996; Matthaeus et al., 1999, 2004; Smith et al., 2001, 2006;
Isenberg et al., 2003; Breech et al., 2005, 2008].

[30] Note that the strength of the Alfvén speed enters the
model equations in several different ways. First, transport
terms of order V,/U have been neglected since this is a small
parameter beyond about 0.3 AU, as discussed by Zank et al.
[1996]. Second, in the turbulence modeling terms, the
strength of ¥ is unconstrained compared to the characteristic
fluctuation amplitudes Z and . There is no contradiction
here since U > Z, W. Third, because of the scale-separation
approach, V,(r) and the mass density vary with the large-
scale coordinate 7 but are treated as uniform with respect to
the small-scale coordinates (which are averaged over each
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large-scale distance). Fourth, the pickup ion driving depends
on V, [Isenberg et al., 2003; Isenberg, 2005].

[31] The final equation in the model is that for the proton
temperature, 7. It includes adiabatic expansion and heating
due to the dissipation of the fluctuations via both Z and W

cascades,
3
=+
a( d

A 5
2 L
+ a(1+x/e v t-a

dar 4T m,

&~ 3r ' 3Ukg

udE WZ?
T+2/Ww ¢

where m,, is the proton mass and kg is the Boltzmann constant.
As is typical in solar wind research, we ignore the effects of
heat conduction on the proton temperature, and thus its asso-
ciated transport term is absent from equation (14). Note that
the present model and its antecedents are single-fluid proton
models and therefore stand in contrast to single-fluid models
that in effect add the electron and proton energy equations
[e.g., Cranmer and van Ballegooijen, 2005]. Detailed study
shows that interchange of energy between electrons and
protons is very slow in the solar wind [Breech et al., 2009;
Cranmer et al., 2009].

[32] This completes the development of the model, which is
seen to consist of equations (7)—(14). Compared to single-
component models, there are both more equations and more
terms per equation. As far as the contributions of the terms
from the nonlinear phenomenology are concerned, some of
these will be rather weak for typical solar wind conditions.
This includes the IK-type terms (proportional to 1/V) and the
terms where the fand f functions have a subscript (e.g., /o).

(14)

3. Numerical Solutions

[33] To obtain numerical solutions to the model, we make
use of a standard numerical package for ordinary differential
equations. We compute solutions relevant to (near) ecliptic
parameters and compare them with Voyager and Helios
observations.

[34] In assigning values to the model’s parameters, we are
guided by observations. The (uniform) solar wind speed is set
at U=440 km s ', V,(1 AU) = 51 km s~', and the proton
den51ty 1S assumed to fall off as 1/, Together these deter-
mine V,(r), assuming a Parker spiral field. Observations
indicate that the normalized energy difference is approxi-
mately constant with radius [Roberts et al., 1987a; Perri and
Balogh, 2010]. Furthermore, Milano et al. [2004] reported
that at 1 AU the energy difference is nearly isotropic with
respect to the magnetic field direction; that is, it does not
vary strongly with the field winding angle 1. Hence, we set
op = 6p = —1/3. The value of the shear constants has been
extensively discussed by Breech et al. [2008]; we take C%, =
Cl = 1. Also, in keeping with recent studies, we adopt de
Karman—Taylor constants o =23 = 0.25 and & =23 = 0.25
[Pearson et al., 2004; Breech et al., 2009]. The form used
for pickup ion driving,

" exp(—Leaviey /1), (15)

U Tion"lSW
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Sample numerical solutions to the transport model with ¢ = , = 0.04. The boundary values are
Z2=1500km’s %, > =150km’ s >, (=X=0.008 AU, \ =

=0.036 AU,0.=0,.=0.6, andT—l6X106K

Also shown, for reference are (left) V% (dashed curve) and the WKB solution for Z* (dotted curve), and
(right) A (dotted curve) and observational estimates of the perpendicular and parallel magnetic correlation
length at 1 AU (plus sign and diamond [Weygand et al., 2009]).

involves addltlonal parameters, 1nclud1ng Leaviy = 5.6 AU
Tion=1.33x10°s, n;y=0.1 cm >, and ngw(1 AU)=6 cm >
These parameters are discussed more fully elsewhere [e. g .
Isenberg et al., 2003; Isenberg, 2005; Smith et al., 2006]. The
quantity ( represents the fraction of the ostensibly available
pickup ion energy that is actually transferred to the fluctua-
tions, and it varies with . In section 3.1 we ignore this radial
dependence and approximate ¢ by the constant value ¢, =
0.04. The more accurate approach is used in section 3.2.

3.1. Solutions With a Single Set of Boundary
Conditions

[35] It remains to choose the boundary conditions for the
model. We set the inner boundary at » = 0.3 AU, which
coincides with the Helios perihelion as well as being far
enough out that V;/U is small. The actual boundary values
used for 72, ¢, o, etc., are given in the figure captions. Some
general remarks about how they were chosen are appropriate.

[36] Helios data are used as a guide for the range of rea-
sonable values for the total fluctuation energy and cross heli-
city [e.g., Bavassano et al., 1982; Bruno and Dobrowolny,
1986] from 0.3 to 1 AU. Observational studies at 1 AU
suggest that the quasi-2-D energy is ~80% of the total fluc-
tuation energy [Bieber et al., 1996; Horbury et al., 2008;
Osman and Horbury, 2009; MacBride et al., 2010], and we
use a similar partitioning to set Z* and #? here.

[371 Unfortunately, no observational values for £ and ) are
available, since the two-component decomposition is diffi-
cult to perform with current data sets. As guidelines for their
boundary values, we use observed magnetic correlation
lengths. For example, Bruno and Dobrowolny [1986]
obtained 2, = 0.0067 AU at 0.3 AU and ¢, = 0.013 AU
at 1 AU, although these values are from the trailing edges
of high-speed streams and thus not necessarlly representative
of typical ecliptic conditions. Here ¢2, is the integral of the
magnetic correlation function divided by its value at zero lag.
At 1 AU, the usual situation appears to be that the velocity
correlation length is longer than the magnetic one [Matthaeus
and Goldstein, 1982; Wicks et al., 2010]. The boundary value
of ) is not crucial, and large variations in it produce very
little change in the solutions.

[38] There is also an abundance of data at 1 AU for fluc-
tuation energy, cross helicity, and correlation length. We thus
attempt to adjust the boundary conditions so that the solutions
are also consistent with 1 AU data. For example, Weygand
et al. [2009] used Cluster data sets to estimate perpendicu-
lar and parallel magnetic correlation lengths in slow wind,
obtaining 0.014 AU and 0.037 AU, respectively.

[39] In Figure 1 we display numerical solutions for a rep-
resentative set of boundary values. Initially, both energies
decrease and their perpendicular length scales i 1ncrease with
A approximately constant. The shear driving causes Z*to be
above the level of the correspondlng WKB solution (dotted
curve), although the behav1or is still WKB-like within
~5 AU. The situation for W? is similar. Beyond 5 AU, shear
driving is weak and the pickup ion driving is important, and
the Z* and W? profiles depart strongly from WKB behavior.

[40] Perhaps the most striking feature of Figure 1 (left)
is the large increase in wave-like energy which occurs for r
4 AU and is due to the pickup ion driving. Indeed, for » 2
9 AU, the wave-like energy is dominant, and it would be
very interesting to perform Bieber-type analyses [Bieber
et al., 1996] at these larger distances, in order to see if such
a reversal of the quasi-2-D to wave-like preponderance is
observed. Smith [2003] has performed such a study using
Ulysses data at various distances and heliolatitudes.
Restricting attention to the low-latitude results from Smith
[2003] and from the study by Bieber et al. [1996], one sees
that these results can be interpreted as indicating that larger
distances are associated with increasing energy in the slab
component. For example, the slab fraction was often 250% in
1992 when Ulysses was at ~5 AU and low latitudes. This is
similar to the behavior shown in Figure 1. (For discussion of
the influence of latitude on transport of solar wind fluctua-
tions, see Smith [2003] and Breech et al. [2008].)

[41] Figure 1 also shows the length scale evolutions, with
£ and X both increasing rather smoothly out to » = 30 AU,
after which ¢ decreases somewhat due to the increase of 22
via transfer (exchange) from #?2. Convergence of A toward
Ares 18 also evident at distances where pickup ion driving is
important.

[42] It is, of course, also important to compare quantities
derived from the numerical solutions to observational values.
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Figure 2. Comparison of the sample numerical solution with observational data. The horizontal axis is
heliocentric distance in astronomical units. See Smith et al. [2006] for details regarding calculation of the
Voyager 2 observational values. (a) The Voyager magnetic field values are for the N component of the field,
in RTN coordlnates and all values are normalized to the level at 1 AU. See equation (16). (b) L = (Z*¢ +
W2N)I(Z* + W?) is the composite energy-weighted length scale; see equation (17). (c) The composite cross
helicity is the dotted curve, and observational values are 3, 9, and 27 h averages, courtesy of D. A. Roberts
[Roberts et al., 1987b]. Temperature data are courtesy of J. D. Richardson.

In Figure 2a the variance of the N component (RTN coordi-
nates) of the fluctuating magnetic field from Voyager 2 data is
plotted, as triangles. The solid curve is the model-based
estimate for this quantity,

(16)

5B, = %471’/)(22 Ly oo 473”’(

2+ W),

where we assume that the N component is half the total
magnetic variance [Smith et al., 2006; Isenberg et al., 2010a];
the proton mass density is p = ngwm,. For plottlng purposes,
both the observational values and the model §B% are nor-
malized by their 1 AU values. While the agreement is
encouraging for » < 10 AU, it worsens thereafter, with the
model solution significantly above the observed level.
Intriguingly, the WKB solution (dashed curve) provides a
useful lower limit to the data despite the manifestly non-
WKB behavior of Z* and W beyond ~10 AU (Figure 1).
[43] There are several issues associated with comparing
observational values of the correlation length to the numerical
solutions for £ and A. Voyager data can be used to calculate
estimates of the magnetic correlation length of the magnetic
field fluctuations. This usually yields the radial correlation
length (i.e., in the solar wind flow direction). Beyond ~10 AU
this corresponds to a perpendicular correlation length, which
is suitable for comparison with solutions to the present model.
Inside 10 AU, however, the observational correlation lengths
are typically neither perpendicular ones nor parallel ones, so

the data/model comparison needs to be considered carefully.
Moreover, the correlation scale is a sensitive and sometimes
difficult determination. (See Smith et al. [2001, 2006] and
Isenberg et al. [2010a] for details on how the observational
values are calculated.)

[44] Unfortunately, separate determinations of £ and \ are
usually not available. Hence, we use the model solutions to
construct a composite “center of mass”-style length:

ZH 4+ W2\
L= (17)

This is equivalent to the perpendicular correlation length
for the total fluctuation. As Figure 2b indicates, the agree-
ment between L and the Voyager magnetic correlation
lengths (averaged into 3 AU bins) is good and is a significant
improvement to the results from single-component models
[e.g., Matthaeus et al., 1999; Smith et al., 2001; Isenberg
et al., 2003]. Also shown in Figure 2b is the curve 4L,
which is seen to be a rough upper limit to the observational
values. This can be understood by recalling the recent result
[Matthaeus et al., 2005] that at 1 AU single-spacecraft mea-
surements appear to overestimate the true correlation length
by factors of 2—4, where “true” means as determined using
data sets from multiple spacecraft.

[45] In Figure 2c, we display observational values of the
normalized cross helicity [Roberts et al., 1987b] along with
the model solutions for o, 7., and their energy-weighted
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Figure 3. Diagram showing the relationship between Voy-
ager measurements and the two types of solution computed
herein, namely, a solution with a single set of boundary con-
ditions and a “piecewise” solution computed using boundary
conditions obtained from 1 AU OMNIWeb averages at times
appropriately lagged with respect to the Voyager measure-
ments at larger distances. Dashed (green) lines represent solar
wind speeds.

combined version (Z%o, + W*6.)/(Z* + W?). The combined
version (Figure 2c, dotted curve) tends to undershoot the
observations. Both o, and . decrease smoothly toward zero
with distance. For » < 2 AU the decrease is largely due to
shear driving, which injects equal amounts of energy into the
+ fluctuations and is strong enough to overcome the dynamic
alignment terms in equations (9) and (10) [Matthaeus et al.,
2004]. At larger r, pickup ion driving—which is present
only in the 6, equation—pulls &, to zero many astronomical
units before o gets there.

[46] As far as the proton temperature is concerned, the
numerical solution reproduces the qualitative behavior of the
observations, including the increasing temperature beyond
~30 AU. From 1 to 2 AU, the model solution mirrors the
observational 7'(r) in an encouraging way.

[47] We now briefly consider the sensitivity of the model to
changes in the shear driving. As is to be expected, increasing
the shear strength leads to a less rapid falloff of Z*(r). For
C% ~1.1-2, this tends to improve the agreement between the
magnetic energy profile and the Voyager 2 observations out
to ~10 AU (see Figure 2a). These values of C%, also produce
a proton temperature profile that is in better accord with
observations, provided the boundary value for T is reduced.
On the other hand, stronger shear causes the model profile for
o, to tend to zero within a few astronomical units, which
somewhat worsens agreement with the (limited number of)
observational data points.

[48] We remind readers that there are complications asso-
ciated with evaluating the quality of solutions in the outer
heliosphere. For example, beyond ~30 AU, Voyager is not
in the ecliptic, whereas the parameters for our model are
chosen to be appropriate for (near) the ecliptic. In particular,
for r = 40-55 AU, Voyager 2 experienced conditions asso-
ciated with solar minimum that are not well represented using
parameters measured near Earth [Smith et al., 2006]. More-
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over, during the transit of Voyager over tens of astronomical
units, the inner heliospheric conditions are strongly variable,
but the numerical solutions use steady boundary conditions.
This casts doubt on the fidelity of a transport solution based
on a single set of boundary data, since the boundary data
themselves have a broad distribution over the time scales of
interest [e.g., Smith et al., 2001].

[49] We conclude that the comparison of model results and
observations in the present section is acceptable. However,
we are motivated to improve two significant deficiencies of
the model: (1) the use of a single set of boundary conditions,
which cannot account for the varying solar wind plasma
conditions at Voyager 2, and (2) the simplified approach to
the pickup ion driving, in which ¢ = (, is taken to be constant
[Smith et al., 2006]. Both these limitations are addressed in
section 3.2.

3.2. Solutions With Time-Varying Boundary
Conditions

[s0] The shortcomings of models that employ fixed
inner heliospheric boundary conditions have been addressed
previously in the context of single-component models
[Richardson and Smith, 2003; Smith et al., 2006; Isenberg
et al., 2010a]. Instead of using a single set of boundary data
to generate a solution to be compared with the observations
along the Voyager trajectory, these authors compute a sepa-
rate solution for each (rotation-averaged) Voyager observa-
tion. For each of these solutions, 1 AU data, recorded at
an earlier time, are used to specify some of the conditions at
1 AU, such as fluctuation energy density. By time-lagging
the 1 AU observation by the approximate wind transit time
to the position of the Voyager observation, an improved
solution at that point is obtained. Figure 3 illustrates in
diagrammatic form the relationship between the single
boundary condition solutions and the time-lagged, variable
boundary data solutions. Here we report on solutions to
the present two-component model using the time-lagged,
variable boundary data approach.

[51] Specifically, here the boundary conditions at 1 AU
are chosen to matchup with the advection time to Voyager 2.
The Voyager time series is partitioned into nonoverlapping
time intervals, each approximately three solar rotation periods
in duration. Average values for 8B%, 5., T, and U are
computed for each of these intervals, along with the helio-
centric distances delimiting the intervals. Then, using the
average solar wind speed in each interval, its start and end
times are mapped back to 1 AU to give the end points of a
corresponding interval there. OMNIWeb data [King and
Papitashvili, 1994] are used to compute average values for
72+ W2, T, V,, and the solar wind density and speed over this
1 AU interval. These values, together with fixed estimates for
the normalized cross helicities and length scales at 1 AU,
provide a full set of boundary conditions. The model is solved
for each set of boundary conditions, and the solution is saved
only for the distance range corresponding to the Voyager
interval it was mapped back from. This gives a “piecewise”
solution that can be compared to the (three solar-rotation-
averaged) observations (see Figure 3).

[52] Unfortunately, OMNIWeb data are not usually suit-
able for estimating correlation lengths [Smith et al., 2006].
Instead, estimates for the length scales at 1 AU are taken from
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Figure 4. Comparison of the “piecewise” numerical solution (curves) discussed in section 3.2 with
observational data from Voyager 2, with averages over three solar rotations indicated by open circles. The
horizontal axis is heliocentric distance in astronomical units. The solutions to the model have been smoothed
using a five-point boxcar average, and length scale data values have been collected into 3 AU bins.

an analysis of Cluster data: £= A= 0.014 AU, \;=0.037 AU
[Weygand et al.,2009]. We choose o.= 6.=0.5, although the
model is rather insensitive to the choice since the cross heli-
cities both approach zero by about 10 AU (see Figure 2c).
Note that the partitioning of the total fluctuation energy into
its Z> and W? components must also be specified. Here we
assume that 80% of the fluctuation energy is in the quasi-2-D
component [Bieber et al., 1996; Osman and Horbury, 2009].
This percentage of 2-D fluctuations is most appropriate to
slow wind [Dasso et al., 2005].

[53] In conjunction with the varying boundary conditions,
we also use a more accurate form of the pickup ion driving,
developed by Isenberg et al. [2003] and Isenberg [2005]. The
fraction of the pickup ion energy that goes into the turbulence
(¢) depends on V,/U, W/V,, and the energy spectrum of
the wave-like component, which is assumed here to have an
inertial range with a —5/3 power law.

[54] As Figure 4 shows, this approach produces improved
agreement between the model solutions and the observational
values. The modulation of the pickup ion driving of 2 by the
Alfvén speed is evident in the top left panel [Smith et al.,
2006]. For the proton temperature, the most obvious region
of disagreement is the 40-55 AU range. During that period,
Voyager 2 was at high latitude and experiencing solar mini-
mum conditions, which are unlikely to be predicted well
using solar wind data from 1 AU as boundary conditions
[Smith et al., 2006]. Interestingly, for the present model 6B3
observations are reasonably well predicted for » < 50 AU,
although the prediction is too high beyond that. Perhaps the
observational quantity predicted best by the model solutions
is the magnetic correlation length, for which the agreement is
better by a factor of 2 almost everywhere. For each quantity,
there are regions where even some relatively fine-scale var-

iations in the observations are accounted for in the model
solutions.

4. Summary and Conclusions

[s5s] A transport model for solar wind fluctuations has
been formulated, in which the fluctuations are treated as two
coupled, incompressible components, specifically a quasi-
2-D piece and a wave-like piece. In addition to the usual
expansion, mixing, and nonlinear effects, the present model
includes exchange terms between the fluctuation components
and the placement of the driving term due to pickup ion
scattering in the wave-like fluctuation equations. The latter
improvement is in accord with theories of wave-particle
interaction that suggest that the principal pickup driving is
at high-parallel wavenumber [e.g., Isenberg et al., 2003].
Recent observations by Joyce et al. [2010] also support this
conclusion.

[56] The example solutions show that the two-component
transport equations can provide reasonable solutions for
temperature, cross helicity, and (composite) correlation scale.
The fluctuation amplitude behaves well out to ~30 AU, with
pickup driving very important beyond ~10 AU. At larger
distances the observations are usually significantly below the
level predicted by the theoretical model. However, we note
that the strong wave-driving in the outer heliosphere will
excite wave vectors mainly in the azimuthal direction, per-
pendicular to the radial frozen-in flow observations at the
spacecraft. It is therefore possible that at least part of this
discrepancy is due to lack of observations of the relevant
quantities.

[57] Observational results [Milano et al., 2004] suggest that
there is strong “connectedness” or coupling of presumptive
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Z and W components of the turbulence, at least as far as
observed normalized quantities like o, and op are concerned.
On the other hand, the solutions presented here show that
there is still plenty of scope for the energy and normalized
cross helicity of each component to have quite different
values at some heliocentric distances. More, and higher-
quality, observations would assuredly improve understand-
ing of these differences and similarities. Finally, we note that
extensions to the model are being pursued, including mod-
ifications to support variable solar wind speed [Smith et al.,
2006; Isenberg et al., 2010a] and to account for separate
length scales for each Elsésser field.

Appendix A: Two-Component Phenomenology
for Incompressible Homogeneous MHD
Turbulence With Cross Helicity

[s8] For completeness, we state below the equations for
our phenomenology for the evolution of incompressible
homogeneous two-component turbulence with cross helicity
(i.e., H. # 0). These equations have not been reported else-
where in the literature. Although they are a straightforward
generalization of the H. = 0 case derived by Oughton et al.
[2006], they appear rather more cumbersome, since there
are twice as many equations. As noted in section 2.1,
however, the structure of the terms is unchanged from the
simpler H. = 0 case, except for the appearance of cross-
helicity-dependent attenuation factors on many terms (the
f functions).

[59] The first step is to generalize equations (17) and (18)
of Oughton et al. [2006] to the H,. # 0 situation:

1dz2 Z w-
ra T Byt ETETAT (A1)
1 dw? V/ w-
Sap = AT S WESETI S Y (A2)
Z W- Z W .
YE = Wezy |SETS 4 ST = SR - SR
(A3)

where the assumptions ¢, = {_ =~ ¢ and A\, = A_~ ) are made.
The Y* terms model exchange of excitation between the Z
and W components. The factors

ab 1
ST Ay
are associated with the decay rate of the triple correlation for
the term being modeled and involve the nonlinear (7,,;) and
Alfvén (74) time scales. The superscripts a, b, ¢ represent
either the Z or the W component. For example, A =Nz,
i’ = U/W, and T4 = \/V.4. (See Oughton et al. [2006] for
further details.)

[60] In fact, these equations are the desired phenomenol-
ogy. For our purposes it is convenient to express them in
terms of the energy and cross helicity of each component.
Define 27° = 7> + 7> and 4H? = 72 — 72, with analogous
forms for the W component (see Table 1). The kinetic plus
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magnetic energy (per volume) of the fluctuations is then
E' + E* = (Z2 + W*)/2. The normalized cross helicities are
o.= (22 - 22> + Z2)=2H%/7* and 6. = 2H" W,

[61] Adding and subtracting the Z% and Z> equations gives
equations for the Z component’s total energy and cross heli-
city, and the same is true for the # component. Using the
identities Z2 = (1 + ¢,.)Z* and W2 = (1 £ 6.)W*, we obtain

dgg=*a[§f;+w72lj{%fx—}, (A6)
S T () e @)
dlz;W - {WTZZ i {r;;/e} —eXs (A8)

A
oo v = (e B2, v,

(A9)

25 =1+ )W1—0ob £ (1—0)V1+0,
Yxa= \/1—(0")2[\/1+&c\/1 —o.£/1-6./1 +a,_,],

(A10)

with 0% = o, or &, for the component a = Z or W. The I'“?
factors that have a subscript w have been approximated as
75/7% < 1. Here we have introduced several / functions,
which depend on the normalized cross helicities. Since these f
functions decrease toward zero as the cross helicities increase
in magnitude, they are, in effect, attentuation factors on the
(modeled) nonlinear terms. Moreover, as the cross helicities
approach zero, all the f* — 1 and all the f~ — 0, leading
to recovery of the zero-cross-helicity form for the two-
component phenomenology, given above as equations (4)
and (5). In the main body of the paper we use the simpli-
fied notation /= f._ and f = f ...

[62] Since equations (AS)-(A8) are a phenomenological
model, each term on the RHS can be argued to have an O(1)
constant multiplying it, included here as the factors a and a.
These constants are not completely free since, for example,
when adding the Z> and W equations, we should require the
exchange terms to exactly cancel. Even with such restrictions,
many terms could in principle have distinct multiplying
constants. Here, however, we have adopted the simpler
approach of using the same constant for all terms in a given
equation (except for the variations required in connection
with the exchange terms).

[63] Equations for the normalized cross helicities (not
shown) are obtained by differentiating their definitions, o, =
2H?/7* and 6. = 2H”/W?, and then using equations (A5)—
(A8). It is then convenient to define various f” functions,
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such as ' = fl. = 0uft = fo J' = fie = Gefote — o and
fhe = 0cfmw — f-w akin to those introduced for single-
component models by Matthaeus et al. [2004].

[64] The length scale evolution equations are derived just as
they were by Oughton et al. [2006;. Those for £ and X follow
from the conservation laws £Z*7® = const and \W?20/@ =
const. These are analogous to the conservation laws that hold
for the de Karman—Howarth phenomenology for Navier—
Stokes turbulence, One sees that the values 25/a =1 and 2
(like those for 23/a) are of particular physical relevance
[Zank et al., 1996; Matthaeus et al., 1996]. The former is
associated with decay at constant Reynolds numbers, and
the latter is associated with decay subject to constant area
under the sum of the v and b correlation functions. Differ-
entiating the conservation laws produces

& B0 dz
& aZ ar (A1)
dx 8 A dw?
© aw @ (A12)

Operationally, 3 and 3 can also be interpreted as the O(1)
constants multiplying the RHS of the length scale equations,
as becomes apparent after substitution of equation (AS5) in
equation (A11), etc. Note that the conservation laws hold for
the homogeneous two-component phenomenology presented
in this appendix. They are not expected to hold in the trans-
port model presented in the main body of the present paper.
[6s] The A evolution, also modeled after Oughton et al.
[2006], assumes growth on the time scale associated with
the nonresonant interactions (the Iroshnikov—Kraichnan-type
term), since the resonant terms do not change the parallel
length scale [Shebalin et al., 1983; Oughton et al., 2006].
This yields
dx AT w2
d—t”:za%lv(lf 2). (A13)
[66] Finally, we outline a proof of the orthogonality con-
ditions referred to in section 2.2. For definiteness, consider
(giw;) = 0, where angle brackets denote an average over
the (small-scale) spatial coordinates x. Expressing the fluc-
tuation fields as Fourier expansions

g (x) =Y an(0)e*™

keQ

and

wi(x) = by(0)e?™

pPEW
(A14)

shows that (g;w;) depends on [ ¢*P*dx  §(k + p).
The key point is whether the set of wave vectors for the
first field (Q) has any intersection with that for the second
field (W). If it does not, then 8(k + p) = 0. Because the two-
component decomposition is defined in terms of the time
scales associated with the Fourier wave vectors of the fluc-
tuations, Q and W are necessarily disjoint sets if the z and
w fluctuations are both of the plus type or both of the minus
type. It may or may not be the case when z and w are of
different types.

[67] This is a more general condition than the one stated by
Oughton et al. [2006], who used only traced versions, such as
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{q" - w"). One can extend the proof to show that if the two
fields are orthogonal at zero separation, then they are also
orthogonal at finite separation, e.g., (g; (x)w; (x + y)) = 0,
where y is a fixed spatial offset vector.
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