Working Paper Series
ISSN 1170-487X

VQuery: a Graphical User

Interface for Boolean Query

Specification and Dynamic
Result Preview

by Steve Jones

Working Paper 98/3
March 1998

© 1998 Steve Jones
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

VQuery: a Graphical User Interface for Boolean Query
Specification and Dynamic Result Preview

Steve Jones

Department of Computer Science
University of Waikato
Private Bag 3105
Hamilton, New Zealand
Tel: +64 838 4490
E-mail: stevej@cs.waikato.ac.nz

ABSTRACT

Textual query languages based on Boolean logic are
common amongst the search facilities of on-line
information repositories. However, there is evidence to
suggest that the syntactic and semantic demands of such
languages lead to user errors and adversely affect the time
that it takes users to form queries. Additionally, users are
faced with user interfaces to these repositories which are
unresponsive and uninformative, and consequently fail to
support effective query refinement. We suggest that
graphical query languages, particularly Venn-like diagrams,
provide a natural medium for Boolean query specification
which overcomes the problems of textual query languages.
Also, dynamic result previews can be seamlessly integrated
with graphical query specification to increase the
effectiveness of query refinements. We describe VQuery, a
query interface to the New Zealand Digital Library which
exploits querying by Venn diagrams and integrated query
result previews.

KEYWORDS: dynamic queries, query previews, query by
diagram

INTRODUCTION

Digital libraries and other common on-line information
repositories must provide effective access to their contents
for a wide variety of users. In this paper we focus on user
interface techniques to improve a particular mode of
access—searching—and describe our work in developing an
alternative user interface for the New Zealand Digital
Library (NZDL) [18].

When searching, users specify terms of interest joined by
query language operators, and information matching those
terms is returned by an indexing and retrieval mechanism.
World-Wide Web [3] based Internet search engines and
some digital libraries (such as the NZDL) are examples of

systems which provide textual languages for query
specification. These languages commonly exploit Boolean
logic, even though it has been shown that difficulties in
dealing with Boolean logic are common, particularly when
a restricted syntax is used [4, 9, 11]. The consequences are
that significant numbers of erroneous queries are created.
Beyond syntactic demands, the conflict between the
meaning of operators in Boolean logic and English
language poses problems. AND tends to be inclusive in
English but is exclusive in Boolean logic; OR tends to be
exclusive in English but is inclusive in Boolean logic.
Alternative syntax is sometimes used. The union operator
is commonly represented with |, +, or U; intersection by
& or ; negation by ! or —. The lack of consistency in
use of these operators across systems and their lack of
direct relationship to their meaning creates further
difficulties for users.

A further problem with systems such as the NZDL and
most World-Wide Web (WWW) based search engines is
their lack of responsiveness. Users are locked into a cycle
of query refinement as shown in Figure 1, in which query
specification and result browsing are distinct activities. The
user receives no feedback concerning the effect of query
refinements until a new set of results for the refined query
is returned. The delay in returning results is dependent
upon network performance, query complexity, loading of
the information server and the volume of information to be
searched. It may be substantial. Users can waste time and
effort in forming queries which return zero or near-zero
matching documents, or very large unmanageable numbers
of matching documents. Additionally they receive no
indication as to whether the query terms that they specify
will identify documents of the appropriate nature.

We believe that a direct-manipulation user interface which
exploits diagrammatic techniques for query specification
can circumvent problems with textual query languages.
Visual query notations can have two key advantages over
textual query languages: they are less syntactically
demanding and overcome the English language and
Boolean operator ambiguity. We suggest that a particularly

Refine query

Browse and
evaluate results

Submit query

Wait for results

Figure 1: The query refinement cycle.

effective graphical notation is that of Venn diagrams which
illustrate sets and their relationships. If such an interface
also seamlessly integrated dynamically generated previews
of query results users would be supported in applying more
efficient searching strategies than are currently possible.

In the following section we describe related work. It
provides evidence to support the use of Venn diagrams in
query interfaces and discusses other work on dynamic
query previews. We go on to describe the context in which
our work is being undertaken — the New Zealand Digital
Library. Next we describe in detail VQuery, a graphical
user interface for query specification using Venn diagrams
which provides dynamic query previews. To conclude, we
discuss the utility of VQuery and outline our plans for
future work.

RELATED WORK

Venn Diagrams as an Interface to Boolean Query
Specification

The idea that Venn diagrams may provide an effective
medium to help users specify Boolean expressions is not
new. Halpin [10] convincingly argues that Venn diagrams
are highly expressive, can represent a broad range of
queries, ‘give a clear picture of the meaning of the query’
and ‘provide a simple means of clarifying what set
comparisons mean’. As long ago as 1976, Thomas [16]
studied both interpretation and generation of Venn
diagrams with a view to guiding the design of query
systems,

Michard [14] describes GQL (Graphical Query Language),
one of the first efforts to exploit Venn diagrams in database
querying software. GQL was compared to TEST, a textual
Boolean query language. In a comparative study subjects
made almost four times as many errors when using TEST
than when using GQL. Just under half of the errors with
TEST were due to the use of incorrect syntax, and a fifth
due to the use of an incorrect Boolean operator. Syntactic
errors were not possible in GQL, and half the number of
incorrect operators were used with GQL than were used

with TEST. Complex Boolean expressions were more
accurately represented in GQL than TEST.

Michard’s results have been confirmed by other studies.
Davies and Willie [6] carried out a comparative study of a
Venn diagram user interface and a simple Query By
Example [19] tool (QBE). They found that use of the Venn
diagram query tool resulted in fewer errors, substantially
faster specification of queries, and more positive user
feedback. Hertzum and Frekjer [11] compared Boolean
retrieval using a textual query language and Venn diagrams.
The Venn diagram interface was significantly faster and
produced significantly fewer errors than the textual query
language. Almost ten times the number of syntactically
incorrect queries were produced using the textual language
than with the Venn interface.

Katzeff [13] considered Venn diagrams in the context of
users’ mental models of information structures. Subjects in
a study were given descriptions of a database and
operations on its contents which adopted one of four
models (no model, tables, shallow set explanation and deep
set explanation). The set models were explained using
Venn diagrams. The results show that the Venn diagram
based models were more effective when subjects had to
form complex queries requiring problem solving.

An important aspect of the use of Venn diagrams is
reported by Willie and Bruza [17]. They identified set
assembly and set refinement techniques as being equally
common when subjects were able to formed Venn
diagrams. In set assembly, intersections between sets are
created by overlapping circles. In set refinement, circles
are wholly contained within other circles to indicate
intersections.

These studies indicate that a Venn diagram based user
interface shows promise in more effectively supporting
query specification than the standard textual query
languages that are currently used. In particular, the
syntactical constraints of a textual language are alleviated,
and a reduction in erroneous queries and time taken to form
queries is likely. The use of Venn diagrams also appears to
alleviate, but not remove, the conflict between the meaning
of Boolean AND and OR operators and the meaning of
these terms in English.

Dynamic Queries and Query Previews

The concepts of dynamic queries and query previews both
support users in effective query formulation. Dynamic
queries are principally concerned with the provision of
immediate feedback resulting from amendments to query
parameters. Shneiderman defines a dynamic query to
involve “the interactive control by a user of visual query
parameters that generate a rapid (100ms update), animated,
visual display of database search results” [15, p70]. In
essence, users see the results of query refinements as they
make them. This has several reported advantages: users
gain a sense of control over the database, patterns in data
can be quickly perceived, and new queries can be generated
based on what is discovered through incidental learning

[D i — = pe: C Science Technical Reports BE it Results 1-10 for Query: “"user Interface”™ & query B
I v £ G S & & -~ £ 4G S d i _
;'f aei r-éw n-?u ﬁ?u s:":m mﬁ h?}- Pt Seeurtly N“ u.n ran--s Relosd Homw Search Ouide nq!'- Print di'i bL

" Loeation:) g7 7 Lorgreg mpage gy |7 Location: B [l 77 www ndi arg Fogi-binfgw Pemestrzms-b: TZuter tinter face B2+ B26+qurry +RZ1 Wak,
2 : Cae it e whele [
&lh & 5hmu1 WOME COLLECTIONS HELP FEEDBACK |"user interface™ & query IVaikato oG
COMPUTE | | ——— win e
TEDH#'CAE I?EFI’E: QUERY RESULTS [Bea=h Aqain | [Roview Search Opriom |
Ward count: Walkao: 337 query: |06247, interface: 133613; user: 251508
Results for the query aser inferface & guery /Warkato post-processed to find the
. " siring “wser fnferface (25 documents matched the query).
@ The digital reference librarian is now available! Can't find what you are
looking for? Coptact our col science reference librarian for help. Retrieve
e o P " ? I fute Forsmles @H.-u B Text Postsengt
search terms Lrn ID@EB University of Leeds SCHOOL OF COMPUTER STUDIES
["user interface” & query Ivaikatg [(Bem Seazch | RESEARCH REPORT SERIES Report 93 10 Query-centred
Interpretation of Remotaly-Sensed Images within a GIS by Mark
Tupe 2 list of all the vords vou vt Gahegan and Julien Flack Division of Operational Research and
s : Information Systems February 1993 To be presented at the European
Confarence of
query type (help ‘@aﬁ University of Leeds SCHOOL OF COMPUTER STUDIES
RESEARCH REPORT SERIES Report 93.8 A Consistent User Model
Renked - o for a GIS Incorporating Remetaly Sensed Data by Mark Gahegan
Boolean Division of Operational Research and Information Systems February
Boolean ¢ 1993 Abstract The integration inte GIS of sophisticated scens und
grouping i m DEB University of Leeds SCHOOL OF COMPUTER STUDIES
- RESEARCH REPORT SERIES Report 94.4 Overview of the trip
2 anning system prolotype by LE M:Cormu:k & 5 A Roberts
other options (haip! ivision of O) Systarns April 1994
(Terms must appear witkin e seme mpon - hmmkmmumlxsaswmofhuwlopmdhp
i m D Eﬂ University of Leeds SCHOOL OF COMPUTER STUDIES
® upperflover case must match @ vhole vord must match RESEARCH REPORT SERIES Repert 94.5 The specification of trip
(3 tgnore upperilower case differences (3 ignore word endings planning systems?: Report on the development of the trip planning
systam prototype by JE. McCormack Division of Operational
Return up to [50 « hits with [10 ~ hits per page. Research and Information Systems June 1994 *Research funded by
SERC =1
if e = — o F T

Figure 2: The current NZDL interface, showing a query screen (left) and a results screen (right).

[15]. Dynamic queries also result in tangible performance
gains. Ahlberg et al [1] found that subjects formed queries
significantly faster using dynamic queries than with a text
based form-fill query interface. Conventionally, query
parameters are controlled by slider user interface
components, and one slider corresponds to one attribute of
the database to be searched.

Problems with this approach have been highlighted by
Fishkin and Stone [8]. In particular, only queries involving
conjunction of terms are possible dynamically. Also the
number of selectors, and consequently the number of
possible queries, is fixed in advance. Fishkin and Stone
overcame some restrictions of dynamic queries through
movable filter windows, each expressing data values, which
can be overlapped above a data space. However, this and
previous approaches deal with structured databases with
predetermined attributes, each attribute having a range of
possible values that can be easily represented using sliders.
We are concerned with querying of full-text indexes, and so
must consider how the concepts of dynamic queries can be
transferred to that domain.

Query previews are intended to overcome problems users
experience with network performance, data volume and
data complexity when forming and refining queries [7].
Their aim is to allow users to reduce the size of the set of
returned items to a manageable size before the query is
submitted across the network. This enables users to avoid
empty result sets or overwhelmingly large result sets
without the overhead of executing queries across the
network. This is achieved by allowing users to specify
rough ranges of values for rapid, iterative query refinement.

Response from the system is immediate, and indicates the
size of the result set matching the query.

In order to provide immediate response without the network
overhead, this approach is dependent upon database
providers publishing accessible tables of contents for
searchable databases. The tables of contents must be small
enough to be stored in high speed storage to enable
dynamic querying. These are drawbacks of the query
preview approach adopted by Doan et al [7]. Additionally,
their preview interface displays only the number of
matching items to the user. It provides no information to
support the user in determining the relevance of returned
items, which is a key issue in document retrieval.

Therefore, although dynamic queries and query previews
hold promise for use in digital library user interfaces, we
must consider how they may be implemented for a full-text
retrieval system.

THE NEW ZEALAND DIGITAL LIBRARY

The New Zealand Digital lerary (NZDL) is a freely-
accessible system on the WWW! that prov[des full-text
indexes to collections of documents. It is based in the
Computer Science Department at the University of
Waikato. Ten collections are freely available and several
more are available only to specific end-user organisations.
The freely available collections include an independently
published weekly on-line newsletter, public domain literary
works, information relating to indigenous peoples of the
world and computer science technical reports (CSTR). The

I http://www.nzdl.org

@ File Edit Bookmarks AboutVQuery Help

o: =EVQuery =—————

YQuery Results Preview

-
= Enter new t=m

14 documents malchthe selected query
Tess of the dUrberdles -

ConanDoyles The Valley of Fear: electronic edition

“‘ ® O

TidBITS

elephant Jane
12 12

had K1

Ay

L -
Collectons Aboriginal America [American History, Yol)
jurtble gogp sg}'ed_], Repons The Last of the Mohicans
“ o 10 C;'n:z'ﬁs‘:s‘m: on o Selected Stories
FAQ Archive The Sea'Wolf
m&?&%ﬁj&s The Jungle Book
@) Ouford Text Archive Lord Jim
Project Gutenberg Collection White Fang

ConanDoyles The Sign of four : electronic edition

& Dracula

Maoby Dick

ConanDoyles TheRetum of Sherlock Holmes : electronic edition
ConanDoyles His Last Bow : electronic edition

Search for any documents in "Oxford Text Archive" containing

(_ Submit Query 1w NZDL)

either Tion and tiger; or jungle; but not Tarzan

_ ,

Figure 3: The VQuery user interface showing the query workspace (left) and the results preview window (right).

CSTR collection alone provides a full text index to
approximately 40,000 technical reports gathered from over
300 sites world-wide, totalling 34 Gigabytes of source text,

The NZDL supports both ranked and Boolean querying,
although it is the user interface to Boolean query
specification that we address here. As with most other
WWW based information sources users are required to
form a combination of terms and operators in a particular
syntax to represent their intended query. Intersection,
union and complement operations are supported and are
represented by &, | and ! respectively. Query terms or
phrases are joined using these operators, and components of
complex expressions may be grouped using parentheses.
Queries may be further refined by the use of options. One
option is granularity of the search. For example, multiple
terms may be required to appear within the same report,
same page or same paragraph. Other options control case-
folding, stemming and the maximum number of matching
documents to return. It is also possible to weight the terms
within an expression, so that they have stronger or weaker
effects on the documents that are returned. Sample query
and result screens are shown in Figure 2.

VQUERY

We have developed a graphical query interface application
called VQuery. The four main objectives of the system are
to:

* provide an alternative interface to textual Boolean
query specification;

* dynamically provide responses to refinements of
queries;

* support more effective searching through provision of
query result previews;

® support reuse of queries through both their short-term
and long-term storage and retrieval.

VQuery is an alternative to the textual query interface
currently used by the NZDL. Although used in conjunction
with the NZDL at the moment, it is easily portable to other
digital library or search engine applications which operate
over the WWW,

The VQuery User Interface

Figure 3 shows the VQuery interface. It has two main
components: the query window and the result preview
window. The query window is divided into three main
areas. To the top left is the query workspace. This is a
window in which the user can organise query terms to
create Boolean queries. To the bottom left is the natural
language query view — a text panel in which an English
interpretation of the current query is displayed. To the right
is the control panel.

A Workspace for Query Manipulation. The query
workspace is a large scrollable window, which when fully
expanded provides a full screen workspace. It displays
circles containing query terms which may be phrases or
single words. Each circle may be thought of as the set of
documents containing the term within the circle, and below
each term is a number indicating how many documents are
in that set. A new term is created by typing a word or
phrase into the term entry box within the control panel and
the number of terms that can be added to the workspace is
unlimited. The circles can be selected (as ‘Tarzan’

currently is), moved and resized using standard pointing
and dragging with a device such as a mouse. Multiple
terms can be selected, moved and resized using a keyboard
modifier. Selected terms can be removed using the delete
key. Set assembly and refinement representations are both
supported — terms can overlap (such as ‘lion’ and ‘tiger’ in
Figure 3) and be fully contained within other terms (as
‘cheetah’ is within ‘Jane’ in Figure 3)..

The workspace is divided into two areas; an active query
area within the rectangle labelled ‘Active query’ and a non-
active query area outside of it. The active rectangle
contains the terms that the user is combining to form a
query and the non-active area acts as a storage area for
terms which have been used in the past or may be used
later, but do not contribute to the current query. Terms can
be dragged in and out of the active area to amend the active
query. The active query area can be moved or resized by
dragging its bounding rectangle, providing a second method
for inclusion or exclusion of terms.

Through the arrangement of term circles and positioning of
the active query area users can create complex queries
containing multiple terms and using combinations of the
AND, OR and NOT operators. An AND operation on two
or more terms is represented by query-selection? of the
intersection of the circles of those terms. An OR operation
on two or more terms is represented by query-selection of
the circles of those terms but not in the area of their
intersection. Any term circles within the active area which
are not query-selected are combined with other terms using
the NOT operator.

Query-selection of terms can be either transient or fixed.
Transient selection is used when immediate previews of
results of queries involving single terms or the AND
operator are required. In this case, when the user moves the
mouse pointer into a circle a dot (which is red in the
interface) will appear at its centre indicating that it is to be
used within the query being formed (‘jungle’ in Figure 3 is
transiently selected). The results preview window will be
updated to contain the titles of the documents which contain
the term within the circle. When the mouse pointer leaves
the circle, the dot is removed and the document titles
associated with the term are removed from the results
preview window.

If the mouse pointer is moved into the intersection of two or
more circles a dot appears at the centre of their intersection,
and the circles are joined by lines, to represent their
association in the AND operation. Again the results
preview window is updated, and the interface reverts to its
prior state when the mouse pointer leaves the intersection.

When the user is satisfied with a component of the query its
query-selection can be fixed by clicking within its circle or

2 We make a distinction between selection of terms for
inclusion within a query (‘query-selection’, represented by
dots) and standard selection for editing (represented by
small black rectangles).

the intersection of multiple circles. In this case the query-
selection is not removed when the mouse pointer leaves the
selected region. This is useful for experimentation with
addition of other components to a base query, and is
necessary to allow specification of the OR operator using
disjoint term circles. Fixed query-selections can be
removed by a second click within the region of the
selection.

Result Previews. The result preview window contains a
label which indicates how many documents match the
currently selected query and a list of titles of the documents
which will be returned by the currently selected query. The
current query may be refined through transient selection,
fixed selection, term deletion or manipulation of the active
query area, and in each of these instances the result preview
is immediately updated to reflect the change. Single or
multiple selections of items within the title list can be made
using the mouse and a keyboard modifier. When the user
double-clicks on selected items, the full text of those items
is retrieved from the NZDL and displayed to the user.

Query Reinforcement. The natural language query view is
situated below the query workspace. It presents an English
language interpretation of the active query, which for new
users reinforces the semantics of the visual notation, and
provides feedback as to the meaning of a selected query. It
is immediately updated whenever the active query is
amended. We use a simplistic transformation, attempting to
reduce ambiguity in the English expression. English
versions of Boolean expressions are inserted into
boilerplate text which gives user instructions and indicates
which collection is to be queried. Comma separated lists of
terms are used for AND and OR operations on multiple
terms. Compound queries containing more than one
multiple term operation are represented as semi-colon
separated lists.

Storage and Retrieval of Queries. Users are provided with
utilities to store and retrieve VQuery state both within and
between query sessions. To save the current state of a
query workspace the “Bookmark current state...” command
is used, accessible through the Bookmarks menu. When
this is selected the user is prompted to supply a textual label
for the bookmark. This label is then added to the
Bookmarks menu. There is no limit on the number of
bookmarks which can be created in a VQuery session.
When a bookmark is selected from the menu the current
workspace state is replaced by the state at the time that the
bookmark was created. The replication of the state is exact,
including size, positioning and selection of all components
of the query workspace. Each bookmark is stored in an
ASCII file exemplified in Figure 4.,

Persistent storage of a querying session is also supported.
Commands to save and load sessions are accessible through
the File menu and users are prompted with standard file
selection dialogs to name and select sessions. The file
format for session storage is very simple, merely containing
the names of the bookmark files associated with the session

factive collection at time of save
#location and dimensions of active query area
#total number of terms

#term, location and size, and colour

collection <Oxford Text Archive>

active-query <12»<14> <224><206>

term-count <7>

term <Tarzan> <42><136> <78> <55> <black>
term <jungle> <142><146> <68> <54> <black>
term <elephant> <52><240> <75> <54> <black>
term <Jane> <149><229> <143> <78> <black>
term <cheetah> <238><247> <40> <45> <black>
term <tiger> <72><18> <B80> <B80> <black>
term <lion> <23><41> <B0> <80> <black>

model-active
model-result
fixed-result

[<Tarzan><jungle><tiger><lion>]
[[<lion><tiger>] [<jungle>]]
[[<lion><tiger>] [<jungle>]]

end

fterms contained within active gquery area
#all terms currently containing red dot
#all fixed selection terms

#intersecting terms grouped together

Figure 4: ASCI! file format for saved bookmarks.

and a record of which bookmark was active when the
session was saved.

Utilities. The control panel provides three functions. At
the top right users can enter new query terms into a text
entry area. When the RETURN key is pressed a circle
containing the term appears in the query workspace. Below
the text entry area are radio buttons which allow the user to
select the default display colour for newly created terms.
Both the circle and the text of new terms are displayed in
the selected colour. Below the colour selection panel, users
can select which information source will be queried. A
variety of document collections from the NZDL are
currently displayed. When a new information source is
selected the natural language view is immediately updated
to reflect the change. Below the information sources is a
single button “Submit Query to NZDL" which submits the
active query to the NZDL via the user’s WWW browser.
This means that the user can get the standard HTML result
format from the NZDL should they require it.

The VQuery menu bar contains three action menus (File,
Edit, Bookmarks) and two menus for accessing information
about VQuery (About VQuery and Help). Standard editing
commands (Undo, Cut, Copy and Paste) for use in
manipulating term circles within the query workspace are
provided and these are accessed through the Edit menu. It
contains two additional utilities which saves the user from
carrying out common actions term by term. The first is
“Clear Selections” which removes all currently fixed
selections within the query workspace, and second is “Clear
Workspace” which removes all term circles from the query
workspace.

VQuery implementation and architecture

VQuery is implemented as a Java application which may be
used in place of, or in conjunction with the conventional
NZDL user interface. Using the conventional WWW
interface to the NZDL, the user creates a textual query via
HTML forms and submits it. The query terms and options
are used to form a URL which invokes a CGI script on the
NZDL server with the appropriate parameters. The CGI
script communicates with full-text indexing and retrieval

software and a set of documents matching the query is
formed. The document details are inserted into boilerplate
HTML which is returned to the user’s browser to display
the results of the submitted query. Although our indexing
mechanism MG [2] is efficient for very high volumes of
information, response to the user is never immediate due to
variables such as network performance, data volume [7],
server loading and query complexity. This process can be
seen in the lower portion of Figure 4.

To provide dynamic result previews VQuery communicates
directly with the NZDL server, and to allow display of
results in standard NZDL format VQuery communicates
with the user’'s WWW browser. This can be seen in the
upper portion of Figure 4. When the user creates a new
term, a background process is started to retrieve matching
documents. This process connects to the NZDL server
sending a URL representing a query containing the single
term. As with standard use via a WWW browser, matching
documents are returned in HTML format. The background
process parses the HTML, extracting the details of the
document titles and the number of matching documents,
Whilst this is taking place a circle containing the term is
placed in the query workspace, and the user may continue
to manipulate terms. Once the results have been obtained,
the number of matching documents is displayed within the
term circle, and the result preview window is updated.
Although the delay in result retrieval is the same as with
conventional WWW access it is much less evident to the
user because VQuery remains interactive. Usually, by the
time that initial placing of the new term circle has been
completed the results have been returned. A result set is
associated with each term and when transient or fixed
queries are created the corresponding operations are applied
to the result sets of the terms involved, providing a list of
matching document titles for display in the result preview
window. In fact, a result set for each collection can be
associated with each term, so that the user can investigate
the result of queries in multiple collections. Currently, to
achieve this it is necessary to produce a parser for the
results from each different collection, because the result
format differs between collections. However, a new

VQuery

HTML
User forms parser
graphical query HTF'H"WQG of .
,, Gocuments NZDL collection
Plluoe | ‘
enerator|
AL \/ 51| Full text
D "
areme [Egll Index
e
;Félaaaneresenmlion " 8 g
User forms @
textual quer
v R @) E Document
for query URL g database
1.

4 e W 71 o 15T s (M e N
Bt for 0 vy s e 4
ring ‘e dmimeiee - [e e e e)

iR (D B 0 R

i lrmesay of Lant STRCOL OF COMPUTER STUAY

T T et
e 4 Brvmsnly e g w53 3 st
g 0 e P [y
et

User views
query results

TRy Uty of Lo i
D

G i
e Lo

Wanbode ot ot o L B

oy 190 T e et i Farme
o coumTE T
BESTAEE L EPCh VS 118 U
0 s ey
Divmnen o Cyaraions R s dormncs e P

AR e B OF CoRmUTER
T aeiit sEPCa T SIRIE3 Fapers 4.3 e spmccmson of 1y
o

TML page of
matching
documents

WWW browser

Figure 4: The interface between VQuery, the user, a WWW browser and the NZDL.

architecture for the NZDL will soon allow results to be
retrieved in a standard format, and only a single parser will
be required. When bookmarks are recalled within a
session, there is no need to retrieve results from the NZDL
because they are retained in VQuery for the duration of the
session. However, when sessions are recalled results are
retrieved from the NZDL for each term in the session. This
is because the NZDL collections may have been updated
since the user’s previous session, and the most current
holdings should be provided to the user.

When the user submits a query to the NZDL from within
VQuery, to take advantage of the NZDL display formatting,
the user's WWW browser is directed to load a URL
matching the query. Currently the user might use either
Netscape Navigator or Microsoft Internet Explorer, but the
way in which they can be controlled from external
processes is both platform and version dependent. Ideally,
VQuery would contain an HTML browser window.

The VQuery software architecture is flexible, adopting a
Model-View—Controller approach [5]. An underlying data
structure models the list of terms created by the user, and
the semantics of the application. This is necessarily
abstract so that it is sufficiently independent of particular

user interface designs. The View component presents the
current state of the model to the user on the display. The
Controller component deals with user input. The View and
Controller components are closely linked in a direct
manipulation interface such as VQuery. In fact, VQuery
uses four View—Controller pairs which integrate with the
single data model. The first is the query workspace which
displays created query terms and indicates term selection.
This also supports user input. Circles are moved, resized,
selected and so on. The second pairing is the natural
language query output. Essentially this is only a view, with
an inactive controller component. Third is the URL
corresponding to the active query which will be sent to the
NZDL server. Again this has an inactive controller
component, and is, in fact, hidden from the user. The final
view of the model is the results preview window.

This architecture supports provision and investigation of
extended or alternative interfaces. Other View—Controller
pairings may be integrated with the model.

DISCUSSION

VQuery implements a visual representation for query
specification based on Venn diagrams, which have been
shown in previous studies to be an effective alternative to

more common textual query interfaces. Our representation
diverges from strict Venn diagram notation, because in
previous studies we have found that users are comfortable
with a Venn-like representation and tend not to utilise a
strict representation [12]. The representation supports both
set assembly and set refinement techniques which our
previous studies and the work of others have shown to be
commonly used.

There are limitations of representation which we must
address. For instance, there are some Boolean expressions
that can not be represented using VQuery, mainly because
it does not support selection of the universal set. In this
context we consider the universal set to be all document
within a collection. Consequently some complement
expressions such as those involving the complement of
single sets, or the complement of compound expressions are
unavailable to users. This means that users are unable to
request ‘documents that do not contain A’, where A is a
single term or more complex expression. Although less
than 2% of Boolean queries in the NZDL use the
complement operator it is important that its provision in
VQuery is complete and consistent. We must consider how
best to support this in the VQuery interface.

The visual language for queries becomes unwieldy when
intersection of more than three terms is required. It is
difficult to organise four overlapping circles or ellipses to
enable selection of all possible intersections. 19% of
queries in the NZDL use more than three terms and so it is
important to support user specification of intersection of
more than three terms. One approach may be to provide
some abstraction technique which allows multiple query
terms to be collapsed into a single graphical entity.
Michard [14] suggested this but found it to be responsible
for the introduction of user errors, and so its design must be
carefully considered.

The dynamic result previews support more efficient search
refinement than conventional interfaces. These
conventional interfaces give no indication as to whether a
query might return empty or very large result sets until the
results themselves are provided, which imposes a delay.
VQuery supports the user in deciding whether both the
volume and nature of the documents that would be returned
are appropriate without that delay. The volume is indicated
by the inclusion of the number of documents matching
single terms within their term circles. Users can
immediately determine whether or not they might use a
broader or more specific term, or consider using a
synonym. When terms are combined to form a query, the
user can determine if the query will provide a useful and
manageable number of documents from the number of
matching documents indicated in the results preview
window. The titles of matching documents can be browsed
to determine if the nature of the results matches user
requirements. Through these facilities users receive
immediate feedback regarding the efficacy of the queries
that they have formed.

The flexibility of the query workspace has not been
provided in previous diagrammatic query techniques. It can
be used to hold both active query terms and those which the
user wishes to put aside for the moment. In the
conventional NZDL interface, and the interfaces of similar
services, only those terms to be used in the query are visible
at any one time. As a process of query refinement takes
place it becomes more difficult for users to recall the set of
query terms used and the ways in which they have be
combined. In VQuery, the query workspace can serve as an
external representation of the user’s short term memory.
The flexible way in which term circles and the active query
area can be moved and resized provide for easy inclusion
and exclusion of terms and encourages experimentation at
little cost to the user. The range of terms used during a
query session does not have to be recalled, merely
recognised, reducing the cognitive demands when a
complex sequence of queries and refinements is being
formed.

A simple supportive facility is the allocation of colour to
individual query terms. This allows users to create visual
prompts regarding the use of terms within the workspace.
For example, a user might allocate a particular colour to all
terms related to a single concept. Alternatively, a user
might relate colour to the primary collection in which the
term is to be searched for.

The facility to save the current state of a query session
using bookmarks encourages user experimentation with
queries, knowing that prior work is recoverable.
Backtracking is simplified and the states resulting from
backtracking are more evident than those reached by
backtracking through HTML form based interfaces.
Bookmarking can also be used to support investigation of
multiple threads of queries within the same session, and
allow attention to be easily transferred from one thread to
another. The facility to save collections of queries and
bookmarks to persistent storage recognises that users might
not be able to carry out an exhaustive search to meet their
information seeking goals within a single session.
Reloading of sessions also reduces the repeated effort that
is commonly required by standard query interfaces in order
to return to previous query session states. User may wish to
do this to maintain awareness in a particular topic or
identify new holdings.

FUTURE WORK

Our immediate work will concern the identification of an
appropriate method for universal set selection so that the
complete range of Boolean queries may be expressed in
VQuery. We will also provide an abstraction mechanism to
allow relationships between multiple terms to be
represented by a single entity in the query workspace. It
will be necessary to determine if the errors that Michard
reported to be introduced by such an approach can be
avoided.

Of primary concern will be a comparative study of the
conventional query language of the NZDL and the
graphical approach adopted in VQuery. We are interested

in the comparative accuracy and speed of the two interfaces
in allowing user to form queries which match their
information seeking needs. Suitable sample queries will be
identified to allow comparison with previous studies and
allow consideration of the utility of our diagrammatic
representation, flexible diagram layout, storage and
retrieval of queries, natural language feedback and dynamic
result previews.

ACKNOWLEDGMENTS

Thank you to Shona Mclnnes who developed an elegant
and robust initial Java implementation of VQuery, based on
prototypes implemented by the author; and who also carried
out an enlightening user survey.

REFERENCES

1. Ahlberg, C., Williamson, C., and Shneiderman, B.
Dynamic Queries for Information Exploration: an
Implementation and Evaluation. In Proceedings of
CHI'92: ACM Conference on Human Factors in
Computing Systems (Monterey, California, USA, 3-7
May, 1992), ACM Press, pp 619-26.

2. Bell, T.C., Moffat, A., Witten, I.H., and Zobel, J. The
MG Retrieval System: Compressing for Space and
Speed. Communications of the ACM, 38,4 (April 1995),
41-42.

3. Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen,
H.F., and Secret, A. The World-Wide Web.
Communications of the ACM, 37, 8 (August 1994), 76-
82.

4. Borgman, C.L. The User's Mental Model of an
Information Retrieval System: an Experiment on a
Prototype Online Catalog. International Journal of
Man-Machine Studies, 24, 1 (1986), 47-64, 1986.

5. Burbeck, S. Applications Programming in Smalltalk-80:
How to Use Model-View-Controller (MVC). Softsmarts
Inc., 1987.

6. Davies, T. and Willie, S. The Efficacy of a Venn-based
Query Interface: an Evaluation. In Proceedings of
QCHI95 Symposium, (Bond University, Queensland,
Australia, August ,1995), pp 41-50.

7. Doan, K., Plaisant, C., Shneiderman, B., and Bruns, T.
Query Previews for Networked Information Systems: a
Case Study with NASA Environmental Data. SIGMOD
Record, 26, 1 (1997), 75-81.

8. Fishkin, K. and Stone, M.C. Enhanced Dynamic
Queries via Movable Filters. In Proceedings of CHI'95:

ACM Conference on Human Factors in Computing
Systems (Denver, Colorado, USA, 7-11 May, 1995),
ACM Press, pp 415-20.

9. Greene, S.L., Devlin, S.J., Cannata, P.E. and Gomez,

L.M. No IFs, ANDs or ORs: a Study of Database
Querying. [International Journal of Man-Machine
Studies, 32, 3 (1990), 303-326.

10. Halpin, T.A: Venn Diagrams and SQL Queries. The
Australian Computer Journal, 21, 1 (1989), 27-32..

11. Hertzum, M. and Frgkjer, E.: Browsing and Querying
in Online Documentation: a Study of User Interfaces
and the Interaction Process. ACM Transactions on
Computer-Human Interaction, 3, 2 (1996), 136-161.,

12.Jones, S. and Mclnnes, S. A Graphical User Interface
for Boolean Query Specification. Working Paper 97/31,
Department of Computer Science, University of
Waikato, Hamilton, New Zealand, 1997. Submitted to
International Journal on Digital Libraries.

13. Katzeff, C. The Effect of Different Conceptual Models
Upon Reasoning in a Database Query Writing Task.
International Journal of Man-Machine Studies, 29, 1
(1988), 37-62.

14.Michard, A. Graphical Presentation of Boolean
Expressions in a Database Query Language: Design
Notes and an Ergonomic Evaluation. Behaviour and
Information Technology, 1, 3 (1982), 279-288.

15.Shneiderman, B. Dynamic Queries for Visual
Information Seeking. IEEE Software, 11, 6 (1994), 70-
7.

16. Thomas, J.C. Quantifiers and Question Asking. /BM
Research Report 7021976, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, 1976,

17.Willie, S. and Bruza, P. Users’ Models of the
Information Space. In Proceedings of SIGIR9S, the
18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
(Seattle, Washington, July 1995), pp 205-210.

18. Witten, L.H., Cunningham S.J. and Apperley M.D. The
New Zealand Digital Library Project. New Zealand
Libraries 48, 8 (1996), 146-152,

19.Zloof, M.M.: Query By Example.
Journal, 16,4 (1977), 324-43.

IBM Systems

