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Abstract

A keyboard is a simple input device. Its function is to send keystroke informa-

tion to the computer (or other device) to which it is attached. Normally this

information is employed solely to produce text, but it can also be utilized as

part of an authentication system. Typist verification exploits a typist’s pat-

terns to check whether they are who they say they are, even after standard

authentication schemes have confirmed their identity. This thesis investigates

whether typists behave in a sufficiently unique yet consistent manner to enable

an effective level of verification based on their typing patterns.

Typist verification depends on more than the typist’s behaviour. The qual-

ity of the patterns and the algorithms used to compare them also determine

how accurately verification is performed. This thesis sheds light on all tech-

nical aspects of the problem, including data collection, feature identification

and extraction, and sample classification.

A dataset has been collected that is comparable in size, timing accuracy

and content to others in the field, with one important exception: it is derived

from real emails, rather than samples collected in an artificial setting. This

dataset is used to gain insight into what features distinguish typists from one

another. The features and dataset are used to train learning algorithms that

make judgements on the origin of previously unseen typing samples. These

algorithms use “one-class classification”; they make predictions for a particular

user having been trained on only that user’s patterns.

This thesis examines many one-class classification algorithms, including

ones designed specifically for typist verification. New algorithms and features

are proposed to increase speed and accuracy. The best method proposed per-

forms at the state of the art in terms of classification accuracy, while de-

creasing the time taken for a prediction from minutes to seconds, and—more

importantly—without requiring any negative data from other users. Also, it

is general: it applies not only to typist verification, but to any other one-class

classification problem.

Overall, this thesis concludes that typist verification can be considered a

useful biometric technique.
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Chapter 1

Introduction

For over one hundred years, keyboards have been an essential tool for the

production of any printed text. As technology has developed, the keyboard

has evolved from the humble typewriter to become the standard input device

for modern computers. Yet despite the proliferation of keyboards—especially

over the last 30 years as the popularity of personal computers has exploded—

little thought has been given to using a keyboard for anything other than

entering text. This is not surprising: the keyboard was originally intended as

an input device and to this day its primary purpose remains unchallenged.

Just like any other tool, we would expect that people regularly using a

keyboard will become proficient at typing. “Typing” is simply “writing with

a typewriter or computer” [74], but an extended definition states that it is

the “process of inputting text into a device, such as a typewriter, computer,

or a calculator, by pressing keys on a keyboard” [75]. Both these definitions

cover every entry technique from hunt-and-peck input to skilled touch typing.

Considering keyboards as mere entry devices overlooks a very important notion

suggested by the last sentence; if different people have different techniques for

entering text, perhaps the keyboard could also be used as an authentication

or identification device.

It is this notion that forms the basis of this thesis. Is it possible to verify

the identity of a keyboard user based on how they type? This is a different

task to authorship verification, which focuses on what is written, rather than

how. It is also different from identification or recognition: identification and

recognition ask “who am I?” whereas verification and authentication ask “am

I who I claim I am?” [39]. In summary, typist verification makes a judgment

of whether that person is indeed who they say they are by examining the way

they type.

1



1.1 Verification Systems

Just as doors only protect rooms from people who cannot turn a handle, au-

thenticated computer sessions are only secure against people who cannot use a

computer. If security is important, access must be controlled—by locking the

door or computer so that only those with the key can gain entry. The “key”

used depends on what is being controlled. It may be a physical object—in the

case of a door, a metal key cut with grooves—or a piece of information that

must be committed to memory, such as a PIN or password. The security of

the system relies on the key being held by only the authorised user; security

is forfeited if the key is lost, duplicated or passed on to anyone else.

Furthermore, access control systems typically verify a user only once—when

they first present themselves to the system. Depending on what the system

controls access to, the user may also be required to notify the system when

they are finished. For example, at the border of a country you are required to

present identification whenever you enter or leave. In a computer system, a

login consisting of a username/password pair is often used to gain access to the

system, and a simple “log off” command is used to indicate that the computing

session has ended. The main difference between these two scenarios is that in

the latter it is possible for another individual to use the system without needing

to identify themselves first. If the user does not notify the computer system

that they are finished, it will continue to operate under the assumption that

the authorised user is still in control.

To combat this, the computer could be automatically locked after a certain

period of inactivity. Additional hardware or software could be employed to

detect when the user is no longer operating the computer; the software ap-

plication BlueProximity locks a computer when a physical token is no longer

sufficiently close that it is detected [27]. However, neither of these solutions

are complete: an unauthorised individual can access the system if it is still

active, or when they have the key.

Biometrics can provide a solution that ensures continuous security, with-

out requiring the user to remember information or possess a particular token.

Biometrics literally translates to “life measurement” [78], and it relies on mea-

surements of the user themselves to perform authentication. If the recorded

measurements do not match the user’s profile, the person is refused access to

the system. By placing biometric sensors directly in front of the user they can

be continuously verified without interrupting their normal tasks.

Typist verification is an example of a biometric authentication system

2



where the keyboard serves as the biometric sensor. The system monitors a

user’s typing patterns in order to perform authentication. If the current pat-

tern is sufficiently different from the reference one, the user is refused access

to the system. However, unlike traditional access control systems, monitoring

can occur continuously. This means that typist verification can act as both

the access control key and as a policeman that constantly checks that the

authorised user is the only one in control of the system.

These two modes of access control are often separated; systems that check

a user’s identity when they first present themselves are known as “static” or

“fixed text” typist verification, and those that operate continuously are known

as “continuous”, “dynamic”, or “free text” typist verification. In a continuous

system users are free to enter whatever they please and the keystroke data is

collected until the session is terminated. In contrast, static typist verification

requires the user to type some known text and only records events that occur

whilst this text is being entered. Continuous verification is more difficult be-

cause there is no restriction on what is typed; it is possible for a new sample

to contain radically different sequences of key events to what has been entered

previously.

1.2 Thesis Statement

This thesis argues that

there is enough information in a user’s typing input for continuous

typist verification to be a useful form of biometric authentication.

Continuous typist verification is the scenario introduced in the previous section:

verifying users’ identities by examining the way they type, without placing

any restrictions on what they type. The input is a stream of key events (key

presses and releases) and the time that each occurs. This thesis considers

only verification, not identification: success for the task of verification implies

that identification is also possible. Also, verification is more appropriate in a

computer system controlled with a login process because the expected identity

of the user is known.

The question of whether the level of verification that is achieved is useful

or not depends on several parameters:

1. The set of possible users.

2. Constraints on how quickly an impostor should be identified.
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3. The different kinds of typing information that can be monitored.

4. How much information is available to the monitoring program.

5. Technical and ethical issues.

6. The amount of user variability between reference samples and test sam-

ples.

7. The desired level of accuracy.

The set of users should not affect the performance of a verification system

because, in principle, there is no need to know about how other people type to

confirm a given identity. However, this depends on the design of the system.

For example, Gunetti and Picardi [33] compare the test sample to reference

samples from every other user in their database, causing the system to perform

well when there are many registered users and to fail completely when there

is only one. An ideal system would not have this requirement, and this thesis

investigates whether negative information (that is, data from other users) is

necessary for successful verification.

Constraints on how quickly a behaviour-based verification system responds

can greatly affect how well it performs. If it is required to respond quickly to

an illegitimate user, the size of the sample being verified must be short enough

that an impostor need only type a small amount before being refused access.

Although passwords are often only 6 to 10 characters in length, the text is

always identical and because it is well known by the user, the pattern of entry

for the password is well defined. This means that a static verification algorithm

can correctly verify a user with little input. With continuous verification,

however, there may not be enough elements in common between the test sample

and the reference profile to make a confident classification. Conversely, when

samples are large enough to make a confident classification they may contain so

much text that they are no longer useful for security purposes. Larger samples

also take longer to classify than shorter ones. If the system is required to

provide a response in a timely manner after the sample has been collected, it

may be unable to do so if large samples of input are provided. Later chapters

investigate the trade-off between system classification accuracy and sample

length.

As well as size, the content of a typing sample also affects how well typist

verification performs. If the recorded sample contains both key press and

release events and their associated times, the following types of information

can be obtained:
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• Overall typing speed and accuracy.

• Genre of the task (e.g., email, instant messaging).

• Correction habits (e.g., whether backspace or delete is used for a given

correction).

• Modifier key patterns (e.g., whether the left or right shift key is pressed

to get a capital letter).

• Fine details of keystroke timings, including key press durations and key-

to-key latencies.

• Key press and release ordering patterns (e.g., whether a given key is

released before the next one is pressed).

One aim of this thesis is to quantify the amount of identity information carried

by each of these channels, in typical situations. As shown in the next chapter,

the most common typing patterns currently used for typist verification involve

using key press durations and key-to-key latencies.

The amount and quality of the information available to the identification

program recording the samples affects the difficulty of the task. For example,

if a software timer is used, recorded times are less accurate than when using

a hardware timer because the latter is unaffected by system load. However, a

software timer is more appealing for typist verification because no extra equip-

ment is required. When recording spans several tasks, the software application

being used may affect the way the user types. Due to operating system security,

it may not be possible for installed software to automatically determine the

identity of the current application. This can be solved by implementing typist

verification within each application, but this may be impractical. Ideally, a

continuous verification system is agnostic regarding the source of keystrokes.

In this thesis, only typing from within an email is collected, using a software

timer. Chapter 4 discusses this process in detail.

The amount of information that can be recorded may also be affected by

technical or ethical issues. Recording typing continuously may result in con-

fidential data being captured, such as bank account details, passwords, or

personal correspondence. If samples are stored, there is a risk that an attacker

may be able to access any private data they contain. If the computer system

monitoring key events is not strictly controlled, technical issues may arise from

insufficient, incorrect or missing data. In these cases the system may choose
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to ignore the samples; using them could damage the integrity or accuracy of

the verification system.

The most difficult parameter to control when performing typist verification

relates to user variability, that is, the degree to which a user’s typing patterns

naturally fluctuate. A typist’s behaviour can change with illness, mood, stress

and fatigue throughout the course of a day. If text is entered with one hand in-

stead of two, perhaps because the typist is holding something or is injured, the

pattern of entry will be different. Over longer periods of time—weeks, months

and even years—a typist may become more (or less) proficient at typing. Be-

cause it is unlikely that any of these effects can be controlled, any potentially

useful typing system must be capable of dealing with such variations.

Finally, the accuracy obtained by the system also determines how useful it

will be. There is a trade-off between correctly identifying users and impostors:

when constraints are relaxed so it is easier for a user to be identified as them-

selves, it is inevitably easier for an impostor to pass as that user too. If the

system is designed to refuse access to all impostors, it may also reject legiti-

mate users on a regular basis. There are no guidelines available to suggest what

would be an appropriate level of accuracy, especially since the desired trade-off

depends greatly on the cost of each type of error in a particular scenario.

It is considered rather unlikely that the hypothesis stated at the begin-

ning of this section will be upheld except in rather restricted circumstances.

Password-based static verification, better known as “password hardening,” is

one such circumstance, but does not fall within the hypothesis because it is

not performed on a continuous basis. A somewhat less restricted circumstance

is free typing within a particular program where users can type whatever they

like. Previous research (discussed further in Chapter 2) suggests that success-

ful identity verification can perhaps be accomplished in this rather unrealistic

scenario, at least under certain conditions. The other end of the spectrum is

when the user works naturally throughout a normal working day. This thesis

focuses on verifying a user where each sample in the system is an email. This

is similar to other continuous techniques described in Chapter 2, but extends

them because it uses real emails rather than artificial ones.

1.3 Motivation

The extent to which typing patterns can be used on a continuous basis for ver-

ifying an individual’s identity is currently unknown. It is known that in some

restricted circumstances authentication can be performed using typing from
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passwords and usernames, but there has been little investigation of continuous

verification. Because of this, there are many unexplored avenues that could

contain valuable information about a user’s typing habits.

This information is not just valuable for typist verification. It can also

be employed for accessibility, interface development and for testing the opti-

misation of keyboard layouts. For example, if a user “stutters” their typing,

pressing a given key more than necessary, the bounce delay can be automati-

cally increased to filter out the extra key presses. Fitts’ Law [25] can be applied

to an interface design to evaluate its effectiveness, but instead of using an esti-

mate that considers each key press as an equal quantity, individual—and more

accurate—key event times could be used. These same key event times could

be used to determine whether one keyboard layout is better than another. In

fact, the above scenarios have already been investigated in practice [73, 26, 35],

but the full data was never released; only the results of the experiments were

made available.

Studies of typing habits have traditionally focused on increasing a typist’s

speed. This is an admirable goal, and a large amount of work is devoted to

it. Some of this research can be used to give insights into a typist’s behaviour,

and this is discussed in Chapter 6. Unfortunately no datasets have been found

to be available because much of the relevant research happened over 50 years

ago and is based on typewriters, not computers.

Continuous typist verification is arguably more desirable than any other

scenario posed here: it allows the integrity of unattended computers to be

protected without great expense. The problem differs from static verification

or password hardening, but is applicable in a wider range of scenarios because

there is no need to place any restrictions on what the user types. Continuous

typist verification is designed to detect when a user does not appear to be

themselves, usually when an impostor starts using the system. However, it may

also be the case that the user themselves demonstrates abnormal behaviour.

This may be just as important to detect. In situations where a high degree of

risk accompanies abnormal user behaviour, such as operating heavy machinery,

refusing access to the system may prevent injuries, or worse.

In order to discover how useful continuous typist verification really is, two

concerns need to be addressed. The first is to gather a dataset of recorded

typing from a range of individuals. The second is to use this dataset for an in-

depth investigation into typist behaviour. This thesis addresses these concerns

by studying current techniques, collecting a dataset, exploring the behaviour of

the monitored typists, and presenting new algorithms that can perform typist
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verification on a continuous basis.

1.4 Contributions

The discussion in Section 1.2 and the motivation from the previous section is

summarised in the following objectives:

1. To discover whether negative information is necessary for successful ver-

ification.

2. To investigate the trade-off between sample size and classification accu-

racy.

3. To clarify the ethical and technical issues associated with typist recogni-

tion and find methods to address them.

4. To identify channels of information in typing input and the amount of

identity information in each.

5. To investigate whether mouse button press and release information can

be used to increase the accuracy of typist verification using keyboard

patterns.

By addressing the above objectives, this thesis makes a number of contribu-

tions, including:

1. A new approach for performing one-class classification.

2. The definition of a domain where one-class classification is effective.

3. New algorithms for dealing with typist data.

4. A demonstration that continuous typing input can be described accu-

rately by aggregate features rather than a raw stream.

5. Tools for logging key events, mouse events and their timings across a

range of different platforms.

6. A dataset of anonymous users and their typing input in a real-world

situation.
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An important contribution is the new approach for performing one-class

classification. The implications of this method extend beyond typist verifica-

tion; it is completely general and can be applied to any one-class problem.

Typist verification is one example of a one-class problem; detecting cancer is

another. Another important contribution is an investigation showing when

one-class classification should be used for two-class problems, even when neg-

ative data is available. The remaining contributions all relate to typist verifi-

cation, and will be discussed in detail in later chapters.

1.5 Thesis Structure

Chapter 2 gives an overview of biometrics, and introduces the concepts that

will be used to describe typist verification in subsequent chapters. It also

surveys related work, covering existing techniques for password hardening,

static typist verification and continuous typist verification. This survey is

helpful in determining what might be an appropriate level of accuracy, in

general, for typist verification. It provides benchmarks for both prediction

time and accuracy, which are later used to evaluate new techniques introduced

in this thesis.

Chapter 3 examines two of the techniques from Chapter 2 in detail. Each

has been re-implemented using the Java programming language, and evaluated

using the datasets from the original studies. The two techniques are then

compared to each other using accuracy measures and by utilising the other’s

datasets. This chapter gives insight into the trade-offs between sample size

and classification accuracy, and whether negative information is necessary to

be able to verify a typist. Chapter 3 highlights the need for a better dataset of

typing data: the selected algorithms perform poorly when presented with the

other’s datasets. This is due to a variety of reasons—including the datasets

themselves—that are also discussed in this chapter.

The next chapter, Chapter 4, addresses the inadequacies of existing

datasets for evaluating many different typist verification techniques. It be-

gins by describing how email-based typing data was collected from 19 users

over a period of 3 months. In total, almost 3000 emails were collected from

the participants. However, several issues had to be addressed before these

emails could be used for evaluating typist verification systems. Sections 4.1.2

and 4.1.3 discuss the technical and ethical issues that occurred during data col-

lection. Finally, this chapter revisits the work from Chapter 3 and evaluates

the re-implemented techniques with the new dataset.
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Chapter 5 introduces four new approaches to typist verification, drawing

on related work in Chapters 2 and 3. First, a similar approach to the first

technique in Chapter 3 is proposed, substituting Prediction by Partial Match-

ing (PPM) for the LZ78-based classifier. Second, a Gaussian-based approach

is investigated, using digraph times to create a näıve Bayes style classifier.

Third, a context-based classifier is proposed, combining ideas from the first

two classifiers. The fourth uses a multi-class classifier to perform verification

on individual digraphs. The four techniques are evaluated using the dataset

from Chapter 4, and compared with each other and with the techniques from

Chapter 3.

Chapter 6 uses one dataset introduced in Chapter 4 to explore how typists

behave as they type an email. It begins by examining digraphs, that is, the

time between two consecutive key press events. It then moves on to finger

movements, drawing similarities between digraphs typed in a similar pattern

of fingering. Section 6.4 studies when typists pause, and suggests reasons why

they may hesitate—even fleetingly—as they type. Section 6.3 covers the usage

of each key, particularly the invisible, modifier and non-alphabetic keys. The

exploration in this chapter gives great insight into how typists behave, which

of course can be exploited for verification. More importantly, the chapter

identifies what channels of information are available in a typing sample.

Chapter 7 broadens the scope by investigating an important machine learn-

ing paradigm that can used for typist verification, and other problems. This

paradigm is known as one-class classification. One-class classification is the

use of machine learning algorithms for prediction, when it has been trained

using only positive examples. It is analogous with novelty or outlier detection

because it detects abnormal behaviour, except that it does not attempt to

detect outliers in the training data. This chapter investigates when it is ap-

propriate to use one-class classification, even when negative data is available.

It also surveys existing one-class classifiers. Lastly, a new general technique for

one-class classification is introduced, which is one of the main contributions of

the thesis.

Chapter 8 relates the work in Chapter 7 to the problem of continuous

typist verification. Features are identified using the channels of information

suggested in Chapters 6 and 5, and these are used to train a general one-class

classifier. The dataset from Chapter 4 is used for evaluation. This chapter

addresses the argument of this thesis directly. It also covers the use of mouse

patterns to improve classification accuracy.

Finally, Chapter 9 reflects on the work in earlier chapters, and summarises
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them. The thesis ends with an outline of possible future work.
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Chapter 2

Background

Around 140 years ago, in the late 1800s, two quite different events occurred that

together underpin the field of typist verification: Christopher Sholes invented

the modern typewriter [64] and Alphonse Bertillon formalised an early form of

biometrics known as “anthropometrics”[78]. Typewriters had existed since the

early 1700s [17], but until 1878 their keyboards were a single line of keys, often

in a piano-like format and arranged alphabetically, as shown in Figure 2.1 [65].

Sholes tiered the keyboard into four rows of keys, in a format that we now call

QWERTY (shown in Figure 2.2). The reason for this layout change was to

prevent neighbouring typewriting bars from jamming by putting common letter

pairs onto separate hands. At the time, touch typing was unheard of; typists

used “hunt-and-peck”—first finding the appropriate keys, and then using the

index fingers of either hand to strike them [17].

Although not the original intention, QWERTY had the by-product of slow-

ing hunt-and-peck typists because the keyboard was no longer in an intuitive

alphabetic format [10]. Touch typing was to be the solution to this problem.

Typists learnt to memorise the keys, and type using four fingers of each hand

(using the thumb for the space bar). Regimented lessons were eventually in-

troduced to teach the skill of touch typing. The first book published as a study

of typing behaviour describes how, despite these lessons, each typist had their

own style that reflects their personality [23]. The book outlines how on one

occasion a neatly dressed gentleman “turned in typed sheets which were de-

cidedly not neat”[23]. On closer inspection it was revealed that the student

was anything but neat in real life, and his appearance was due to the trim

naval uniform he was required to wear. This is the first documented example

of keyboards (and typewriters) being used to learn something about a typist.

In other words, it is the first documented example of typing being used as a

biometric.

However, biometrics were used for verification long before typing was in-

vented. One of the first examples can be traced to Ancient Egypt: in the Nile
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Figure 2.1: Alphabetic layout (from [65]).

Figure 2.2: The original QWERTY keyboard layout (from [64]).

Valley traders were formally identified using physical attributes such as eye

colour [17].

Despite a long history, the field of biometrics was not formally described

until after the modern typewriter was invented. Alphonse Bertillon intro-

duced “anthropometrics” (literally, “human measurements”) in 1882, formally

describing a biometric identification technique for the first time [78]. He took

measurements of a person and noted any unusual features such as tattoos or

scars, with the intention of using this to identify them [78]. In later years the

same idea came to be known as biometrics (“life measurements”). Nowadays,

biometrics are used to verify identity through physical characteristics such as

fingerprints and behavioural ones such as typing [39].

This chapter provides background information relating to the use of

keystroke timings for biometric authentication. The next section describes

how biometrics can be used for authentication, how techniques are evaluated

and the processes used at various stages. Section 2.2 explains how typing can

be used as a biometric, and defines some terms that will be used later in this

thesis. The next three sections discuss existing typist verification techniques,

from password hardening and static verification in Sections 2.3 and 2.4 through

to continuous verification in Section 2.5. The thesis focuses on continuous typ-

ist verification, but this chapter explores a wider area to give the necessary

background.
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2.1 Biometrics

Traditional authentication or identification systems use something you have,

such as access cards, or something you know, such as a PIN or password,

to check a user’s identity [78]. In contrast, biometrics measure something

about you [78]. The measurements of a user can be either physiological or

behavioural [39]. Fingerprints are an example of a physiological biometric,

and typing a behavioural one. There are many others, including voice, infrared

facial and hand vein thermograms, face, iris, ear, gait, signature, DNA, odor,

hand and finger geometry, and retinal scans [39]. Only four of these have a

behavioural component: voice, gait, signature and typing.

Behavioural biometrics are generally considered weaker than physiological

ones since they are more susceptible to fluctuations over time. For example, a

user who feels tired may type more slowly than normal. Physical biometrics

do no have this variability: a tired person may be more sloppy at placing their

finger on a fingerprint scanner, but so long as it is aligned correctly their state

of mind will have no affect on the measurement. Behavioural biometrics also

change over time as the user becomes more practiced at the activity being

monitored.

Jain et al. [39] state several ideal features of a biometric measure:

• Universality Everyone should have it.

• Uniqueness No two people should be the same.

• Permanence The measure should be invariant with time.

• Collectability It should be quantitatively measurable.

• Performance The overall system should be accurate.

• Acceptability People should be willing to accept the measure.

• Circumvention The system should not be easily fooled.

Fingerprinting scores well. Most people have fingerprints (medium univer-

sality), they do not change with time (high permanence), the chance of two

fingerprints being the same is low (high uniqueness), fingerprints remain the

same throughout time (high permanence), current systems are good (high per-

formance), most people do not mind their fingerprints being taken (medium

acceptability), and they are easily collected (medium collectability) [39]. The
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major downfall is circumvention: advanced fingerprint locks have been defeated

with nothing more than a photocopy of a valid print [62].

All these features are subjective: the values from Jain et al. [39] were de-

termined from the opinions of three independent experts. According to them,

typing has low permanence and performance, and medium collectability, ac-

ceptability and circumvention; no suggestions are made about the qualities of

universality and uniqueness. In this thesis, Chapter 6 will tackle universal-

ity and uniqueness, Chapter 4 deals with collectability and acceptability, and

Chapters 3, 5 and 8 cover permanence and performance. This thesis does not

consider circumvention directly because no typist was given the opportunity

to observe another’s habits before attacking the system.

Although physiological biometrics rate better than behavioural ones on

many of the above features, they usually require users to present themselves

to the sensor, interrupting any task currently underway. On the other hand,

behavioural biometrics can be used continuously without causing interruptions.

This is where the power of a behaviour-based system lies: it can constantly

perform authentication. This extra layer of security is desirable in situations

where opportunities exist for an impostor to access an active system. This

is especially true for computers because it is easy to leave an authenticated

machine unattended.

2.1.1 Biometric System Processes

There are two stages to all biometric systems: enrollment and prediction. Both

physiological and behavioural biometrics use the same processes, although the

individual components differ depending on the type of biometric that is em-

ployed. Figure 2.3 shows the process for enrolling. Data is collected until it

is considered acceptable, and then stashed in a data store. Each sample is

annotated with the user’s ID in the system, ensuring that its source is known.

The process may be repeated several times depending on how many samples

are required for the system to perform at a satisfactory level.

Once they are enrolled in the system, a user’s new input can be checked

using the process in Figure 2.4. Samples are collected in the same way as

before. Some systems reject users if the samples are inadequate; others simply

request them to try again, or to provide more data. An acceptable sample,

the user ID and the stored samples known to belong to that user are provided

to a matching process, which outputs an estimated probability that the new

sample matches the stored samples for that user. If the probability reaches
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Figure 2.3: The enrollment process for biometrics.

the system threshold the sample is classified positively; otherwise it is rejected

as belonging to an impostor.

Between the enrollment and prediction stages, most systems process the

stored samples into some kind of model. In this case, the matching process

need only compare the sample to the pre-built model—making predictions

faster than if the process also had to build the model at this step. The threshold

can be varied to change the trade-off between incorrectly rejecting users and

allowing impostors through.

2.1.2 Evaluating Biometric Measures

Two types of error determine the effectiveness of a biometric system: Type I

and Type II errors; false positives and false negatives respectively. False posi-

tives occur when impostors are wrongly classified as the user. False negatives

occur when a user is wrongly refused access. In a perfect system, neither would

be present. In reality, these errors happen regularly and exhibit a trade-off:

increasing the number of false negatives makes it harder for an impostor to

pass, so the number of false positives is reduced. The reverse is also true: if it

is easier for an attacker to pass, legitimate users are less likely to be rejected.

Where security is a concern, systems will attempt to minimise the number

of false positives; it is more acceptable to annoy real users than to allow an

attacker access.

In typist verification systems, these two types of errors are referred to as

the Impostor Pass Rate (Type I error) and the False Rejection Rate (Type II

error). The Impostor Pass Rate (IPR) measures the number of impostors that
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Figure 2.4: The prediction process for biometrics.

are allowed access. The False Rejection Rate (FRR) measures the number

of times the system falsely rejects a legitimate user. In many other biometric

systems, alternative names are used: the IPR is also known as the False Accept

Rate (FAR) or False Match Rate (FMR); the FRR can also be known as the

False Alarm Rate (FAR) or the False Non-Match Rate (FNMR). To prevent

confusion, this thesis uses the terms IPR and FRR throughout.

The Equal Error Rate (EER) can also be used as a performance measure

to compare biometric systems. This is where the FRR and IPR are equal.

The Receiver Operating Characteristics (ROC) curve is a plot of the true

positive rate versus the false positive rate [77] and the EER, FRR and IPR

can be read off it. The advantage of reporting the EER over the FRR and

IPR is that it provides a single measure of performance. However, in many

situations—especially security—it is more desirable to have an IPR that is as

low as possible, so reporting both figures is more useful in determining how

useful the system will be. For example, Cho et al. [13, 79, 80] report the FRR

when the IPR = 0. In the field of password hardening (discussed in Section

2.3) Monrose et al. set the FRR to be as low as possible because the typing

patterns only have to strengthen the password, not replace it [47]. Existing

biometric techniques typically report both the FRR and IPR, tuned to the
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security requirements of their real world application.

Some systems report the accuracy or the error rate as measures of per-

formance. These are the percentage of predictions the system got right and

wrong respectively. Unfortunately, using these measures conceals the trade-off

between false positives and false negatives, so it is difficult to tell whether a

system will fit a given situation.

This chapter presents the FRR and IPR of all assessed systems, and else-

where in the thesis the area under the ROC curve (AUC) is also reported.

The AUC gives the probability that a randomly-chosen positive instance will

rank higher than a randomly-chosen negative one, meaning that systems with

an AUC value close to one are more likely to make correct classifications than

systems with a lower AUC value. The AUC is independent of any thresholds,

making it possible to assess two systems without needing to consider whether

the threshold they utilize is the best one. Another advantage of using AUC is

that by generating the ROC curve it is possible to read off the values for the

FRR given IPR, or the IPR given FRR.

2.2 Typing as a Biometric

In the Second World War, Morse code operators could be identified by the

length of their dots and dashes and their pauses between words and sen-

tences [66]. A remote operator’s patterns were often recorded by their home

stations; in the event that the operator was captured, false messages sent from

the enemy could be easily identified. A Morse key is the simplest possible

keyboard: it has a single key that is either on or off. The operator presses

and releases the key to generate the code, typing either a dot or a dash de-

pending on how long the key is held down. The rhythm of the operator can

be considered a behavioural biometric measure because measuring the lengths

of dots, dashes and pauses is sufficient information to verify identity. There is

no evidence to suggest that the individual styles of Morse operators proven to

exist in the 1930’s have not translated to the typewriter/computer keyboard.

After all, the standard US computer keyboard is just 104 small Morse keys.

Using a computer keyboard for biometric authentication is achieved in a

similar manner to a Morse key. In both cases, a keystroke is composed of two

distinct events—a key press (key down) event, and a key release (key up) event.

These events are recorded, and stamped with the current time. But because

a computer keyboard has many keys whereas a Morse key has only one, the

identity of the affected key must be recorded when any event occurs. The
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result of recording is a continuous stream of key events and times. Capturing

this stream, or “key logging,” is infamous on the Internet for its use by hackers

to obtain a victim’s private data. It can be implemented on a computer using

hardware or software, but the latter is more attractive for typist verification

systems because no extra equipment is required.

In the 1930’s the identity of Morse operators was verified manually. How-

ever, the process can be automated on a computer, although this is not always

necessary, as shown later in Section 2.4. The computer records the event/time

stream and divides it up into samples for processing. Each sample usually cor-

responds to an entire session of typing, although large samples may be broken

up into smaller ones for easier processing.

The samples are either immediately provided to a machine learning algo-

rithm for direct integration into a predictive model or are pre-processed into

a set of features first. Both cases result in a model that can be used to make

predictions on previously unseen samples of typing, with no manual input.

Each approach has advantages and disadvantages, and these will be discussed

in later chapters. The main idea of both techniques is the same: when given

a new sample of recorded typing, they can predict whether or not it belongs

to a given user. The system of recording, processing into samples, extracting

features, learning, and prediction of new samples is typist verification.

2.2.1 Terminology

The input to a typist verification system is a stream of key events and the time

that each one occurs. Each event is either a press or a release. The stream

does not always alternate perfectly between presses and releases. For example,

one key may be held down whilst the next is pressed, causing two presses to

appear consecutively, followed by the releases. Most verification techniques

make use of the time between pairs of events, typically the digraph time or

keystroke duration. The following list explains terms used in typing research:

Key Event A key event is a single action with a key. It is a key press if the

key is pressed down, or a key release if the key is being let go. Key-

down and key-up events are alternative terms for presses and releases,

respectively.

Key Logging The act of recording key events.

Keystroke A keystroke is the press and release of a single key.
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Digraph Any sequence of two consecutive key press events, also referred to as

a digram or bigram. Sequences with three characters are trigraphs, with

four are four-graphs, and so on. Digraphs can additionally be classified

into groups indicating which finger was responsible for each key, the type

of movement being employed, what row the keys were typed on, or even

which hand typed each key. For example, 1F, 2F, 1H and 2H digraphs

refer to whether the digraph was typed with one finger (1F), two different

fingers (2F), one hand (1H), or two (2H). [31]

Digraph Time The digraph time is the time between two consecutive key

press events. It is sometimes called the key-to-key latency, keystroke

latency, interstroke time or interkeystroke interval. [31]

Keystroke Duration The keystroke duration is the time between the press

event and the related key release event for a single key. This is sometimes

known as the key-down time, dwell time or hold time. [31]

Inter-key Time The inter-key time or the key delay is the time between the

release of one key and the press of the next. This time may be negative

if the key release for the earlier key occurs after the key press event for

the later key.

Words-per-minute (WPM) Rate The WPM Rate is the number of words

that a typist can type in a minute, on average. A “word” is standardised

to 5 characters or keystrokes, including spaces. This thesis considers

keystrokes: the final number of characters for a sample is not known

because a mouse was available for editing in the considered datasets.

The estimates of a typist’s speed using keystrokes is higher than using

characters because inevitably there will be corrected mistakes in a final

text that account for extra keystrokes. Traditional calculations of speed

on a typewriter utilize uncorrected text; mistakes are scored separately

because they are notoriously difficult to correct.

Error Rate The error rate is how often a typist makes a mistake. Errors

are difficult to automatically detect in a computer system; historically

they were marked against a hard copy of copy-typed text. To recognise

whether a particular keystroke is intended or not, the reader must have

some understanding of the text. Computers do not yet adequately under-

stand text, although they can spell-check for simple mistakes. Instead,

the correction rate—how often the text is corrected—can be accurately
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Algorithm FRR (%) IPR (%) Sample Content Classifier
Joyce and Gupta [40] 16.36 0.25 Username, password and names Statistical
D’Souza [21] 24.00 0.00 Username, password and names Statistical
Bleha et al. [9] 8.10 2.80 Name and fixed phrase Bayes
Monrose and Rubin [49] ≈7.86% ≈7.86% Username, password and names Bayes
Ong and Lai [52] ≈15.00 ≈15.00 Password Clustering
Monrose et al. [47] 2.00 60.00 Password Distance
Revett et al. [58] 5.60 5.60 Password Distance
Hocquet et al. [38] 3.27 3.75 Username and password Ensemble
Chang [12] 5.33 1.08 Password Wavelets
Yu and Cho [79] 0.30 0.00 Password One-class SVM
Yu and Cho [80] 3.69 0.00 Password GA-SVM
Rodrigues et al. [60] 3.60 3.60 Numeric password HMM

Table 2.1: Password hardening techniques

observed from a stream of keystrokes, but only if the mouse was not used

for editing.

2.3 Password Hardening

Biometric authentication systems typically replace existing authentication sys-

tems. They can also extend them, requiring the user to perform authentication

normally, and provide some biometric information about themselves as well.

Password hardening is an unusual biometric system because it augments an

existing authentication system: passwords. It is so named because it “hard-

ens” the strength of a password by ensuring that it is not only typed correctly,

but typed in the right way [53]. This is an easier task than static or continuous

typist verification because the password content is known and it is expected

that the patterns are well-defined because users should be familiar with their

own passwords.

Unfortunately, it is well known that many users pick bad passwords that

can be easily guessed, often choosing actual words or variations of them (e.g.

scholar becomes sch0lar) [41]. It is not surprising that this occurs, because

in many cases passwords are required to be changed regularly and must meet

a minimum length, forcing users to choose something memorable and causing

them to be more likely to disclose their password [2]. For example, the New

Zealand Government Communications Security Bureau recommends that pass-

words should be “changed every 90 days”, “checked for poor choices”, “consist

of at least seven characters” and “contain characters from at least three of

the following sets: lowercase letters, uppercase letters, digits, punctuation and

special characters”[32]. With such strict requirements on passwords, harden-

ing becomes an attractive biometric system because it provides an added layer

of security, even when users select bad passwords. Table 2.1 summarises the

techniques discussed in this section.
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Joyce and Gupta [40] were the first to use password hardening in a modified

login environment. They obtained a set of reference samples by requiring each

of 33 users to type his/her username, password, first and last names, eight

times each. They suggest that those four well-known strings would have an

identifiable pattern since the typing “does not involve difficulties like reading

text from paper”[40]. In experiments, 975 classifications were attempted (of

which 165 came from legitimate users) and the system achieved a FRR of

16.36% and an IPR of 0.25%. Their system used digraph times, where outliers

greater than three standard deviations from the mean were discarded before the

system began classifying new samples. The classifier was based on a statistical

approach. For a sample to belong to the user each digraph was required to

fall with 1.5 standard deviations of its reference mean, for all digraphs in the

password.

D’Souza [21] used the same approach as Joyce and Gupta, with two small

changes. Instead of throwing away digraph samples that were considered out-

liers, all digraphs were kept. Also, instead of requiring all digraphs to pass,

only 80% were required to pass for a sample to be classified positively. The

dataset consisted of 11 users with 51-60 login attempts each. The FRR was

24%, higher than that of [40]. The IPR was reported at 0%, but this should be

taken with a grain of salt because it was determined from only two impostors

attacking four users, and on two occasions the impostors did successfully gain

access.

Another similar approach to Joyce and Gupta [40] was proposed by Bleha

et al. [9]. Their system utilized names and fixed phrases, such as “University

of Missouri Columbia”. Digraph times were used to train a Bayes classifier,

where a threshold was set on the overall probability that a sample belonged

to the user. Their system was evaluated using 14 users and 25 impostors,

resulting in a FRR of 8.1% and an IPR of 2.8% from 539 legitimate logins and

768 attacks.

Joyce and Gupta’s work [40] was extended by Monrose and Rubin [49] in

1999. The same type of content was used for a sample: username, password,

and first and last names for a single participant. 63 people provided samples

over a period of 11 months, although it is unclear how many samples were

provided by each person. In this work several different classification algorithms

were investigated. In all cases the digraph times and keystroke durations were

calculated for all possible digraphs, and factor analysis was applied to select a

subset of features. The users were then partitioned into groups using k-means

clustering. Three different classifiers were applied to the same task, all three
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using a nearest neighbour approach after calculating a distance or probability

for a test sample. The first classifier used a Euclidean distance between pattern

vectors. The second used a non-weighted probability; it assumed each feature

was distributed normally and independently—that is, a näıve Bayes approach.

The third used a weighted probability; it was essentially the same as the second

approach, except that features were weighted based on their discriminative

power. Of the three methods, the weighted probability performed the best,

obtaining an accuracy of 87.18%.

The same authors went on to test a “Bayesian-like classifier” that charac-

terises the performance as a function of the number of classes being discrim-

inated. Each feature vector was assumed to be “distributed according to a

Gaussian distribution and an unknown vector is associated with the person

who maximises the probability of the measurement vector”[49]. The accuracy

of this technique was higher than the other three techniques, achieving 92.14%

on the same dataset. Monrose and Rubin’s approach is unique compared to

other approaches surveyed in this section because they use identification for

authentication. As mentioned in Chapter 1, identification systems find the

user from a particular group of known users. The problem in this case is that

the difficulty of verification depends on the set of users the system was trained

on. Some continuous typist verification techniques also use this approach, as

we will see later in Sections 2.4 and 2.5 and also in Chapter 3.

In 2000, Ong and Lai [52] asked 20 people to type three passwords 20 times,

resulting in 60 samples. They repeated this on two other occasions, each on

separate days and with the same users, over a period of two months. Their

classifier used the digraph times and a modified k-means clustering algorithm.

If a given password formed a cluster on its own, it was rejected as belonging to

an impostor. Compared to other techniques, their system performed poorly.

Their best results have a FRR and IPR of approximately 15% each.1 However,

they make an interesting observation: when impostors were allowed to watch

users enter their passwords they had a higher chance of a successful attack.

Monrose et al. [47] performed password hardening using a system where all

users had the same password. 481 successful logins were collected, for 20 users.

Features were selected from digraph times and keystroke durations, forming

a vector of distinguishing features for each user. The Hamming distance was

used to determine how close a reference vector was to a test one. Their system

had an unusually high IPR of 60%, and a FRR of 2%. This is explained

1These values were read off a graph and may not be exact, no tables or actual values

were reported in the work.
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by their focus on hardening logins, instead of replacing them. Rather than

ensuring that it is as difficult as possible for an attacker to pass, they consider

it more important that the FRR is low because the password patterns are not

being used on their own.

More recently, Revett et al. [58] used 14 character passphrases from eight

users for password hardening. They use the average, median, standard devi-

ation, and coefficient of variation to form a feature vector for each digraph.

The reference feature vector for each digraph was compared to the values of an

unknown sample, using a custom distance measure that incorporated all four

features. The distances for each digraph were summed, to obtain an overall

distance between the reference profile and the user. If the overall distance

reached the threshold for each user, the unknown sample was classified posi-

tively. Each password was entered 12 times to train the system, and attacked

16 times by each of 43 attackers. In this work, the authors evaluate the system

using the EER, instead of separating the IPR and FRR. Their system obtained

an EER of 5.6%, but using smaller (different) passphrases that were only eight

characters long they managed to achieve an EER of 4.1%.

Another approach that used a four-feature vector for each pair of keys was

introduced by Hocquet et al. [38]. In this case the feature vector consisted

of four timing values for a single digraph: digraph time, keystroke duration,

inter-key time and time between releases (i.e. both fingers up). These feature

vectors were used to train a one-class classifier in combination with a handful

of other features, such as the mean time and associated standard deviation

of the entire sequence. In total, a set of 31 features was available. The clas-

sification algorithm was a fusion of three classifiers: a statistical classifier, a

time discretizer and a ranked time method. The dataset used for evaluation

contained 20–110 logins and 20–100 attacks for each of 38 users, and each sam-

ple was a username and password pair between eight and 30 characters long.

When user-specific parameters were employed their system obtained a FRR of

3.27% and an IPR of 3.75%, the lowest of all the techniques discussed so far

in this section.

Keystroke timing vectors are a popular feature set for password hardening.

Chang [12] also used timing vectors. First, a vector of digraph and duration

times for a password was stored in a keystroke timing vector. Second, discrete

wavelet transformation was applied to the timing vector, producing a keystroke

wavelet co-efficient vector in the relevant frequency domain. Finally, both

the original timing vector and the wavelet vector were scored for consistency.

For prediction, a sample belongs to a user if the score reaches the threshold.
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Only 20 keystroke patterns were used to train the system; an additional 75

legitimate and 75 attacker samples were used to evaluate each password. In

total, 21 different passwords were evaluated, achieving a FRR of 5.33% and

an IPR of 1.08%.

The dataset used to evaluate Chang’s work [12] was originally collected for

work by Yu and Cho [79]. They hold the current record for password hardening,

attaining a FRR of 0.3% and an IPR of 0% for the best linear support vector

machine (SVM) classifier, where impostors are not allowed any practice. The

FRR jumps to 0.8% when the impostors are allowed to practice the passwords

first. In the full dataset, 21 users typed their password between 150 and 400

times and 15 imposters typed each password five times unpracticed, and also

an additional five times after being allowed to observe how the user typed the

password. Only the last 75 patterns typed by each user were used for testing;

the rest were used to train the classifier. Each password was stored in a timing

vector that contained the digraph and duration times for the entire password;

however, if any of the vector elements were in the upper or lower 10% of times,

the entire vector was discarded. Depending on the user’s consistency, between

20% and 50% of their data may have been discarded. It is unclear whether

consistency checking was performed only on the training data. Finally, a SVM

set up for one-class classification was used to determine whether a given sample

came from a user or an impostor. Two and four layer auto-associative neural

networks were also tested, but ultimately the SVM produced the best results.

The same authors produced a similar method the following year [80]. They

wrapped a genetic algorithm (GA) around a SVM. The GA is used to “cleanse”

the data, selecting relevant features for the final SVM to use. They used the

same dataset from their previous work, achieving a FRR of 3.69%—much

higher than their previous technique. However, no timing vectors were thrown

away, and only 50 (randomly selected) samples were used to train each GA-

SVM model.

Although all the password hardening techniques discussed thus far operate

on alphanumeric sequences, there are some situations where a password may be

limited to a particular set of keys. All the techniques would continue to work

in this scenario, but Rodrigues et al. [60] address this problem directly. They

consider passwords that only contain numeric characters, such as PIN codes

for an ATM. Each password was eight numeric characters long, and was typed

40 times by a user and 30 times by an attacker. Twenty users participated,

using one password each. Each user’s samples were collected at a rate of ten

per session, in four separate sessions. Using a hidden Markov model (HMM),
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their classifier accomplished an EER of 3.6%, similar to techniques that utilize

full alphanumeric password content.

Regardless of which keys are pressed, the patterns associated with typ-

ing are not limited to timings between key events. Lau et al. [44] suggest

that relative key orderings for events and shift key patterns could be used

for authentication. For the former, they hypothesize that users press and

release keys in a unique way. Considering the two keys A and B, three differ-

ent ordering patterns can generate the phrase AB: {Adown, Aup, Bdown, Bup},

{Adown, Bdown, Aup, Bup} and {Adown, Bdown, Bup, Aup}. A shift key pattern is

the case of which shift key is pressed for each letter. Lau et al. propose that

there are four classes of users: strict left shift users, strict right shift users,

users who use both the left and right and are consistent for a given letter, and

users who use both but are inconsistent on some letters. Four categories are

hardly enough to form a security measure on their own; it is possible for a

lucky impostor to fall into the same class as the user. The idea of shift key

patterns and relative key orderings could nevertheless be used to strengthen

existing time-based approaches.

Another method of strengthening existing approaches was proposed by Cho

and Hwang [14]. They focused on improving the quality of the timing vector

patterns because, traditionally, inconsistent timings are either discarded or re-

moved via feature selection. They used musical rhythms from popular tunes

to attempt to create more unique entry patterns for passwords. They also at-

tempted to increase entry consistency by providing audio and/or visual cues.

They found that “the proposed artificial rhythms were found to be significantly

more unique than those [...] obtained with a natural rhythm,” and the samples

typed with cues “were found to have decreased inconsistency in all cases”[14].

Unfortunately, this study was only a preliminary one with a single user, and

the authors admit that further trials are needed. There is another concern:

password hardening makes it more difficult for an impostor to successfully ac-

cess a system even when the password is known, but increasing the consistency

and providing a rhythm for entry could actually make it easier for an impostor

to attack the system. For example, if the attacker knows the password and the

rhythm, and the cue is provided as part of the entry process, they may find

it easier to mimic the user’s patterns than the case where no rhythm or cues

were ever used.

Password hardening has arguably had great success. Including the tech-

niques discussed here, commercial systems like BioPassword [8] are available.

Not all use just the password; some use additional information such as the
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Algorithm FRR (%) IPR (%) Sample Content Classifier
Gaines et al. [28] 0.00 0.00 6000 characters of prose Manual
Umphress and Williams [76] 12.00 6.00 1400+300 characters of prose Statistical
Bergandano et al. [7] 0.00 0.14 683 characters of prose Nearest Neighbour

Table 2.2: Static typist verification techniques

user id, the user’s name, or fixed phrases. However, they are all examples of

password hardening because they attempt to strengthen an existing password-

based authentication mechanism.

2.4 Static Typist Verification

Password hardening is a special case of static or “fixed text” typist verifica-

tion. In both cases, the text entered by the typist is known in advance. The

difference between the two is that password hardening strengthens an existing

authentication system, but static typist verification can completely replace it.

In this case, the text is presented to the typist to copy-type, and this is what is

used for authentication. Although the content may be known in advance, the

typist is not necessarily proficient at typing it. This is counteracted by using

samples that are typically much longer than those used for password harden-

ing, often an entire sentence in length, or longer. Table 2.2 summarise a few

techniques that are intended to replace an existing authentication scheme.

Gaines et al. [28] was the first to formally introduce the idea of identifying

a user by their typing patterns, and did so using static typist verification. In

Gaines’s experiments, six professional secretaries provided two samples each

with a gap of four months between their collection. One sample contained

three passages, varying in length but each with around 2000 characters. The

digraph time was calculated for all keystrokes in the input. It was found there

were 87 digraphs that appeared ten or more times in all samples for all typists,

and after calculating significance statistics it was discovered that five of these

digraphs together discriminated perfectly between the six secretaries. The five

selected digraphs were in, io, no, on, ul. The last digraph, ul, could be

substituted with il or ly, since the four core digraphs plus one of ul, il or

ly gave perfect authentication. Even though the recordings were performed

on a computer, no automated classification algorithm was used to distinguish

between the typists—the typists could be perfectly classified by hand.

Gaines’s success in static verification was later reinforced by several other

papers in the area. Umphress and Williams [76] collected two typing samples

from each of 17 users. Both samples were collected by asking the user to
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copy-type some text as quickly as possible, presented in the form of a typing

test. The reference sample used for training contained approximately 1400

characters of prose, while the test sample only contained around 300 characters.

The keystrokes were grouped into words, and the first six digraph times for

each word were calculated and stored in a matrix. The classifier was similar to

Joyce and Gupta’s [40]: each digraph must fall within 0.5 standard deviations

of its mean to be considered valid. A threshold was placed on the proportion of

valid digraphs, and samples that met or exceeded it were classified as belonging

to the user. Their system obtained a FRR of 12% and an IPR of 6%.

The current state of the art in static typist verification was achieved by

Bergandano et al. [7]. Instead of digraph times, they used trigraph times for

features. Each trigraph was placed in an ordered list based on its average

time (and then alphabetically if two or more trigraphs had the same average

time). The idea is that a legitimate user’s sample will be in approximately

the same order as their reference sample, because anything that may affect a

typist’s pattern will do so by changing all average trigraph times in a roughly

uniform way. For every user the lists of trigraphs from the test sample and all

reference samples were compared. For a sample to be classified as belonging

to a given user, the test sample must be closer to that user than any other

person in the database. Evaluation was performed using 44 users and 110

attackers, the users typing five samples each but the attackers typing only

one. The samples were 683 characters long. Their system accomplishes a FRR

of 0% and an IPR of 0.14%, but has a FRR of 7.28% when the IPR is set to

zero. This FRR is poorer than the best password hardening technique, [79],

which achieves a FRR of less than 1%. However, this technique can be used

to replace an existing password authentication system, so a different trade-off

may be appropriate.

Much of the research on static typist verification is better classified as pass-

word hardening because it is designed to strengthen an existing system. There

is at least one known example of a commercial use of static typist verification

too, Psylock [56]. Psylock replaces a password with a sentence of text to be

copy-typed. Its exact performance is not reported; however, the provider’s

website suggests that it may have an IPR of <1% and a FRR of <5% [57].

2.5 Continuous Typist Verification

Continuous typist verification using ‘dynamic’ or ‘free text’ is much closer to

a real world situation than using static text. It is unrealistic to expect the
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Algorithm FRR (%) IPR (%) Sample Content Classifier
Song et al. [67] - - - Markov Model
Monrose and Rubin [48] 80.00 80.00 Unknown Weighted Probability
Dowland et al. [20] - - Global logging Statistical
Dowland and Furnell [19] 0.00 4.90 Global logging Statistical
Nisenson et al. [50] 5.25 1.13 Task responses LZ78
Gunetti and Picardi [33] 3.17 0.03 Artificial emails Nearest Neighbour

Table 2.3: Continuous typist verification techniques

users to type the same document twice in a world where copy and paste are

universal computer functions. Continuous typist verification allows the input

to be completely different for each sample. It is also more desirable than

password hardening or static typist verification because it continues to check

that a legitimate user is operating the system even after a standard log-in

procedure has occurred. Unfortunately, it is also more difficult: the user can

enter whatever they please, so samples must be sufficiently large that they

have enough common elements—otherwise a confident classification cannot be

guaranteed. This section describes all known continuous typist verification

techniques. They are summarised in Table 2.3.

Song et al. [67] investigated using all possible digraph combinations in a

profile for a user. They calculated the digraph, duration and interkey times for

pairs of keys, as well as the latencies for trigraphs and entire words. Their sys-

tem can make predictions continuously by employing a Markov model. Given

the current state of the system, the model can calculate the probability of a

given event using normal distributions for each recorded time. No empirical

results were presented in the paper.

Before attempting password hardening as reviewed in Section 2.3, Monrose

and Rubin [48] attempted to use their three distance-based classifiers on free

text. For evaluation purposes they recorded a combination of fixed and free

text samples from 42 users over a period of seven weeks, but reduced their

final dataset to 31 users due to timing issues on some machines. For fixed text

samples, an accuracy of 90.7% was achieved using their weighted probabil-

ity classifier. Accuracy diminished significantly when fixed text samples were

compared to free text ones, and when free text samples were compared to each

other—48.9% and 21.5% respectively. Despite their poor free text results, they

claim that with future work “free text will perform comparably to that which

can be obtained with structured text”[48].

A preliminary investigation by Dowland et al. [20] profiled ten users using

digraph times collected using a custom-made high accuracy timer. Any times

less than 40ms or greater than 750ms were immediately discarded. If the

standard deviation for a given digraph was larger than its mean, the upper
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and lower 10% of the values were removed and recalculated, as in Yu and

Cho [79] discussed earlier. If there were less than 50 examples of a given

digraph, then it was removed completely from the dataset. In order to classify

a sample, a similar approach to that of Joyce and Gupta [40] was applied: a

digraph was only valid if it came within x standard deviations of its mean.

The value x was a parameter of the classification algorithm, and Dowland et

al. tested the values 0.5, 1, 1.5 and 2. Although no final empirical results were

reported, they found that for at least four users the digraph acceptance rate

was the highest when a sample did belong to the given user. They concluded

that keystroke analysis “had potential” [20].

A longer trial by Dowland and Furnell [19] collected around 3.5 million

keystrokes from 35 participants over a period of three months. Keystrokes were

logged globally across all applications on the user’s computer. Global logging is

unique to this work; in all other systems users were recorded when performing

a set task. This meant that samples are likely to have a higher variation in

typing. For example, a user typing in an instant messaging program is likely to

provide short, sharp responses, whereas the same person typing in a text editor

may have slower typing patterns because they are concentrating on composing

their work. Global logging includes all the typist’s behaviours, but does not

allow the classification system to take advantage of task-specific typing habits.

Dowland and Furnell [19] used an identical method to Dowland et al. [20],

except that the low pass filter was reduced from 40ms to 10ms to prevent po-

tentially useful digraphs from being removed. The FRR was set to 0%, and

using digraphs for classification they achieved an IPR of 4.9%. However, they

noted that some users had inconsistent typing patterns, which dramatically af-

fected the average IPR. By removing the five worst users their system achieved

an IPR of 1.7%. They argue that a user’s typing should be monitored only

if “the method was shown to be a discriminating authentication technique for

that user” [19].

Nisenson et al. [50] attempt to use a compression technique, LZ78, modified

for prediction, to verify a typist. They collected free text samples from five

users and 30 attackers. Each sample was either an open answer to a question,

some copy-typing, or a block of free typing. All samples for each participant

were collected in a single session. The samples were kept as a continuous stream

of events and time differentials, each becoming a symbol for the classifier.

The time differentials were quantized using clustering, preventing the possible

number of symbols provided to their classifier from becoming too large. The

LZ78-based classifier was trained on the stream of symbols. Given a new

31



symbol and the context in which it appears, the classifier predicts the likelihood

of that symbol occurring—regardless of whether it is a key event or a time

differential. Although their system is capable of providing predictions on a

single event or time, they sum the log likelihood across all symbols and make

predictions on an entire sample. With a user-specific threshold set on the

probability, their system attains a FRR of 5.25% and an IPR of 1.13%.

Gunetti and Picardi [33] propose the most accurate continuous approach so

far. Their technique is based on static typist verification work by Bergandano

et al. [7], discussed in the previous section. However, their work differs in

two ways. First, instead of considering only trigraphs, they do not limit the

size of the n-graphs they rank—only making the restriction that the ranking

must occur on lists made up of the same sized n-graphs. They term their

relative rank-based measure the “R measure”, with R2 using digraphs, R3

using trigraphs, and so on. Second, they add an absolute measure, the “A

measure”. This is used to ensure that attackers who type at a different overall

speed to the user will not be classified as the user, even if relatively they appear

the same. The two measures can be used separately, or combined. No matter

which measures are used, the same nearest neighbour approach is taken as

in [7], so that the performance is dependent on the set of users the system was

trained on.

Evaluation was performed using a set of 40 users, each providing 15 samples

of freely typed Italian text approximately 800 characters long. 165 attackers

additionally provided one sample each. All samples were typed as if the partic-

ipant was typing an email. Using the set of combined measures R2,3,4A2, and

the aforementioned dataset, their system accomplishes a FRR of 3.17% and

an IPR of 0.03%. Again, predictions are made periodically on entire samples

rather than individual events. They argue that small samples can simply be

merged together to form larger ones, so the need for large samples of text is

not an issue. The main concern with this approach is that although it achieves

an accuracy comparable to password hardening techniques, it requires a good

database of users in order to do so.

In principle, the requirement of data from other users seems counter-

intuitive. It should be possible to confirm identity without making comparisons

with a large group of people. However, Gunetti and Picardi’s [33] technique

achieves a commendable accuracy, and does so utilizing an innovative relative

approach. Nisenson’s approach is also interesting: treating the event/time

stream as a sequence allows the context of a digraph to be taken into account.

This context is not considered by any other technique where empirical results
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are available, even though there are many references in the literature that

allude to it being a factor in typing.

The last two techniques discussed, Nisenson et al. [50] and Gunetti and

Picardi [33], are reviewed in greater detail in the next chapter, where they

are also re-implemented and compared to each other. Although numerous

candidate techniques for replication have been discussed in this chapter, these

two methods take unique approaches to typist verification. They also produce

low FRR and IPR values, making them good choices for further investigation

because they are already effective continuous typist verification techniques.
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Chapter 3

Replicating the State of the Art

This thesis argues that there is enough information in a user’s typing pat-

terns to use them for biometric authentication, and as we have seen in the

last chapter, many research projects have attempted to substantiate this same

hypothesis. However, the broad overview in Chapter 2 does not describe the

intricacies of typist verification—in many cases the system has been set up in

such a way that the reported accuracy can only be achieved in restricted situ-

ations. To demonstrate this, this chapter evaluates two techniques introduced

in Chapter 2: Learning to Identify a Typist [50] and Keystroke Analysis of Free

Text [33]. These two techniques report by far the best results for continuous

typist verification—around 96.8% (optimized parameters) and 98.4% (opti-

mized parameters and using the best distance measure) accuracy respectively.

None of the others report accuracy levels consistently above 95%.

The two selected techniques employ different approaches to the problem.

The first sets a probability threshold for a single user, while the second finds the

nearest neighbour between a given sample and all other users in the system.

In each case, the authors were emailed to clarify small points of detail and

obtain the original datasets. The techniques were then re-implemented (in the

Java programming language) and evaluated using the original dataset from

the published study. The process of reconstruction, the comparison of the

two systems and the results of the experiments all provide fresh insight into

difficulties associated with the problem of continuous typist verification.

The next section summarizes the statistical methodology and the test har-

ness used for evaluation. The details of the experiments and the results ob-

tained are described in Sections 3.2 and 3.3. Finally, the merits of the two

methods are compared in Section 3.4, and Section 3.5 draws some conclusions.

3.1 Statistical Methodology

To facilitate testing under identical conditions, an interactive workbench for

the algorithms and data was built. The workbench allows users to load pre-
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Figure 3.1: The main workbench window

recorded typist data, partition it into groups, and perform self-identification

and user-vs-attacker tests based on a particular algorithm and partition. These

algorithms are adaptive: they work by building a model for each user from

that user’s data and all other users’ data. The purpose of the model is to

distinguish between that user’s data and the rest, and classify new data samples

as belonging to that user or not.

In order to make the most of the available data, a “leave-one-out” test

methodology is adopted. For a self-identification test, one sample belonging

to a user is held out when the model is built. The held-out sample is then

tested against the model and the success of the test is recorded. A full self-

identification run for a particular user involves repeating this procedure for

each of the user’s typing samples, and the average result gives the overall self-

identification accuracy for that user. Averaged over all users, self-identification

determines the false rejection rate (FRR) of the system: the chance that a

legitimate user will be erroneously identified as illegitimate.

For a user-vs-attacker test, a model is built for a given user from their

entire set of samples minus one held-out sample. All the attacker samples are

classified using the hold-one-out model. This is repeated for every possible

hold-one-out model for the user. Since the technique in Section 3.2 requires

no negative data for building a user’s model, data from other users can be

used for attacking the system without having to hold them out when building

the model. The second technique (see Section 3.3) uses a nearest neighbour
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approach among all users, so before utilizing a user’s samples for attacking,

their data must first be temporarily removed from the model. The overall

accuracy of the user-vs-attacker test is the cumulative accuracy for all hold-

one-out models tested with the attacker data. The user-vs-attacker test gives

the impostor pass rate (IPR) of the system.

Ten-times ten-fold stratified cross-validation is also performed using each

dataset. In this case, the data is randomly and equally distributed into ten

groups, or “folds”, and a model trained using nine of the ten folds. The

outstanding fold is used for evaluation. This is repeated for every possible

held-out fold, and the overall process repeated ten times to ensure that any

results are not caused by a particular fold sampling.

The results from cross-validation can be used to obtain the area under

the Receiver Operating Characteristics (ROC) curve, usually known at the

AUC [77]. As discussed in Chapter 2, the AUC is a measure of classifier

performance on a dataset that is independent of any arbitrary thresholds set

by the classification algorithm: it is an estimate of the probability that a

user’s sample will rank higher than an attacker’s one. The AUC results were

not presented in the original studies, but are included here to allow a direct

comparison between techniques. In all experiments the weighted AUC is used,

to ensure that users with different numbers of training samples do not adversely

affect the results. The weighted AUC is calculated by determining the AUC

for each user, and weighting this value by the proportion of samples in the

system belonging to that user.

3.2 Learning To Identify A Typist

The LTIAT (Learning To Identify A Typist) technique was proposed in Nisen-

son et al’s paper [50] Towards Biometric Security Systems: Learning To Iden-

tify A Typist. It uses both key-press and key-release events to build a profile of

a user. LTIAT is based on the well known Lempel-Ziv (LZ78) lossless compres-

sion algorithm [82], modified to make more effective use of a limited amount of

training data [50]. The method was originally tested using a dataset contain-

ing a single sample from each of 5 users and 30 attackers, which was kindly

provided by Nisenson et al. for use in these experiments.
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3.2.1 Algorithm

The original input is a continuous stream of keyboard events, both key-press

and key-release, along with each event’s time of occurrence in milliseconds (the

actual timing accuracy is discussed below). The first step is to transform this

stream into a sentence of events and quantized time differentials. Specifically,

the input becomes:

e1, ∆1, e2, ∆2, . . . , en−1, ∆n−1, en,

where e1 and e2 refer to the first and second keystroke events recorded, each

either a press or a release, and ∆1 is the time between the two. Next, the

input stream is divided into “sentences,” each of which is deemed to end when

a maximum time differential ∆max is encountered. This provides a convenient

way of partitioning the input stream into independent samples, and of discard-

ing long time delays because keystrokes that are minutes apart are unlikely to

be related. Then the differentials ∆ are modified by clustering the values using

scalar quantization into a predetermined number Q of clusters and replacing

each one by its cluster centroid. The actual quantization method used is un-

clear in [50]; however, k-means is used here after the author confirmed that

this would be appropriate.1 The purpose of this step is to reduce the size of

the alphabet from which the items in the input sequence are drawn in a way

that also smooths some of the outliers in the timing data. The value of Q was

optimized as described below.

To build a model for a user u, the set of training sentences Du belonging to

u are used to build an LZms Tree. LZms is a variant of the LZ78 scheme [82]

that is used for text compression. The general idea is to build a tree using

the text as input. Each time a new symbol is seen in the current context,

it is added as a branch to the tree and the algorithm returns to the root.

If the symbol has been seen before at the given node, the algorithm follows

the branch and awaits the next symbol. In order to use the LZ78 tree for

prediction, each node keeps count of the number of distinct symbols it has

seen [43]. Sentences are included into the prediction tree in the manner above,

where each key-press, key-release and quantization interval is a symbol.

In order to build a larger tree with many contexts from a small amount of

input, LZms makes two modifications to the standard LZ78 method. Such a

tree will give an unseen sentence a greater chance of tracing to a leaf node. The

first modification is known as “input shifting”. The idea is simple: the sentence

1Nisenson, personal correspondence, 8 April 2006.
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is learnt in its entirety, then the first symbol is removed and the sentence is

learnt again. This is repeated s times, where the value of s is optimized as

described below.

The second modification is called “backshift parsing” and is designed to

provide some prior context when a new sentence is added. When the algorithm

returns to the root after seeing a new symbol, m prior symbols are traced down

the tree; then normal parsing resumes from the last trace node. The value m

determines how many prior symbols are held in context when the algorithm

returns to the root, and is optimized as described below in Section 3.2.2.

The probability that an unseen sentence x belongs to a particular user u’s

model is determined by tracing x through the fully-built tree and calculating

the log-likelihood along the way. In order to translate this into a decision, a

cutoff threshold is chosen below which x is deemed to belong to an impostor.

A suitable threshold is determined when the model is built by repeatedly

holding out a sentence from the user’s data Du and classifying the held-out

sentence using the model built from the remaining sentences. At run time

any sentence whose log-likelihood falls below the threshold is deemed to come

from an attacker, while sentences whose log-likelihood exceed the threshold

are classified as belonging to u.

3.2.2 Experimental Setup

The LTIAT algorithm was implemented as described by Nisenson et al. [50] and

reviewed above, and incorporated into the workbench. In order to determine

the best values for the parameters—the number of clusters Q, input shifts s

and back shifts m—leave-one-out optimization was used. The particular values

tested for each parameter were identical to those used in Nisenson’s work: Q

= 80, 90, 100, 110, 120; m = 0, 1, 2, 3, 4, 5; and s = 0, 1, 2, 3, 4, 5. A

single leave-one-out optimization tests all 180 possible combinations of Q, s

and m in order to find the settings that minimise the FRR. If more than one

combination has the best settings then the combination with the smallest value

of Q is used, with the smallest value of s then m being employed to break any

ties. Results from this classifier will be optimistic since parameter tuning is

performed on a per-user basis.

The accuracy of the times in this dataset appears to be 1–2 ms. The data

obtained was already segmented into the sentences used in the original ex-

periment and this same segmentation was used in the experiments here. The

original paper reported that “the sentences, both before learning and before

39



testing, were split into segments of 100 keystrokes (arbitrarily set)”, suggest-

ing that the split sentences contained at most 200 keyboard events (key press

and release for each keystroke). However, after attempting to reproduce this,

the splitting required to get the same number of self-identification attacks was

actually 50 events per sentence. This means that the sentences were split into

segments with 100 symbols (including both events and their times as sym-

bols), rather than 100 keystrokes.2 The authors confirmed that no overlapping

segments were used. Because the original sentences were not merged together

before splitting took place, several blocks contained fewer than 50 symbols—

since these smaller sentences were not removed in the original experiments,

they were also included here. For the user-vs-attacker tests, the data was not

split at all. Although the data for each user was originally obtained in a sin-

gle typing session, each sentence was treated as an independent sample when

calculating the system’s FRR and IPR.

Notwithstanding the description in [50], correspondence with the authors

confirmed that the original sentences were not segmented by using some ∆max

value. Instead, the data was obtained by asking subjects to type the fixed

sentence To be or not to be, that is the question, and answer certain ques-

tions (e.g., What is your favourite programming language and why? ), and each

sentence was defined as a response to one of these tasks. All responses were

typed in English and encoded using the keyboard driver codes. There are 164

sentences in total in the dataset; each of 30 attackers provided 4 sentences and

the users provided between 5 and 19 sentences each.

Unfortunately the original data is dubious: six attacker sentences contain

between four and eight events, corresponding to between two and four charac-

ters of text. On closer inspection all six sentences are the 4th sentence provided

by each attacker, and correspond to the (assumed) question “Do you have any-

thing else to add?”3 In five of the six cases the response is “no” and the other

is “ok”. Extra characters are invisible keystrokes—shift and backspace. Since

the smaller sentences are never used for training and are attacker sentences,

including these small sentences will artificially inflate the IPR of the system.

Ideally a minimum size should be imposed on all experiments to ensure that

the size of the sentences does not affect the reported accuracy. This is also

2In personal correspondence, the authors conceded that 100 symbols may be correct.
3The authors did not clarify what all the questions were; however, after reconstructing

the dataset from keyboard driver codes into readable text some of the questions are obvious.
In the case of sentence four, one response, including a missing apostrophe, was “I dont
anything else to add” and all responses made sense for the question “Do you have anything
else to add”.
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Classification Errors Total Classifications
No. of passed impostors 63 6716
No. of false alarms 10 276

Table 3.1: Experimental results for the LTIAT algorithm

Evaluation Method IPR (%) FRR (%) Weighted AUC
Original [50] 1.13 5.25 N/A
Re-implementation 0.94 3.62 N/A
CV 12.92 3.16 0.962
CV with cleansed dataset 8.38 3.79 0.965

Table 3.2: FRR/IPR results for the LTIAT algorithm

true of the self-identification tests—split sentences that have less than 100 sym-

bols should not be included in the experiments. However, it does not appear

that the data was preprocessed in the original experiments, so the replicated

experiments below do not include any pre-processing either.

Results for ten-times ten-fold stratified cross-validation are also presented

for the LTIAT algorithm. The AUC was computed by ranking based on the log

likelihood. It has not been calculated for the self-identification and user-vs-

attacker experiments—only the cross-validation experiments—because there

are different models used for those two experiments (due to the sentence split-

ting). Results for performing cross-validation on a “cleansed” dataset are also

reported in the next section. In this case, all sentences were split into blocks of

50 events and only full sentences that did not contain any less than 50 events

were included in the dataset. All experiments were performed on a 2.4GHz

machine with 1GB of RAM.

3.2.3 Results

The results from the experiments (shown in Tables 3.1 and 3.2) are approx-

imately the same as those in the original paper, confirming the accuracy of

the re-implementation. The non-significant variation can potentially be ex-

plained by the choice of k-means as a quantization algorithm; in the original

work a different method may have been used. The cross-validation results

have a substantially different IPR to the original experiments, although the

FRR is similar to previous results. The difference in IPR is justified: for

user-vs-attacker tests an entire impostor sample is used for attacking, in the

cross-validation tests an impostor’s sample is at most 50 events long—much

smaller than the original sample lengths used to calculate the IPR and the

same length as a user’s samples in the self-attack experiments. The LTIAT

algorithm appears to have difficulty correctly classifying smaller samples as

belonging to an impostor, and so a substantial difference is observed between
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the normal and cleansed datasets: the only difference is that the latter re-

quired that all samples contain exactly 50 events and the former used samples

between 1 and 50 events long.

Each classification takes approximately 10 milliseconds, not including the

offline time to build each user’s model. The samples in this dataset have not

been collected over a sufficiently long period of time to support any conclusions

about whether this technique is appropriate for continuous use over periods of

several hours, days or weeks. However, these results have verified that it does

perform well when presented with accurately timed data collected in a single

session.

3.3 Keystroke Analysis of Free Text

The KAOFT (Keystroke Analysis Of Free Text) technique was proposed in

Gunetti and Picardi’s paper [33] Keystroke Analysis Of Free Text. Several

samples are collected from a user, and each is transformed into a list of n-

graphs, sorted by their average times. To classify a new sample it is compared

with each existing sample in terms of both relative and absolute timing. Only

digraphs that appear in both the reference and unknown samples are used for

classification.

3.3.1 Algorithm

KAOFT uses two measures to characterize the distance between typing sam-

ples. The first, introduced by Bergandano et al. [7], is known as the “R-

Measure” and involves relative times. The second measure is known as the

“A-Measure” and was created by the KAOFT authors, Gunetti and Picardi.

The R-Measure is based on the durations of n-graphs, that is, the time between

the first and last of n subsequent key-presses. First, these are extracted from

each sample. Then the n-graphs that are common between two samples are

determined, and the list for each sample is ordered by its average time (using

alphabetical ordering as a tie-breaker). The degree of disorder of each list is

found by taking the sum of the distances between the position of each n-graph

in sample 1 and its position in sample 2.

We denote by R2(x, y) the degree of disorder of sample x with respect to

sample y over n-graphs of size n = 2. Different R-Measures can be combined:

R2,3(x, y) is defined as the sum of R2(x, y) and R3(x, y) weighted by the number

of graphs used to compute each measure. Formally, R measures are combined
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like this [7]:

Rn,m(x, y) = Rn(x, y) + Rm(x, y)M/N

where N and M are the number of n-graphs and m-graphs that the samples

x and y have in common. It is required that N > M . This formula can be

extended to arbitrary numbers of n-graphs by including further terms in the

sum. This formula is not asymmetric: although in the above equation R3,2 is a

different calculation to R2,3, the constraint N > M is violated by R3,2 because

there will be more shared digraphs than trigraphs. There is only one possible

way of combining the measures R2 and R3, and that is R2,3.

The R-Measure copes with effects such as fatigue by assuming that all

n-graphs are affected in a similar manner. If the user slows down, their n-

graph durations increase but probably retain the same relative ordering. How-

ever, users who have different timings but the same relative orderings will be

confused with each other. To combat this, an additional “A-Measure” com-

pares the absolute times of n-graphs to ensure that the typing speed is similar

enough between the two samples to have come from the same user. Two n-

graph durations a and b for the same graph are defined to be similar if 1 <

max(a,b)/min(a,b) ≤ t. We use t = 1.25 because this value was found to give

the best results in [33]. The A-measure is defined as

At
n(x, y) = 1 − (α/β),

where α is the number of similar n-graphs between x and y, and β is the

total number of n-graphs shared by these two samples. A-Measures can be

combined in the same way as R-Measures, and the two can be summed. For

example, R2(x, y)+A2(x, y) is the combined distance value for n-graphs of size

2.

To identify whether sample x comes from user A, we first settle on a given

distance measure d. Then the mean distance between A’s set of reference

samples is determined, obtaining m(A). Next we calculate the mean distance

between the unknown sample x and all other registered users, B, defined as

md(B, x) for each user B. Sample x is deemed to belong to user A if the

following conditions apply [33]:

1. md(A, x) < md(B, x) for all registered users B different from A;

2. md(A, x) is smaller than and closer to m(A) than it is to any other

md(B, x) value. That is, the following two conditions hold:

(2a). md(A, x) < m(A)
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(2b). md(A, x) < 0.5(md(B, x) + m(A))

The idea is that to classify x as belonging to A it must resemble A more closely

than it does any other registered user, and moreover must be close enough to

A as well.

3.3.2 Experimental Setup

The KAOFT algorithm was implemented as described by Gunetti and Pi-

cardi [33] and reviewed above, and incorporated into the workbench, using

the value for t = 1.25, as mentioned previously. The dataset originally used

for evaluation, provided by Professor Gunetti, was gathered over a 6-month

period and contains 15 samples from each of 40 different users. Users were

asked to provide no more than one sample of 700–900 characters per day, but

could provide it at any time of day. They were allowed to type whatever they

liked, except that they should not type the same text for more than one sam-

ple. The sample was collected using a web-based form that recorded ASCII

characters and associated key-press times. Attacker data was collected in the

same way, except that 165 additional people provided a single typing sample

each. Not all users gave permission for their samples to be released to a third

party, so the dataset provided contained data for only 21 users, along with the

165 attackers.

Although the dataset used here is only half the size of the original, it

still provides useful information for comparison purposes. Because the timer

was implemented in user space4 the resolution is approximately 10 ms. The

samples were not broken up in any way for self-identification tests: each sample

contains all the data recorded by a user in one session. The samples given to

the system are on average 5 times longer than those for the previous technique.

The KAOFT data and algorithm was also tested using ten-times ten-fold

stratified cross-validation in order to determine a weighted AUC value that can

be compared to the previous technique. Unlike the LTIAT technique, KAOFT

cannot produce a probability and is not easily modified to do so. Therefore,

the results of the KAOFT experiments correspond to a single point on the

ROC curve. The AUC can be estimated by plotting the point, then drawing

the curve as two straight lines—from (0,0) to the point, and from the point

to (100,100) (assuming a percentage point plot). The AUC is then the area

under this “curve”.

4In current versions of Linux, user space has a resolution of approximately 10 milliseconds,
compared to kernel/system space which has a resolution of 1–2 milliseconds.
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Table 3.3: Experimental results for distance measures R and A
Adopted Distance Measure R2 R2,3 R3,4 R2,3,4 A2 A2,3 A3,4 A2,3,4

No. of passed impostors 406 572 779 1220 996 1367 1750 1634
No. of false alarms 24 42 47 83 65 101 146 155
IPR (%) 0.28 0.39 0.53 0.83 0.68 0.93 1.19 1.12
FRR (%) 7.62 13.33 14.92 26.35 20.64 32.06 46.35 50.79
Weighted AUC 0.962 0.931 0.918 0.866 0.896 0.837 0.762 0.742

Table 3.4: Experimental results for combined R and A measures
Adopted Distance Measure R2 + A2 R2,3 + A2,3 R2,3,4 + A2 R2,3,4 + A2,3,4

No. of passed impostors 576 784 689 1104
No. of false alarms 20 33 35 83
IPR (%) 0.39 0.54 0.5 0.75
FRR (%) 6.35 10.48 11.1 26.35
Weighted AUC 0.967 0.949 0.942 0.857

3.3.3 Results

Tables 3.3 and 3.4 show the results obtained by repeating the experiments of

[33] with the new re-implementation and the data provided. For brevity, only

those measures reported in Tables III and IV of [33] are given. There are 315

self-identifications and 146,475 attacks.

The results are significantly worse than those in the original paper. This is

most likely because this technique relies on a large set of registered users—a

small user database will inevitably make less accurate classifications than a

large one—and only half the users were available for these experiments (21

out of 40). One advantage of the technique is that it is robust to fluctuations

over time. However, it is affected by events such as distractions—a large pause

will affect both the relative and absolute ordering of the n-graph it appears

in. The first technique can cope with pauses because a long time differential

would simply be quantized into a cluster with a similar value.

The time this method takes to make a classification increases linearly with

the number of registered users. The system in [33] takes 140 seconds to make

a classification on a 2.5 GHz Pentium IV, with 40 registered users. Like the

original system, this re-implementation is far from optimized; it takes around

400 milliseconds on a similar machine to perform a single prediction with 21

users, and 20 seconds to build the model used for prediction.

3.4 Comparison of Techniques

The previous two sections have individually covered the LTIAT and KAOFT

typist verification techniques. These two algorithms employ different strategies

to obtain a commendable accuracy on their own datasets. However, it is

difficult to determine which of the two is the most accurate based on a single
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FRR/IPR pair because there is a trade-off between the FRR and IPR. For

example, if the FRR is increased by selecting a threshold that makes it harder

for a user to pass, the IPR of the system should lower because it also becomes

more difficult for an attacker to gain access. Instead, the area under the ROC

curve (AUC) can be used for comparison with the caveat that it is based on a

single FRR/IPR pair in the case of KAOFT.

Using the AUC values reported so far is still an unfair way to compare the

two techniques: each technique has so far only been tested using its own data,

so the AUC values have been calculated using different test conditions. Ideally

they should be tested using the same dataset, but the datasets collected for

each technique do not have appropriate information to be directly used for

comparison. Instead, each dataset must be processed in some way in order

to be used for testing. Performing tests in this way gives insight into the

performance of each technique under restricted conditions. The rest of this

section discusses these comparisons.

3.4.1 Comparison Using the ROC Curve

Using the best results for each algorithm, the weighted AUCs are 0.962 for

LTIAT and 0.967 using the measure R2A2 for KAOFT. This suggests that

the two techniques have comparable accuracy, despite differing FRR and IPR

scores for each. A finer comparison can be achieved by graphing the ROC

curves for one user from each technique’s dataset. Figure 3.2 shows partial

ROC curves for LTIAT (user 5) and KAOFT (user 21). KAOFT’s curve can be

achieved in practice by mixing a random predictor in appropriate proportions.

Both curves are only partial because in reality the curves continue along the

top axis with a true positive rate of 1. Only one user is graphed for each

technique because LTIAT produces probabilities that are specific to each user.

Figure 3.2 shows that LTIAT performs the best up until the IPR is 0.2%,

having the highest true positive rate up until this point. Increasing the IPR

further, it becomes easier for a user to successfully authenticate, and KAOFT

becomes the most effective technique.

3.4.2 Comparison Using Datasets

In order to see the merits of LTIAT and KAOFT in greater depth, each was

tested using the other’s data. The datasets originally used for each method

are too diverse to allow direct comparison between the two techniques. That

for LTIAT contains both key-press and key-release events and has an accurate

46



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014

T
ru

e 
P

os
iti

ve
 R

at
e

False Positive Rate

LTIAT
KAOFT

Figure 3.2: Partial ROC curves for KAOFT and LTIAT

Method/Experiment FRR % IPR % Best Measure
LTIAT - Published 5.2 1.1
LTIAT - Reproduced 3.6 0.9
KAOFT - Published (40 users) 3.2 0.1 R2,3,4A2

KAOFT - Reproduced (21 users) 6.4 0.4 R2A2

LTIAT - Single Divided Sample (KAOFT data) 16.2 19.3
LTIAT - Random Continuous Sentence (KAOFT data) 10.8 36.0
LTIAT - 10ms Timing Resolution (LTIAT data) 2.9 13.5
LTIAT - Key Presses Only (LTIAT data) 7.4 19.3
KAOFT - Single Divided Sample (KAOFT Data) 35.9 0.5 R2A2

KAOFT - Random Continuous Sentence (KAOFT Data) 64.9 0.2 R2A2

KAOFT - Using LTIAT data 38.6 12.5 R2A2

Table 3.5: Summary of comparison experiment results

timing resolution, but only includes a single session of data for each user. That

for KAOFT has 15 samples for each user but has a coarse timing resolution and

only contains key-press events. Hence, processed versions of the datasets are

considered. The results of the experiments are summarised in Table 3.5. The

first block of the table repeats the published and reproduced results discussed

in Sections 3.2 and 3.3. The remaining results are described further below.

Firstly, LTIAT was tested using KAOFT’s data. Since it took excessively

long to complete one self-identification classification using an optimized model

(more than 24 hours of CPU time5), the data was broken down to resemble

that of the LTIAT dataset. A single sample from each user was selected at

5For each single self-identification classification all 180 combinations of parameters were
tested using hold-one-out models on the training data before classification takes place. The
KAOFT data provides a much larger amount of training data and therefore the optimization
step takes substantially longer.
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random, and divided into sentences of 100 key-press events.6 The procedure

was repeated 5 times and the results averaged, yielding an FRR of 16% and

an IPR of 19% (Single Divided Sample in Table 3.5). In a second experiment,

one continuous sentence of size 100 was selected at random from each of the

user’s samples. Again, the procedure was repeated 5 times, yielding an FRR

of 11% and an IPR of 36% (Random Continuous Sentence in Table 3.5). Here

each sentence is from a different session, whereas all sentences in the first

experiment were selected from the same session.

The LTIAT method clearly cannot cope with the KAOFT data. To ascer-

tain whether the inaccuracy was caused by the low resolution timings or the

lack of key-release events, it was re-tested twice using its own data. First, all

key-release events and their associated times were removed from the data and

the times relating to existing key-press events were altered to reflect the re-

moval of the key-release events. Second, both key-press and key-release events

were retained, but a 10ms resolution was simulated by adding a random num-

ber between 0 and 9 to each recorded time.

When the key-release events were removed, the IPR was identical to that

found by dividing up a single sample of KAOFT data (19.3%). This is not

surprising considering that both datasets are from a single continuous typing

session and contain only key-press events. The FRR remained below 10% for

both the removal of key-release events and the introduction of a 10ms resolu-

tion. However it is the IPR that is most interesting with regards to security

and this was found to exceed 10% in both experiments. It is important to

note that when the key-release events are removed, adding their time differ-

entials to the appropriate key-press times introduces a slightly coarser timing

resolution than had the data been recorded without the key-release events in

the first place. The new resolution is estimated to be 2–4ms, because on aver-

age two times, each with a 1–2ms resolution, are used to replace a single one.

The experiments show that LTIAT only performs well when provided with all

keyboard events and with timing data that has an accuracy of 1–2ms.

The two experiments above were repeated using the KAOFT method. For

the measure R2A2, the FRR was 36% and 65% and the IPR 0.5% and 0.2%

for the first and second experiment respectively. The same pattern was seen

through other measures—in the first experiment the FRR was half the size

of the second experiment, and the reverse is true of the IPR. The KAOFT

method was then tested using the LTIAT data, resulting in an FRR of 38%

6The average sentence in Nisenson’s data for both users and attackers contains about
100 key press events.
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and IPR of 12% (for R2A2), a similar FRR to that of the first experiment on

the broken-down KAOFT data.

The results on the LTIAT data in particular indicate that the KAOFT

method cannot cope with small sample sizes: the amount of information is in-

sufficient to make correct classifications for valid users. Larger samples share

more n-graphs, so the computed distance between them is more meaningful.

Gunetti and Picardi suggest that short samples can simply be concatenated

together to make larger ones [33]. In an attempt to test this, sentences from

the LTIAT data were concatenated until the number of key-press events ex-

ceeded 300. However, this resulted in only 2 users and 2 attackers having more

than 2 samples each, so the number of tests that could be performed was not

informative.

3.5 Summary

This chapter has revisited two continuous typing recognition systems intro-

duced in Chapter 2. They were re-implemented and tested with data that was

used for evaluation in the original papers. The first, LTIAT, produced similar

FRR and IPR rates to those in the original paper. The second, KAOFT, ex-

hibited worse results, most likely due to a reduction in the number of registered

users.

Neither can be viewed as the complete answer to continuous typist recogni-

tion, and both are restricted to limited situations—such as accurately recorded

single sessions for the first method, and long recordings from users and impos-

tors for the second. In both cases, the original data for each method performs

poorly when applied to the other algorithm. For the LTIAT technique the

poor performance on the KAOFT data can be attributed to the lack of key

releases in the data. This means that some important patterns, relating to

interleaving of press and release events, are lost. When considering KAOFT,

it relies heavily on the availability of sufficiently large quantities of data from

other users—a requirement that is not always easily satisfied in a real-world

situation.

However, the two techniques do demonstrate that under ideal conditions

it is possible to recognise a typist by how they type in a restricted situation

where input has been collected for only one task. The results highlight the

need for a better dataset—one that contains several paragraph sized samples

per user, and has key-release events included. The next chapter covers the

collection of such data.
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Chapter 4

Data Collection

Collecting typing data for continuous typist verification sounds like an easy

task, given that no extra hardware is required and keyboards are a standard

input device for most computer systems. Recording simply requires some

software to monitor the keyboard and log keystroke information. The user

does not need to interact with this software in any special way; they can simply

continue using the computer as they normally would. However, accurately

collecting typing patterns is not an easy task: there are a range of technical

and ethical issues that can affect the integrity of recording keystrokes.

The technical issues surrounding the recording of keystroke data are rela-

tively minor compared to the ethical issues, but they can nonetheless play a

crucial role in determining the accuracy of any typist verification system. The

most obvious technical concern is what exactly is recorded. In Chapter 2 we

saw that Gunetti and Picardi’s [33] system requires only the key press events

and their associated times—so this was all that was recorded in their dataset.

However, when attempting to reuse this dataset in other experiments, includ-

ing those in the previous chapter, the lack of key release events means that

some algorithms are less accurate, and others cannot be used at all.

In evaluation of most typist verification problems, data is collected in an

artificial situation. In the case of static verification, users might be required

to copy-type some fixed text. For dynamic verification, users might be asked

to respond to questions [50], type a paragraph as if it were an email [33]

or perform set tasks on a given system [48]. In all of these cases many of

the ethical issues present in a real-world scenario can be overcome. However,

because users are required to use an artificial system, they are taking time

away from their regular tasks to participate. This may restrict the amount

of data that can be collected because users may have little incentive to use

this system at length. This is evident in Nisenson et al.’s dataset [50], which

was reconstructed from keycodes in the previous chapter: many of the users

commented how bored they were with the task, and provided little input other

than what was required to complete their session.
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Data quality may also be an issue for artificial situations. Ideally the

participants should be typing data that is meaningful to them in order to get

representative samples of how they type. This is demonstrated by the success

of password hardening, discussed in Chapter 2: users tend to know their user

ids and passwords well and thus type them with a distinct rhythm. If the user

is forced to type unfamiliar text there is a risk that their normal rhythms will

be disturbed by the task of reading or comprehension. Of course, data quality

cannot always be guaranteed in a real-world scenario either, although there is

at least a greater chance that the user will be performing a familiar task.

It is obvious that both datasets used in the previous chapter are inadequate

for further investigation into typist verification. One has only a small amount

of data per user that has been recorded in a single session, the other does

not contain key release events. Therefore, before experimentation on new

algorithms could begin, it was necessary to collect some new typing data that

extended over several sessions and contained key release and key press events,

as well as their associated times.

This chapter covers the process of collecting new data and how the technical

and ethical issues were addressed. Section 4.2 presents the properties of the

final datasets, and Section 4.3 discusses the performance of the algorithms

from Chapter 3 on these datasets. The collection of a reasonably-sized real-

world dataset, which yields results on par with those obtained from restricted

datasets that have been collected for use with a specific algorithm, is one of

the main contributions of this thesis.

4.1 Collecting Data

In an ideal situation, data for typist verification would come from real-world

recording where users were surreptitiously recorded as they perform their usual

duties. Unfortunately the process of keylogging also records deleted keystrokes

and keystrokes that are encrypted on screen (i.e. passwords). It is difficult

to convince a user to allow their keystrokes to be monitored during usual

computer use because there is a high probability that confidential information

will be captured.

The advantage of being able to record real behaviour is that the user is

unlikely to be affected by the constraints of an artificial task. As previously

mentioned, users may be unwilling to use an artificial system, as is evident in

Nisenson et al.’s dataset [50]. Furthermore, if they are required to enter un-

familiar data or use an unfamiliar workstation there may be subtle differences
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between their usual patterns and the recorded ones. However, this may not

be a problem for system evaluation because it would be unlikely that there

would be a mix of keystrokes recorded in artificial and real-world situations.

But it does raise the concern that a system evaluated on an artificial dataset

may perform poorer than reported if used in practice.

Gunetti and Picardi [33] attempted to create a dataset that contained data

similar to that of a real-world situation by asking their volunteers to “enter

samples in the most natural way, more or less as if they were writing an email to

someone.” These samples were entered into a web-based form consisting of one

textbox and a ‘submit’ button, with the amount of text roughly a paragraph

in length for each sample. No restrictions were made on the operating system,

Internet browser or keyboard used to access and enter information into the

form. In total, 15 samples from each of 40 users and a further 165 attacker

samples were obtained over a period of 6 months. The main limitation of this

dataset is that it contains no key release events.

Instead of setting up an artificial situation, this thesis uses data collected

from a real email system. This makes it easy to collect a large number of

samples, but it is difficult to ensure that they meet requirements for length,

content, or even authorship. However, the limitations of Gunetti and Picardi’s

dataset [33] can be overcome by ensuring that both key press and release

events are recorded. After technical and ethical issues have been addressed,

discussed here in Sections 4.1.2 and 4.1.3 respectively, the resulting dataset is

comparable in nature to Gunetti and Picardi’s dataset [33] except that it is

recorded from real emails, not simulated ones. The next section discusses the

process of recording the emails.

4.1.1 Recording with SquirrelMail

In early 2007, 19 participants from the University of Waikato’s Department

of Computer Science gave permission for their typing patterns to be recorded

whilst they used their Computer Science email accounts. Their patterns were

recorded over a period of just over three months, from mid-April 2007 through

until the end of July 2007. The Computer Science Department accesses email

through SquirrelMail [71], a web-based system that employs forms similar to

the one used in Gunetti and Picardi’s experiments. In order to use this email

system to record typing patterns, an augmented version of SquirrelMail was

set up, known as the recorded typing (RT) version. RT SquirrelMail is almost

identical to the standard one, with the exception that it has the ability to
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record typing patterns for email. The user interacts with the RT version in

the same way as they would normally (it provides access to the participant’s

standard computer science email account).

RT SquirrelMail records the typing for each of the text entry boxes on the

compose screen: To, CC, BCC, Subject and Body. Mouse press events (clicks)

within the compose frame are also recorded. When the user saves or sends

the email, the recorded patterns are saved. Full details of RT SquirrelMail,

including the recording format, can be found in Appendices A and B, which

respectively contain the details required for ethical consent and the instructions

given to participants.

Because a real email system is used, the entry of confidential information

cannot be prevented. However, controls were available to the participants to

enable them to remove any private emails. The emails were only saved when

the check box “If checked, all of your typing will be recorded for this email”

was selected. If the participant forgot to uncheck the box, the email could still

be removed from the dataset later. For the duration of the experiments, the

participants were able to access a website, known here as mailAnalysis, that

provided statistics on their own emails. MailAnalysis had two purposes: to

encourage participants to use RT SquirrelMail over the standard SquirrelMail

by providing interesting statistics, and to allow them to remove their own con-

fidential emails from the dataset before evaluation began. Further information

about mailAnalysis can be found in Appendix B.

Additionally, each participant filled in a questionnaire that included general

questions relating to physiological attributes such as height, weight and hand-

edness, and also information about their computing habits. This questionnaire

provided information that was intended to be used to find out whether it is

possible to identify key attributes of a typist—not just their identity—from

their typing behaviour. However, there was an insufficient number of partici-

pants to be able to form any generalisations from this data and the responses

are not used in any analysis in this thesis. For completeness, an example

questionnaire is included in Appendix C.

Overall, 2897 emails were recorded from the 19 participants over the three

month period. Although the most prolific participant recorded 1951 emails

in the RT system, the majority of participants recorded less than 100 emails

each. Of the 19 participants, 11 participated for the entire duration and eight

were involved for the last two weeks. All participants, despite assurances, were

understandably hesitant to participate. To ensure that the dataset contained

a large number of users, some users (specifically, the last eight) were asked
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to use the system for a limited time, and to use it only to type emails to

the researcher. These eight participants therefore typed a smaller number of

emails than the other 11 users and their email content was similar to the emails

in Gunetti and Picardi’s dataset [33]. Table 4.2 shows the number of emails

recorded by each user and includes the number of emails that were finally used

after technical and ethical issues were addressed. The next two sections detail

these issues.

4.1.2 Technical Issues

Technical issues are rarely present in an artificial scenario: careful program-

ming and supervision ensures that major issues are avoided. When collect-

ing real emails however, supervision is impractical and even the most careful

programming cannot compensate for users failing to follow instructions. For

example, users were instructed to use the Opera browser if they were accessing

their emails on a machine running Linux, and although Opera was installed

on all relevant computers, many users forgot to use it and accessed RT Squir-

relMail using Mozilla Firefox instead.

The occasional use of Mozilla Firefox on Linux-based machines presented

the most difficult technical challenge, because the version of Firefox available

for use during the data collection period contained a bug that caused certain

key down events to fail to register [59]. Specifically, if a key was pressed and

held down then any subsequent key presses would not be recorded until the

held key was released. It is important to note that the missing key press events

are actually lost, not delayed. Key releases are recorded as normal, so the end

result is that there is the possibility of key release events recorded that have no

associated key press event. This poses a huge problem for a typist verification

system: characters appear on the screen as the key is pressed, so it is impossible

to accurately calculate such features as the digraph time, or the duration of

time a particular key is held down. Even attempting to reconstruct the input

causes issues, as can be seen in the two example emails below. The first email

shows the actual recording, and the second the actual input. Overall, 1217

of the 2897 emails were affected by this issue and were discarded from the

dataset.

Dear all,

Jus watd to le yo kno ha the tying syste is nw upand running and

yo can rcord yor tying by usin the special SquirrlMal.

55



Chees,

Dear all,

Just wanted to let you know that the typing system is now up

and running and you can record your typing by using the special

SquirrelMail.

Cheers,

Unfortunately the Firefox bug was not the only browser-related issue. It

was discovered that Internet browsers are not uniform in the way they treat

modifier keys. Modifier keys are the keyboard keys that modify the normal

action of a key in some way: firing off a macro, capitalising a letter, providing

access to alternate characters and so on. Some browsers treat modifier keys

as independent key presses, recording the press and release events with their

own key code. Others repeat the press event for a modifier until the key

is released—alphanumeric keys will repeat in a similar fashion if held down

long enough, but typically have matching releases for each key press. At the

very least, all tested browsers (Internet Explorer, Firefox, Safari, Opera and

Konqueror) record the current state of all modifier keys in the same structure

that stores the keycode for each key event.

Ideally the emails should have a uniform format for ease of processing,

but the modifier key event information differs between each browser. This

information could be used later to reveal typing patterns. Given that the most

common browser used during the recording process, Opera, only recorded the

current state of the modifiers and all browsers had at least this behaviour,

this was all that was recorded in RT SquirrelMail. Although some channels

of information are lost by not recording modifier keys as individual events, no

recorded samples have any more (or less) information recorded as a result of

the browser that was used to access the system. In summary, the recordings

are browser independent.

Finally, the use of a real email system over an artificial one presents a

unique technical challenge: the length of any sample is not guaranteed to

meet a minimum threshold. For example, if a user simply forwards an email,

they only need to type the recipient’s address. If the user replies to an email,

they do not need to type anything—obviously it would be more helpful to the

recipient if they did, but no new content needs to be provided in order to send

the email. Compounding the problem further, shortcut keys, toolbar buttons

and the mouse can be used to copy text from outside the browser window.
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Therefore, legitimate emails can range in length from a few input events, to

thousands.

It is unfair to impose a minimum limit on the emails before they are sent,

especially since a lack of typing is often justified. Instead, after the recording

phase ended, emails that did not contain at least 500 events were removed

from the dataset. The minimum length was an arbitrarily chosen amount,

corresponding to approximately two sentences of typed text (500 events equals

250 characters, or approximately 50 words). This size restriction guaranteed

that the samples from RT SquirrelMail were larger than the smallest of the

samples from the datasets in [33, 50], even after potentially sensitive data was

removed. Of the remaining 1680 emails, 690 were removed as a result of this

size restriction.

4.1.3 Ethical Issues

After technical issues had been addressed, only 990 emails remained in the

dataset. These 990 emails were sourced from only 17 of the 19 participants—

two participants had all of their samples removed from the dataset due to the

technical issues described in the previous section. However, ethical issues must

also be addressed before the dataset is used; the dataset cannot be distributed

to anyone attempting to reproduce the results if it contains sensitive informa-

tion. The ethical issues discussed here are typically not present in artificial

scenarios.

The most obvious ethical issue is that people inevitably use email for per-

sonal correspondence, not just work-related discussions. RT SquirrelMail and

mailAnalysis provided controls so that participants could remove confidential

emails from the dataset. However, even with these measures in place there

were a number of emails containing private information, and one even con-

tained a password. To prevent such emails being present in the final dataset,

a filter was run to remove any emails that might contain sensitive information.

“Love” is an informal salutation and is unlikely to be used on a business-related

email, so all emails that contained this word were removed. “Password” is an

example of another filter word used to remove emails. After looking at some

emails by hand, some other key words and names were discovered that were

then used to remove emails from the dataset.

After some emails were manually checked, another issue became apparent:

many of the participants were not native English speakers and often conducted

email conversations in other languages. Whilst the presence of non-English
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emails is not necessarily a bad thing, the dataset was collected by someone who

only knew English and it was unclear whether any of the non-English emails

contained sensitive information. Fortunately, only a small number of emails

were not typed in English—instead typed in German, Swedish or Maori—

and so these were simply removed from the dataset. Although these emails

could have simply been referred back to the authors for double-checking, the

relevant participants were keen users of the system and provided a sufficiently

large number of English emails that this extra step was deemed unnecessary.

Emails typed by the last eight participants were not subjected to the language

filter; these last eight participants were typing to the researcher and despite

emails being recorded in both Swedish and Maori—as well as English—they

were guaranteed to be non-confidential so it was unnecessary to remove them.

At first blush the remaining emails may now appear to be anonymous.

However, people tend to sign off their emails with their name and start by

addressing the person they are sending to, so these names had to be manually

removed from the data. The names could not be automatically removed by

simply removing a number of characters from the start and end of the emails—

some users were found to address a person or sign their name midway through

authoring the email. To fully anonymise an email, the salutations and signa-

tures were selected by hand and all events and times relating to the names

were removed. The removed section is replaced with a single time differential

that is the sum of all the time differentials in the removed section. Adding

large time differentials should not prove to be an issue because the system

should be robust to distractions. In Nisenson’s system [50], time differentials

greater than two seconds long were removed before learning. In Gunetti and

Picardi’s system [33], large time differentials were included into the average for

each digraph. This last anonymisation step was only performed on a specific

set of emails, as discussed in the next section.

4.2 Final Dataset

After ethical and technical issues were addressed, 607 emails remained. These

emails had several assured qualities: they contained at least 500 events, were

typed with a non-buggy browser, and contained no personal content. This

dataset is comparable in size to Gunetti and Picardi’s [33], which in the orig-

inal paper contained 765 samples (their dataset used in the previous chapter

contained only 480 samples). Gunetti and Picardi’s [33] dataset contained

data from a larger group of people, but at most 15 emails from any given
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Total Issues Causing Removal Final Final
Participant Emails Browser Length Ethical Emails (sm-all) Emails (sm-150)
A 224 96 2 126 15
B 1951 1192 308 284 167 15
C 55 26 1 28 15
D 133 33 2 98 15
E 30 13 1 16 15
F 60 24 4 32 15
G 164 84 20 60 15
H 143 56 69 18 15
I 49 1 24 24 15
J 33 13 20 15
K 9 9 0
L 9 7 2
M 2 2
N 4 4
O 21 15 3 3
P 4 4
Q 1 1
R 3 1 2
S 2 2 0
Total 2897 1217 690 383 607 150

Table 4.1: Emails recorded per participant

participant. In contrast, this dataset contains between one and 167 samples

per user, with ten users typing 16 or more samples each. Table 4.2 shows the

number of emails recorded, removed for technical and ethical reasons, and the

final number of emails per user.

These 607 emails were separated into two datasets, the sm-all dataset that

contains all 607 unaltered emails, and the sm-150 dataset that contains 150

fully anonymised emails. The sm-150 dataset contains the body text of 15

samples from each of ten users (Participants A–J), with salutations and sig-

natures manually removed as described in Section 4.1.3. The sm-150 dataset

was created for two reasons: to ensure that no user had any more samples for

training than any other, and so there was a fully anonymised dataset available

for other researchers to use.1 The sm-all dataset contains all possible infor-

mation recorded for each email, but the email content may reveal the identify

of the author or intended recipient.

The sm-all dataset is essentially a set of samples collected in a real sys-

tem. As mentioned in Appendix A, each textbox on the email compose form

was separately recorded, and mouse events occurring on this page were also

recorded. At this stage only key events are of concern, so the mouse events

are not included in the sm-all dataset. The separate textbox recordings are

interleaved together using the absolute times, forming one sample of typing per

email. Thus, a single sample includes all the typing for an email, in exactly

the order the participant typed it.

1This dataset is available by request.
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4.3 Re-evaluation of Existing Algorithms

In the previous chapter the two re-implemented techniques were compared by

utilising the other technique’s dataset. In both comparisons, the tests were

biased. Even when the same dataset was used the algorithms were trained

on data that was not suitable for them. Now there are two datasets, sm-all

and sm-150, that address the shortcomings of the other datasets and can be

used to fairly compare the two re-implemented techniques from Chapter 3. In

this section the re-implemented methods are re-evaluated using the two new

datasets.

Each of the two algorithms—namely LTIAT and KAOFT—was tested us-

ing fully optimised models and ten-times stratified ten-fold cross-validation. In

the last chapter the best choice of Q, m and s for LTIAT was selected for each

user. This results in a large number of models built per user. Since both new

datasets contain significantly more data than was originally used, the LTIAT

technique was tested using default parameters for this evaluation (Q = 100, m

= 0, s = 0, i.e. the LZ78 algorithm with at most 100 time symbols). The m

and s extensions should be unnecessary since they are designed to make the

most of a small amount of data—and there is now a large amount of data.

However, the main reason for testing in this way is that performing ten-times

ten-fold cross-validation on optimised models would take an excessive amount

of processing time for this algorithm (more than a month of processing time

on a 2.4GHz machine). KAOFT was tested using the measure R2A2 because

this was found to give the best results in the previous chapter.

Table 4.3 shows the results of evaluating the methods from the previous

chapter with the two new datasets. These results reinforce the findings of the

previous chapter: KAOFT is the most effective typist verification technique

investigated so far. Note that sm-all has four times the volume of data and

Table 4.3 shows there is an improvement when more data is added for either

method. For the sm-all dataset, the LTIAT algorithm with default parameters

outperforms the optimised algorithm on its own dataset (which reported an

AUC of 0.962). For both datasets, KAOFT performs better than with its

own data from the previous chapter, obtaining higher AUC values and lower

FRR/IPR values as well. These datasets reinforce the findings of the previous

chapter, but also indicate they themselves are of equivalent—if not better—

quality to the original datasets.

It is important to remember that KAOFT requires data from other users

to make a prediction about a target user, whereas LTIAT does not. Also, it is
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Original datasets FRR (%) IPR (%) Weighted AUC
LTIAT - optimised parameters 3.16 12.92 0.962
KAOFT - R2A2 6.35 0.39 0.967
sm-150

LTIAT - m = 0, s = 0, Q = 100 3.53 29.33 0.950
KAOFT - R2A2 6.06 0.00 0.970
sm-all

LTIAT - m = 0, s = 0, Q = 100 0.75 16.65 0.976
KAOFT - R2A2 3.60 0.00 0.982

Table 4.2: Re-evaluation results using new datasets

unclear just how much data is necessary for successful verification and whether

other possible channels of information may be more informative than those

used for the state of the art. The next few chapters attempt to answer these

questions, using insights gleaned from the replication in the previous chapter,

studies of related work, and thorough investigation of the new datasets.
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Chapter 5

Preliminary Experiments with

New Techniques

In Chapter 3, where the two leading continuous typist verification techniques

and their results were replicated, a limiting factor for evaluation was the lack

of a dataset that had sufficient information for it to be utilised for both tech-

niques. The collection of new datasets, discussed in the previous chapter,

resolved this issue and enabled the two techniques to be fairly tested. Using

these same datasets from Chapter 4, some initial experiments were performed

to investigate new ways to verify a typist.

This chapter presents this investigation by discussing new ways to verify

typists using probability-based algorithms. Three of the algorithms can make

judgements after being trained only on data from the target user. The other

requires data from other users, but achieves good accuracy on individual di-

graphs. The FRR and IPR of all four algorithms can be varied at prediction

time by changing the threshold that determines the yes/no verdict.

This trade-off allows the security of the system to be quickly adjusted

to best suit the task at hand. Systems that simply predict yes or no usually

require complete retraining in order to alter the trade-off between the FRR and

IPR. Also, because an arbitrary threshold set automatically by an algorithm

is not necessarily the best one, being able to rank numerical predictions allows

a true assessment on the effectiveness of a typist verification system using the

AUC.

The next section describes the experimental methodology that was used

to evaluate each method. Each of the four methods is then discussed in turn,

including explanations of the algorithms and the results obtained using the

datasets from the previous chapter. The first method is similar to LTIAT

from Chapter 3 except that it uses Prediction by Partial Matching (PPM)

instead of LZms for the underlying model. The second constructs a probability

density for each digraph, and makes predictions using the combined densities

for all digraphs in a sample. The third combines ideas from the first two
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methods in this chapter, integrating context with per-digraph models. The

fourth classifies individual digraphs using C4.5 decision trees using absolute

and relative timings as attributes. In Section 5.6 the methods are compared

to each other and the algorithms from Chapter 3.

5.1 Methodology

Each algorithm was implemented in the Java programming language and in-

tegrated into the workbench described in Chapter 3. Although the workbench

is capable of performing many different kinds of evaluation, all the results pre-

sented here use ten-times ten-fold stratified cross-validation. The same seed

was used to initialise the pseudo-random number generator each time, ensur-

ing that the algorithms were tested with exactly the same set of folds. This

same seed was used for the evaluation at the end of Chapter 4.

Each fold contains 10% of the data that belongs to each user and at-

tacker. Three of the algorithms in this chapter ignore any negative data that

is present during training, ensuring that attackers are always new to the sys-

tem. However, the last algorithm, the Individual Digraph Classifier, requires

negative data in order to make a judgement. Sourcing negative data from the

sm datasets means that the attackers are not novel, so in this case all negative

data was deleted from the training folds before training began. This forced

the algorithm to use negative data from elsewhere. In reality, this data could

be automatically generated, or the real negative data could be used. In this

thesis, the negative data was sourced from the LTIAT dataset, and each user

or attacker was relabelled as if it belonged to a single impostor. This means

that all algorithms in this chapter were evaluated after being trained on a sin-

gle user’s data from either the sm-150 or sm-all datasets and attackers were

always novel.

All algorithms utilise a threshold to separate a given user from any im-

postors. This threshold can be based on a probability, however, not all the

methods in this chapter are able to produce these. This is not a problem

for typist verification because the numerical predictions produced by the algo-

rithms in this chapter are able to be sensibly ranked.

To determine the threshold for each model, each of the user’s training

samples is held out in turn during training, and a model built that includes all

samples except the held out sample. The held out sample is tested against the

model and the prediction recorded. After testing all possible held out samples,

the threshold is set at the value that maximises the chance that the hardest
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held out sample will pass as the user. That is, the threshold is the smallest

predicted value calculated from the leave-one-out training. The final model

for any fold is built using all of the data, and utilises the threshold calculated

during the leave-one-out training. This is exactly the same method as LTIAT

from Chapter 3 uses to determine a threshold. It is used for all but the last

model presented in this chapter.

Because the thresholds set by the system—and therefore the FRR and

IPR—are not necessarily ideal for a particular scenario, in all empirical results

the weighted average AUC of the system is reported. As discussed in earlier

chapters, the AUC gives the probability that a user’s sample will rank higher

than an attacker’s one, and is independent of the arbitrary thresholds. The

weighted average AUC is used so that users with varying amounts of data,

such as those found in the sm-all dataset, do not adversely affect the results.

The FRR and IPR are also reported for all algorithms.

5.2 PPM-Based Classifier

Prediction by Partial Matching (PPM) is a popular compression technique, but

it can also function as a universal sequence prediction algorithm [6]. It is the

latter application that is the most helpful for typist verification. PPM comes

from the same class of prediction/compression algorithms as LZ78, the under-

lying prediction technique (with modifications) used for LTIAT in Chapter 3.

In both cases the algorithms predict the likelihood of the next symbol, which

is either a key event or time differential, depending on the current state of the

system. The main difference between the two algorithms when they are used

for prediction is that PPM uses a finite context model, basing its decisions on

at most o previous events for some fixed number o, called the context length.

In contrast, LZ78/LZms uses as many previous events as possible, until an

event fails to match in the current context and the algorithm resets to the root

of its tree.

The standard version of PPM deals with escape probabilities by using the

probability of a novel character occurring [6]. Escape probabilities are the

values used when the next character has not been seen before in the current

context. For PPM, the method used to calculate escape probabilities was

“Method C”, which is generally regarded to be the best method for this clas-

sifier. Using Method C, the probability of an unseen character is based on the

number of novel characters seen before in the current context. More precisely,

the probability of an unseen character is q/(C + q) and the probability of a
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seen character is ci/C, where q equals the number of distinct characters seen

before, ci the number of times a character i has been seen before, and C the

total number of characters seen [6]. LZ78/LZms predicts 1/(C +1) for unseen

symbols, and ci/(C + 1) for all others.

5.2.1 Algorithm

PPM can be used for typist verification by utilising the LTIAT technique and

simply substituting LZms with PPM. This new algorithm has two parameters:

the number of quantization clusters q, and the order o of the PPM model.

The process is otherwise the same as that of LTIAT. Given a number of train-

ing samples, the time differentials are first clustered using k-means and then

the order-o PPM model is built using the key events and quantized times.

A threshold is obtained by repeatedly building leave-one-out models during

training, for all possible held out training samples, and using the probability

that maximises the chance that the hardest held out training sentence will be

classified correctly. Finally, the probability of a sample belonging to the user

is calculated by predicting each symbol in a sample, and accumulating the log

likelihood. This is translated into a decision by utilising the threshold obtained

during training.

The PPM-based version of LTIAT was implemented in the Java program-

ming language and incorporated into the workbench from Chapter 3. However,

because the PPM algorithm was not modified in any way, an existing open-

source implementation of PPM was utilised rather than a re-implementation.

The PPM implementation used here was originally coded by Ron Begleiter for

general evaluation of variable order Markov models [5]. The original LTIAT

technique used a modified version of LZ78, and the entire LZms algorithm was

implemented from scratch.

In general, LZ78 models are much faster to build and evaluate than PPM

ones, but are less accurate. In the implementation here, PPM can build its

model faster than LZms, because the two extensions—input shifting and back-

shift parsing—increase the number of times each symbol is seen, and so build a

much larger model than LZ78 would. On average, PPM (o = 1) takes one-fifth

the time to build a model compared to LZms (m = 5, s = 5), and one-tenth the

time to make a classification. Table 5.7 in Section 5.6 shows the average build

and classification times for LZ78, LZms and PPM, along with other methods

discussed in this chapter.
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Order o FRR IPR Weighted AUC
0 3.00 42.56 0.862
1 4.33 25.22 0.966
2 4.00 25.83 0.961
3 4.00 25.76 0.960
4 4.20 25.76 0.961
5 4.07 25.93 0.961
6 4.07 25.93 0.961
7 4.20 25.96 0.961
8 4.07 25.65 0.961

Table 5.1: Effect of PPM model order on prediction

Algorithm/Dataset FRR IPR Weighted AUC
PPM / LTIAT 1.85 14.55 0.967
PPM / sm-150 4.33 25.22 0.966
PPM / sm-all 0.90 18.99 0.971
LZms / LTIAT 3.16 12.92 0.962
LZ78 / sm-150 3.53 29.33 0.950
LZ78 / sm-all 0.75 16.65 0.976

Table 5.2: Final results for PPM using order = 1

5.2.2 Results

The PPM-based classifier was evaluated using both the sm-150 and sm-all

datasets, using the methodology described in Section 5.1. In order to perform a

fair comparison to LTIAT’s evaluation in Chapter 4, the parameter q was set to

100. This parameter was optimised on a per-user basis in the original LTIAT

implementation, but the LZms model took a substantial length of time to

produce an optimised model for the sm datasets. Because of this, optimization

was abandoned in favour of fixed parameters.

Optimisation on the order parameter, o, was attempted globally, with dif-

ferent values of o being tested for the sm-150 dataset. The results of this

evaluation is presented in Table 5.1. There was no substantial difference be-

tween the models after reaching o = 1, therefore this value was used globally

for all users when using the sm-all dataset for evaluation. When the con-

text length is one, the PPM algorithm uses at most one symbol for the prior

context—the context for a time is a key event and vice versa. It is unusual

that performance should peak with such a context length, and would usually

indicate that something is wrong with the implementation. However, this ef-

fect might be caused by the interleaved symbol types; the stream alternates

between key events and quantized times and it is possible that this forms a

sequence where events that affect each other are out of order. For example, a

time symbol may be affected by three preceding key events, but not the other

time symbols that occur in between.

Table 5.2 presents the results for evaluating PPM and LZms/LZ78 with the

LTIAT, sm-150 and sm-all datasets. Each dataset was divided up using the
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same cross-validation folds for each algorithm. Surprisingly, PPM performs

no better than LZ78 for the sm-all dataset, despite PPM being generally

regarded as a better classifier and more efficient encoder [6]. However, on the

smaller sm-150 and LTIAT datasets, PPM slightly outperforms LZ78.

5.3 Spread Classifier

Instead of considering the prior context for a particular digraph, the digraphs

can be considered independent and each one evaluated separately. A näıve

implementation would average the time for each digraph, and use this for

prediction. Each feature is one digraph, and contains either the average time,

or a value that denotes that this digraph is “missing” in the sample. One

problem with this kind of approach is that it is impossible to control what

is typed in a continuous scenario, so there is potentially a large number of

missing digraphs for any given sample. In such a situation, the classifier may

begin to make predictions based on what is missing, rather than any features

that are present in a given sample.

The KAOFT technique discussed in Chapter 3 overcomes this issue by

comparing two samples on only their common digraphs. Typical classifiers

using subsets of features require retraining with each subset each time a pre-

diction is required. However, retraining can be avoided by building a model

for each digraph seen in the training data, but only using each model when

the sample requiring verification contains that digraph. In the algorithm eval-

uated in this section, the spread of times for each digraph is used to form a

per-digraph model. The predictions of each model are combined to make an

overall prediction whether or not a given sample belongs to the user.

5.3.1 Algorithm

This algorithm, called the “Spread Classifier”, utilises the spread of time values

for each digraph in order to verify an identity. A model is built for each

digraph seen during training, but only if it occurs at least x times, where x

is a parameter. The algorithm has four other parameters: whether to remove

time outliers, the value o above which times are considered outliers, the type

of model to build, and the bandwidth b of spread. In this implementation,

three different types of models were available:

• Fixed Bandwidth In this model digraph times are binned into discrete

ranges during training. For prediction, the probability a time t belongs
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to that user’s digraph is the total number of training digraphs in the

same bin, divided by the total number of digraphs D plus one. If no

digraphs are in the same bin, the predicted probability is 1/(D + 1). In

this model, b is the size of the bin.

• Gaussian The Gaussian model fits a single Gaussian distribution to each

digraph, based on the mean and standard deviation of the training times.

A prediction for a time t is the value of the continuous probability density

function for t. For this model, b is ignored and instead the standard

deviation is used.

• Mixture of Gaussians This model is similar to the Gaussian model, but

instead fits a mixture of Gaussians using the Expectation-Maximisation

algorithm during training. The predicted value is the combined densities

of the fitted Gaussian models. Again, b is ignored and the standard

deviation is used to determine the spread.

In the case of the first model, Fixed Bandwidth, the value for b could be

set automatically to the standard deviation of that particular digraph. Fixed

values of b were applied globally to all digraphs, but the standard deviations

were set per-digraph. In practice, fixed values of b performed worse than

the per-digraph standard deviation, so in all results in the next section the

standard deviation is used for the bandwidth.

The four parameters affected all digraphs; the parameters were not op-

timized on a per-digraph basis unless the bandwidth parameter utilised the

standard deviation instead of a fixed value. Furthermore, no per-user op-

timization was employed—the parameters were identical for every user the

system evaluated. Although per-user parametrization has been shown to im-

prove results for other typist verification techniques [38], the results are not

substantially different from those using global parameters, and so the lack of

per-user optimization is not considered an impediment here. Also, all methods

in this thesis, with the exception of LTIAT in Chapter 3, perform no per-user

optimization.

A prediction on a sample to be verified is performed by considering only

the models that both the trained system and the given sample have in com-

mon. Each digraph time is provided to the relevant model, and the probabil-

ity/density is obtained. The densities are then accumulated together (using

their log likelihood) and divided by the total number of digraphs evaluated.

Thus, the length of a sample and/or the number of digraphs it has in common
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Model Minimum Digraphs x FRR IPR Weighted AUC
sm-150

Fixed Bandwidth 1 7.67 93.64 0.235
Gaussian 3 5.13 75.17 0.704
Mixture of Gaussians 3 0.855
sm-all

Fixed Bandwidth 1 0.500
Gaussian 3 0.757
Mixture of Gaussians 3 0.923

Table 5.3: Final results for the Spread Classifier

with the training data should not affect the overall prediction. A threshold is

obtained during training using the leave-one-out methodology adopted by the

other techniques in this chapter. During prediction, any values falling below

the threshold fail verification, those above the threshold pass.

5.3.2 Results

Table 5.3 presents the results for each of the sm datasets, and each type of

model. In all cases the standard deviation was used as the bandwidth pa-

rameter b, and digraph times above 2000ms (2 seconds) were removed. When

presented with the sm-all dataset the implementation was overwhelmed and

took an excessive amount of time1 to complete evaluation, so threshold op-

timization was abandoned and only the weighted AUC is presented for this

dataset. This is also the case for the Mixture of Gaussians model for both

datasets—the computation involved in optimizing the threshold took more

than a week of computing time. For both sm datasets and the Mixture of

Gaussians model, only the weighted AUC is presented.

It is possible to read off FRR and IPR values from the ROC curve for each

user, but this would mean that the thresholds were obtained in a different

manner—so it is difficult to make a fair comparison of the various models.

However, the weighted AUC is available for all of the models and is independent

of any thresholds, so this value forms the basis of all comparisons.

Not surprisingly, the most complicated per-digraph model—a mixture of

Gaussians—performs the best on all datasets. Unfortunately this particular

model takes a long time to process the sm datasets, making it unhelpful for

typist verification because decisions cannot be made quickly enough to refuse

an attacker access to the system in real time. The faster Fixed Bandwidth and

Gaussian models perform poorly compared to other techniques such as LTIAT

and KAOFT, and build and classification time increases to an unmanageable

level when using larger datasets such as the sm-all one. Also, all AUC values

1More than one week of processing on a single 2.4GHz machine.
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are worse than those previously observed for other techniques. Simply put,

the per-digraph model representations of a typist are often large to store and

time consuming to process, and do not challenge the current state of the art

in any way.

5.4 Context Classifier

In Section 5.2.2 it was found that PPM worked best when the context was

limited to a context length of one. The last section, 5.3, used more compli-

cated metrics than PPM in order to verify identities, opting for a density-

based approach. These two techniques can be combined, to form a single

context-sensitive density-based classifier. This classifier, called the “Context

Classifier”, requires that a context matches before making a prediction using

a digraph’s one-class model. As a result of this requirement, a single digraph

may have many different models—one for each context where the digraph ap-

pears. This is different to using trigraphs or larger n-graphs where the overall

time of the entire n-graph is considered; only the digraph time is ever used.

5.4.1 Algorithm

The Context Classifier was implemented into the workbench from Chapter 3.

Like the Spread Classifier in the last section, it removes outlier times above a

given level, o. It has two other parameters, namely the prior context length

and post context length for a character. If the post context length is set to

one, the model is built on digraphs and is identical to the Spread Classifier

when it uses a Gaussian model, except that no limitations are made on the

number of observations before the system will attempt to use a model.

The prior context length determines how many characters are considered

before the character in question and the post context determines the number

of characters afterwards. A value of zero for the post-context length param-

eter means the second character in the digraph is anonymous. For example,

considering the two sequences the and thy with a prior context length of one

and a post context length of zero, the times for the digraphs he and hy would

be incorporated into the model for th (where t is the prior context). When

the post context length is increased to one, the times for he and hy are put

into separate models the and thy. When the second character is anonymous

the time value is still a digraph time—not a duration—because the only key

press events are considered.

71



One Gaussian distribution is fitted to each {prior context, character,

post context} triple, using the digraph times for the triple to build the Gaus-

sian distribution. A sample is verified by considering triples that appear in

both the training data and the given sample, and using their relevant distri-

butions to produce densities that are combined in the same manner as in the

Spread Classifier discussed previously.

This implementation of the Context Classifier uses only key press events,

but it is possible to create a similar classifier using releases as well. Such

a classifier would be similar to PPM in Section 5.2, but utilise a Gaussian

distribution to make predictions instead. After considering the relevant per-

formances of the classifiers in this section, evaluation of such a classifier was

not conducted in favour of investigating other methods of typist verification.

5.4.2 Results

The results of ten-times ten-fold stratified cross-validation for different context

lengths, up to a maximum of four characters, is presented in Table 5.4 using

the sm-150 dataset. In Table 5.4, c is used to represent context characters

surrounding the main character C. When the context is at least two characters

long, regardless of whether the characters are in the prior or post context, the

system scores an AUC below 0.5. This suggests that a given key is affected

by only one other key because context lengths smaller than two perform sub-

stantially better than others when used for verification. Gentner [30] asserted

that “the inter-stroke interval for typing a given character is influenced by the

neighbouring two characters to the left and one character to the right.” Gen-

tner’s work was an investigation of keystroke timing in transcription typing,

of which character context is one aspect. The analysis here does not support

this assertion, however, key releases may influence timings but were not used

when considering context in this classifier.

The results from Table 5.4 indicate that a post context of one and a prior

context of zero—that is, digraphs (as used in the Spread Classifier)—is the

most effective for verification, when using the AUC for comparison. This con-

text was also tested using the sm-all dataset, which produced worse results.

Unfortunately none of the results are good regardless of the dataset used. The

AUC needs to be much greater in order to perform verification that would be

practically useful. The Context Classifier and the related Spread Classifier are

not good challengers to the current state of the art in typist verification.
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Prior Context Post Context Context FRR IPR Weighted AUC
0 0 C 7.47 89.54 0.619
0 1 Cc 8.07 97.40 0.644
1 0 cC 7.93 94.81 0.623
1 1 cCc 2.46 95.44 0.468
2 0 ccC 3.66 96.31 0.498
0 2 Ccc 4.33 95.04 0.489
2 1 ccCc 0.67 98.82 0.448
1 2 cCcc 0.80 96.79 0.429
2 2 ccCcc 0.20 99.76 0.413
0 3 Cccc 0.60 97.89 0.452
3 0 cccC 0.00 99.93 0.448
3 1 cccCc 0.07 99.93 0.423
1 3 cCccc 0.27 99.81 0.441

Table 5.4: Effect of different context lengths on the Context Classifier

Dataset Prior Context Post Context FRR IPR Weighted AUC
sm-150 0 1 8.07 97.40 0.644
sm-all 0 1 1.14 99.07 0.622

Table 5.5: Final results for the Context Classifier

5.5 Individual Digraph Classifier

All classifiers introduced so far in this section are one-class classifiers: they

require no data for training other than that belonging to the user being ver-

ified. In general, requiring negative data is a drawback because the system

performance becomes dependent on it; poor quality data or low quantities of

negative data will damage performance. On the other hand, the performance

of one-class classifiers depends on only the target user’s data, and their thresh-

old can be adjusted to obtain a different trade-off between the FRR and IPR.

Up until this point, only one-class classifiers have been proposed in this chap-

ter. However, there is negative data available—both from other users in the

sm datasets, and other datasets from Chapter 3—so it is possible to consider

systems that make use of this data.

The “Individual Digraph Classifier” is one method of using the negative

data, but retains the ability to change the trade-off between the FRR and IPR

at prediction time. This is achieved by recording a set of features for every di-

graph that appears in the training samples and training a standard multi-class

classifier with this data. The multi-class classifier can predict either “user” or

“attacker” for previously unseen digraphs. A sample is verified by forming a

threshold on the proportion of digraphs in it that are classified as “user” by

the multi-class classifier. This threshold can be adjusted at prediction time

without retraining any part of the system.
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5.5.1 Algorithm

The Individual Digraph Classifier utilises C4.5 decision trees as the multi-

class classifier, trained with a set of ten features. The implementation of the

C4.5 decision trees used here was provided by the WEKA Machine Learning

Workbench [77]. Each instance is derived from a single digraph in a sample

with the features that were used to train the classifier being:

• First Character The first character in the digraph.

• Second Character The second character in the digraph.

• Absolute Digraph Time The digraph time, measured in milliseconds.

• Absolute First Duration The duration of time, measured in millisec-

onds, that the first key was held down.

• Absolute Second Duration The duration of time, measured in mil-

liseconds, that the second key was held down.

• Absolute Inter-Keystroke Time The time in milliseconds between

the release of the first key and the press of the second. This may be

negative if the first key was still depressed when the second one was

pressed.

• Relative Digraph Time The absolute digraph time divided by the

WPM speed of the entire sample.

• Relative First Duration The absolute first duration divided by the

WPM speed of the entire sample.

• Relative Second Duration The absolute second duration divided by

the WPM speed of the entire sample.

• Relative Inter-Keystroke Time The absolute inter-keystroke time

divided by the WPM speed of the entire sample.

Both absolute and relative times were used because either on their own had

little discriminatory power; the learner was unable to perform better than

predicting the majority class when trained with only one type of timing.

Just like LTIAT and the PPM Classifier, the C4.5 decision tree makes

predictions on individual digraphs rather than samples. To translate this into

a judgement for a sample, a threshold is set on the proportion of digraphs
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Dataset Threshold FRR IPR Weighted AUC
sm-150 0.5 4.33 35.41 0.917
sm-all 0.5 0.70 46.48 0.927

Table 5.6: Final results for the Individual Digraph Classifier

that pass verification according to the decision tree. A digraph passes if it

has a greater probability of belonging to the target user than an attacker.

The attacker data is sourced from the LTIAT dataset in the evaluation below,

ensuring that attackers are always novel to the system.

It is possible to set the threshold in the manner described in Section 5.1,

however, finding the threshold in this manner takes an excessively long time for

this classifier.2 The classifier is trained on tens—often hundreds—of thousands

of digraphs and takes a long time to build a model with so much data. Fortu-

nately it is easy to set a sensible threshold on the proportion that achieves a

similar FRR to other classifiers. If more than half of the digraphs pass verifi-

cation, the entire sample passes too. The threshold is set by default at 0.5 for

this classifier.

5.5.2 Results

The Individual Digraph Classifier was evaluated using ten-times ten-fold strat-

ified cross-validation, in exactly the same manner as all other algorithms in

this chapter. In both cases, the threshold was set to 0.5—no leave-one-out

threshold optimization was performed. Table 5.6 presents the results of the

evaluation.

This classifier did surprisingly well, considering that the Spread Classifier—

which also evaluates individual digraphs—performs poorly. The Individual

Digraph Classifier did not score a higher AUC than the state of the art, but

came closer than both the Spread and Context Classifiers. The accuracy of

the predictions could be improved by using bagging or boosting on the deci-

sion trees [55], but doing so would increase the time taken to build a model.

Attempts at training bagged trees and boosted trees were abandoned because

they did not complete in a reasonable amount of time.3

2More than a week of computing power on a single 2.4GHz machine to perform a full

cross-validation evaluation on the sm-150 dataset

3It took more than 24 hours of processing time for evaluation of the sm-150 dataset.
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5.6 Performance Comparison

This chapter has presented four different methods of performing continuous

typist verification, and evaluated their performance using the sm datasets. In

terms of accuracy, the PPM classifier performed the best; it scored an AUC

of 0.971 for the sm-all dataset. The PPM technique was based on LTIAT,

changing only the machine learning component, and rivals the accuracy of

LZ78—especially on small datasets. However, PPM is slower than LZ78 and

the performance difference is not significant, so LTIAT using LZ78/LZms still

trumps this technique.

In all analysis, accuracy has been a major factor in determining the ef-

fectiveness of the algorithms. Yet speed is also important. Ideally a system

should be able to perform classifications in real time to ensure that attackers

are quickly identified. Training time also needs to be considered because it

would be advantageous to retrain the system over time, keeping the profiles

up to date. Systems that take a long time to train may have problems when

many users need to be verified—the training of profiles may overwhelm the

machine being used.

Table 5.7 presents approximate timings for training and prediction for each

of the systems from this chapter and Chapter 3, using the sm-150 dataset. No

threshold optimization was performed, the timings represent how long each

algorithm takes to build a single model, and classify a single instance. The

timings are rounded to the nearest five milliseconds and were calculated using

ten-times ten-fold stratified cross-validation. Each technique is evaluated using

its implementation in the Typist Workbench introduced in Chapter 3. Whilst

none of the code was completely optimised each classifier was implemented in

a similar code style and provides satisfactory performance, with the exception

of PPM where a third-party implementation was used.

Of all the techniques, LTIAT using LZ78 is a clear winner on speed, but this

should be taken with a grain of salt because the times were clustered before the

system was trained. This means that the training time is artificially low, and

in reality the Context Classifier is the fastest overall technique. Unfortunately,

this classifier achieves an accuracy inferior to all other techniques, so the speed

advantage is outweighed by its poor performance for verification.

All algorithms slow down—noticeably during training—when the larger

sm-all dataset is used. The KAOFT technique and Individual Digraph Classi-

fier both utilise negative data, and their training time is additionally influenced

by the amount of negative data available. The results in Table 5.7 suggest that

76



Training Time Prediction Time
Method Average Std Dev Average Std Dev
LTIAT - LZ78 50ms 40ms 10ms 10ms
LTIAT - LZms m = 5, s = 5 1000ms 500ms 150ms 20ms
PPM - o = 1 200ms 30ms 15ms 15ms
Spread - Fixed Bandwidth 50ms 10ms 100ms 50ms
Spread - Gaussian 50ms 10ms 100ms 50ms
Spread - Mixture of Gaussians 30000ms 200ms 10ms 10ms
Context - Prior/Post = 2 150ms 10ms 5ms 10ms
Individual Digraph 3000ms 200ms 25ms 20ms
KAOFT - R2A2 1300ms 100ms 100ms 40ms

Table 5.7: Average build and classification times

these two classifiers would be a poor choice for this dataset. Despite KAOFT

scoring the highest accuracy it is also one of the slowest techniques.

5.7 Summary

This chapter has presented four different continuous typist verification tech-

niques, the PPM Classifier, Spread Classifier, Context Classifier and Individ-

ual Digraph Classifier. Each classifier considers a different aspect of typing

behaviour, from sequences to individual digraphs. None of these classifiers

challenge the accuracy of LTIAT or KAOFT on the sm datasets, except for

the PPM classifier, which slightly outperforms LTIAT on two of the datasets

used. The classifiers have a varying speed performance on the sm datasets,

but considering both accuracy and speed LTIAT is the best choice for typist

verification seen thus far.

In order to challenge KAOFT’s accuracy and LTIAT’s speed and accuracy,

a new approach is needed. To reduce the training and prediction times, smaller

representations of typists are required. To achieve good accuracy, any approach

must consider various aspects of a typist’s behaviour—not just raw speed. The

next chapter discusses typist behaviour, exploring what aspects of typing can

be used to distinguish typists from one another. Chapter 7 introduces one-class

classification and presents a general classifier that can outperform multi-class

classifiers when attacking data is novel to the system. Chapter 8 draws on

the insights from Chapters 6 and 7 to present a continuous typist verification

technique that rivals all those explored thus far—considering both speed and

accuracy.
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Chapter 6

Typist Behaviour

There are many elements to consider in typing input, but ordinary typist

verification techniques utilise only one: the time between key events. This is

not necessarily a problem because methods that use time-based metrics, such

as those in Chapters 3, 4 and 5, have been shown to achieve high accuracy.

However, the performance comparison in the previous chapter showed that

many of these techniques are slow; they utilize large numbers of features and

because of this perform many comparisons before producing a judgement. In

order to reduce the time taken, the dimensionality of typical typist verification

systems needs to be addressed.

This chapter explores typist behaviour and considers what habits a typist

has that might differ from another typist with a similar level of skill. The

intention is to shed light on what features might be useful for verification, so

a system can be created that utilises only these. Not all behaviours can be

used to distinguish typists from one another—often typists perform a task in

a similar manner. This isn’t unhelpful: identifying uniform behaviours allows

distinctive ones to be isolated, and it is these that are of interest for typist

verification.

The digraph is one of the smallest units of data in a typing sample and one

of the most commonly used structures for typist verification. Because of this

it is the starting point for this chapter. First, different sorts of digraphs are

considered in Section 6.1, including those that do not produce characters on

the screen. Next, Section 6.2 abstracts from digraphs to finger movements, to

examine whether there is any correlation between digraphs that are typed in

the same way.

These features are still based on time, although several individual digraphs

are combined when considering movements. Section 6.3 is the first analysis

in this thesis of a non-time based metric, studying how often certain unprint-

able characters are used. Section 6.4 analyses pausing behaviour. Section 6.5

investigates whether typists may have different habits for releasing keys. Sec-

tion 6.6 briefly discusses the potential of simple attributes such as typing speed
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and error rate. All these channels of information can be exploited for typist

verification.

6.1 The Digraph

In the English language, “the” is one of the most common words. Its compo-

nent digraphs, th and he, are the most commonly typed alphabetical digraphs

in the datasets collected in the previous chapter. However, neither are the

most common digraph: that honour goes to a pair of backspaces, which is

typed three times more often than any other digraph in the sm-all dataset. In

fact, th is only the 6th most frequent digraph. The top ten frequent digraphs,

in descending order, are: Backspace Backspace, Right-Arrow Right-Arrow,

e Space, Left-Arrow Left-Arrow, Space t, th, t Space, Space a, he, and

Space Space.

The top five digraphs are either pairs of unprintable characters, such as

Backspace, or digraphs that include the Space character. Pairs of unprint-

able characters are not always helpful because they are often typed quickly,

especially when the key is held down until it begins to repeat automatically.

They can also be typed extremely slowly, such as when the user pauses to

consider what they are editing. Figure 6.1 shows the spread of times for a

pair of backspaces, rounding times to the nearest 20ms and grouping times

that exceed 1000ms into the final bar. Although Figure 6.1 reveals a skewed

normal distribution nestled next to a spike at 40ms where the backspace key

is held down and the key repeat has engaged, and a long tail of values past

1000ms. One might näıvely assume that it would be safe to filter out times

that are not within a given range—removing the spike and tail in the case of

Figure 6.1. However, this is not the case. Applying a filter can have a nega-

tive effect: valid digraph times that discriminate one user from others may be

discarded, and for some samples all occurrences of a digraph may be removed.

The negative effect can be demonstrated by considering a randomly selected

sample for the digraph th, typed by Participant A from Chapter 4. Using a

filter that removes times less than 40ms, three of the 40 values for Participant

A’s sample would be removed. All three values are perfectly legitimate: t and

h are separate keys, and the typist is simply quick at typing them.

In general, it is unwise to use a filter that removes low times—especially for

digraphs that are a pair of keys—because it is difficult to determine whether

the digraph has been typed legitimately or is the result of held-down keys when

considering a pair of keys. Filters that remove long times may be useful; it is
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Figure 6.1: Distribution of times for Backspace Backspace

unlikely that a digraph that takes minutes to type occurs naturally in the flow

of typing. The user is most likely distracted, typing with something in their

hand, or absent from the terminal between press events. However, care must

be taken to ensure that such a filter does not remove valid digraphs either.

For example, 750ms seems too low—5% of all digraph times for Backspace

Backspace would be removed using this value.

Ideally any filter should take into account the way that a digraph is typed,

since a global filter will remove a different proportion of times for each. Some

digraphs require the typist to move their hands across the keyboard, not just

their fingers, and inevitably such digraphs will take a longer time to type. A

more conservative filter could also be used, in the order of seconds rather than

milliseconds. On the other hand, any well-designed learning scheme should be

robust to outliers, so filtering out high digraph times should be unnecessary in

order to perform verification.

Regardless of filtering, digraphs formed with a pair of identical letters,

such as a pair of backspaces, are not always informative for discrimination

between users. Participant A, the fastest typist averaging 70 WPM, has a

strikingly similar spread for the digraph Backspace Backspace to Participant

J, the slowest of the typists who averages only 39 WPM. Figure 6.2 displays the

frequency of the digraph Backspace Backspace in a randomly selected sample
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samples)
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Figure 6.4: Times th for Participants A and J (one sample)

from each of the two users. Despite Participant A having an overall average

speed almost twice as fast as Participant J, there is an average difference of

only 35ms between the two samples. On average, Participant A had a digraph

time of 200ms, Participant J had a time of 235ms. This is not just a result of

unrepresentative sample selection: the same two users have the same overlap

when considering the same digraph, Backspace Backspace, across all samples,

as shown in Figure 6.3.

The digraph th does not suffer from the same issue as Backspace

Backspace for these two users. Examining the same two users for th, the

difference in overall typing speed is clearer. Figure 6.4 shows the spread of

times, using the same two samples as before. Participant A typed th with an

average time of 76ms, and Participant J managed only 143ms—almost half

the speed of Participant A’s efforts. Surprisingly, the second fastest typist,

G, also types th at a distinctly different rate to Participant A, despite per-

forming on average only 2 WPM slower overall. This is shown in Figure 6.5,

which displays the same sample from Participant A against a random sample

from Participant G. In this case G is more similar to J, with an average time

of 141ms for th in the given sample. Yet G types nearly twice as fast as J

overall.

This behaviour is not uncommon: a similar overall speed between typists
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Figure 6.5: Times th for Participants A and G (one sample)

does not mean that their individual digraphs will be typed at the same rate.

Ideally, for the purpose of verification, a user should type a digraph consis-

tently, that is, with a low standard deviation, but uniquely—with a mean or

median that distinguishes them from the rest. If all users are inconsistent the

relevant digraph is unhelpful in discriminating between them. If some users

are consistent, this quality can serve to separate them from the rest. If all users

are consistent, the digraph must be typed uniquely in order for it to remain

useful. It is difficult to determine in advance whether or not certain digraphs

will have the required properties.

However, using the dataset from the previous chapter it can be shown that

Backspace Backspace does not have the same discriminatory power as th. A

number of techniques surveyed in Chapter 2 utilised the mean and standard

deviation for each given digraph time, classifying a digraph as belonging to

a user if it passed with x standard deviations of the mean (x > 0, x ∈ R).

Assuming a normal distribution, the probability density can be calculated for

any digraph time, from the mean and standard deviation for a given digraph

and user. This density is calculated using the continuous probability density

function for a Gaussian distribution:
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2σ2 (6.1)

To evaluate the discriminating power of a single digraph, the probability den-

sity is first calculated for each digraph time, d. Next, the densities are ranked,

noting whether each time belongs to the user, or an attacker. Finally, the

ranked densities are used to calculate the area under the ROC curve (AUC),

giving the probability that a user’s time will have a higher density than an

attacker’s.

The higher the AUC for a user’s digraph, the easier the user can be sepa-

rated from the attackers and the more useful the digraph is for typist verifica-

tion. Table 6.1 shows the AUC values for the top six most popular digraphs,

and in, using the sm-all dataset and the first 10 users (the other users did

not type enough to make their analysis useful). The last digraph, in, is in-

cluded because Gaines et al. [28] found it to be one of five digraphs (in, io,

no, on, ul) that together could be used to discriminate perfectly between six

professional secretaries (see Chapter 2). Clearly, this digraph is the best one

for verification of the selected digraphs in Table 6.1: it has a higher AUC

value than any other digraph in the table, for all users. In contrast, the other

digraphs perform poorly, rarely managing an AUC above 0.5—with the excep-

tion of th, which for some users rivals in. Three AUCs are missing from the

table: Right-Arrow Right-Arrow for Participants A and B, and Left-Arrow

Left-Arrow for Participant B. These digraphs were not ever typed by the

relevant users, so it is impossible to calculate an AUC value for them.

Calculating the AUC for each digraph shows that a digraph’s discrimina-

tory performance is not only dependent on the digraph itself, but on the user

as well. For example, Participant J scores an AUC of 0.784 for th, but Par-

ticipant A only scores 0.577, even though earlier in this section it was shown

that these two users were separable from each other using this digraph! Rank-

ing all digraphs by their average AUC, the highest that was typed by all ten

users is in, scoring 0.744, followed by as, yo, er and on. None of the digraphs

perfectly discriminate any one user from the rest. The closest to do so is tc,

which reports an AUC of 0.946 for Participant H.1

In general, digraphs that contain the space character and digraphs that

contain unprintable characters such as Right-Arrow perform worse than the

those formed from two alphabetical characters. However, there are exceptions

1Appendix D gives a ranked list of the top 54 digraphs typed by all ten users at least ten

times each.
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Participant \b \b →→ e Space ←← Space t th in

A 0.490 - 0.556 0.461 0.539 0.577 0.737
B 0.562 - 0.441 - 0.522 0.484 0.756
C 0.431 0.411 0.595 0.468 0.585 0.633 0.668
D 0.489 0.609 0.590 0.639 0.522 0.585 0.789
E 0.530 0.432 0.696 0.451 0.482 0.699 0.706
F 0.466 0.580 0.574 0.651 0.515 0.592 0.719
G 0.466 0.493 0.576 0.469 0.549 0.535 0.781
H 0.621 0.600 0.652 0.623 0.522 0.616 0.726
I 0.530 0.454 0.516 0.512 0.521 0.500 0.730
J 0.539 0.571 0.558 0.528 0.471 0.784 0.831

Average 0.512 0.519 0.575 0.533 0.523 0.600 0.744

Table 6.1: AUC values for popular digraphs

for particular user/digraph combinations. This does not mean these digraphs

cannot be used for verification; when treated as different behaviours from the

rest they can help to discriminate between users. Sections 6.4 and 6.3 discuss

ways to make use of them.

Notwithstanding the analysis in this section, it is impossible to determine

in advance whether a particular digraph will be useful for verification unless

the set of attackers is known. Most verification systems assume that this is

not the case, and systems covered in Chapter 2 that use digraphs in the same

manner as above do not select subsets of digraphs unless the technique utilises

identification for authentication.

6.2 From Digraphs to Finger Movements

One of the major problems in a continuous typist verification system is that

there are no guarantees that a user will type a particular digraph. If a single

digraph differentiated a user from the rest, it would be tempting to try and

force the user to type it. However, the advantage of a continuous system is that

it can perform authentication without interrupting the user, which would be

sacrificed by requiring the user to type something specific. One way of dealing

with this is to abstract from the exact keys involved to the movements used.

This reduces the number of possible features from thousands of digraphs to a

handful of movements.

Abstracting to movements can be done in a number of ways. Dvorak et

al. [23] describe six different classes of movements, as follows:

• tap Both letters in the digraph are the same, so the finger can simply

‘tap’ the same key (ee, tt).

• reach A digraph typed by the same finger on the same hand moving

over a distance of only one key (ft, ju, ed).
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Participant Tap Reach Hurdle Trill Rock Opposite

A 0.715 0.417 0.642 0.505 0.432 0.470
B 0.513 0.334 0.299 0.339 0.276 0.419
C 0.731 0.679 0.595 0.565 0.469 0.588
D 0.837 0.742 0.684 0.744 0.767 0.619
E 0.712 0.502 0.508 0.563 0.571 0.704
F 0.650 0.492 0.421 0.549 0.593 0.487
G 0.560 0.551 0.319 0.517 0.570 0.494
H 0.525 0.566 0.541 0.551 0.711 0.476
I 0.756 0.325 0.380 0.403 0.446 0.521
J 0.653 0.698 0.777 0.699 0.774 0.762

Average 0.665 0.531 0.517 0.544 0.561 0.554

% of Digraphs 7.59 2.56 1.16 14.94 25.20 48.55

Table 6.2: AUC values for movement types

• hurdle A digraph typed by the same finger on the same hand hurdling

over the home row (ce, un).

• trill A digraph typed by adjacent fingers on the same hand (fe, op, te).

• rock A digraph typed by remote fingers on the same hand, in which the

fingers often move in a rocking motion (af, jp, on).

• opposite A digraph typed by different hands (if, od, ma).

Of the top ten most discriminative digraphs typed by all ten users in Ap-

pendix D, all are trill or rock digraphs. This seems to indicate that the be-

haviours that can be used to verify users occur for digraphs typed with different

fingers of the same hand. Table 6.2 shows the results of calculating the AUC

for each movement type listed above, instead of for individual digraphs. A

similar pattern is seen in Table 6.1: the performance of a movement for verifi-

cation depends on both the movement and the user, and there is no movement

that is better than the rest for all ten users. Surprisingly, taps are better dis-

criminators on average than any others, despite only accounting for 7.59% of

all digraphs.

A simpler abstraction is to consider only the hand that typed the digraph,

giving three possible classes: left, right and both. A more complicated ab-

straction might use various combinations of hands, fingers and keyboard rows

to form features. There are many possible abstractions—too many to cover

here—but it is likely that the same pattern will occur for any abstraction.

Each feature will have a different discriminating power for a particular user,

but none will by itself be a panacea for typist verification, even though some

features clearly perform significantly better than others.

The empirical evidence presented here indicates that digraphs formed from

pairs of alphabetical letters are the most useful for typist verification. Never-
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theless, it would be a mistake to attempt to use these alone. An ideal con-

tinuous system will not force a user to type particular digraphs, and because

of this it cannot guarantee that a sample will contain any particular digraphs.

Ideally, these results could be used to weight features, but doing this requires

negative information. It is impossible to know in advance whether or not a

digraph or movement will be helpful for verification, without understanding

the way potential attackers type.

6.3 Key Usage

Although missing digraphs present a problem for verification, they can also

be useful—the system may perform verification by considering what a user

is typing. This is known as authorship verification. It is different to typist

verification, which considers how a user is typing. Authorship verification

systems typically work on a blocks of text, instead of the stream of events

used to create them. Such systems are able to supplement typist verification

because a stream of key events can easily be turned into a block of text.

Unfortunately, potentially helpful information will be lost when a typing

stream is turned into text. Some keys on a computer keyboard produce un-

printable characters that are important when creating text, but do not affect

reading or understanding. These include cursor keys, Backspace, Delete,

Insert, Home, End, Page Up, Page Down, Shift, Meta, Control and Alt. A

typical authorship verification system would never see these keys because they

do not produce characters directly, but are used for editing or modifying other

keys. However, their occurrences are readily available for typist verification.

The simplest way of using these keys for verification is to calculate how

often they occur in each sample and turn this into a probability. The absence

of a particular key cannot confirm an identity because it might not have been

typed simply by chance. On the other hand, the presence of a key might

indicate that an attack is underway, especially if the user has never pressed it

before. For example, Participant B never used the Left-Arrow or Down-Arrow

key in the sm-all dataset, yet all others did use these keys in at least one of

their samples. If this observation was used for verification, a sample containing

the Left-Arrow or Down-Arrow keys would be considered unlikely to belong to

Participant B. Such a sample should not be totally discounted, because there

is always a slim chance that the user did indeed type with this key, perhaps

by accident.

Navigational keys and keys used for editing are not the only ones whose
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usage (or lack thereof) should be considered. After analyzing the most common

digraphs from the previous sections, 88 stood out. It was the 15th most popular

digraph, whereas no other numerical digraphs appeared in the top 250. Of the

5378 times that 88 appeared, only seven occurrences were not from Participant

B. It was typed once by Participants A and G, and five times by Participant

D. On closer inspection it was discovered that the digraph was actually **,

that is, 88 modified by the Shift key. Participant B often used a line of

asterisks to separate text within their emails, pressing and holding the key

until a sufficiently long line was produced. This kind of behaviour would be

caught by any competent authorship verification system because the repeated

asterisks would be present in the printed text.

All of the digraphs in this chapter are evaluated in lowercase. Although

the datasets collected earlier indicate whether Shift was down when another

key was pressed, Capslock was not recorded, so it is difficult to determine

whether some characters actually appear on screen in uppercase. Furthermore,

all modifiers—Shift, Meta, Control and Alt—were recorded in the form of

a mask for each key. Because of this, it is impossible to perform a similar

analysis to Lau et al. [44] (reviewed in Chapter 2), checking to see which of

the left or right versions of these four keys were pressed.

Navigational keys and those used for editing should be used with caution

for typist verification. Their presence or absence cannot by itself confirm an

identity. Whether they are typed depends on a number of factors, including

whether a mouse was available to provide input. Just like the digraphs in the

previous two sections, the discriminatory power of a particular key’s usage is

dependent on the user, the key, and the potential set of attackers.

6.4 Pausing

Studies of reading have found that “various levels of structure contribute to

the process: letters, digraphs, syllables, words, phrases, sentences, and so

on”[51]. Many typist verification techniques apply this idea by considering

not just digraphs, but larger units such as words. One difficulty with any

timing collected from typing samples is that it may be influenced by pauses.

Inevitably typists pause as they prepare to type each structure, just as they

would during reading. They may also pause for other reasons, such as being

distracted, holding something that impairs their ability to type, tiredness, or

leaving the terminal. Section 6.1 found that digraphs containing the Space

key were poor discriminators compared to others. This is most likely due to

89



Participant Before Space After Space

A 0.531 0.310
B 0.565 0.745
C 0.786 0.584
D 0.507 0.515
E 0.619 0.590
F 0.660 0.521
G 0.486 0.518
H 0.689 0.391
I 0.569 0.705
J 0.548 0.570

Average 0.596 0.545

Table 6.3: AUC values for pausing between words

typists pausing while they prepare to type the next word. Unfortunately, it is

impossible to confirm this because the typist would need to be observed, either

in person or using a camera, to understand what causes them to pause.

Verification systems can utilise pauses explicitly to differentiate between

typists, regardless of their cause. To do this, the system considers how long

the typist takes to complete certain structures. Digraphs that contain the

Space character can be useful here: it is likely some typists pause before

pressing the space key, whereas others pause after doing so. After testing this

with the sm-all dataset, it was found that most typists tended to pause after

pressing the space key instead of beforehand. Just as we saw with other types

of digraphs, these times were a useful discriminator for some of the users. The

results of this evaluation are presented in Table 6.3.

Similar patterns to those in Table 6.3 are observed using other simple struc-

tures such as syllables, and larger ones such as sentences. Interestingly, di-

graphs that cross syllable boundaries are usually typed faster than elsewhere

in the text. In this case, syllables were calculated using a hyphenation engine

from the iText PDF generation library [45], and each digraph was split into

one of two groups depending on whether or not it crossed a syllable boundary.

On average, those that did were faster that those that did not 75% of the time,

even when times greater than one second are removed from the analysis.2

Unfortunately, at higher levels of structure the effects of software timers

are amplified; software timers have a resolution no finer than 10ms—higher if

the system is under load. As consecutive events are accumulated into larger

structures the overall timing error increases. For example, four events produce

an overall error of between zero and 40ms. If this error is sufficiently large it

may negatively impact a verification system’s performance. This is a problem

when considering pauses because it is difficult to determine how much of a

2Syllables are likely to produce only short pauses because the typist is moving between

sections of text but ideally maintaining a flow, and so removing excessively large times

should not affect the evaluation.
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timing belongs to the user’s natural patterns, how much is the result of pausing,

and how much can be attributed to system error. In all the evaluation in this

section no attempt was made to divide any timing into its component parts.

Here, pausing is just the act of taking longer than usual to complete a task.

6.5 Ordering of Events

Typed language structure is made up of a number of key events. Characters

need only two events; digraphs four; words and sentences need much more.

Only half the events—the press events—cause text to appear on screen. Key

releases are important for modifier keys, such as Shift or Ctrl, which trans-

form a normal key in some way until they are released. Releases are also useful

when a key is pressed for a long period: computer operating systems usually

begin to automatically repeat characters after a key has been held down for

a certain period of time, and continue to repeat at regular intervals until the

key is released. Keystroke recognition systems that use audio recordings to

determine what was typed [81] additionally define a touch peak and hit peak,

referring to when the finger touches the key and when the key hits the key-

board backplate respectively. The keyboard itself can only provide information

as to the state of a key, i.e. whether it is up or down.

When typing, press events must occur in the same order as the intended

characters, but releases are not constrained. Studies have shown that touch

typists move towards 3 different keys at any given time on average [16]. With so

many movements going on at once, it would be unrealistic to expect events to

alternate perfectly between presses and releases. Even hunt-and-peck typists

can hold down overlapping keys if they use both index fingers to type.

The extent to which keys overlap can be quantified in a number of ways.

In this thesis, four different measures are used for event ordering. Whilst there

are many possible ways of evaluating this, these four metrics performed the

best out of all that were tested. The metrics used are:

• Slur Rate The slur rate is the proportion of times a release event does

not follow immediately after the press event for the same key, over the

total number of events in the sample. It indicates how often a given user

slurs events, instead of pressing and releasing keys cleanly. A typical

user from the sm datasets has a slur rate around 0.7.

• Slur Length The slur length measures how many key events occur be-

tween a press event for a given key and its related release event. For
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an entire sample, the slur length is the average length of all slurs. This

measure quantifies how long a user slurs, without considering the overall

time involved. The average slur length across all users in the sm datasets

is 1.7.

• Press Before Release Following the same idea of slurring, this measure

considers the proportion of times a press event for a new key occurs before

the release event for the given key. It measures the number of times that

p1p2r1r2 occurs as a pattern, as a proportion of the number of sequences

with the pattern p1p2rxry where x and y may be any key. Most users in

the sm datasets had a press before release value above 0.9, however the

average value was 0.78.

• Paired Perfect Order The slur rate measures how often a given user

does not press a key and immediately follow it with the release of the

same key. This attribute is the inverse—it measures how often the user

presses events in a “perfect” order but also requires that there is two con-

secutive “perfect” sets of key events. That is, it uses the event sequence

p1r1p2r2. Like the Press Before Release, this is divided by the number

of sequences with the same pattern p1rxp2ry where x and y may be any

key. A typical user from the sm datasets has a paired perfect order value

between 0.8 and 1.

Table 6.4 shows the AUC for each of the four metrics, for each user. Overall,

all four perform well compared to others considered here, and all but the Slur

Length perform better than any other metric in this chapter. Even the Slur

Length is only beaten by the digraph in, which achieves an average AUC of

0.744 across all ten users. On a per-user basis all four metrics perform well,

with the exception of Participant D and the Slur Length and Press Before

Release metrics. Surprisingly, Participant J is almost perfectly authenticated

on Slur Rate alone! No other metric in this chapter comes so close to perfect

authentication for any user.

The four metrics, Slur Rate, Slur Length, Press Before Release and Paired

Perfect Order, are all good discriminators. They show that there is plenty

of information available for authentication that would be lost if the system

only considered press events. All four can be easily utilised as part of a typist

verification system, but to date no system has used these attributes.
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Participant Slur Rate Slur Length Press Before Release Paired Perfect Order

A 0.668 0.925 0.930 0.630
B 0.858 0.652 0.938 0.848
C 0.886 0.528 0.863 0.911
D 0.984 0.375 0.339 0.956
E 0.970 0.979 0.787 0.950
F 0.883 0.679 0.859 0.885
G 0.857 0.878 0.872 0.786
H 0.917 0.595 0.897 0.907
I 0.694 0.529 0.840 0.674
J 0.996 0.576 0.826 0.983

Average 0.871 0.671 0.815 0.853

Table 6.4: AUC values for key ordering measures
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Figure 6.6: Slur rate versus typist speed (WPM)

6.6 Speed and Error Rate

When users are trained to touch type there are two important factors that

are used to estimate their skill level: speed and error rate. All typing veri-

fication systems examined in Chapter 2 operate at a low level, using habits

gleaned from examining presses, releases, digraphs and other small structures

in typing. The findings in this chapter shows that although low level patterns

exist, aggregates such as Slur Rate can be more informative for verification

than individual digraphs.

The analysis in Section 6.5, implies that typing speed is useful for veri-

fication. The faster a user types, the closer together events occur and the

more likely the typist is to slur presses and releases. This is demonstrated
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Participant WPM Backspace

A 0.887 0.771
B 0.851 0.883
C 0.830 0.635
D 0.955 0.768
E 0.953 0.897
F 0.788 0.620
G 0.709 0.716
H 0.832 0.692
I 0.896 0.629
J 0.978 0.673

Average 0.868 0.728

Table 6.5: AUC values for WPM and backspace rate

in Figure 6.6, which shows the average WPM speed per sample against the

Slur Rate for the same sample. Considering that these two attributes are so

strongly correlated, it would be foolish to ignore typing speed in favour of

lower level attributes such as digraph times.

Evaluation using the sm-all dataset shows that typing speed and error rate

are just as useful for verification as the event ordering metrics in the previous

section. Table 6.5 shows the AUC values for typing speed (measured in words

per minute) and backspace rate (the proportion of backspaces in the sample).

In some cases, such as Participant A, speed and backspace rate are better

attributes than the Slur Rate, scoring higher AUC values. For others, the

metrics in the previous section perform better. However, these two aggregates

perform equally well as—usually better than—the best individual digraph,

in. These results indicate these two simple metrics are viable attributes for

verification.

6.7 Summary

On the face of it, typing appears simple: a user presses and releases keys to

create text on the screen. When examined further, it is exposed as a complex

task. Some keys are pressed before others are released. Some keys are used in

preference to others when editing text. The time between certain digraphs does

not always accurately reflect the typist’s overall speed. And typists arbitrarily

pause. Typist verification is a difficult task because none of these factors can

be used alone to verify identity, and many have performance that depends on

the user.

Unfortunately, it is impossible to determine in advance whether or not a

particular attribute will be useful for identifying a given user. To do this,

the set of possible attackers must be known. In some situations this may be

available, but in general for verification this is assumed to not be the case.
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Ideally, the performance of a typist verification system should not rest on

knowledge of other users, but only on knowledge about the target user.

The success of typist verification using the attributes discussed in this sec-

tion is currently unknown, even though the usefulness of each attribute is indi-

vidually quantified here in terms of their AUC value. Chapter 7 discusses the

sort of machine learning algorithms that can make predictions on the source of

a sample using the attributes discussed in this chapter. Chapter 8 shows how

to use these attributes and the algorithms from Chapter 7 to perform typist

verification.
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Chapter 7

One-Class Classification

All of the techniques for typist verification presented in earlier chapters, with

the exception of Gunetti and Picardi’s method [33] and the Individual Digraph

Classifier, have one important feature in common: they are one-class classifiers.

One-class classifiers are a type of machine learning algorithm that only requires

information about a single ‘target’ class in order to build a model that can be

used for prediction. They can make two possible judgements on an unknown

instance. They predict target if the instance appears to belong to the same class

the model was trained on, or unknown if the instance does not seem to come

from the same class as the training data. Gunetti and Picardi’s technique is

not one-class classification because it requires data from many different people

in order to build a predictive model for a given user.

One-class classification is often called outlier detection or novelty detection

because it attempts to differentiate between data that appears normal and

abnormal with respect to the training data. The literature can be confusing:

outlier/novelty detection sometimes refers to problems where all instances are

available at training time, and instead of building a model for prediction the

learning algorithm must distinguish what—if any—instances from the dataset

are outliers. However, the literature is consistent when referring to one-class

classification. In this case, a training dataset is provided with information

about a single class (which may or may not contain outliers) and a model is

built that can then be used to predict whether previously unseen instances

belong to the target class.

This approach to learning is typically used in situations where it is inappro-

priate to make use of non-target data. For example, consider the problem of

password hardening discussed in Chapter 2.3. This is a biometric system used

to strengthen logins, which it achieves by verifying that the provided pass-

word is typed with the correct rhythm. An important aspect of the system

is that it is strengthening the password—not replacing it. This means that

it is not possible to collect negative data for a given target password because

to do so the password would have to be supplied to the attacker typist. This
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constraint does not apply to typist verification because the patterns are mined

from free text and it is possible to collect negative data without compromising

the system.

It may seem sensible to suggest that two-class classification should be used

in preference to one-class classification to verify a user since all the datasets

presented here contain data from many different typists. Using two-class clas-

sification simplifies the learning problem—the algorithm need only to draw a

boundary between the target class and all others. There are two reasons why

one-class classification should be still considered. The first is practical: if typist

verification is to be used on personal computers then acquiring typing rhythms

for attacking users may be difficult. The second—and most important—reason

for considering a one-class setup is that we cannot guarantee that the data that

is available will cover the range of potential attackers. In some situations, in-

cluding typist verification, new classes may appear at prediction time that are

different from all classes available during training time.

Since there is only a limited number of attackers (20–30 in the datasets

here), intuition suggests that one-class classification should be used in prefer-

ence to two-class classification for typist verification because it seems unlikely

that the existing attackers will provide comprehensive coverage of the poten-

tial attacker space. But it is not clear that this is the case: the small amount

of negative data used with two-class classification may still form a better ver-

ification model for a user than one-class classification alone.

This chapter investigates when one-class classification should be applied

to a given verification problem. It deals with general verification problems,

rather than the specific problem of typist verification, so the techniques used

can benefit other research areas. The next chapter relates the work discussed

here to typist verification.

The next section describes how one-class and multi-class classifiers can be

tested to discover their prediction accuracy for a given problem; it also de-

scribes how to compare the setups fairly. The approaches to classification are

then compared and conclusions drawn about the use of one-class classification

for verification. This comparison uses a density function for one-class classi-

fication; later sections will introduce a better one-class classifier. Section 7.2

covers methods of one-class classification, especially those used for verification

problems. Finally, Section 7.3 explores how one-class and multi-class classifica-

tion techniques can be combined to form a single one-class classifier, using an

artificially generated second class alongside the target data for the multi-class

component. This artificial data can be replaced with real negative data—if
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such data is available—to improve on prediction accuracy.

7.1 One-Class Classification versus Multi-

Class Classification

For verification problems such as typist verification, there are at least three

possible ways to approach classification: multi-class classification, two-class

classification and one-class classification. When negative (i.e. non-target) data

is available, standard multi-class classification can be used. In this approach,

the system learns to differentiate between all the classes in the training data,

and the model is then used to predict the class of an unseen instance. If the

predicted class matches the target class the verification succeeds, otherwise it

fails. A potential disadvantage of this approach in the context of verification

is that we are primarily interested in identifying occurrences of completely

novel classes at prediction time and multi-class classifiers may not accurately

discriminate against these; they match to the closest known class.

It is also possible to approach classification by reformulating the problem

as a two-class classification problem. As a first step, all classes in the training

data except the target class are relabelled to a single unified class: outlier.

Then a multi-class classifier learns target versus outlier using the relabelled

data. The classifier can make two possible predictions on an instance, target or

outlier, corresponding to verification success and failure respectively. Two-class

classification can potentially suffer from the same problem as standard multi-

class classification when novel classes arise at prediction time: the classifier is

only as good as the coverage of the outlier class.

Finally, the non-target classes present in the training data can be com-

pletely ignored and a one-class classifier used for verification. As discussed

earlier, one-class classifiers do not use any negative data during their training

phase. This means that a one-class classifier’s accuracy is unaffected by the

coverage of the non-target classes in the training data. However, it can be

difficult to define an accurate boundary around a target class without know-

ing where non-target instances are likely to appear. The usual practice is to

provide a parameter to the one-class classifier that is used to define what per-

centage of the training data should be considered outliers. This parameter is

known as ν in the case of one-class support vector machines [63]. Using this

parameter, the classifier can create decision boundaries by identifying outliers

in the target class and effectively use these as a second class.
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When negative data is available at training time, all three methods can

be used for verification. However, choosing a classifier presents a problem: it

is not obvious how to perform a fair comparison of multi-class and one-class

classifiers in this context because each setup uses a slightly different set of test

and training data. Therefore, before proposing that one method should be

used over another for a given verification problem, the issue of comparing the

classifiers must first be tackled.

7.1.1 Comparing Classifiers Fairly

A standard method for evaluating one-class classifiers is to split a multi-class

dataset into a set of smaller one-class datasets, with one dataset per class

containing all the instances for the corresponding class. The one-class classifier

can then be trained on each dataset in turn, with a small amount of data held

out from the training set and all the other datasets used for testing. Depending

on the number of instances available for each class, this generally means that

there is a large amount of negative (or ‘attacker’) data for testing, and a

relatively small amount of positive data for both testing and training.

Multi-class classifiers are often evaluated using stratified 10-fold cross-

validation, where the data is split into 10 equal-sized subsets, each with the

same distribution of classes. The classifier is trained 10 times, using a different

fold for testing and the other 9 folds combined for training. These two different

evaluation methods are not comparable: in each one the classifier is trained

on a different proportion of data for a given class, and is tested on different

quantities of data.

In fact, it is not immediately obvious how to perform a fair comparison

of one-class classifiers and multi-class ones: the former are designed to deal

with classes that are unseen at training time, but the latter typically handle

only classes that they have been trained on. There are two types of multi-class

classification—biased, where the classifier has seen data from the attacker class

during training, and unbiased, where attackers are always novel. Fortunately,

there is a way to compare all three types of classification—multi-class biased,

multi-class unbiased and one-class—to each other.1 Let us consider the biased

multi-class case first. A target and held-out ‘attacker’ class are identified.

Then, a normal stratified cross-validation fold is performed, which maintains

the class distributions. However, before relabelling the non-target classes,

1This technique is covered in further detail in “Discriminating Against New Classes:
One-Class versus Multi-Class Classification” by Hempstalk and Frank [36].
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Figure 7.1: Cross-validation for biased two-class classification (with rela-
belling)

Figure 7.2: Cross-validation for one-class classification (with relabelling)

Figure 7.3: Cross-validation for unbiased two-class classification (with rela-
belling)

instances from the test set that do not belong to either the target or held-out

class are deleted. Finally all non-target classes are relabelled to O, and the

evaluation is performed. Figure 7.1 shows the resulting datasets used for two-

class classification. Let us now consider the evaluation of a one-class classifier:

it simply ignores all outlier training data, as shown in Figure 7.2. Lastly,

let us consider unbiased two-class classification. In this case, before the final

relabelling is performed, the heldout class is removed from the training set, as

demonstrated in Figure 7.3.

The advantage of this approach is that the test set and the target data in

the training set are identical for all three classification techniques, and it is

now possible to compare results. Furthermore, as an additional benefit, it is

also possible to compare true multi-class classification based on more than two

classes with two-class and one-class classifiers by omitting the relabelling step

where the non-target classes become class O.
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Evaluation of a single target class using different classification techniques

(multi-class, two-class and one-class) can be performed by accumulating all

predictions for each possible combination of target and held-out classes. The

area under the ROC curve (AUC) is then calculated for each target class. The

AUC is used here for comparisons because it is independent of any threshold

used by the learning algorithm. To compare classifier performance on an entire

multi-class dataset, the weighted average AUC is used, where each target class

ci is weighted according to its prevalence p(ci):

AUCweighted =
∑

∀ci∈C

AUC(ci) × p(ci) (7.1)

Using a weighted average rather than an unweighted one prevents target classes

with smaller instance counts from adversely affecting the results.

7.1.2 Evaluation Method

Five different classification techniques were each tested on UCI benchmark

datasets [3] with nominal classes, providing an experimental comparison of

the classification techniques. For each dataset ten-fold cross-validation was

repeated ten times. The learning techniques used are:

1. Biased multi-class classification using the Näıve Bayes algorithm. No

relabelling was performed, and data from the heldout class was not re-

moved from the training dataset (similar to Figure 7.1, but without re-

labelling the non-target classes to O).

2. Unbiased multi-class classification using Näıve Bayes. No relabelling

was performed, but data from the heldout class was removed from the

training dataset (similar to Figure 7.3, but without relabelling the non-

target classes to O).

3. Biased two-class classification using Näıve Bayes. All non-target classes

were relabelled to ‘outlier’, and the test set contained only the target

and (relabelled) heldout class, as in Figure 7.1.

4. Unbiased two-class classification using Näıve Bayes. All non-target

classes were relabelled to ‘outlier’, and the test set contained only the

target and (relabelled) heldout class and instances of the heldout class

were removed from the training set, as in Figure 7.3.
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5. One-class classification using a Gaussian density estimate for numeric

attributes and a discrete distribution for each nominal one, assuming in-

dependence between attributes (i.e. ‘Näıve Bayes’ with only one class).

All non-target classes were relabelled to ‘outlier’ and the test set con-

tained only the target and (relabelled) heldout class, as in Figure 7.2.

The experiments utilise WEKA’s [77] implementation of Näıve Bayes with

default parameters for all multi-class and two-class tasks. This is the classifier

in WEKA that is directly comparable to the one-class classifier used. The one-

class classifier fits a single Gaussian to each numeric attribute and a discrete

distribution to each nominal one. A prediction for an instance, X, is made by

assuming the attributes are independent. The same happens in Näıve Bayes,

but on a per-class basis. In both Näıve Bayes and the one-class classifier,

missing attribute values are ignored.

7.1.3 Results

Using the methodology discussed previously, experimental results obtained on

UCI datasets are presented in this section. First, results from comparing the

five different classification techniques discussed above are shown. Then some

of the results are examined in greater detail, focusing on unbiased two-class

classification versus one-class classification.

Comparison on UCI Datasets

Table 7.1 provides empirical results for the five different classifiers on UCI

datasets, compared using the weighted average AUC described in Section 7.1.1.

Bold font indicates wins for two-class unbiased classification versus one-class

classification and vice versa. Only UCI datasets with three or more class labels

were used, because the evaluation technique requires at least three classes.

Table 7.1 has some noteworthy results, aside from the expected outcome

that the biased classification techniques (columns 1 and 3) outperform the

unbiased and one-class methods. Of the two biased techniques, one might

näıvely expect the two-class approach to perform better: there are less labels

and the outlier class contains many of them. However, on all but four of the

26 datasets (glass, lymphography, mfeat-factors and vehicle), the multi-class

classifier either performs the same or better than the two-class classifier—and

the difference for these four datasets is not significant. This can be explained

by the fact the multi-class Näıve Bayes classifier is able to form a more complex
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Classification Techniques
Multi-class Multi-class Two-class Two-class One-class

Datasets Classes Biased (1) Unbiased (2) Biased (3) Unbiased (4) (5)
anneal 6 0.957 0.575 0.948 0.605 0.788

arrhythmia 16 0.801 0.724 0.775 0.723 0.576
audiology 24 0.960 0.883 0.946 0.897 0.881
autos 7 0.831 0.722 0.807 0.736 0.567
balance-scale 3 0.970 0.851 0.941 0.851 0.806
ecoli 8 0.958 0.855 0.947 0.889 0.927

glass 7 0.760 0.680 0.763 0.605 0.702

hypothyroid 4 0.931 0.576 0.915 0.587 0.648

iris 3 0.994 0.671 0.990 0.671 0.977

letter 26 0.957 0.932 0.941 0.935 0.887
lymphography 4 0.911 0.432 0.914 0.425 0.739

mfeat-factors 10 0.992 0.946 0.975 0.964 0.948
mfeat-fourier 10 0.966 0.917 0.949 0.930 0.909
mfeat-karhunen 10 0.996 0.969 0.983 0.976 0.955
mfeat-morph 10 0.952 0.890 0.948 0.928 0.941

mfeat-zernike 10 0.960 0.906 0.946 0.912 0.897
optdigits 10 0.986 0.948 0.978 0.969 0.959
pendigits 10 0.980 0.915 0.962 0.942 0.953

primary-tumor 22 0.839 0.778 0.834 0.784 0.732
segment 7 0.971 0.863 0.952 0.863 0.937

soybean 19 0.994 0.966 0.988 0.973 0.961
splice 3 0.993 0.831 0.983 0.831 0.720
vehicle 4 0.767 0.671 0.768 0.696 0.658
vowel 11 0.956 0.907 0.926 0.909 0.865
waveform 3 0.956 0.692 0.927 0.692 0.864

zoo 7 0.999 0.963 0.984 0.963 0.984

Table 7.1: Weighted AUC results for multi-class, two-class and one-class clas-
sifiers

model, with as many mixture components as there are classes. These results

suggest that if one does not expect any novel class labels at testing time, one

should not merge classes to form a two-class verification problem if Näıve Bayes

is used as the classification method.

In situations where the attacker class is not present in the training set (i.e.

considering the unbiased classifiers), the picture is not so clear. The multi-class

classifier (column 2) scores three wins, five draws and 16 losses against its two-

class counterpart (column 4). This result is consistent with intuition: when

expecting novel classes during testing, it is safer to compare to a combined

outlier class because the multi-class model may overfit the training data. By

combining the non-target classes into one class we can provide a more general

single boundary against the target class, and increase the chance that a novel

class will be classified correctly.

As described earlier, one-class classification is intended to deal with novel

classes, and learns only the target class during training. One would expect

that the multi-class classifiers could potentially have an advantage because it

has seen negative data during training. However, as highlighted in Table 7.1,

when considering the unbiased two-class classifier (the most accurate classifier

when novel classes are expected during testing), the one-class classifier loses
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on fifteen datasets and wins on the other nine. On closer inspection, most of

the datasets where the unbiased two-class classifier wins have a large number

of class labels; at least half of the winning datasets have 10 or more original

class labels. In contrast, the one-class classifier wins on only two datasets with

many class labels—pendigits and mfeat-morph.

Exploring a Domain for One-Class Classification

In order to clarify in which situations one-class classification should be ap-

plied, it is instructive to investigate the relationship between the number of

class labels available at training time and the accuracy of the two prospective

classifiers: the one-class classifier and the unbiased two-class classifier. The

number of instances for each class is also relevant; classes with a large num-

ber of instances will generally result in a more accurate classifier. However,

here the primary concern is whether a classifier is capable of identifying novel

classes. Hence, it is more appropriate to investigate the effect on accuracy ob-

tained by reducing the dataset size by removing all instances for a particular

class label, rather than by performing a random selection of instances.

For each of the datasets where the unbiased two-class classifier outper-

formed the one-class method, the experimental procedure from Section 7.1.2

was repeated, but on each run an additional single class label (and all associ-

ated instances) was removed from the training dataset. This was repeated until

only two classes remained: the target class, and one original—but relabelled—

class. Since the heldout attacker class is also being removed before training,

reducing the datasets any further results in no attacker instances present in

the training set. The process for producing the test set remains the same—

ensuring that the dataset used to obtain the AUC is identical for each method.

The results are presented in Table 7.2. For brevity the final column shows the

number of classes that were removed before the one-class classifier became

better than the two-class one.

For all but two of the datasets shown in Table 7.2, there exists a point

where it is better to use the one-class classifier over the two-class one. This is

not unexpected: as the number of non-target classes is reduced, their coverage

diminishes until it is no longer worthwhile to use them to define a boundary

around the target class. For the two datasets where this is not the case,

arrhythmia and primary-tumor, the density estimate does not appear to form

a good model of the data for either classifier and the AUC is relatively low in

both cases.
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Original Total Two-class One-class Wins
Dataset One-class Two-class Removals Final AUC After x Removals
arrhythmia 0.576 0.723 13 0.606 -
audiology 0.881 0.897 21 0.736 7
letter 0.887 0.935 23 0.876 23
mfeat-factors 0.948 0.975 8 0.736 5
mfeat-fourier 0.909 0.949 8 0.726 5
mfeat-karhunen 0.955 0.983 8 0.836 7
mfeat-zernike 0.897 0.946 8 0.728 4
optdigits 0.959 0.969 7 0.855 4
primary-tumor 0.732 0.784 19 0.740 -
soybean 0.961 0.973 16 0.954 10
vowel 0.865 0.909 8 0.827 8

Table 7.2: Weighted AUC results for reduced numbers of non-target classes

When plotting individual results, the weighted AUC continually decays as

classes are removed from the training data. As a typical example, Figure 7.4

shows the results for the audiology dataset. Of course, the one-class classifier

maintains a constant AUC because it does not use non-target data during

training. The shape of decay shown in Figure 7.4 is typical of the datasets in

Table 7.2.

From the results in this section we can say that where there are limited

non-target classes available at training time, thus increasing the potential for

a novel class to appear that is dissimilar from any existing non-target class,

one-class classification should be used in preference to two-class classification.

7.1.4 Summary

In this section, comparisons of one-class and multi-class classification for ver-

ification problems have been explored. For verification problems—like typist

verification—multi-class, two-class and one-class classification can be used to

find a predictive model when negative data is present in the dataset. The

effectiveness of the multi-class classifiers is highly dependent on the coverage

of the negative data, which is considered here to be a function of the number

of non-target classes that exist in the data. How many non-target classes are

required for (unbiased) multi-class classification to be a more accurate solution

than a one-class approach depends on the dataset involved. One-class classifi-

cation is generally more effective when novel classes appear at prediction time

that are different to all classes that appear at training time.

When dealing with verification problems based on behaviours, such as typ-

ist verification, these results indicate that it is preferable to use one-class clas-

sification methods because it is always possible for an impostor to differ from

all the samples on which the system was trained. Furthermore, behavioural

samples for impostors can be hard to obtain, so using one-class classification
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Figure 7.4: Classes removed versus weighted AUC for the audiology dataset.

simplifies the process of collecting data. It is still possible to make use of neg-

ative data using one-class classification techniques, as we will see in Section

7.3. The next section describes general methods of one-class classification.

7.2 Methods of One-Class Classification

Existing models for one-class classification either extend current methods for

multi-class classification or are based on density estimation. In the latter ap-

proach, density estimation is performed by fitting a statistical distribution,

such as a Gaussian, to the target data. Any instances with a low probability

of appearing (more precisely, low density value) can be marked as outliers [54].

This is a sensible approach in cases where the target data follows the selected

distribution very closely. The challenge is to identify an appropriate distri-

bution for the data at hand. Alternatively one can use a non-parametric ap-

proach, such as kernel density estimation, but this can be problematic because

of the curse of dimensionality and the resulting computational complexity.

Examples of applications of density estimation for one-class classification

include: detecting masses in mammograms [69] using Parzen windows and
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Gaussian mixture models, identifying outliers in sensor data [68] by utilis-

ing kernel density estimators, and predicting upcoming critical failures in jet

engines [15] using Gaussian mixture models. Only Subramanium et al. [68]

provides empirical results, stating that the “algorithms averaged 99% preci-

sion, and 93% recall for the engine measurements” [68]. In many cases the

goal is to achieve a low IPR to ensure that real outliers are never missed: it

is generally considered better to wrongly reject target data as an outlier than

to let an outlier go undetected. In these examples failing to identify an outlier

can be the difference between life and death. However, achieving a low IPR

often results in a high FAR—Tarassenko et al. [69] notes this, commenting

that all 40 masses were correctly identified as novel, but “a significant number

of false positives were discovered ... just over one per image on average”.

A common statistical approach to one-class classification is to identify out-

liers as instances that are greater than a distance, d, to a percentage, p, of

the training data [4, 54]. This approach is analogous to clustering the data

using a machine learning algorithm and determining a suitable boundary that

encloses all the clusters [22]. The boundary can be generated by adapting the

inner workings of an existing multi-class classifier [63], or by using artificial

data as a second class, in conjunction with a standard multi-class learning

technique [1, 24]. Methods in the former category generally rely heavily on a

parameter that defines how much of the target data is likely to be classified as

outlier [70]. This parameter defines how conservative the boundary around the

target class will be. If it is chosen too liberally, then the model will overfit and

we risk identifying too much legitimate target data as outliers. A drawback of

these techniques is that an appropriate parameter value needs to be manually

chosen at training time.

In contrast, when density estimation is used for one-class classification, a

threshold on the density can be adjusted at prediction time to obtain a suitable

rate of outliers. In some situations, where parametric density estimation fails,

using classification-based methods may be favourable; these techniques are

generally able to define boundaries on data that cannot be tightly modelled by

a standard statistical distribution. In some cases there is a close link between

classification-based techniques and density estimators. For example, it has

been shown that one-class kernel Fisher discriminant classifiers can be used to

perform non-parametric density estimation [61]. However, this only applies to

very specific learning techniques.

Support vector machines (SVM) are a popular example of classification-

based one-class classifiers. Some of their applications include: authorship
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verification in combination with a technique referred to by the authors as

“unmasking” [42], detecting anomalies in mass spectral data [72], analysis of

patient seizures [29], and document classification (i.e. tagging) [46]. The im-

plementation used by many of these examples—and others—was proposed by

Schölkopf et al. [63] and has been implemented in a package called libSVM [11],

an open-source SVM library. Their approach forms a hypersphere in feature

space, and uses the manually provided parameter ν to decide how much of the

training data to reject as outliers.

Of course, one-class classification has also been used for typist verification—

the subject of this thesis. The methods employed vary and a full background

is given in Chapter 2 and 3. Of the two typist verification methods reviewed in

Chapter 3, Nisenson et al. [50] is the only example of one-class classification,

and uses a LZ78-based classification model that employs a threshold on the

probability. As discussed previously, Gunetti and Picardi’s work [33] is not an

example of one-class classification because it requires negative data in order

to make a prediction.

7.3 Combining Density and Class Probability

Estimation

Although there are many successful techniques for one-class classification,2 a

large number of multi-class classification algorithms have been developed and

it would be useful to be able to utilize them for one-class problems. However,

as we saw in Section 7.1, such methods rely heavily on the presence of negative

data in order to perform an accurate predictive model. In cases where novel

classes are expected at prediction time, or no negative data is available, one-

class classification techniques become preferable. As discussed in the previous

section, it is possible to customize existing multi-class classifiers by using a

manually set threshold at training time, but doing so creates an inflexible

classifier that must be re-trained in order to adjust the prediction threshold.

Fortunately there is a simple way to use multi-class classifiers for one-

class classification: artificial data can be generated to take the role of the

‘outlier’ class. The easiest way to do this is to generate uniformly distributed

data or some other distribution and train a classifier that can discriminate

this artificial data from the real target instances. This approach has been

used by Fan et al. [24] and Abe et al. [1]. In both cases, artificial instances

2For a wider review than that of the previous section, see Tax [70]
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were generated dimension by dimension, using either Gaussian models or a

uniform distribution. However, as the number of attributes grows, it quickly

becomes infeasible to generate enough data to obtain sufficient coverage of the

instance space, and the probability that a particular artificial instance occurs

inside or close to the target class diminishes to a point that makes any kind of

discrimination impossible.

Abe et al. [1] solved the dimensionality problem by employing active learn-

ing to identify artificial instances that could be considered outliers with respect

to the target class. However, an automated system would be preferred because

it creates a stable classifier (compared to the approach in Abe et al. [1], which

is subjective because classifier accuracy varies based on the human input). A

potential solution to this problem is to generate artificial data that is as close

as possible to the target class.

Generating artificial data that is close to the target class can be performed

by fitting a density function to the target data, then using this ‘reference

density’ when randomly generating instances. But because the artificial data

is no longer uniform it it necessary to take the reference density into account

when calculating the probability that a given instance belongs to the target

class. This can be achieved by using Bayes’ Rule to combine the multi-class

classifier with the density estimate into a single one-class classifier, as shown

in the next section and covered in Hempstalk et al. [37]. One advantage of this

approach is that no modifications need to be made to the multi-class classifier.

Another advantage is that this technique essentially straddles the boundary

between the two types of classifiers presented in the previous section, namely

density functions and class probability estimation techniques.

7.3.1 Combining Classifiers Using Bayes’ Rule

Let T denote the target class for which we want to build a one-class model.

We have training data for this class. Let A be the artificial class, for which we

generate artificial data using a known reference distribution. Let X denote an

instance and let P (X|A) denote the density function of the reference density.

What we would like to obtain is P (X|T ), the density function for the target

class. If we had this density function, we could use it for one-class classifica-

tion by imposing a threshold on its values. Let us assume for the moment

that we know the true class probability function P (T |X). In practice, we

need to estimate this function using a class probability estimator learned from

the training data. An example of a suitable inductive approach is bagging
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of unpruned decision trees, which has been shown to yield good class prob-

ability estimators [55]. However, any multi-class classifier that can produce

class probability estimates can be used. This is not an impediment in general

because most multi-class classifiers do output these values, or can be easily

modified to do so.

The following shows how we can compute the density function for T , namely

P (X|T ), given the class probability function P (T |X), the reference density

P (X|A), and P (T ), which is the prior probability of observing an instance of

the target class. We start with Bayes’ theorem:

P (T |X) =
P (X|T )P (T )

P (X)

For a two-class situation, the probability of X is the probability of seeing an

instance of X with either class label, so the equation becomes:

P (T |X) =
P (X|T )P (T )

P (X|T )P (T ) + P (X|A)P (A)

Now we solve for P (X|T ), and make use of the fact that P (A) = 1 − P (T ),

because there are only two classes:

P (X|T ) =
(1 − P (T ))P (T |X)

P (T )(1 − P (T |X))
P (X|A) (7.2)

This equation relates the density of the artificial class P (X|A) to the density

of the target class P (X|T ) via the class probability function P (T |X) and the

prior probability of the target class P (T ).

To use this equation in practice, we choose P (X|A) and generate a user-

specified amount of artificial data from it. Each instance in this data receives

the class label A. Each instance in the training set for the target class receives

class label T . Those two sets of labeled instances are then combined. The

proportion of instances belonging to T in this combined dataset is an estimate

of P (T ), and we can apply a learning algorithm to this two-class dataset to

obtain a class probability estimator that takes the role of P (T |X). Assuming

we know how to compute the value for P (X|A) given any particular instance

X—and we can make sure that this is the case by choosing an appropriate

function—we then have all the components to compute an estimate of the

target density function P̂ (X|T ) for any instance X.
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7.3.2 Combined Classifier Performance

Now we test the performance of Equation 7.2 for one-class classification, using

the same datasets as in Section 7.1.3. In earlier sections comparing one-class

and multi-class classification, a single Gaussian played the role of the one-class

classifier; in this section a single Gaussian is used for the reference density,

P (X|A), and its parameters are estimated by fitting it to the target class to

ensure that the artificial data is close to the target class. The role of the class

probability estimator, P (T |X), is filled by bagged unpruned C4.5 decision

trees with Laplace smoothing, which as previously mentioned has been shown

to provide good class probability estimates [55]. Finally the proportion of

target instances, P (T ), is set to 0.5. Therefore, the data used to build the

decision trees is exactly balanced. This setup allows us to simplify Equation

7.2 to:

P (X|T ) =
P (T |X)

1 − P (T |X)
P (X|A) (7.3)

This simplified equation has been used in the context of association rule learn-

ing by Hastie et al. [34].

Equation 7.3 is turned into a usable one-class classifier by choosing an

appropriate threshold on P̂ (X|T ) and adjusting the threshold to tune the

probability of an instance being identified as the target class. However, the

results presented here use the weighted AUC, which is independent of any

thresholds.

Table 7.3 presents the weighted AUC (Equation 7.1) for the one-class clas-

sifier from the previous section, its components, and two multi-class classifiers

(in unbiased two-class configuration) equivalent to the components of the one-

class classifier. The two-class classifiers Näıve Bayes and bagged unpruned

C4.5 decision trees represent the components P (X|A) and P (T |X) respec-

tively, but in two-class configuration (i.e. learning with negative data). These

multi-class classifiers were evaluated using the same methodology as Section

7.1.2. The one-class classifier, One-Class Combined in Table 7.3, and its com-

ponents P (X|A) and P (T |X), were also evaluated using the methodology de-

veloped in Section 7.1.2. In the case of each component, their values were used

directly for ranking test cases (instead of the result of Equation 7.3). The

component P (T |X) uses the instances artificially generated from the reference

distribution for the outlier class; no real negative data is provided.

Not surprisingly, the two-class classifiers outperform the one-class ones on

twenty of the twenty-seven datasets. In these datasets there is sufficient nega-
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Two-Class Two-Class One-Class One-Class One-Class
Dataset Näıve Bayes Bagged Trees Combined P (X|A) P (T |X)
anneal 0.605 0.624 0.779 0.788 0.531
arrhythmia 0.723 0.775 0.576 0.576 0.515
audiology 0.897 0.885 0.879 0.881 0.537
autos 0.736 0.803 0.565 0.567 0.569
balance-scale 0.851 0.879 0.865 0.806 0.708
ecoli 0.889 0.872 0.927 0.927 0.538
glass 0.605 0.746 0.696 0.702 0.615
hypothyroid 0.587 0.860 0.648 0.648 0.544
iris 0.671 0.708 0.977 0.977 0.510
letter 0.935 0.983 0.902 0.887 0.773
lymph 0.425 0.490 0.721 0.739 0.530
mfeat-factor 0.964 0.959 0.948 0.948 0.656
mfeat-fourier 0.930 0.914 0.910 0.909 0.534
mfeat-karhunen 0.976 0.944 0.956 0.955 0.516
mfeat-morph 0.928 0.906 0.941 0.941 0.829
mfeat-pixel 0.965 0.921 0.954 0.954 0.455
mfeat-zernike 0.912 0.912 0.898 0.897 0.526
optdigits 0.969 0.975 0.958 0.959 0.728
pendigits 0.942 0.970 0.958 0.953 0.860
primary-tumor 0.784 0.734 0.739 0.732 0.524
segment 0.863 0.951 0.937 0.937 0.513
soybean 0.973 0.961 0.962 0.961 0.556
splice 0.831 0.772 0.721 0.720 0.543
vehicle 0.696 0.782 0.684 0.658 0.660
vowel 0.909 0.922 0.873 0.865 0.645
waveform 0.692 0.727 0.863 0.864 0.342
zoo 0.963 0.913 0.985 0.984 0.601

Table 7.3: Weighted AUC for two-class and one-class classifiers

tive data to provide a good coverage for the outlier class. Of the seven datasets

where the one-class methods win, only one (zoo) is a win for the combined

model versus P (X|A). The density function, P (X|A), is often sufficiently

accurate to describe the target data.

When considering only the one-class classifiers in Table 7.3, the results are

more interesting. For every single dataset, the combined model outperforms

the class probability estimator, P (T |X). In contrast, the combined classifier

only wins against the density function on twelve of the twenty-seven datasets

and only two of the wins (balance-scale, letter) are statistically significant3 at

the 5% level. The vehicle dataset is significant at the 10% significance level.

The density function alone appears to be the best approach to one-class

classification; however, none of its wins over the combined classifier are sig-

nificant, whereas the combined classifier has at least two significant wins over

the density function. Combining the classifiers using Equation 7.3 only results

in an improvement over the individual components when both are able to add

value; in many cases the probability estimator has a low AUC so the combined

model can do no better than use the density function alone. Where the com-

3Based on using the formula 1√
4∗N

∗ 1.96 for determining the bounds for 5% significance

on the AUC. The value 1.96 represents the inverse standard normal distribution for 95%
confidence, N represents the number of instances in the dataset. Values are considered
significant if they differ by an amount larger than the calculated bounds.
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P (A)
Dataset 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
anneal 0.777 0.779 0.777 0.777 0.781 0.782 0.781 0.781 0.781
arrhythmia 0.576 0.578 0.575 0.575 0.575 0.578 0.575 0.575 0.576
audiology 0.880 0.880 0.880 0.879 0.879 0.880 0.879 0.878 0.881

autos 0.566 0.566 0.567 0.564 0.564 0.567 0.563 0.565 0.566
balance-scale 0.836 0.850 0.841 0.857 0.861 0.864 0.870 0.872 0.863
ecoli 0.927 0.928 0.929 0.930 0.928 0.926 0.926 0.929 0.927
glass 0.694 0.708 0.691 0.695 0.704 0.700 0.699 0.700 0.697
hypothyroid 0.648 0.649 0.648 0.649 0.649 0.650 0.647 0.651 0.647
iris 0.977 0.978 0.976 0.975 0.976 0.976 0.976 0.975 0.975
letter 0.899 0.900 0.900 0.902 0.902 0.903 0.905 0.905 0.906

lymph 0.727 0.729 0.727 0.724 0.723 0.716 0.705 0.711 0.725
mfeat-factors 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.949

mfeat-fourier 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.910

mfeat-karhunen 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.956

mfeat-morph 0.941 0.940 0.940 0.940 0.940 0.940 0.940 0.940 0.940
mfeat-pixel 0.953 0.953 0.954 0.953 0.953 0.953 0.953 0.953 0.953
mfeat-zernike 0.898 0.898 0.898 0.898 0.899 0.898 0.898 0.897 0.897
optdigits 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.959

pendigits 0.958 0.958 0.958 0.958 0.958 0.958 0.959 0.958 0.958
primary-tumor 0.737 0.733 0.732 0.729 0.737 0.737 0.731 0.738 0.737
segment 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.938

soybean 0.962 0.961 0.962 0.962 0.962 0.962 0.962 0.962 0.963

splice 0.720 0.722 0.720 0.719 0.721 0.720 0.720 0.721 0.720
vehicle 0.669 0.673 0.680 0.679 0.684 0.687 0.686 0.694 0.702

vowel 0.867 0.868 0.869 0.872 0.873 0.876 0.878 0.881 0.889

waveform-5000 0.862 0.863 0.8621 0.8622 0.863 0.862 0.862 0.862 0.861
zoo 0.985 0.984 0.984 0.984 0.984 0.982 0.985 0.984 0.984

Table 7.4: Effect of P (A) on the weighted AUC

bined model scores significant wins, the probability estimator performs better

than it does in many of the other datasets.

7.3.3 Generating Different Proportions of Artificial

Data

Given that the combined model outperforms its components when both com-

ponents contribute to the model and that it is often the probability estimator

that performs poorly, it seems sensible to consider improving this component

in order to increase the accuracy of the one-class classifier. One way to possi-

bly improve the probability estimator is to vary the volume of artificial data

provided to it.

Table 7.4 shows the results of varying the proportion of artificial data from

0.1 through to 0.9 using the combined one-class classification model from Sec-

tion 7.3.1. For these experiments the instances were weighted to 1 − P (x),

where P (x) is the prior probability of the relevant class. For example, if

P (A) = 0.1 then artificial instances are weighted to 0.9, and target instances

are weighted to 0.1. The reason for weighting instances in this way is to balance

the dataset.

In general we would expect the combined model to improve as more arti-
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ficial data is provided because there is more information for the probability

estimator to reason about. However, the model only consistently improves

when provided with more data in cases where it is also able to improve over

its individual components in the previous section (i.e. letter, vehicle, vowel).

In most of the datasets, any improvement made by the probability estimation

component is lost because the density function dominates the combined model.

7.3.4 Using Real Data

Clearly the act of adding more data does not improve the probability estima-

tion component enough to make gains over the individual components. An-

other potential source of improvement is the negative data that we have been

forced to ignore for pure one-class classification. The estimate of P (T |X) now

becomes the unbiased bagged decision tree estimator from Table 7.3.

Using negative data for training the probability estimator implies that we

actually have a proper estimate of the outlier distribution, so instead of esti-

mating P (X|A) from the target data, we should estimate it from the negative

data instead. However, the negative data is far from exhaustive—so whilst it

might be able to add enough information to help the probability estimator,

it may be detrimental to the density estimate and generally produces poor

results.

Table 7.5 shows the original combined classifier results alongside those ob-

tained by using negative data. Wins over the two-class classifiers from Table

7.3 are shown in bold. The components using negative data—P (T |X) and

P (X|A), their combined model and the combined model for P (T |X) and the

original estimate P (X|A) (using only target data) are all shown in the table.

For brevity, results have been omitted for combining P (X|A) built with neg-

ative data and P (T |X) built with artificial data; this particular combination

performs poorly since neither of the components are trained with useful data.

Ideally both components should have an exhaustive amount of training data

for the outlier class.

Including the negative data into just the probability estimator P (T |X) has

a much greater effect on all the results than varying the amount of artificial

data as seen in the previous section. The combined model, using either artificial

or negative data for the probability estimator and target data to build the

density model, now scores ten wins over the two-class classifiers shown in

Table 7.3. Although none of the wins by the one-class classifier are statistically

significant, the wins scored by the two-class classifiers are not significant either.
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Standard Negative Negative Negative Negative
P (T |X) P (X|A) & P (T |X) P (T |X) P (X|A)

Dataset Combined Combined Combined Component Component
anneal 0.779 0.786 0.681 0.624 0.664
arrhythmia 0.576 0.576 0.565 0.775 0.565
audiology 0.879 0.893 0.603 0.885 0.536
autos 0.565 0.565 0.483 0.803 0.483
balance-scale 0.865 0.862 0.865 0.879 0.609
ecoli 0.927 0.930 0.836 0.872 0.738
glass 0.696 0.699 0.689 0.746 0.679
hypothyroid 0.648 0.648 0.546 0.860 0.546
iris 0.977 0.974 0.827 0.708 0.584
letter 0.902 0.940 0.658 0.983 0.652
lymphography 0.721 0.733 0.696 0.490 0.687
mfeat-factor 0.948 0.948 0.765 0.959 0.764
mfeat-fourier 0.910 0.919 0.632 0.914 0.628
mfeat-karhunen 0.956 0.959 0.691 0.944 0.684
mfeat-morph 0.941 0.944 0.651 0.906 0.591
mfeat-pixel 0.954 0.955 0.539 0.921 0.511
mfeat-zernike 0.898 0.909 0.643 0.912 0.640
optdigits 0.958 0.961 0.699 0.975 0.690
pendigits 0.958 0.971 0.780 0.970 0.717
primary-tumor 0.739 0.766 0.570 0.734 0.491
segment 0.937 0.941 0.772 0.951 0.734
soybean 0.962 0.968 0.609 0.961 0.515
splice 0.721 0.836 0.514 0.772 0.427
vehicle 0.684 0.695 0.584 0.782 0.550
vowel 0.873 0.896 0.606 0.922 0.589
waveform 0.863 0.861 0.704 0.727 0.565
zoo 0.985 0.985 0.551 0.913 0.472

Table 7.5: Results of using real negative data in one-class classifiers

When negative data is used to build the density model instead of estimat-

ing it from the target data, the combined classifier as well as P (X|A) alone

perform poorly. This can easily be explained: the negative data that is used

to build the model is not complete and simply does not include enough infor-

mation to be able to accurately discriminate between classes. It is possible

that some negative data might be enough to improve the accuracy of P (X|A)

over estimating it from the target class. However, in all datasets tested here,

estimating the density from the target data is more accurate (and usually

significantly so). In fact, the results for at least half of the datasets show

that using fake negative data for training the probability estimator performs

significantly better than using real negative data to build the density model!

7.3.5 Replacing Components

The last section exchanged the one-class components for two-class ones by

making use of negative data. However, it is not necessary to restrict such sub-

stitutions to types of components that only differ because they are trained with

different datasets. For instance, the density function can be more complicated,

such as a mixture of Gaussians, or simpler, such as a uniform distribution.

Both of these functions were tested whilst investigating the combined model
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one-class classification technique. In general the uniform distribution per-

forms poorly. Using a mixture of Gaussians (EM algorithm from WEKA [77])

achieves more accurate density estimates for some datasets, but worse results

on others. Full results of using other density functions can be found in Hemp-

stalk et al. [37].

It is also possible to use probability estimation techniques other than

bagged unpruned decision trees. Support vector machines (built with logis-

tic models) are an example of a probability estimation model that can be used

for P (T |X). Incidentally, support vector machines are also a machine learning

algorithm that can be modified to perform one-class classification, so it would

be interesting to test the combined model against such a classifier. However,

investigating this is outside the scope of this thesis—which focuses on typist

verification. Hempstalk et al. [37] provides experimental results for using dif-

ferent components and also provides a preliminary comparison of the combined

model to SVM-based one-class classification.

7.4 Summary

The results presented in this chapter support the conclusion that a general pur-

pose one-class classifier can be used in place of a two-class classifier without

compromising accuracy. Where negative data is available during the train-

ing phase, it can be provided to the probability estimation component in a

combined model to potentially improve discriminatory power. Although using

negative data means that a two-class model is actually being used, in most

cases satisfactory results can be achieved with a one-class classifier that com-

bines two different sorts of one-class classification—namely a density function

and a probability estimator trained with additional artificial data.

One-class classification is an appropriate approach for typist verification

because it means that no data needs to be collected for any user other than

the target. It also solves the problem of having a non-exhaustive dataset—

one-class classification can be employed to prevent novel users from accessing

the system. Two-class classification can be used to increase accuracy, but is

best reserved for situations where no novel users are expected, because there

is always the potential for an unseen attacker to appear closer to the target

user than any known attackers. The next chapter covers typist verification

as a general one-class classification problem, using the method presented in

Section 7.3 of this chapter as the underlying learning algorithm.
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Chapter 8

Typist Verification as One-Class

Classification

Continuous typist verification is typically performed by classification algo-

rithms that are designed to handle typing data and nothing else. To use

general algorithms instead of customized ones, the stream of key events and

times must be transformed into a set of features: general machine learning

algorithms—including the one-class classifier presented in Chapter 7—cannot

handle an input that is a stream of symbols. It is hard to ensure that the

features obtained from a typing stream are helpful for verification, but it is

also hard to create a classifier customized to typist verification. It is unclear

which of the two approaches—customized classifiers and general classifiers—

is a better approach to typist verification, regardless of the effort involved.

Section 8.1 addresses this by considering continuous typist verification as a

general one-class classification problem, and comparing the results with the

more traditional approaches that have been discussed in Chapters 2, 3 and 5.

One advantage of regarding typist verification as a general one-class prob-

lem is that it is easy to include additional features, such as mouse use, to

increase the accuracy of the system. So far, mouse input has been ignored,

even though it was recorded as part of the SquirrelMail data from Chapter 4.

When the sm-150 and sm-all datasets were produced the mouse events were

removed, and the evaluation in Chapters 4, 5 and 6 relied only on keyboard

events. The methods investigated in earlier chapters could not use this data.

Mouse events are more complicated than key events—the action performed

by the mouse depends on the pointer position—and this information is not

easily converted into symbols, digraphs or other structures that are used with

traditional typist verification approaches.

When typist verification is transformed into a general one-class classifi-

cation problem mouse information can easily be included, and Section 8.2

proposes ways to do this. First, an analysis of mouse use is performed. Next,

the results of this analysis are used to show that mouse features can be use-
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ful for verification. Lastly, the features are added into the continuous typist

verification algorithm presented in Section 8.1, and their effect evaluated.

8.1 Typing and One-Class Classification

Most of the techniques presented in the previous chapters use some kind of

one-class classification. With the exception of KAOFT from Chapter 3 and

the Individual Digraph Classifier from Chapter 5, none of the verification sys-

tems we have examined require negative data. In all cases the classifiers are

customized to the task of typist verification, and cannot operate on other sorts

of one-class problems without modification. In contrast, the general combined

one-class classifier presented in the previous chapter can handle many differ-

ent types of one-class problems. To utilise it for typist verification the stream

of events and times must be converted into a set of features. This is not an

impediment in general because most techniques examined in this thesis also

require typing data to be transformed in some way.

The difficulty of using a general one-class classifier is that the set of de-

fined features needs to describe aspects of a user’s behaviour that distinguishes

it from impostors. Chapter 6 provides a good starting point, but also indi-

cates that some features perform well for some users and poorly for others.

Determining in advance whether a particular feature is helpful for a specific

user requires negative data, which ideally is avoided. However, the analysis

in Chapter 6 showed that some features are effective for all users, regardless

of their performance. These features are the most desirable because of their

consistency; using features that are consistently good ensures the system will

achieve similar results for all users.

Once a good set of features has been established, the combined one-class

classifier expressed in Equation 7.2 from Chapter 7 (hereafter referred to as the

Combined OCC) can be trained and used to verify previously unseen typing

samples. The methodology used to train and test the classifier is described

in the next section, followed by the set of features used during training. The

results of evaluating the features and Combined OCC with the sm datasets are

presented in Section 8.1.3.

8.1.1 Methodology

The Combined OCC was originally implemented in the Java language for the

WEKA Machine Learning Workbench. Rather than attempting to modify the
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classifier to work for the same typist workbench that has been used for all

evaluation in this thesis, a wrapper was written that transformed typing input

into a set of features in the WEKA Instances format and passed these onto

the WEKA implementation of the Combined OCC. Any samples requiring

verification were transformed into the same set of features that were used

to train the Combined OCC model. The Combined OCC used bagged C4.5

decision trees for P (T |X) and a Gaussian distribution for P (X|A).

Although the Combined OCC is a one-class classifier, and can adjust its

threshold at prediction time, the WEKA implementation has a manually set

threshold parameter, known as the Target Rejection Rate. During training,

instances are held out and tested against a leave-one-out model. After accruing

a set of scores from the held out instances, the threshold is set to the score that

ensured that the Target Rejection Rate would be met. For example, a Target

Rejection Rate of 0.1 would cause at most 10% of the training instances to fail

verification. Because of this, the FRR of any typist verification system utilising

the Combined OCC is approximately the same as the Target Rejection Rate

parameter.

It is possible to ignore the yes/no predictions produced by the Combined

OCC and instead use the raw probabilities and set a threshold in some other

fashion, but this was not attempted here. The Target Rejection Rate was

left at the default parameter of 0.1. The main value used to evaluate the

system was the AUC, which is independent of arbitrarily set thresholds. The

raw probabilities were used to calculate the AUC, not the yes/no predictions

because these would only produce a single point on the ROC curve. All eval-

uation of the Combined OCC is performed using ten-times ten-fold stratified

cross-validation, with the same settings as in previous chapters. The folds are

identical to those used to evaluate other algorithms in this thesis.

8.1.2 Features

Chapter 6 defines a number of attributes describing typist behaviour and in-

vestigates their discriminatory performance for users in the sm-all dataset.

An initial set of features was produced using the highest performing of these

attributes: those with overall AUC above 0.600, or per-user AUC values that

were always above 0.500. The attributes meeting this criterion were:

• Average Tap Time The average absolute time taken to perform di-

graphs that are “taps”, that is, formed from two identical keys.
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• Slur Rate The proportion of press events that are not immediately

followed by the release event for the same key.

• Slur Length The average number of events that occur between a press

event and its related release event.

• Press Before Release The proportion of occurrences where a single

press event occurs between the press and release event for another key:

that is, (P1P2R1R2/P1P2RxRy), where Rx and Ry are release events that

are not necessarily from the same keys as the first two press events.

• Paired Perfect Order The proportion of occurrences of a “perfect”

ordered pair of key events: that is, (P1R1P2R2/P1RxP2Ry), where Rx

and Ry are release events that are not necessarily from the same keys as

the first two press events.

• WPM The average speed of the entire sample, measured in words per

minute.

• Backspace Rate The proportion of Backspace events in the sample.

The digraph in was excluded from this list of attributes, even though it

met the above criteria. This digraph was not present in every sample, and

would have a missing value for many occurrences. Missing values are not an

issue for the Combined OCC, but this digraph was omitted anyway to ensure

that classification was not dependent on the existence of a particular typed

sequence. Of course, it is possible that a component from one of the selected

features does not occur in a particular sample, but this was not the case for

the sm datasets. None of the above features were missing from any sample.

A number of other features were also considered, including:

• Average Backspace Block Length The average length of sets of con-

secutive Backspace key presses.

• Average Press Block Length The average length of sets of consecutive

press events.

• Disorder The disorder between this sample and a reference sample (see

Chapter 3. The reference sample was obtained using the average digraph

times from the KAOFT dataset.

• Pause After Space The average time of a digraph where the first char-

acter is the Space key, and the second character may be any key.
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• Pause Before Space The average time of a digraph where the second

character is the Space key, and the first character may be any key.

• Peak WPM Rate The top speed achieved over a window of 20 consec-

utive events. Twenty events correspond to approximately two words of

typed text, using an average word length of 5 characters.

• Use of x Navigation Key The proportion of events in the sample that

are from the x navigational key, where x is one of the following keys:

Left-Arrow, Right-Arrow, Up-Arrow, Down-Arrow, Home, End, Page-Up

and Page-Down. Each key x is a different feature.

• Average Tap/Trill/Reach/Hurdle/Rock/Opposite Time The av-

erage time for a given classification of finger movement. Each movement

type is a different feature.

• Average Left Hand/Right Hand Time The average key duration

for keys typed with the right hand or left hand. Each hand is a different

feature.

• Average Index/Middle/Ring/Little Finger Time The average key

duration for keys typed with a given finger. Each finger is a different

feature.

• Average H-F Hand-Finger Time The average key duration for keys

typed with a particular hand H and finger F combination. Each H-F

combination is a different feature.

The features above had some discriminatory power, but did not significantly

increase the performance of the Combined OCC over the first seven features in

this section (Average Tap Time, Slur Rate, Slur Length, Press Before Release,

Paired Perfect Order, WPM, Backspace Rate). Many other features were also

investigated but discarded immediately because of poor results.

8.1.3 Results

Using the wrapper class in the typing workbench, the Combined OCC and

feature set described in Section 8.1.2 were evaluated using ten-times ten-fold

stratified cross-validation, in an identical manner to all other algorithms in this

thesis. The results are presented in Table 8.1, along with the results on the

same datasets for the state of the art—LTIAT and KAOFT—from Chapter 4.
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Algorithm / Dataset FRR IPR Weighted AUC
sm-150

Combined OCC 36.06 2.70 0.945
LTIAT - m = 0, s = 0, Q = 100 3.53 29.33 0.950
KAOFT - R2A2 6.06 0.00 0.970
sm-all

Combined OCC 12.39 4.13 0.975
LTIAT - m = 0, s = 0, Q = 100 0.75 16.65 0.976
KAOFT - R2A2 3.60 0.00 0.982

Table 8.1: Final results for the Combined OCC typist classifier

On the smaller sm-150 dataset, the Combined OCC performs slightly worse

than both KAOFT and LTIAT, but better than all but the PPM Classifier from

Chapter 5. This is not surprising because these other algorithms always use

a large representation containing often hundreds of features. In contrast, the

Combined OCC uses just seven values to represent a sample. On the sm-all

dataset the Combined OCC has a performance equalling the other methods,

which is somewhat remarkable considering the small sample representation. A

likely explanation for this performance increase is that the Combined OCC

needs more than 15 training samples per user to make confident predictions

because the users are not consistent enough that fewer samples can be used

form a representative profile of their behaviour.

One advantage that the Combined OCC has over the other methods is

speed. Both KAOFT and LTIAT take more than 24 hours of processing to

complete a full evaluation1 on the sm-all dataset, whereas the Combined

OCC takes less than 10 minutes to perform the same evaluation, including

feature extraction.2 Despite this, the Combined OCC does not suffer from any

loss of accuracy—it can build a model and accurately perform predictions in

a fraction of the time of other algorithms. This ability can be attributed to

the compact but efficient data representation; the chosen features describe a

typist’s behaviour sufficiently well that no more than seven features are needed

to rival the LTIAT and KAOFT methods in terms of accuracy (measured with

the weighted AUC) and surpass them in terms of speed.

Another advantage lies in the use of one-class classification. The Combined

OCC does not need any negative data in order to verify a user, meaning that

performance is not dependent on the set of users that the system is trained

with. Although the use of negative data is not necessarily a drawback since in

many cases it is available anyway, it is an unnecessary aspect of this algorithm,

at least in this application.

1A full evaluation is one ten-times ten-fold cross-validation run for each user in the
dataset.

2No parameter optimization was performed for any algorithm.
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Sample Length FRR IPR Weighted AUC
Full 12.39 4.13 0.975
500 Events 10.21 9.90 0.962
400 Events 9.46 13.82 0.954
300 Events 9.78 18.10 0.935
200 Events 10.01 24.43 0.905
100 Events 9.89 39.27 0.842
50 Events 9.79 51.24 0.770

Table 8.2: Results using different sample lengths

One drawback of other techniques is that many require a sample to contain

a large number of events before they are able to make a confident prediction

about identity. It is unclear whether the Combined OCC also suffers from this

problem, so further evaluation was performed on the sm-all dataset. To test

different sample lengths, each was divided up into a set number of events, in

the same manner as for the LTIAT algorithm in Chapter 3. No sample was

included that had fewer than the required number of events. Starting at a

limit of exactly 500 events, the sample length was reduced in increments of

100 events. All samples in the sm-all dataset contain at least 500 events, and

in most cases they are much larger than this.

Table 8.2 contains the results of evaluating the Combined OCC with six

different sample lengths, from 500 to 50 events. As the length is reduced, the

number of samples increases, but the calculated features become less meaning-

ful and as a result the weighted AUC decreases. Nonetheless, until the sample

length is reduced to 200 events the system still outperforms all algorithms from

Chapter 5, except the PPM technique.

8.2 Adding Mouse Patterns

Most personal computers have at least two input devices, a keyboard and a

mouse. For typist verification, only the former is considered. However, normal

computer operation often involves input from the mouse as well, especially for

highlighting and editing text. The SquirrelMail data described in Chapter 4

recorded mouse events as well as keyboard ones, but so far this data has been

ignored. One reason is that most of the techniques were designed to work

only with keyboard data, and could not make sense of the mouse events. A

mouse event is any action occurring with the mouse—it can be press and

release events on the buttons, scroll events on the centre button, or pointer

movements. In the sm datasets, only mouse button press as well as mouse

button release events were recorded, along with the on-screen position of the

pointer when the event occurred.
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Only some of the recorded mouse events may have an effect on the email

samples from SquirrelMail. If a press event occurs outside the bounds of any

of the text boxes, all of them are deselected and subsequent events have no

effect on the email until at least one text box is selected again. When a left

mouse click occurs inside a text box, the caret is repositioned to where the

button is released. If the pointer is dragged across the screen whilst the left

button is down, all text between the press and release positions is highlighted.

Left mouse button presses followed by key press events can therefore have a

varied effect on the email, depending on whether or not it has occurred within

the bounds of a text box.

Unfortunately, the mouse data recorded in the sm datasets is flawed in a

way that makes it difficult to use for mouse-user verification: the position

of the pointer was recorded relative to the email web page, but how much

the page was scrolled and the user’s screen resolution were never recorded.

Furthermore, each Internet browser used to access SquirrelMail displayed the

page slightly differently. A browser identifier was recorded, but was of little

help because the screen resolution also affects how the browser displays the

page. Because of this, it is impossible to determine what the user was clicking

on. This is a problem for verification because the mouse events are ambiguous:

it is possible to tell that the mouse was used, but not what it was used for. In

contrast, key events are explicit—they always produce the same character.

Another issue with the sm mouse data is that only button presses and

releases were recorded, but mouse activity consists of many other actions. It

is unclear how far the mouse moved between each event because the complete

movement was never tracked. This information could have been recorded,

but the data was originally intended for only keystroke-based verification, and

recording all possible mouse events was considered unnecessary. In retrospect,

the sm datasets would be more valuable had this information been included.

Nevertheless, it is still possible to make use of the mouse events to some extent.

8.2.1 Features

Since the mouse pointer position is not accurately recorded, it seems pointless

to attempt to use it for verification. Presses and releases were the only reliable

mouse events in the sm data, along with a button identifier and the time of

the event. A simple way of using this data for verification is to calculate the

proportion of mouse events in the total number of events—including both key

and mouse events. This “Mouse Use” feature can then be provided to the
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Participant Mouse Use
A 0.742
B 0.680
C 0.612
D 0.743
E 0.694
F 0.682
G 0.747
H 0.656
I 0.699
J 0.901
Average 0.716

Table 8.3: AUC values for the Mouse Use feature

same classifier used in the previous section. It gives an indication of how often

a typist uses their mouse, although not an entirely accurate one because only

clicks were recorded.

In Chapter 6 the usefulness of an attribute was analysed using the AUC.

The same idea is applied here in Table 8.3 for the Mouse Use feature defined

above. On average, this feature performs similarly to the best digraph feature

(in) from Chapter 6. It is not more effective for verification than the typist’s

speed, but is nevertheless a helpful feature, and scores a higher AUC for all

users than many individual digraphs do.

Since general use of the mouse is helpful, it might be worth considering

when the mouse is used. However, the mouse is often used infrequently—

sometimes not at all—so pairing occurrences of mouse events with specific

key events in a mouse-keyboard digraph will result in missing values for most

combinations. This does not mean that all combinations are useless: pairing

mouse events with certain key events may be helpful for verification. An obvi-

ous choice is the mouse-keyboard digraph Mouse Backspace because in many

cases it indicates that the user has repositioned the pointer before deleting some

text. This digraph gives information about a user’s editing behaviour, under

the assumption that the pointer is indeed being repositioned. The Backspace

key is also the most common key in the sm datasets, so occurrences of this

feature will likely exist for most users.

One problem with the Mouse Backspace digraph is that the associated

times are inconsistent. There are often large pauses between using the mouse

and the Backspace key, perhaps caused by the two events being actioned by

the same hand. This would be expected if the user is right-handed and oper-

ates the mouse with their right hand. As it happens, all of the users in the sm

datasets were right handed and had their mouse positioned to the right of their

keyboard—although it is impossible to know whether they used the same hand

for these two events because the users were not actively monitored. Nonethe-
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Participant Mouse Backspace
A 0.650
B 0.536
C 0.508
D 0.531
E 0.649
F 0.640
G 0.588
H 0.568
I 0.583
J 0.538
Average 0.579

Table 8.4: AUC values for the Mouse Backspace feature

Algorithm / Dataset FRR IPR Weighted AUC
sm-all

Combined OCC—Mouse Use 13.28 4.28 0.975
Combined OCC—Original 12.39 4.13 0.975
LTIAT—m = 0, s = 0, Q = 100 0.75 16.65 0.976
KAOFT—R2A2 3.60 0.00 0.982

Table 8.5: Results for Mouse Use and the Combined OCC Typist Classifier

less, the varied pausing is unhelpful for verification, and instead the proportion

of Mouse Backspace digraphs against the total number of Backspace events

was used.

Table 8.4 shows the results for evaluating the Mouse Backspace feature.

Although Backspace was the most common key, Mouse Backspace was absent

from most samples—even for users who were prolific mouse users. As a result,

the Mouse Backspace feature often had a value of zero, and was unhelpful in

most cases. It is not completely without merit: in Chapter 6 it was found

that the usefulness of any measure was often dependent on the user, and this

is echoed in the results here. But as in Chapter 6, without negative data it is

impossible to tell in advance if this feature is helpful for a particular user.

8.2.2 Results

Using the same seven features from Section 8.1.2, and the Mouse Use feature

defined in the previous section, the Combined OCC was re-evaluated using the

sm-all dataset. The sm-150 could not be utilised for this evaluation; when

this dataset was anonymised it was also reduced to contain only keyboard

events. Unfortunately, the identities of the emails that were selected for the

sm-150 dataset were never kept, and it is difficult to determine which emails

they are sourced from. However all the sm-all emails were kept, so the sm-all

dataset was reproduced for this evaluation complete with mouse events.

Table 8.5 presents the results of evaluating the Combined OCC with the

additional Mouse Use feature. The FRR and IPR of the system increased
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slightly when the feature was added, but the AUC remained the same. This

was a disappointing result considering that the average AUC rivalled that of

the other seven features used to train the system. If the system were trained

with more users, or a different range of users, this feature might be more

helpful in increasing the accuracy of the system. Note that adding it did not

noticeably impact running time; the Combined OCC is still many orders of

magnitude faster than other algorithms.

8.3 Summary

This chapter has presented a new approach to continuous typist verification:

representing a sample of text as a set of features and providing this to a

general one-class classifier (rather than a customized one). This achieves a

level of accuracy that compares to the state of the art, performing on par

with LTIAT and KAOFT.3 The Combined OCC has one clear advantage: it

takes only 50ms to train the system and less than 5ms to make predictions on

average—thoroughly eclipsing the other techniques in terms of speed without

compromising accuracy.

Another advantage of the Combined OCC is that it is easy to add new

features, as shown in Section 8.2. With little effort, mouse events are analysed,

turned into a feature and used for classification. Although in this case the

accuracy of the system is not increased, there is still opportunity for other

features to be added that might boost the prediction power—even if only for

particular users. Many features were used to test the Combined OCC, but in

the end a mere seven were found to be sufficient to achieve an accuracy similar

to LTIAT and KAOFT.

Finally, because the Combined OCC uses one-class classification, it is not

dependent on negative data. This is yet another advantage over methods such

as KAOFT, which can be more accurate, but requires a representative set of

users in order to achieve this. In contrast, the Combined OCC is dependent

only on data from the target user, yet obtains a similar accuracy to KAOFT

on the data used for testing.

3Using a conservative estimate of AUC significance [18], the difference between these
three algorithms is not significant at the 5% level for the sm-all dataset.
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Chapter 9

Conclusions

This thesis has presented an investigation into continuous typist verification—

the problem of continually checking that a computer user is who they claim

to be by analyzing the way they type. This task is not easy: many factors

influence the performance of a continuous typist verification system. Existing

systems such as LTIAT and KAOFT determine identity by utilising timing

patterns. These systems are able to achieve a commendable level of accuracy,

but also suffer performance issues. In the case of KAOFT, the current state-

of-the-art technique in terms of accuracy, negative data is required to build the

verifier. Although in many cases this negative data is available, the accuracy

of the system is dependent on it; the system performs well with this data—

especially when it contains a representative set of possible impostors—but fails

completely when trained only with data from the target user.

The published accuracy of LTIAT and KAOFT suggests that the hypothesis

stated in Chapter 1 might be true, that there is enough information in a user’s

typing input for continuous typist verification to be a useful form of biometric

authentication. However, when these techniques were re-implemented and re-

evaluated in Chapter 3 it became clear that although they perform well on

their own datasets, they are only able to achieve good results in restricted

circumstances. For LTIAT, both key press and release events are essential,

and KAOFT requires large samples and a representative set of attackers during

training.

This thesis explores whether it is possible to perform typist verification

in less restricted situations, such as those where no negative data is used

during training. The aim of this exploration is to determine to what extent

the information in typing input is useful for verification. There are several

aspects that need to be considered as part of this, but the primary concern is

the ability to identify channels of information that are available in typing input.

Since the existing systems were evaluated with datasets that are deficient in

some way, either in size or the type of events they contain, the first step towards

achieving this was the collection of suitable data.
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9.1 Collecting Data

Data collection is important for this thesis because it enables algorithms to

be tested experimentally in a fair and uniform way. The datasets that were

originally used to evaluate LTIAT and KAOFT cannot be used to fairly test

algorithms because for the former the dataset is small, and for the latter key

release events are missing. Such events are utilised for verification by LTIAT,

and without them this method is unable achieve state-of-the-art accuracy.

Other new methods may also be able to exploit key release events to perform

verification.

Chapter 4 discusses the collection of typing input from real-world emails.

Almost 3000 emails were collected over a period of 3 months, and processed

into two final datasets with 150 email samples (sm-150) and 607 email samples

(sm-all) respectively. The original emails are affected by some technical and

ethical issues that meant that not all could be utilised in the final datasets.

The most common problem was the result of a bug in the Internet browser used

to access the email system, but other issues included confidential information

being revealed, emails typed in a foreign language, sample length less than a

stipulated minimum and inconsistencies in recording modifier keys uniformly

across all Internet browsers utilised. It is likely that any typist verification

system that operates on free text will endure similar issues, so explaining

them is helpful to others.

The two datasets, sm-150 and sm-all, are comparable in size to KAOFT’s

dataset and in content to LTIAT’s dataset: they consist of at least 15 emails

per user and contain key press events, key release events, and their associated

timings. Both were used to re-evaluate LTIAT and KAOFT in Chapter 4, and

similar results were achieved to the original algorithms matched with their

original datasets from Chapter 3. The results indicate that the new datasets

enable a fair comparison between new and existing methods of typist verifica-

tion because they provide all the data necessary for evaluation.

Mouse events were also recorded for all the 3000 emails that were collected.

These are not used for evaluation except for the combined one-class classifier

(Combined OCC) technique in Chapter 8. The collected emails make several

contributions to typist verification. They provide a fair way to evaluate differ-

ent typist verification methods; they give insights into issues associated with

collecting keyboard (and mouse) input; and they contain additional informa-

tion that can be used to assist existing verification techniques.
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9.2 Identifying Channels of Information

Now that two new datasets are available that address the shortcomings of

the existing ones, it is possible to investigate what channels of information

are available in typing input and quantify how useful each is for verification.

Chapter 5 contains an exploratory investigation using probability-based algo-

rithms. This gives insight into what channels of information exist. Algorithms

that use small structures such as digraphs perform well but take a long time to

produce predictions because they need to make a large number of comparisons.

Chapter 6 uses the sm-all dataset to investigate individual aspects of typ-

ing and quantify their usefulness for verification. Features that are considered

include individual digraphs, finger movements, usage of editing and naviga-

tional keys, pausing behaviour, ordering of events and basic measures such as

typing speed and error rate. These features provide different amounts of in-

formation that can be used to verify identity. Simple metrics like the typist’s

speed and backspace rate perform best, whereas individual digraphs are often

poor at distinguishing between users. This might seem surprising given that

individual digraphs are often used in typist verification systems. However, the

samples in the sm datasets contain free text, so it is possible that the user is

unfamiliar—and hence inconsistent—with many of the sequences they type.

Using aggregates such as typing speed smoothes over noise, and renders the

outcome less susceptible to small inconsistencies within and between samples.

The process of typing on a computer often involves other input devices,

such as a mouse, which inevitably affects the patterns of entry. For example,

the mouse can be used to reposition the caret in a block of text, causing a

delay when the user moves their hand from the keyboard to the mouse and

back again. Traditionally, mouse events are not considered in typist verification

systems, but because they are something that affects typing behaviour, they

can potentially be a viable channel of information. In Chapter 8 mouse events

were investigated for verification by adding a single feature called Mouse Use

to an existing system. Using the same analysis as in Chapter 6 it was found

that this feature considered independently was useful for verification, but gave

no noticeable change in accuracy when added to the Combined OCC.

One important insight gained from investigating the channels of informa-

tion is that performance varies on a per-user basis. Although some features

performed better than others for all users, those that performed poorly overall

often achieved a reasonable level of discrimination for particular users. The

difficulty with using these attributes for verification is that it is impossible to
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determine in advance whether or not a particular feature will be useful without

utilising negative data.

9.3 Requirements for System Training

In principle, negative data should be unnecessary for any verification system

because there should be no need to compare to other people in order to confirm

someone’s identity. Chapter 7 addressed this directly by testing whether one-

class classifiers can outperform multi-class ones. It was found that when nega-

tive data provided to a multi-class classifier was insufficiently representative of

possible attackers, a one-class classifier yielded better predictive performance.

This suggests that in cases where novel attackers are expected—and especially

when they have the potential to differ from existing attackers—one-class clas-

sification should be used in preference to multi-class classification. In short,

negative data is unnecessary for successful verification.

However, some systems are designed in a way that requires negative data,

such as KAOFT in Chapter 3 and the Individual Digraph Classifier in Chap-

ter 5. This is not necessarily a disadvantage because in many cases negative

data is available, but performance suffers when only a limited amount is on

hand. LTIAT and the Combined OCC show that it is possible to design algo-

rithms that require no negative data and achieve comparable results to those

that do. Additionally, when used for typist verification, the Combined OCC

produces predictions many orders of magnitude faster than any other classifier

discussed in this thesis.

Typist verification systems often require a large number of training samples

in order to be able to confidently perform verification. In most cases this is the

result of users typing inconsistently: typing data needs to be representative for

each user, otherwise it may be falsely rejected for failing to match the training

profile. The actual number of training samples depends on the length of each

sample and the consistency of each user. For systems evaluated in this thesis

the sm-150 dataset provides reasonable results. This dataset has 15 samples

for each of ten users, each sample having a minimum length of 500 key events.

In each cross-validation run, between 13 and 14 samples were used to train the

user’s profile, the remaining samples being used for evaluation.

When the features provided to the Combined OCC were calculated on

samples of reduced length it was found that the accuracy degraded. Overall,

approximately the same volume of data was available for training; however,

samples were divided up into smaller non-overlapping sequences. Many of
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the features calculated become more meaningful as the length of a sample

is increased, and the results reflect this. For continuous systems, where no

restrictions are placed on the text being entered, sample sizes of at least 500

events produce the best results in this thesis.

9.4 Revisiting the Hypothesis

This thesis argues that

there is enough information in a user’s typing input for continuous

typist verification to be a useful form of biometric authentication.

As discussed in Chapter 1, whether the level of authentication that is achieved

is useful depends on a number of aspects. This thesis addresses them by

collecting data, identifying channels of information and investigating the re-

strictions that must be imposed on verification systems. It also introduces a

new method of performing one-class classification, which is then used to per-

form typist verification to a comparable level of accuracy to—but much faster

than—the current state of the art.

The findings of this thesis are encouraging. With good data and well-

designed algorithms continuous typist verification can be performed quickly

and at a high level of accuracy. We can conclude that there is enough infor-

mation for continuous typist verification to be used effectively for biometric

authentication. However, it is impossible to tell whether these algorithms will

be practically useful because no evaluation was performed with users who were

interacting with an actual system. Whether or not the trade-off between false

rejection rate and impostor pass rate is acceptable depends on what the system

is protecting, and no assumptions have been made about what this might be.

9.5 Future Work

In Chapter 6 it was found that features had differing strengths of verification

on a per-user basis. Since many techniques utilise only one type of feature, such

as digraph time, existing techniques could be combined to form a system that

covers several aspects of typing. One possible way of combining techniques is

to train several different classifiers with the same data, and order them into a

list. During prediction time, a sample must pass through all classifiers in the

list to be successfully verified. If any classifier rejects the sample, verification

fails and the remaining classifiers do not need to consider the sample. The
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reason that this approach might be more appropriate than others such as

voting is that impostors can be quickly identified by ordering the classifiers

by their speed. Contrast the case of voting, where all classifiers must make a

judgement before the system can verify a sample. Depending on the classifiers

involved, this might take a long time.

Another avenue of future work would be to test the features from Chapters 6

and 8 with a different one-class classifier. For example, they could be used to

train a one-class support vector machine (like that provided by libSVM [11])

instead of the Combined OCC. However, in Hempstalk and Frank [37] it was

found that the Combined OCC achieves an accuracy comparable to libSVM’s

one-class SVM, so it is unlikely that there will be a substantial improvement

in accuracy.

An aspect of typist verification that is more likely to improve on the current

state of the art is the choice of attributes provided to the Combined OCC. For

example, features could be selected on a per-user basis. Some of the features

seen in Chapter 6 were not utilised due to poor performance overall, but these

might be helpful for particular users. Also, the Combined OCC makes it

possible to add new features with ease, so there is potential for accuracy to be

increased if another channel of information is identified.

For the last one hundred years the humble keyboard has been used solely

to produce printed text. This thesis has shown that it can also be successfully

employed for authentication, verifying who people are by the way they type.

Computers will begin to recognise us as individuals, just as we do with each

other.
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Appendix A

Experiment Details

A.1 Purpose of Experiment

The purpose of these experiments is to record keystroke entry patterns whilst

performing regular tasks on a computer. The recorded data can then be mined

for biometric information using machine learning techniques.

A.1.1 Questionnaire

Participants will be asked to fill in a short questionnaire about their experi-

ence with computers and requesting some of their bio-data (such as height,

weight, age, handedness, etc). The information will be used as attributes for

machine learning algorithms, but will not identify the participant in any way.

This information is used to help ascertain how much biometric information is

contained in typing patterns.

A.1.2 Email Recording

In this experiment the participant uses an augmented version of SquirrelMail1,

rather than the standard Computer Science Department version. SquirrelMail

is a web-based email system similar to that of Gmail, Hotmail and Yahoo!

mail. SquirrelMail at:

https://webmail.scms.waikato.ac.nz/cs/src/login.php

gives standard access to the Computer Science Department email system. Fig-

ures A.1, A.2 and A.3 show the standard webmail client interface.

The recorded typing (RT) version is almost identical to the standard one,

with the exception that it has the ability to record typing patterns for email.

The user interacts with the RT version in the same way as they would nor-

mally (it provides access to the participant’s standard CS email account). The

differences are as follows:
1See www.squirrelmail.org for more information
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Figure A.1: Login screen—standard CS webmail

Figure A.2: Inbox screen—standard CS webmail
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Figure A.3: Compose screen—standard CS webmail

1. The main login page carries a warning stating that this version of Squir-

relMail is set to record typing patterns, and provides a link back to the

standard version. It also provides a link giving the researcher’s email

address. The login area on the screen also has a colored background to

indicate the difference between the standard and augmented versions.

See Figure A.4 for a screenshot of the login screen.

2. The left hand panel (displaying folders) has a non-standard background

color, and a notice saying “This version of SquirrelMail will record your

typing.” Figures A.5 and A.6 demonstrate the left hand panel messages.

3. The main window for composing an email (shown when a new email is

created, or an email is forwarded/replied to) contains a check box under

the subject entry box, that states: “If checked, all of your typing will be

recorded for this email.” If the check box is de-selected (it is selected by

default) then the typing recorded for that email will not be saved for use

in the experiment. If checked, when the user presses Save Draft or Send

the recorded typing patterns will be saved to disk on the SquirrelMail

server. An example screenshot is shown in Figure A.6.

The system records the typing for each of the text entry boxes on the com-

pose screen: To, CC, BCC, Subject and Body. Mouse press events within the

compose frame (only within that page of the browser) are also recorded. Press

events can also be called clicks. Double clicks appear as two clicks very close
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Figure A.4: Login screen—RT CS webmail

Figure A.5: Inbox screen—RT CS webmail

148



Figure A.6: Compose screen—RT CS webmail

together. When the user saves or sends the email, the recorded patterns are

saved to disk on the server—but only if the check box on the compose window

is checked. Each email recording is saved as a separate file on the server, in the

format showing in Appendix A. The text already on the screen (such as from

a saved draft, reply-to or forward) and login details (username/password) are

not recorded. Only the typed keys and mouse events for the current email ses-

sion are kept. Appendix A includes an example printout of an email recording,

Appendix B describes what information is recorded.

It is safe to store the emails on the server in this plain format since only

the computer administrator (Technical Support Group) will have read access

on the server throughout the duration of the experiment. At the end of the

experiment the files will be anonymised by a script, before being given to the

researcher. Each SquirrelMail username will be changed to become a gener-

ated user ID. The master file associating assigned user ID with SquirrelMail

username will be kept encrypted by a 128 bit Blowfish encoder, with the key

known only by the researcher. The data stored on the server will be deleted in

a “strong” way, that is, the recorded typing files (and mailAnalysis database

files) will not only be removed, but the free space left behind will also be

overwritten 7 times to prevent any data being retrieved.
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Figure A.7: Registration screen—Mail Analysis

A.2 Mail Analysis

To allow the participants to further control whether an email is included in the

experiments, the mailAnalysis system is used. On the left hand pane of the

main RT CS Webmail screen (see Figures A.5 and A.6) a link is provided titled

“Analyse Mail”. When pressed for the first time, the participant is taken to a

registration screen (see Figure A.7), where they are asked to give a password

to their mailAnalysis account. Upon registration, they are taken to the main

analysis screen (see Figure A.8). This screen provides a list of all their emails

that were recorded, sorted by date and time. As shown in Figure A.9, clicking

the date of an email brings up a reconstruction of the email’s typed input.

The reconstruction may not match the exact layout intended due to the use

of the mouse whilst the email was typed. It is possible to also see the raw

recording of the email by clicking the button marked “Show Raw Recording”,

the original recording will appear in the same window as shown in Figure A.10

and described in the Appendix. The other columns provided in the main screen

provide general statistics (like how many keys were pressed) for each email.

Clicking the “Summary Activity” link provides summaries of some statis-

tics, including how many emails were typed and how much time was spent

typing them (see Figure A.11). Clicking the “Options” link at the top right-

hand corner of the page gives the user the ability to change their registered

password (Figure A.12). Clicking “Logout”, also at the top right-hand corner

of the screen, returns the user to a login page where they must re-enter their
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Figure A.8: Main screen—Mail Analysis

Figure A.9: Reconstructed email screen—Mail Analysis
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Figure A.10: Reconstructed email screen showing raw recording—Mail Anal-
ysis

SquirrelMail username and mailAnalysis password before being granted access

back to the mailAnalysis system (Figure A.13). Pressing the link in the main

RT CS Webmail screen for a second time (after registering) will take the user

directly into the mailAnalysis system. The system can also be accessed by

entering login details directly into the mailAnalysis login screen.

The SquirrelMail username is encrypted as a session variable by PHP and

passed to the mailAnalysis system, other users cannot access this variable.

The session ID is used to gain access to the store of session variables, and is

kept as a MD5 hash string in a cookie on the user’s computer until either the

cookie expires or is removed by some other process. The cookie is set to expire

after 30 minutes (the default for SquirrelMail), but can be removed before it

expires by clearing out the browser cache or by the user logging out of either

SquirrelMail or mailAnalysis.

The mailAnalysis system is driven by a database stored on the same ma-

chine that runs the RT CS webmail install. A script runs over the pattern files

stored on disk for each email and adds them to the database every 30 minutes.

When a user deletes an email from mailAnalysis it is removed from all tables in

the database and the file is flagged for deletion in another database table. On
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Figure A.11: Summary screen—Mail Analysis

Figure A.12: Options screen—Mail Analysis
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Figure A.13: Login screen—Mail Analysis

the next script pass, the pattern files flagged for deletion on the previous day

are removed from disk and any new pattern files are added to the database.

There is a small grace period between deleting emails in the database and

deleting them off disk to ensure that accidental deletions do not result in the

loss of useful data.

A.3 Network Access

Running the data collection on the University network poses no risk, there

is no software to be installed and the participant is only instructed to use a

different web-based version of SquirrelMail.

A.4 Data Collection

As detailed above, a questionnaire will be used to collect bio-data and com-

puting experience for all research participants. The two experiments are them-

selves the process of data collection. No video, audio or notes will be taken

throughout the observation period. Only keystroke and mouse click informa-

tion will be recorded.

The data that is being collected may be sensitive information. Whilst

the participant always has the opportunity to turn the recording system off,

the content of what they type can be personal. It is possible to partially
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reconstruct a document from typed input. It is difficult to do so, however,

because the use of a mouse and lack of cursor location knowledge means that

it is possible for input to be typed in non-consecutive order. Because a key

recording system records everything, it is possible to see text that was removed

from the document. Care will be taken to ensure the data will only ever be

stored in such a way that only the researcher and the participant will have

access to it in a way where this information can be accessed.

A.5 Data Archiving/Destruction

Data for the experiment may be temporarily kept on the participant’s com-

puter. The data will be moved to a secure store on the researcher’s computer

at the end of the observation period. This data will be destroyed at the end of

the researcher’s PhD, which will approximately be March 2009. All deletion

methods will be “strong”—rather than just allowing the system to mark the

deleted files as free space, each file will be overwritten by random data at least

7 times to ensure that the recorded information will not be recoverable after

deletion. Some processed data may be kept for an indefinite period after this

research is complete to allow others to replicate the results. However, the re-

tained information will contain no content that would allow the identification

of any research participant.

A.6 Confidentiality

Confidentiality and participant anonymity will be strictly maintained. All

information gathered will be used for statistical analysis only and no names or

other identifying characteristics will be stated in the final or any other reports.

155



A.7 Example Email Recording

Username: kah18

Date: 19-09-06-1602

Browser: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.9)

Gecko/20061206 Firefox/1.5.0.9

Mouse: [ 2 8513937 0 (201,128) 3 8514033 0 (201,128) 2 8516617 0 (209,148)

3 8516681 0 (209,148) 2 8518361 0 (175,173) 3 8518425 0 (175,173) 2

8523089 0 (126,322) 3 8523161 0 (126,322) 2 8530689 0 (356,241) 3 8530753 0

(356,241) ]

To typing: [ 168 8512062 0 169 8512226 0 138 8512253 0 139 8512454 0 167

8512492 0 169 8512534 0 ]

CC typing: [ 168 8514157 0 169 8514343 0 166 8514393 0 139 8514448 0

168 8514508 0 167 8514549 0 169 8514602 0 102 8515440 0 103 8515532 0 104

8515693 0 105 8515766 0 106 8515937 0 107 8516024 0 ]

BCC typing: [ 98 8517413 0 99 8517590 0 101 8517672 0 102 8517805 0 103

8517908 0 ]

Subject typing: [ 168 8519906 4 169 8519980 0 144 8520012 0 145 8520114

0 147 8520185 0 64 8520303 0 65 8520433 0 16 8520645 0 17 8520747 0 166

8520797 0 167 8520890 0 64 8521010 0 65 8521165 0 147 8521241 0 166 8521248

0 167 8521322 0 65 8521401 0 130 8521430 0 131 8521554 0 65 8521612 0

168 8521699 0 169 8521821 0 138 8521833 0 139 8522030 0 167 8522091 0 169

8522138 0 380 8522208 0 381 8522292 0 ]

Body typing: [ 168 8524311 4 138 8524448 0 169 8524454 0 166 8524487 0

139 8524540 0 168 8524577 0 167 8524609 0 146 8524659 0 169 8524683 0

147 8524741 0 156 8524801 0 157 8524884 0 143 8524950 0 376 8524987 0

377 8525098 0 64 8525140 0 65 8525262 0 138 8525347 0 169 8525422 0 139

8525446 0 168 8525523 0 167 8525547 0 169 8525618 0 146 8525671 0 147

8525742 0 156 8525809 0 157 8525896 0 143 8525961 0 376 8525996 0 377

8526102 0 64 8526177 0 65 8526282 0 158 8526314 0 159 8526396 0 156 8526451

0 157 8526552 0 64 8526630 0 139 8526641 0 168 8526722 0 65 8526730 0 169

8526822 0 174 8527039 0 175 8527131 0 159 8527242 0 64 8527661 0 65 8527764

0 168 8527791 0 169 8527888 0 145 8527914 0 138 8527961 0 139 8528100 0

138 8528166 0 165 8528201 0 139 8528293 0 380 8528343 0 381 8528420 0 16

8528669 0 17 8528737 0 16 8528790 0 17 8528855 0 16 8528910 0 17 8528952

0 16 8529001 0 17 8529078 0 164 8529085 0 165 8529225 0 139 8529279 0 138

8529370 0 139 8529477 0 381 8529548 0 ]
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A.8 How to read an email recording

An email recording always begins with:

Username: userName

Date: dd-mm-yy-24hrTime

Browser: browserIdentificationString

The userName is the name of the user who typed the email, the date is the date

and time that the email was finished (sent). The browserIdentificationString is

the name and version of the web browser that was used to type this email (in

the format in which the browser identifies itself). Following this, the section

Mouse appears, which is recorded in the format:

clickButtonNumber, timeInMilliseconds, modifiers, (xPos, yPos), ...

(A.1)

The clickButtonNumber is (button ∗ 2) + (ifPress?0 : 1). The timeInMillisec-

onds is the absolute time this event was recorded. The modifiers is a four bit

integer with each bit representing the state of the Ctrl, Alt, Shift and Windows

keys at the time the button was pressed (these keys cannot be independently

recorded in a web-based system). Finally the coordinates of the mouse pointer

(relative to the document) are given.

For the remaining sections (To, CC, BCC, Subject, Body), the keystrokes

are recorded in the following form:

keyStroke, timeInMilliseconds, modifiers, ... (A.2)

The keyStroke is recorded as an ASCII character number and modified to be

(ASCIIcode ∗ 2) + (ifPress?0 : 1). The timeInMilliseconds and modifiers are

in the same form as the mouse events. Pointer coordinates are irrelevant and

are not recorded.
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Appendix B

Instructions For Participants

These instructions are for typists who have agreed for their emails to be

recorded and used for evaluation in this thesis.

B.1 Requirements

This study requires you to have a Waikato Computer Science Department

email account and access to a web browser. If you are using Linux as an

operating system, you are requested to use Opera as a web browser because

Mozilla based web browsers for Linux contain a bug that prevents your typing

from being accurately recorded.

B.2 Links

The following URLs provide access to SquirrelMail and mailAnalysis for this

study:

SquirrelMail: http://chronicle.cs.waikato.ac.nz/mail

mailAnalysis: http://chronicle.cs.waikato.ac.nz/analysis

B.3 CS Webmail

For the duration of the study we request you use a different copy of SquirrelMail

for accessing your Computer Science emails. This copy, called RT SquirrelMail

(RT for Recorded Typing), will record the typing you perform in the email

compose screen. It does not record your password, or any text typed in a

reply/forward. Only the text typed in the To, CC, BCC, Subject and Body

text boxes, along with any mouse events that occur on that page are recorded.

If you do not wish your typing to be recorded for a particular email, simply

uncheck the box marked “If checked, all of your typing will be recorded for
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Figure B.1: Login screen—RT CS webmail

this email” before saving or sending the email (see Figure B.3). If you forget

to uncheck the box, you are still able to remove the recording from inclusion in

the experiment using the mailAnalysis system. Use of the mailAnalysis system

is described further in the next section.

Standard SquirrelMail and RT SquirrelMail have no functional differences

other than the obvious addition in RT SquirrelMail—the typing patterns for

emails are recorded. Visual markers have been added to RT SquirrelMail to

ensure you are always aware of which version of SquirrelMail you are using.

The login screen, shown in Figure B.1, has a red box around the username

and password entry, and a comment underneath providing a link back to the

standard SquirrelMail install. The main webmail screens, shown in Figures

B.2 and B.3, have been altered to have a yellow sidebar (instead of the default

blue) and carry the warning “This version of SquirrelMail will record your

typing”. The sidebar also provides a link to mailAnalysis.

B.4 Mail Analysis

The mailAnalysis system provides you with the ability to review your own

emails and delete them from the data store if you decide the content of the

email is not appropriate for inclusion in machine learning experiments. As a

participant you will only be given access to your own emails. You must register

with mailAnalysis in order to access your recordings. You will be taken to
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Figure B.2: Inbox screen—RT CS webmail

Figure B.3: Compose screen—RT CS webmail
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Figure B.4: Registration screen—Mail Analysis

the register page when you click “Analyse Mail” in the left hand pane of RT

SquirrelMail if you have not previously registered (see Figure B.4). To register,

simply enter a password in the boxes provided, and click “Go” to begin using

mailAnalysis. After registering for the first time, clicking the “Analyse Mail”

link in RT SquirrelMail will take you straight into the mailAnalysis system.

The main screen from mailAnalysis is shown in Figure B.5. It displays a

list of all the emails recorded that will be used for machine learning, initially

ordered by the date they were recorded. You can alter the ordering of the

mailAnalysis system by clicking the grey boxes (or arrows) next to each col-

umn heading. Clicking the date of a particular email will pop up a window

displaying a reconstruction of the typing pattern recorded for that email (see

Figure B.6). In the reconstructed email window, it is possible to view the raw

email recording by clicking the button marked “Show Raw Recording” (see

Figure B.7). The reconstruction is not perfect—it shows only what could be

retrieved from the recorded sequence of typing events. The purpose of the re-

construction in mailAnalysis is to allow viewing of an emails content, without

subjecting you to the raw format of the recording.

You are encouraged to delete the email if the general content of the email

is confidential. Please do not delete emails just because you have typed your

name, email address or contact details inside it, because this sort of information

will be removed before machine learning is performed. To delete an email,

check the box next to that emails date and click the link marked “Delete

Selected Emails.” The emails are not instantly removed from disk, so if you
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Figure B.5: Main screen—Mail Analysis

Figure B.6: Reconstructed email screen—Mail Analysis
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Figure B.7: Reconstructed email screen showing recording—Mail Analysis

delete an email by accident please get in touch with the researcher as quickly

as possible.

The mailAnalysis system also provides general summary statistics. These

statistics can be accessed by clicking the link marked “Summarise Activity”

on the main screen (Figure B.5). The summary statistics are provided for set

periods of time (all time, last 7 days, yesterday and today) and each period

can be accessed by clicking the appropriate link (see Figure B.8).

It is possible to change your registered password for mailAnalysis by se-

lecting “Options” at the top right hand corner of the screen and entering your

old password and a new one in the boxes provided. The password is used if

you wish to use mailAnalysis without first entering SquirrelMail. At the login

page (see Figure B.10), enter your SquirrelMail username and your current

mailAnalysis password to be taken into mailAnalysis. Logging out of mail-

Analysis by clicking “Logout” in the top right hand corner will take you back

to the login page.
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Figure B.8: Summary screen—Mail Analysis

Figure B.9: Options screen—Mail Analysis
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Figure B.10: Login screen—Mail Analysis

B.5 Recording Content

The data used during machine learning may be provided to a third party for

reproduction of the results. Any email content which may identify a participant

will be removed before this data is made available, and all stored usernames

will be generalised to userXX, where XX refers to a random number assigned

to each participant. The mailAnalysis system gives users access to their own

reconstructions of the recorded typing patterns and the original raw formats

of each email as well.

B.6 Final Review

At the end of the data collection, there will be a week-long grace period when

no further emails will be recorded but the mailAnalysis system will still be

available. This enables you to have a final review of the emails recorded in

order to decide whether they contain material inappropriate for inclusion in

this project, and delete them if necessary. You will be notified when the RT

SquirrelMail system becomes unavailable and the final review period begins.

The emails will not be accessed by the researcher until after this review period

is up, at which time they will be anonymized and moved to a secure store on

the researcher’s computer.
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Appendix C

Questionnaire

Introduction

The following questions are designed to provide bio-data for machine learning
on the typing samples. This is not a test, this information is only used to
evaluate the effectiveness of typist recognition. If at any stage you do not feel
comfortable answering a question, leave the answer as blank.

Questions

Participant Number:

Question One: Age

Please circle the option that applies to you:

• 11–20

• 21–30

• 31–40

• 41–50

• 51–60

• 60 or older

Question Two: Height

What is your height in centimetres?

Question Three: Weight

What is your weight in kilograms?
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Question Four: Handedness

In the table below indicate your preference for each hand in the following
activities by placing a check mark in the appropriate column. Where the
preference is so strong you would never try to use the other hand, put two
check marks. In the case you are indifferent to the use of either hand, place a
single check mark in both columns.

Some of the actions listed require the use of both hands. In these cases, the
part of the task, or object, for which hand preference is wanted is indicated in
brackets.

Please try and answer all questions, only leave a blank if you have no
experience with the task.

Task Left Hand Right Hand

Writing

Drawing

Throwing

Scissors

Toothbrush

Knife (without fork)

Spoon

Broom (upper hand)

Striking Match (match)

Opening Box (lid)

Total Check Marks

Question Five: Hand spans

On each of the following pages please place the hand indicated palm down on
the page, with fingers stretched out as far as possible, and trace around it with
a pen. The purpose of doing this is to enable hand span and finger lengths
to be measured in a uniform way. [Space omitted in this appendix, actual
questionnaires contained a single A4 page for each hand.]
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Question Six: Keyboard

Are you a touch typist? That is, do you use all four fingers of both hands to
type on letter keys on a keyboard?

If not, how many fingers of each hand do you use to type?

Do you have to look at the keyboard to type on letter keys?

Do you have to look at the keyboard to type on number keys?

Do you suffer from RSI (Repetitive Strain Injury), a wrist injury, or any other
disability/injury that may impair your ability to type on a keyboard?

What type of keyboard do you type the majority of your emails with?

• Standard Keyboard

• Ergonomic (or Natural) Keyboard

• Laptop Keyboard

• Other (Please Specify)

Is there anything unusual about the keyboard that you use to type your work?
For example, does it have some letters swapped (such as Z and Y for German
users), do you use a layout other than QWERTY (e.g. Dvorak) or are there
keys that do not work correctly?
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Question Seven: Mouse

Please circle the option that best describes the mouse you use for the majority
of your computer work.

• Ball Mouse

• Ball Mouse (Wireless)

• Optical/Laser Mouse

• Optical/Laser Mouse (Wireless)

• Trackball

• Graphics Tablet (Pen)

• Graphics Tablet (Mouse)

• Touchpad (On a laptop or as a pad integrated with a keyboard)

• Other (Please Specify)

Question Eight: Computer Use

How many hours do you spend on a computer in an average weekday?

How many of those hours would be spent on a computer at home?

How many hours do you spend on a computer in an average weekend day?

How many of those hours would be spent on a computer at home?

From the following options, which one best describes your main use for a
computer?

• Email and Surfing the Internet

• Graphics (e.g. Drawing)

• Gaming

• Word Processing (e.g. Typing Reports) or Typing-Based Tasks (e.g.
Programming)

• Work Related (e.g. Data Entry, Spreadsheets)

• Other (Please Specify)
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Appendix D

List of Top 54 Predictive

Digraphs

The table below lists the top 54 predictive digraphs. Each digraph was typed at

least ten times by each of the first ten users in the sm-all dataset (Participants

A to J). The AUC values for each user were weighted on the number of times

each digraph was typed before being averaged and included in the table.
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Digraph Average Weighted AUC

in 0.744

as 0.726

yo 0.714

er 0.707

on 0.701

re 0.689

se 0.682

at 0.682

ou 0.681

ar 0.673

st 0.663

o Space 0.660

l Space 0.636

y Space 0.633

es 0.623

g Space 0.621

i Space 0.615

n Space 0.615

to 0.613

ha 0.609

he 0.604

th 0.600

t Space 0.599

a Space 0.599

Space y 0.599

r Space 0.595

d Space 0.595

s Space 0.594

ve 0.592

Space h 0.592

me 0.580

is 0.577

Delete Delete 0.576

e Space 0.575

le 0.575

an 0.571

ti 0.568

Space o 0.567

nt 0.566

Space s 0.562

or 0.559

en 0.559

Space f 0.555

ma 0.554

Space m 0.552

Enter Enter 0.548

Space w 0.548

Space i 0.547

e Backspace 0.540

Space c 0.536

Space a 0.536

Space t 0.523

Backspace Backspace 0.512

Space Backspace 0.507


