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Stickel and differential-Stéckel matrices are generalized so that the matrix elements may be
functions of the derivatives of the dependent variable as well as the independent variable. The
inverses of these matrices are characterized and it is shown that for significant classes of linear and
nonlinear partial differential equations, variable separation is accomplished via this generalized

Stickel mechanism.

I. INTRODUCTION

In Ref. 1 the authors introduced a general definition of
additive variable separation for a partial differential equa-
tion

Hx,uu;,)=E, (1.1)

where E is a parameter, Xx,,...,x, are the independent varia-
bles, u is the dependent variable, and u,, = 8f‘lu, i=12,....
A separable solution of (1.1} is a solution of the form
u =3Y_,5Yx,,E). Our definition is a straightforward ex-
tension of Levi-Civita’s definition for first-order equations.?
We let 1, be the largest number / such that 4, H =H, #0.
To avoid discussion of degenerate cases we require n, >0
for each I (but n, is finite).

Let the truncated differentiation operator D, be defined
by

51 =0,, +uy, O, + ;9 (1.2)

ury + -+ ulv"la"l,n:— 1’

In Ref. 1 we showed that every separable solution # of (1.1)
satisfies the integrability conditions

Hu""lHu""‘l(EleH ) + H“I.nf“lvnj(ﬁlH )(bJH )
o H“Jv"l('bIH )(bJH“I.nl) - Hu:.n,(jle )(I)IHW,,.J) =0,
1<I<J<N. (13)

If(1.3)is an identity in the dependent variables u,u ., , we say
that {x;,} is a regular separable coordinate system for H = E.
In this case the separable solutions involve =}_,n; + 1 in-
dependent parameters: « and the derivations u;;, 1<I<N,
1<i<n, can be prescribed arbitrarily at a given point x°. If
conditions (1.3) do not hold identically then the separation is
nonregular and separable solutions, if they exist, will involve
strictly fewer parameters than the regular case. (The stan-
dard examples of variable separation for the differential
equations of mathematical physics all correspond to regular
separation.) Multiplicative separation is handled in this
framework by passing to a new dependent variable v = In u.
There is a modified definition of variable separation for (1.1)
when E =0, which we will not discuss here.'?

It would be of great interest to know the general solution
of (1.3) so that the mechanism of variable separation could be
determined in all cases. However, the general solution is not
even known for the Levi-Civita case n; = --- = ny = 1. (The
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solution has recently been worked out for Hamilton-Jacobi
equations on pseudo-Riemannian manifolds.*)

Historically, the fundamental mechanism for variable
separation has been the Stickel matrix.* However, the
Stickel mechanism is not sufficient to encompass all types of
separation given by solutions of (1.3). In order to describe the
solutions of the integrability conditions for additive separa-
tion of linear equations Lu = E and Lu = 0O the authors in-
troduced differential-Stickel (D-Stickel} matrices, a nontri-
vial extension of Stickel matrices.? Here, we further extend
D-Stickel matrices by permitting the matrix elements to be
functions of the derivatives u,; as well as the independent
variables x,. (For ordinary Stéckel matrices this is a straight-
forward extension. For D-Stéckel matrices it is more diffi-
cult.)

In Sec. II we define generalized D-Stéckel matrices and
characterize their inverse matrices via a system of partial
differential equations. This section is modeled on Ref. 3 (in
which ordinary D-Stackel matrices are treated) but Theorem
1 leads to some complications.

In Sec. III we present several classes of linear and non-
linear partial differential equations for which we can charac-
terize the possible mechanisms of variable separation, and
we show that they all correspond to generalized D-Stickel
form. For all cases treated we have H"l-"t"l-n.; =0in (1.3)for

I #J. (The cases where the mixed partial derivatives do not
vanish are much more complicated.) Even with this restric-
tion we do not yet know if generalized D-Stickel form is
sufficient to describe all variable separation or if additional
mechanisms exist.

All functions appearing in this paper are assumed to be
locally real analytic. Furthermore, functions f(x,,#x ) are
assumed to be analytic as functions of the ug , in the neigh-
borhood of u, , = 0. If we require that a nonzero fis inverti-
ble we mean that f(x,,0) #0 for the {x, } in some neighbor-
hood on R ¥ so that f ~'(x,,ux ) is also analytic.

Il. GENERALIZED D-STACKEL MATRICES

Consider a coordinate set x,,....xy and let n,,...,ny be
positive integers with n = ZY_ n,. Let S = (S,,,(x,)) be an
n X n nonsingular matrix with the properties
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i—1

d .
(1) S(I,n’l(xj) = xi— 1 S(,'”',(x,), 1= 1,2,...,?11; (2-1)
1
Q) T30, J=1,.,N, j= 1,1,
where T=S5~, ie,
IZlS(I,o,I(xI)TI’U‘ﬂ = 5}{,{’ {2.2)

We call a matrix § with these properties a differential-
Stickel matrix (D-Stickel matrix). [Here the rows of § are
designated by the index (i), where I = 1,...,N, i = 1,...,n,,
whereas the columns of S are designated by the index
I=12,..,n. Row (L) depends only on x; and is the i — 1
derivative of row (,1). The index notation for T is defined
similarly but with rows and columns interchanged.] If »,
= 1for all Iso n = N, then S is an ordinary Stiickel matrix.®

Set H, , = T/, In Ref. 3 it is shown that for §'a D-
Stickel matrix the system of equations

1Py p =(Puny —Pu8rmHy

Hy,;_
}I(J.ﬁ

LJ=1.N, h=1..n,,

admits a full linearly independent set of n vector valued solu-
tions | p",, 2}s 1= L,....,n. Conversely if the n nonzero func-
tions {H; ,} are such that (2.3) admits a linearly indepen-
dent set of vector valued solutions then there is an nXn
D-Stiickel matrix Ssuch that H; , = T/, See Refs. 6 and
7 for similar treatments of ordinary Stickel matrices.

The integrability conditions for (2.3) are

OuHp, —0H p 0, mnH —38,Hp, 3,H, =0,
P#£ILLJ, p=1,.,np,

aIJH( LAy alIi(J,f)a-’ ln H] - aJH(J’I‘] al 11'1 HJ
=H,,_ womH, —3,H;; ,, j=1...n,
{2.4b)

where! #J, H;=H,,,, and H;;,,=0. By Theorem 1 of Ref.
3, conditions (2.4) are necessary and sufficient that the »
nonzero functions {H,; ; | can be expressed in the form H|; ,
= T for T the inverse of a D-Stiickel matrix S.

When Egs. (2.4) hold the partial differential equation

N Ay
S > (D7'Q)Hy, =E

I=1i=1
admits regular additive separation in the coordinates
X1,.-Xn, Where E is a parameter (which could be zero),
Q1 (x,,u;,) is a function of x;, and a finite number of deriva-
tives uy, tys,.lipg, Withm;>1, aqu, #0, and

+ Py —Pui-1) 7, {2.3)

(2.4a)

(2.5)

D;=d, + 2“1,i+1 d.,,

i=1
is the I th total derivative. Indeed the separation equations
are

(2.6)

D79, + ZS(I, g =0,
=
]’l = —E,

(2.7)
1IN, 1Lign,,
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where the A, are the separation parameters. The separable
solutions # = 27_, u')(x, A,) are obtained by integrating N
ordinary differential equations (of order m,)

Orxp,uy ) + 12 Su x4, =0.
=1

The remaining » — N equations are redundant. The number
of parameters in the solution uis 2,9, + n — N+ 1.

Stickel and D-Stickel matrices can clearly be general-
ized to include dependent variables, thus incorporating a
wider class of separable partial differential equations than
(2.5). For this we consider coordinates x,,...,xy, let
n=2X}_ n;, where the n, are positive integers, and let
£2,,....12 be non-negative integers. Then a nonsingular n X n
matrix § = (S, , /(XU ;)), with the properties

(1) Sy arlxroy ;) =D 5 ‘Syylxruy ),
i=12,.,n,

(2) TWI%0, J=1,.,N, j=1,..n,,
where T=S5"1,

B3) Sy =SunilEptiys-strah
with 4, _ 8;,,,#0 for some [ if £2,>0,

“ra,

2.8)

is a (generalized) D-Stickel matrix.

A generalized D-Stickel matrix S can be used to con-
struct partial differential equations that permit regular sepa-
ration in the coordinates x,. Set H; , = T/, It is then
easy to show that equations of the form (2.5) permit regular
separation.

Characterization of generalized D-Stickel form in
terms of differential equations satisfied by the H, ; is not
particularly difficult. In analogy with the derivation of Eq.
(1.3) in Ref. 3, we can easily show that

Dpyy = (p(l,n,] —pu)PyinH; ,

A Putny ~Puj— ) Hy, 1/ Hy )57,
LI=1,.N, j=1l,n,,

where p;, ; (as well as H|; ;) depends only on the variables
XppyUpgsetipg, I=1.,N, and s, =n; + 02, — 1 if 2,
>0,5; = 0if£2, =0, admit a full linearly independent set of
n vector valued solutions { p{; ;}, /= 1,...,n if and only if
the nonzero functions H, , are obtainable from a general-
ized D-Stickel matrix S.

The total differential equation (2.9) is equivalent to a
sequence of partial differential equations in which the lefi-
hand side assumes the form 3, py;, 5, i = 0,...,s;. (We make
the convention that x,=u,,.) Indeed, equating coefficients
ofu;, ., onboth sides of (2.9) we have

(2.9)

Bury, Pun =Pty —P.00u,, n Hy . (2.10)

We can obtain the derivatives d, . p,; 5, i = 1,....5; — 1 re~
cursively from (2.9} and (2. 10') through the relation
8,,Ll_l = [6,, “,D,] =0,,D;—Dy; a,,,_i. Finally, 9y,
=D; — 2 \u;,,,9,,, when applied to g, ;.

We can obtain integrability conditions for Eq. (2.9) by
computing D,(D; pxx\) = D1(Dy px k), I #J,and equating
coefficients of p; ;, on each side of the resulting expression:
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DIDJH[P,p) _DII{(P,PlDJ lnHI _‘DJII(P,p)'DI lnHJ =0,

P#LJ, p=1,..np, (2.11a)
D,D,H,,, — D;H, ,D, n H, — D,H, ,D, In H,
—Hy WDy nH; +D;Hy,; ) =0,
=1, (2.11b)

Here H,=H,;,,, H 0, =0. It is not entirely clear, however,
that Eqgs. (2.11) are the complete set of integrability condi-
tions. For these we need to compute d,, (d., Pxx))
=8, 0., Pucirh F=04spy J =0,

Theorem 1: Conditions (2.11a} and (2.11b} are necessary
and sufficient for complete integrability of Egs. (2.9), hence
they are the necessary and sufficient conditions for the exis-
tence of a generalized D-Stiickel matrix § such that H|; ,

= THA+£Q,

Proof: 1t is already evident that conditions (2.11) are nec-
essary for the existence of a generalized D-Stackel matrix.
To prove they are sufficient we consider the integrability
conditions (I #£J)

D;(D; pixx)) — Di(Dy picy)

D,D,H D,D,Hy,
— p(.’,nl) IHJ (K.k) ) IHJ (K,k) s (2. 12)
(K.k) (k)

where D ,—ﬁ ;H x 1) is the left-hand side of expression (2.11a) if
K =P +#1,J or expression (2.11b) if K = J. The left-hand
side of (2.12) is computed directly from (2.9). Clearly (2.12)
vanishes for a complete set of solutions p if and only if
D,D;H,, = 0. The integrability condition

a“J.:,(a“I_;, p(K,k)) - au,,,,(au,__,, p(K,k)) (213)
can be obtained from (2.12) by equating coefficients of

Ups,+1U1s,41°
- -

a H(K,k) - 0.

s Oy (2.14)
Furthermore, equating coefficients of «,,,, , and u;, , ,,
respectively, we find the conditions corresponding to
auj‘,J(DI P))
— D,(d,,, p) and D,(d,,, p)—3,, (D, p):

-Dlau,;JIi(K,k) = 0, aul.SIDJII(K'k) = 0- (2.15)

Note that conditions (2.14) and (2.15) can be obtained direct-
ly from (2.11) by equating coefficients of u,, . ;. , and
uys, 1 and u;, ., , respectively.

We can now derive the conditions corresponding to
9., \Dy p) — D,(d,,, p) recursively from the above expres-
sion through repeated application of the identity

By, = [Bus,s Do ]s = 1208y — 1. (2.16)
From this result and (2.13) we can obtain the conditions cor-
responding to

By (B, P) = B (B, P) (2.17)
recursively through application of the identity 4,

= [8,,“+ D ] , i =1,2,....5; — 1. At each stage of this pro-

cess the integrability conditions are linear combinations of
{2.11), (2.14), (2.15), and their derivatives, hence they are im-

“r541°
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plied by (2.11). Finally the conditions d, (d,, p) — J, ,(a,,j P
can be obtained from

CERE [Dx, = Sunaidu, Di= S ,a,,”].
i= ji=

Again the integrability conditions are implied by {2.11a) and
(2.11b). QE.D.

Now that we have succeeded in characterizing general-
ized D-Stéckel matrices in terms of the first column of their
inverse matrices, we can extend the notion of a Stickel multi-
plier to this situation. Suppose n nonzero functions
H, ;(x;,u;,)satisfy conditions (2.11), and hence determine a
generalized D-Stdckel matrix S. A nonzero function
Slxpsu;,) such that the functions H|; ;, = H, ;/f also satisfy
conditions (2.11) is a (generalized) D-Stackel multiplier for
the system {H; ;}.

Theorem 2: The following are equivalent characteriza-
tions of D-Stéckel multipliers f: (1) f satisfies the equations

‘DI'DJf—DI lnHJD_,f—D_, lnHID]f—_— O,

I1#J, H,=H,,, (2.18a)
(2) there exist N functions ¢”(x,,u, ;), D;@’ =0 for I #J,
such that

N ny
Slegstigr) = JZ 21 (D) ‘9" )\H,, . (2.18b)
=1j=

Proof: It is obvious from Theorem 1 that (2.18a) is equi-
valent to the definition of a D-Stéickel multiplier. Now sup-
pose f is a D-Stickel multiplier. Then there is an nXn D-
Stickel matrix § (for H, , = H; ;/f) such that

T'"Wo=H, ,/f (2.19)

The elements in the first column of the D-Stickel matrix §
can be denoted

1
‘5? @7 (xs5u51)
for N functions ¢’. Multiplying both sides of (2.19) by S, .,
and summing over the index {/, j} we obtain (2.18b).

Conversely, suppose f is defined by (2.18b) for some
functions @’(x,,u,,). From this expression and conditions
(2.10) it is straightforward to verify that f satisfies Eq.
(2.18a). Hence f'is a D-Stickel multiplier. Q.E.D.

Although Theorem 1 is valid only when H; , 70 for all
(/, /), Egs. (2.11) make sense as long as H,, , ,=H, #0, even
if some of the remaining H; , vanish. We need to determine
the significance of those solutions of (2.11) for which it is
only required that H,; #0. Furthermore it will be useful to
determine the effect on the solutions of replacing each H, by
gs(x;,u; ;)H,, where g, is invertible in a neighborhood of the
point (x3,0), so that g;~ ' will also be analytic in the u; , ina
neighborhood of the point. .

To answer these questions it is useful to write Egs. (2.11)
in the form

AIJH(P,p) =0, P#I,J,

S("’ Ml =

(2.20)
AIJ}I(J,_]] =BIJI'1(J.j— 1)» H(J,oy =0, I#J,

where
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A[J=DIDJ—DJ lnHIDI —‘.D[ lnHJDJ,

BIJ= "DI+DI lnH,, HJ=H(J,,,J)9£0’ (2'21)

1IN, IKj<n;, Yn; =n.
J

We require that the H; ; and the other functions appearing
in the lemmas depend only on the variables x, and u,,,
I<IKN, 1<iKs;.

Suppose we are given N nonzero functions H, satisfying
A;;Hp, =0 for P #1, J, I #J, and N nonzero functions g,
satisfying D,g, = 0for I #J. Our task will be to construct a
finite set of functions %, , with H|, ,, = g,H, such that
Eqgs. (2.12) are satisfied. Initially the value of n, is unknown.

The construction process is based on the second equa-
tion (2.20) which we rewrite as follows:

b ( Hyy_y ) - ZAmHen e (2.22)
! H Hy ’
If H .., is known we can construct H ., _,, from (2.22) by

quadrature.

Lemma 1: Suppose the N nonzero functions H, satisfy
A; ;Hp = Ofor P #1,J and the function Hy , (fixed K,k ) sat-
isfies 4, ,Hy, =0,K £1,J,1 #J.Thenthe N — 1 equations
{2.20) are compatible and have the general solution

Hyy_yy = ;I(K,k —1 +f*- Yoeg 1 g JH g, (2.23)

where H g, _ ,, is a particular solution and f* ~ " is an arbi-
trary function of x,u, ;. The solution satisfies

A Hgy =0, K#£LJ, I#J. (2.24)

It follows that for each K we can always construct func-
tions H, _, through a recursive procedure using (2.22)
such that the first equation (2.20) is automatically satisfied.
At each step the solution Hy ;. _ ) is arbitrary up to the addi-
tive term £ =V (x . ,u ,JH . and we choose one of these solu-
tions. Thus we generate an infinite sequence {H ;) = H '},
1=0,1,2,...,, where n, — I = k (but ngis unknown) and

A HY =B, HL*Y, T#K, Hy=HY. (2.25)
Suppose there is a smallest finite positive integer n, for
which functions fj, (xk,ux ;) exist such that

myg—1

(mgl
HY = z f;l)(xK’uK,j)H(I?'
i=0

The following lemmas can be verified by straightforward
induction using the properties

(1) BiF(x;,u;)=0, for all I#K,
< F=f(xg,ug JHg (2.27)

(2) AIK(f(xl(ruK,j)H(II()) = BIK(fH(I,(+ V- DKfH(II())'
(2.28)

Lemma 2: Each H (,'("" * ’), s =0,1,2,..., is a linear combi-
nation of the finite set {H¥: / =0,...,myx — 1} with coeffi-
cients that are functions of x,ug ;.

Lemma 3: Let {J7%}, {h¥}, 1=0,1,2,..., be two se-
quences constructed by the procedure (2.22), (2.23) such that
HQ=27¢y = gohx, where g, is invertible and D,g, = O for
I #K. Then there is a sequence g,,85,... with D,g; =0 for
I #K and expressions L, ;(8.8y,---8i — ;1) With L, = 0 for

(2.26)
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I>1, L;; | =Dgg,
— DgL, ; such that

i—1

I =gh+ S g, — LY, i=012,...
j=0

(2.29)

Any such sequence {g,} together with {4} determines a
new sequence of solutions { ¥ {}.

Let { H )} be the solution sequence with property (2.25).
Then setting AQ=HY in (2.28) choosing
8o = 1.81,---.8m, — 1 recursively such that

_f(‘j) =ng—j _— LmK_j’ j = 0,1,.~.,mK - l,

we have #°'¢® =0. Thus there is a solution sequence
(# Y} with #D,...5 " nonzero and all further
terms zero. By Lemma 3, all other solution sequences are
linear combinations of these 7, nonzero terms.

Lemma 4: The integer m,, if it exists, is unique.

In particular, modifying H,, to g, Hy with g, inverti-
ble and D,gx = 0 for I #K does not change m,.

Based on the preceding results, given any solution
{H )} of Eq. (2.11) we can determine the integers m such
that 1<my <ny. Then there is another solution {#x;,}
withm = =¥ _ | m; nonzero terms such that each Hy, isa
linear combination of the #° 4 ,,. Thus the original solution
is associated with an m X m generalized D-Stiickel matrix.

and L, ,;=L,; |, +Dgg,_,

. SEPARABILITY CONDITIONS
Suppose we are given a partial differential equation
H(xl’u’ul,i) = E: (31)

which admits regular additive separability in the coordinates
x;. (Unless otherwise specified we will adhere to the notation
and conventions for separation listed in the Introduction.)
That is, suppose the integrability equations (1.3) are satisfied
identically in u, u,;. What is the form of the separation and
how can the separation equations be determined from (1.3)?
In this section we will identify some classes of linear and
nonlinear differential equations where the separation is
achieved via generalized D-Stickel matrices.

Our method of approach is exemplified by the following
observation concerning (3.1).

Lemma 5: Suppose 3, H =4, d,, H=0forall I #J
and 4 ,H ==H,(xg,ux,) is invertible for 1<K<N,

Uyn
1<k<ng — 1. Further suppose the {H,} generate a D-
Stickel matrix via the process (2.22). Then the differential
equation H = E is regular separable if and only if H is a
generalized D-Stickel multiplier.

Proof: The integrability conditions {1.3) for H are, in this

case, equivalent to
(DD, —D,InH,D;, —D; In H,D,)H=0, I#J,

the condition that H be a D-Stackel multipler.
Theorem 3: Suppose H takes the form

N
H= z HJ(xK’uK,k)'@J(xJJ‘J,n,’uJ,j) + Vg g,
7=

1<K<N, 1<k<ng —1, (3.2)

where H, is invertible, D,Z,=0 for I+#J, and
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ad iw Z ;#0. Then the equation H = E is regular separable
if and only if the {H,} are in generalized Stickel form
(m; = 1) and H is a generalized Stiickel multiplier with re-
spect to this form.

Proof: In this case the integrability conditions {1.3) are
equivalent to

A H, =0, I#J, 1<I,J,P<N, A,,H=0,

where A4, ; is defined by (2.21). Q.E.D.
Theorem 4: Suppose H takes the form

N
H= Y H;(xx)Z ;x5 5, + V(xg i),
7=
(3.3)
1<K<N,

1<k<n, — 1, Igi<n,; — 1,

where H, 7, is invertible. Then the quasilinear equation
H = E is regular separable if and only if the functions H,
determine an (ordinary) D-Stickel matrix via the process
(2.22) and H is a D-Stickel multiplier with respect to this
form.

Proof: The integrability conditions (1.3) for H = E are

(1) 4,,H,=0, P+#LJ,

) A4,,H,7,)=8,,0, V)

fnp—1

. (3.4)
3) 4,,V=0,

4) 9 V=0,

Yimp—1 Usng ot
for all I #J, where

2”=13,6, ——13, lnH,ﬁ, —ﬁ, lnﬂjﬁ,,
B,,= —D,+D,nH,, (3.5)

nyp—2

D, = ax, + .zl Ui+ lau“'

Note that

D, InH;?,;,)=D;InH; =3d, InH,, (3.6)
for I #J. Using (4) and differentiating (2) with respect to
Ujm,—1s  Usn, 25Uy, Tecursively, ~we  obtain
c?u,_"’_ 0,V =0. Then differentiating (3) with respect to u,,
and u; ; recursively, we obtain 6,‘,‘1,8,,1,1_ V=0,13#J.Thus we
can write ¥ uniquely in the form

V= Vyxx) + i Vilxgouy ;) 1<K<N, 1<ji<n; — 1,
= (3.7)
where V,(xg,0) = 0, and (2) becomes
A,(H,2,)=8,,0.,, Vi) (3.8)
Differentiating (3) with respect to u;, we find
4,00,V =B1,0,,_ Vs (3.9)
where the right-hand side of (3.9) vanishes for / = 1. Then,
using (2) we can verify the formulas

i Li—1

AIJ(HP'@P)=09 P561’J:

AIJ(HI'@I) =BJ.1(‘9.4,_,,1_l Vi + Hla @1)

Yrnp -1
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4,0,V +H,9,,7,)

= BIJ(auu_l Vi+ Hla“u— 1 '@1)’

I<ign,; — 1,
whereA 9., Vi — H,3, & ;=0. Here the truncated deriva-
tives D, have been replaced by total derivatives D,. These
formulas agree with (2.11a) and (2.11b) for /¥, =H,Z,,
Ky =0, Vi +H,3,,7, 1<i<n; — 1. It follows from
(2.6) and Lemma 3 that the H, also generate solutions of
(2.11) that are independent of the # , , since & is invertible.
Hence the integrability conditions (1.3) imply that H, de-
termine a D-Stéckel matrix and that H is a D-Stackel multi-
plier with respect to this form. Q.E.D.

Due to the property (3.6) it is not necessary to assume in
Theorems 3 and 4 that the functions & ;(x,,u,,) are invertile
in the strong sense of the Introduction; they may be permit-
ted to vanish for u;; = 0.

Corollary 1: If in (3.3) we have & ;0 for all 7 then the
functions H,(x,) determine an (ordinary) D-Stiickel matrix
and H is an (ordinary) D-Stackel multiplier with respect to
this form.

This result follows from Lemma 3.

Corollary 2: Consider the differential equation
Ly = Ey, where L is the linear nth-order partial differential
operator (n> 1)

N
L= z H,(x)d%,
=

a,+ - +ay<n

+ Z Ha. ..... aN(xK)'a,::""’a::’

ar>0

(3.10)

with H, #0 for each J. This equation admits regular multi-
plicative separation in the coordinates x, if and only if

L= Jﬁ__v‘,l H,(xx)(a L+ Ngf 3"‘!"9:’)’

where d,, f7 = 0 for I #J and the {H,} are in (ordinary)
Stickel form.

Proof* The equation Ly = Ey admits regular multipli-
cative separation (by definition) provided the equation
H = E, obtained by setting ¥ = e* in Ly/y = E, admits re-
gular additive separation:

(3.11)

N
H= Y H,(xg)u;, + Vixguge) 1<k<n. (3.12)
J=1

Here V is an nth-order polynomial in the derivatives uy ,
whose nth-order terms take the form

N
ZHJ(xK)u.';,l'
7=

Equating coefficients of },, on both sides of the integrability
conditions 4, ,H =0, we find 4, ,H, =0 for all P. Thus,
{Hp} is in (ordinary) Stickel form. Furthermore, from (2.7)
we see that there can be no cross terms in the potential V.
than one g, is nonzero. Since ¥ must be a Stickel multiplier
with respect to the Stickel form {H,] we obtain
(3.11). Q.E.D.

Having brought up multiplicative separation of linear
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eigenvalue equations we might as well mention the additive
separation case.
Proposition: The equation Lu = Eu, where

N n
J=1j=1

and H,=H, ,,#0 admits regular additive separation in
the coordinates x, if and only if d, H,, , = 0 for I #J and
9, Hg =0forall I

The proof is a straightforward application of the inte-
grability conditions to H = Lu/u. Although additive sepa-
ration is not very interesting for Lu = Eu, in the case of
homogeneous equations Lu = 0 nontrivial D-Stiickel addi-
tive separation occurs even in coordinate systems for which
there is no multiplicative separation.’
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