Working Paper Series
ISSN 1170-487X

u-Charts and Z: hows, whys
and wherefores

by Greg Reeve and Steve Reeves

Working Paper 00/6
March 2000

© 2000 Greg Reeve Steve Reeves
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

p-Charts and Z: hows, whys and wherefores

Greg Reeve and Steve Reeves

Department of Computer Science,
University of Waikato, Hamilton,
New Zealand

Abstract. In this paper we show, by a series of examples, how the pu-
chart formalism can be translated into Z. We give reasons for why this
an interesting and sensible thing to do and what it might be used for.

1 Introduction

In this paper we show, by a series of examples, how the p-chart formalism (as
given in [9]) can be translated into Z. We also discuss why this is a useful and
interesting thing to do and give some examples of work that might be done in
the future in this area which combines Z and p-charts.

It might seem obvious that we should simply express the denotational se-
mantics given in [9] directly in Z and then do our proofs. After all, the semantics
is given in set theory and so Z would be adequate for the task. However, our
aim is to produce versions of p-charts that are recognisably Z models, i.e. using
the usual state and operation schema constructs and some schema calculus in
natural ways—jp-chart states and transitions appear as Z state and operation
schemas respectively. Thus we aim for a Z model in the conventionally accepted
form. We want this so that the Z model is readily understandable in its own
right and also comparable with alternative models in Z, e.g. those of Weber [17]
(which we will mention briefly again in section 5.3).

To make the paper fairly self-contained we start by giving a brief introduction
to the main conceptual apparatus of this paper: the specification language Z, the
reactive system modelling formalism of u-charts and the Z proof tool Z/EVES.
In each case, though, the references cited should be used by readers who wish
to have a full and proper introduction to each topic.

We then explain our translation via a series of examples in sections 2 and 3.
In section 4 we give an extended commentary on aspects of [9] in which we seek
to show how the concerns of that paper, which uses the technique of oracles, have
been dealt with by our translation. We also, somewhat speculatively, consider
extending the technique in [9] in a way which appears to combine the semantics
in that paper with the alternative semantics given in [14]. Finally, we motivate
the current work and look into the future.

1.1 p-Charts

p-Charts [9] are a visual representation used for the specification of reactive
systems. They extend finite state transition diagrams by adding modularisa-

tion through hierarchical decomposition, i.e. allowing states to contain other
p-charts, and allow the modelling of separate communicating processes by par-
allel composition, that is allowing two p-charts to communicate via broadcast
signals. The communication between p-charts in a specification is modelled using
instantaneous feedback of signals.

p-Charts are a variant of Statecharts [1] that exclude a number of syntactical
concepts which cause semantical problems. Some of the excluded items include
inter-(hierarchy-)level transitions and transition priorities determined by hier-
archy. Also p-charts have been given a compositional semantics (which allows
abstract specification by incorporating e.g. non-determinism) and refinement
rules have also been given that describe a formal process of making an abstract
or non-deterministic p-chart more concrete.

4i-Charts can model both preemptive and non-preemptive interrupts. The
difference between these concerns whether or not a sub-chart in the hierarchy
(or slave) is allowed to fire a transition at the same time as it loses control, i.e.
when a transition leaving the slave is triggered in the master (the chart which
contains the slave as a sub-chart). The preemptive interrupt, or strong preemp-
tion, model prevents a slave from making any further transition, i.e. implicitly
the negation of all trigger expressions of transitions leaving the slave are added to
all transitions within the slave. Non-preemptive interrupts, or weak preemption,
allows a slave to make any valid transition in conjunction with the transition
leaving it. Strong preemption can be modelled in a weak preemption framework
by explicitly adding the required negated trigger expressions to the slave’s tran-
sitions. This also allows a mixture of strong and weak preemption. However weak
preemption cannot be modelled in a strong preemption framework.

The compositional semantics for p-charts considered in this paper is that
described in [9], though we do acknowledge there have since been alternatives to
this proposed, as in [13] and [14]. The ramifications of these alternatives have not
yet been fully investigated, though we make some comments on this in sections
4, 5 and 6. Since we shall be introducing p-charts via several examples in the
sequel, we will say no more about them here.

1.2 Z

The specification language 7 is based upon typed set theory and first-order pred-
icate calculus and includes the notion of schemas used to encapsulate mathemati-
cal objects and their properties by declaration and constraint. Z is a model-based
notation usually used to represent abstract specifications of systems by describ-
ing observations of their state and some operations that can change that state
(see [7], [18]).

To give an example of Z we specify a schema named State : Ezp with a single
integer observation that is constrained to remain within a given range:

—— State — InitState

z:N State
x> 10 g=11
x <20

7 state schemas are divided into declarations, i.e. observation names (or
labels) and their types, and predicates constraining those observations. This
division is represented graphically by a horizontal line. Two other principles of
7 demonstrated here are the convention of initialisation and schema inclusion.
Z specifications generally include an initialisation schema, e.g. InitState, that
specifies what happens at system startup. Schema inclusion, e.g. of State : Exp
included in the declaration of InitState, is a notational shorthand for including
the respective declaration and predicate of one schema into another (subject to
cerfain consistency requirements between the declarations).

Operation schemas are different from state schemas in that they include two
copies of the state. One copy, known as the unprimed copy, represents the values
of the state observations before the operation and the other, the primed copy,
represents the values of the observations after the operation.

Increment — Restart
’zState AState
x <20 z>20
=z41 ' =11

T_Op = Increment V Restart

The schema inclusion of AState is another convention in Z where A schemas
are recognised to be defined as including a primed and unprimed copy of the
schema, e.g. AState = [State, State']. Also operation schemas including A-
schemas are conventionally recognised to be operations that change the state.
All the various forms of schema given above are examples of Z paragraphs.

An operation schema has a precondition which has explicit and implicit com-
ponents, taken in conjunction, e.g. Increment has the components z < 20, z < 20
and & > 10; the first explicit, the last two implicit. An operation is said to be
total when its precondition is true for all possible values of the state. If a spec-
ification does not provide total operations then the reaction of the eventual
implementation in situations where the precondition of the operation is false
will be undefined. This fact can be advantageous, remembering 7 is used for
abstract specification, when the specifier does not care to define the behaviour
in some situations.

1.3 Z/EVES

Z/EVES [11] is a type checking and theorem proving tool for Z specifications. It
is an interactive system in which Z specifications can be presented one paragraph

at a time or in their entirety. Theorems can be defined and proofs attempted
at any time. Z/EVES was developed by ORA [8] and is used here to prove
properties about the Z translated from p-charts.

To give an example of using Z/EVES we evaluate the precondition of the
schema T'_Op, from section 1.2, to show that this operation is total when applied
to any valid observation of the state, i.e. to prove that the predicate State =
pre T'_Op is true:

try State = pre T_Op;
invoke;

instantiate z' == x + 1;
prove by reduce;

__._).

true

The try command (first line of input) allows the user to evaluate predicates
about the current specification. In this case the predicate says that assuming the
constraints on this state the precondition (calculated by the Z prefix operator
pre) of the operation schema T _Op is always true, i.e. the operation can be
applied to any valid configuration of the state. The Z/EVES commands on lines
2-4 of the input instruct Z/EVES to carry out some evaluation on the given
predicate which is true, as expected.

2 The Translation: An Example

In this section we concentrate on giving a series of examples which highlight
the main features of our translation procedure which turns p-charts into Z. The
presentation of the procedure in detail (and its formal justification) will be given
in a later, fuller paper.

The p-chart given in figure 1, was chosen as the simplest example that
demonstrates the following concepts:

— multiple sequential automata;
— more than one level of hierarchical decomposition;
— instantaneous feedback of signals.

The Z translation is presented by giving a Z description (as a state schema)
of each state in the example p-chart followed by a description of each transition
as an operation schema. The correct combination of these transitions then de-
scribes the overall behaviour of the p-chart. Lastly we investigate the resulting
Z specification using the tool Z/EVES.

2.1 Describing the States

The first task in the translation is to give a Z state schema, by convention of the
same name, for each of the states in the py-chart. This includes those states that

| {Sh, Sp}

Fig. 1. A simple p-chart

represent slaves (sub-p-charts) and those that represent atomic states. We first
give values that will be used to name states and signals:

leldlel|flglh
Sb| Sc|Sd|Se|Sf|Sp

pSf.ate = |
Signal ::= Sa

Then we need a Z state which represents the whole chart together with its
initialisation to the correct p-chart state:

U — InitlU

CU : Hgiate U
cy =a

The next states to be described, A and H, are atomic states and therefore
are trivially described by the schemas 4 and H: !

— A — H
CU : Hgate CU * Kgtate
cy=a cy=h

More interestingly, B is a slave of U 2 . Therefore, it introduces an observation
of the slave u-chart’s state as well as defining what it means for U to be in the
state B, i.e. cy = b. Each schema that models a p-chart (as opposed to an atomic
state) also has an initialisation operation defined that specifies what state the

! Note that in the sequel we shall usually omit explicit mention of such outermost
charts as U since their formalisation contributes nothing to our translation.

2 or—the p-chart B is a slave of U. This view of B as both a state and a p-chart (and
indeed a schema) needs to be kept in mind, and when which we mean is not clear
from the context we make it explicit.

slave is initialised to when it becomes active, that is when the master enters the
corresponding state:

— B — InitB
€U, CB T Hgape B
cy =10 tgp = ¢

Now the three schemas C', D and E are given describing the states of the p-chart
B. First, for the atomic states C' and D:

c D
CB © Hgpate CB - Hgiate
cg = ¢ cg =d

Notice that we don’t include the schema B in € or D as may seem intuitive.
If B were included in D then p-chart U would be forced to be in state B after
any transition in the p-chart B to state D—but this then blocks modelling
in p-charts what were inter-level transitions in Statecharts. We want to allow
such transitions because it allows modular design of p-charts and hence a more
natural and tractable modelling of physical systems.

Schema F models a g-chart and therefore has an initialisation schema:

— Initk

—F

CByCE Hgiate

cp = ¢

E

ce=f

Now schemas I and G are given for the two atomic states of p-chart E:

— F
CE * Hgyqte
ce =f

— G
CE * Hsiate

g =g

Given all of the state descriptions we can now go on to describe the transitions
between these states. The example being described here uses weak preemption
between master and slave: however the translation method is easily extended to
incorporate strong preemption or preemptive interrupts.

2.2 Describing the Transitions

One of the properties of u-charts that must be modelled is instantaneous feed-
back. The semantics of u-charts, as given in [9], uses a fixed-point construction
to calculate, in an operational fashion, the overall input for a p-chart step. In

the Z translation we use the fact that only one transition can happen per p-chart
(in any hierarchy, i.e. can only happen once in U, once in B and once in E) per
step, and the nature of the schema calculus (the effects of schema inclusions),
to give a declarative description of the possible inputs for a step.

The feed back signals that are locally visible to each p-chart in the specifi-
cation are given by the sets Iy, I and lg defined below. The local sets can be
read from any attached feed back boxes in the graphical notation. The sets fi/,
fr and fg determine the scope (due to the hierarchy) of feed back signals in the
pi-chart and therefore give all the visible feedback signals for each p-chart:

ly == {5b,Sp}
fuo==1ly

Ip == {}
fB==fuUlp
g == {}
fe==fpUlg

In this simple example the fed back signals are common across all of the
p-charts. A schema, Output, that describes the allowable output information for
a p-chart is also given:

— Output
oy : P{Sb, Sp}
op : P{Sb, Sp}
op : P{Sp}

o! : P{Sb, Sp}

o! = J{ov, 05, 05}

The schema Output has an observation of the output signals generated by
each p-chart in the specification. Each of these observations represents the set
(possibly empty) of output signals from the given p-chart in a step and the union
of these sets gives the overall output. The intersection of the output and the feed
back set gives the feed back signals visible for the current step.

Now, given the states of the p-chart and the output/feedback mechanism, an
operation schema is given for each transition. The description of the transitions
is organised to follow the hierarchy of the example p-chart.

Transitions in p-Chart U: Firstly an operation schema, 6,5, is given describ-
ing the transition between states A and B in p-chart U3:

3 Recall: Signal is a set of all external, internal (i.e. feedback) and output signals that
are available in the system being modelled.

— 6ab
A
InitB'
Output

input? : P Signal

Sa € input? U (0! N fy)
oy = {}

Due to the schema inclusions here, the precondition of d,; states that the
current state of U must be A4, i.e. ¢y = a, the overall output set is equal to the
union of oy, e and op and the signal Sa must be external input or a fed back
signal for this transition to happen. Since the transition goes into a state which
is also a slave p-chart the schema included has to be the initialisation schema
for that slave.

Note the precondition of this transition is not yet determinable because the
values of op and op are not known: it establishes a constraint on the allowable
solutions. d,, stipulates that if the precondition is true then the g-chart U will
be in state B after this transition and the p-chart B will be in state C'.

Similarly, the transition between states B and H is given by dy:

— Oun
B

HI
Output

input? : P Signal

Sb € input? U (ol N fir)

V Sp € input? U (0! N fu)

ov = {}

The precondition allows this transition only if the signals Sb or Sp are present
in the input or feed back.

The p-chart semantics state that in the situation where no transition is trig-
gered then the p-chart stays in its current state. To model this in Z we provide
another operation schema. For the p-chart U this schema is ey:

— €[

Cu, Cb! CB * Hgtate

input? : P Signal

Output

= (A A Sa € input? U (ol N fiy))

= (B A (Sh € input? U (ol N fiy) V Sp € input? U (0! N fir)))
!

Cy = Cy

ov = {}

The precondition of this schema states that no valid transition in the p-chart
U is triggered. The postcondition states that the p-chart configuration remains
unchanged. The output, given the chart makes no transition, must clearly be
empty.

Transitions in y-Chart B: The transition descriptions for y-chart B are given
by Ocdy Oga and dge:

— 8cd dga
B B
C D
D' D'
input? : P Signal input? : P Signal
Qutput Output
Sc € input? U (0! N fg) Se € input? U (0! N fg)
o = {} op = {S5b}
|'— 5de
B
D
InitE'
input? : P Signal
Output
Sd € input? U (0! N fg)
o = {}

Notice that the preconditions of these operations say that the transitions can
only happen if the current p-chart is in the right state, e.g. ¢g = ¢ for d.4, and
any master p-chart is in the expected state or in other words the current p-chart
is active, e.g. ¢y = b for d.q4.

As important (as we have said before) is the fact that the operation restricts
only the state of the p-chart in which the transition occurs and not its master’s
state. Next we give the € schema and another auxiliary schema, Inactiveg, for
the p-chart B:

—€R —— Inactiveg
CU» CB,y CB * Kstate CU5€By € © Bgtare
input? : P Signal Qutput
Output =B
B o = {}
= (C A Se € input?U (0! N fB)) p=ec

= (D A Sd € input? U (o! N f5))
= (D A Se € input? U (!N fg))
o = {}

cp=cp

The operation schema, Inactiveg, defines the action of B when it is not
active, i.e. its master, U, is not in state B. An inactive p-chart is to remain in
its initial state and not react to any signals.

Transitions in p-Chart E: The transition descriptions for p-chart E results
in three schemas, &y, g and Inactivep:

_5f9 ——€E
B CU,CE,CE;,C:E:.{LS'_ME
E input? : P Signal
F Output
G' B
input? : P Signal E
Output ~ (F A Sf € input? U (0! N fg))
Sf € input? U (0! N fg) op =1{}
og = {Sp} g = CE
— Inactivep
Cu,CB, CE, CJE ‘ Mstate
Output
-~ BV-FE
og = {}
cg=1f

Notice, because a p-chart is inactive if its master is inactive, the schema
Inactivep has the predicate = B V = E that says the chart is considered inactive
if either its master is not active, i.e. = B, or it is itself inactive, i.e. = E.

2.3 Describing the Step

Now all of the schemas needed to describe the step behaviour of the p-chart are
provided. The predicate of the step-modelling schema. Step conjoins the possible
transitions for each p-chart and hides each p-chart’s component output obser-
vation. The schema Step specifies a set of bindings that describes a transition
function for the p-chart with respect to input:

— Step

! ! $
CUsCysCBs CRy CEy CR & Hgpaye
input?, o! : IP Signal

Jdoy,op,op : P Signal e
((6ap V Opn V €u) A
(6ca V d4e V daa V €p V Inactiveg) A
(ny v ER V Inacti'veg))

10

2.4 Using a Theorem Prover to investigate the Z

This section gives some examples of exploration of the resulting Z specification
using the tool Z/EVES.

The first two examples examine the behaviour of the p-chart when it is in
its initial state and the signal Sa is either present or absent.

try Stepley = a,cp = ¢, cp := [, input? := {Sa}];

chr = b\ ep =eNicp=F nol={}

try Steplcy = a, cp := ¢, cp == f, input? := {Sp}];
—y

cg=aAhcg=cAeg=FfAol={}

Both of these proofs result in the desired outcome. This method could be
used in the same way to test all transition behaviours. For example the more
interesting configuration of the p-chart where U is in state B, B is in state D,
E is inactive and Se is input, can be checked as follows:

try Step[cy =0, cp :=d, cg = [, input? := {Se}];
—

ey =hAcg=dAcg=FfAo!={85b}

Other examples of examination of the g-chart include checking that there is
some input signal set and configuration that allows a transition ending in another
configuration valid of the system (this may or may not consider the expected
output). Or, as valuably, no input and configuration exist that could result in a
transition ending in an invalid configuration.

The first example gives the expected post-transition configuration and output
and quantifies over the pre-configuration and input.

try Jinput? : P Signal; cy,cp, CE : gy, ®
Steplcly = h, ¢ = ¢, cly = f, 0! := {}];
—

true

This evaluates to true which can be interpreted to mean there does exist some
configuration and input that would allow a transition to the given configuration
with the expected output.

11

The next example gives a contradictory configuration and resulting output,
i.e. we expect that the system can never make a transition ending in this con-
figuration with this output. The expected result is therefore false.

try Jinput? : P Signal e Step[cl; = h, ¢l := ¢, ¢y := f, 0! := {Sp}];
—
false

A variation of this type of exploration is obtained by not quantifying over
the starting configuration or giving the expected output. The resulting predicate
simplifies to constraints on these observations rather than true or false. It is
worth noting that as less fixed information is provided the more complicated
the proof and resulting predicate become, e.g. there are likely to be numerous
combinations of possible configurations and outputs on which a transition can
give the expected configuration.

try Jinput? : P Signal e Step[c}; = h, ¢y = e, cf := g;
—
co =bAne=cp ANecg=FfAo!'={Sp}
Veg=bAe=cgANeg=fANo!'={Sp}

Other important properties of the specification may include the inability of
the p-chart to get from one state to another in one step. For example we can
prove that there is no input that will take this p-chart from state A to state H
in one step.

try Jinput? : P Signal e Step[cy = a, ¢}y == hl;
—
false

We can also compose steps together to more rigorously check reachability
of configurations. Due to the grammar used by Z/EVES * this requires some
definition of temporary schemas such as Step,.

Steps = Step[il/input?, 01/0!] § Step[i2/input?, 02/ o!]

try 3il,i2 : P Signal; cy,cp,cr : g, ®
Stepa[cyy == h, ¢y 1= e, cpp = g];
—

* Z/EVES follows the grammar of Spivey [15] which does not class schema expressions
as expressions simpliciter, hence the definition we require cannot even be expressed
(though see the Acknowledgements). The grammar in the proposed standard [16]
elides the two categories, so once Z/EVES supports the grammar in the new standard
we would be able to straightforwardly define the function we desire.

12

u

@ —Sa/ [Sa)
——{=}
I {Sal

Fig. 2. Example 1: Causality problems

ol = {} A 02 ={Sp}

More interestingly the two cases below check the reachability of a given con-
figuration from the initial configuration of the p-chart. We need to again define
temporary schemas that give compositions of Step with itself three times:

Steps = Step, § Step[i3/input?, 03/ 0]

try 3i1,12,13, 01,02, 03 : P Signal e
Stepsley i=a,¢p :==c,cg = ficy i=h, ey = d,cp == f);
=

true

try 3il,i2,i3, 01, 02,03 : P Signal e
Steps[ey = a,¢g i= ¢, cg = f, ¢y i= b, ey = e, cp == f];
—

true
Given the above examples it is easily seen how we could invent different com-
binations to investigate more properties of the system. For example we might

need to check there is at least one possible transition out of any valid configura-
tion, i.e. the system is always ready to react.

3 Avoiding the pitfalls: getting the right semantics

This section gives some pathological examples taken from [9] which are given to
show that the Z translation respects the semantics given for p-charts.

3.1 Causality Problems

The first example is given by the p-chart in figure 2.
The resulting Z from the translation is:

13

. — B

€U * Hgpate €U * Hstate
cy=a cy =b
ly == {Sa} — Outpul
fu==1y oy - P{Sﬂ}
o! : IP Signal
o! = | J{ouv}

— Sab €U
A Cu, Cif * Hstate
B' input? : P Signal
input? : IP Signal Output
Qutput ~ (A A Sa ¢ input? U (o! N fu))
Sa ¢ input? U (0! N fu) oy =1}
oy = {5a} ¢y = cy

The schema d,; above demonstrates the first translation of a negated trig-
ger expression. Negated trigger expressions are translated by a predicate, i.e.
Sa ¢ input? U (0! N fyy), that says the signal does not appear in the input (in-
cluding feedback). This example (and in fact the next example) demonstrates
the causality problems that can be introduced by negated trigger expressions. °
For this example there is no solution when the signal Sa is not input, therefore
the predicate of Step:

— Step

Cu, Ci’.f P Hstate
input?, o! : IP Signal

dab V €y

is false.

The predicate of the schema §, is false in all cases which, as we would expect
given the semantics for this p-chart, means this transition can never occur. If
the signal Sa is input the trigger condition on the transition is false causing the
p-chart to stay in the same state and (the operation) ey to take place. If Sa
is not input then no transition is valid and the predicate of Step is false. The

® The semantics given in [9] introduces the idea of oracle signals, which can be used

rule out solutions with such causality problems. See section 4 for a fuller discussion
of this.

14

semantics for p-charts given in [9] states that in the event of empty reactions
(which means that the schema Step is an empty set of bindings in the translated
Z) the p-chart remains in its current configuration. Hence in both cases, Sa
present and Sa absent, the 7Z model constrains the after state of the transition
to be A, i.e. the configuration of the u-chart remains the same. That this accords
with the definition in [9] is evidence of the correctness of our translation.

This can be easily illustrated using Z/EVES as follows:

try Step[cy = a, input? := {Sa}];
—

cy=aAnol={}

try Steplcy = a, input? = {}];
—
false

3.2 Causality Problems Continued

A more interesting example is that of figure 3.

The behaviour of this p-chart is non-deterministic when neither Sa nor Sb
is input. The correct configuration of the p-chart after a step with no input is
either U/ in state A and V in state D or U in B and V in C.

The translation gives:

— A — B G

CU & Hgiate CU * Bgiate | CV * Hsiate

cy =a cy =150 cy =¢
=) ly == {Sa, Sb}

CV : Hgiate fo==ly

=d] !
Cy fV =, lV
u

o —Sa/ {Sb} o

\Y
| {Sa, Sb} I

Fig. 3. Example 2: More causality problems

15

€V, CY ¢ Hgpae
input? : P Signal
Output
= (C A Sb ¢ input? U (ol N fv))
ov = {}

¢y = cy

— Output — Oab
ogr - P{Sb} A
oy : P{Sa} B'
o! : IP Signal input? : P Signal
Output
ol = U{ag‘ov} A
Sa ¢ imput? U (o! N fir)
oy = {Sb}
[—GU rfscd
tu, C'E] * Hstate c
input? : P Signal D'
Output input? : P Signal
~ (A A Sa ¢ input? U (o! N fy)) Output
oy ={} Sb ¢ input? U (0! N fy)
cy = cu oy = {Sa}
— €y — Step

€U, Cb! cv, c!‘/ * Mstate
input?, o! : P Signal
Joy,ov : P Signal e
((8ap V €r) A
(ch \ EV])

Four Z/EVES tests are given for the translation to show that the behaviour

of the Z respects the p-chart meaning.

try Step[cy = a, ey = c,input? := {Sa};

—

e =a.n ey =id A ol ={Sa)

try Steplcy = a, ey = ¢, input? := {Sb}];

—

¢y =bAcy =cAo!={Sb}

try Step[cy := a, cv = c,input? := {}];

—

if ¢j; = a then ¢}, = d A o! = {Sa}
else ¢c; =bAcl, =cAo!={Sh}

Shov Sp I()

[CaS

15p} I
| {5h)

Fig. 4. A p-chart to demonstrate feedback scoping

try Step[cy = a, cv = ¢, input? := {Sa, Sb}];
—

cp=ancy=chol={}

This example also demonstrates how the translated Z deals with non-determinism:
it is non-deterministic when neither of the signals Sa or Sb are input. The re-

sulting Step schema allows one behaviour or the other. It is not possible for both

to occur and Step makes no decision about which should occur.

3.3 Scoping of Feedback

When hierarchically decomposing a p-chart its states can be replaced by any
other p-chart. The new p-chart or slave may of course have localised feedback,
i.e. the feed back signals in the slave chart are not visible to the master. This
section presents an example that demonstrates that this situation is handled
correctly by the translation process.

The example is a slight modification of that given in section 2 where the
signal Sp is now only feedback to the p-chart B and its slaves, see figure 4.

The translated Z for this example is almost identical to the original. The
only change is the declaration of the constants Iy and [p which are changed to
the following:

ly == {Sb}
fus=ly

Ip == {Sp}
fB==fu Ul
g == {}
fe==fpUlg

In this example the only feed back signal local to the p-chart U is Sb and
signal Sp becomes local to chart B. However, the difference between this example

17

and the first can be shown by using Z/EVES to evaluate the outcome of a
transition that generates the feed back signal Sp from the consecutive examples.

try Steplcu = b, cp := e, cg := f,input? := {Sf});
e

¢y =hAcp=eAcg=gAol={Sp}

Given the appropriate configuration the example pictured in figure 1 makes a
transition from state F' to G with output Sp because of the input Sf, also a tran-
sition from B to H is triggered because the output signal Sp is instantaneously
feed back to the py-chart U.

Examining the same situation for the modified example gives:

try Steplcy := b, cp := e, cp = f,input? := {Sf}];
—

cpy=bAcg=eAcz=gAo0!={Sp}

The transition from F to G still happens but the transition from B to H
doesn’t. This is because the output signal Sp is no longer visible as feedback to
the p-chart U 6.

4 Oracles

In [9] the authors introduce the idea of oracles in order to rule out certain
unwanted solutions that their fixed-point construction would otherwise give.
The unwanted solutions are those which lead to causality conflicts arising from
the presence of negated triggers i.e. causality conflicts which arise when we allow
the absence of signals to be acted on.

We give an example of how the oracle mechanism is used to rule out certain
solutions. We then relate those solutions back to the ones we get in our Z model
for the same example in order to show one more aspect of the relationship
between the two models.

4.1 Oracles and causality

The example we will use is a simple variant of example 2 (which was given in
figure 3) where we take the negation off the trigger for the transition in V. (This
also gives us an example of a case we have not yet explored, i.e. one in which
both negated and un-negated triggers occur.)

The method that [9] uses to rule out certain solutions that violate some
causality concerns is to first rename any negated trigger — a as = @ and then
conduct experiments to see what the reaction of the chart is when we make

® Note that the semantics in [14] differs: there feedback between levels of the hierarchy
happens as the default

18

U ~
o —Sa / (Sb o

v
(O
| {Sa, Sb} |

Fig. 5. lllustrating oracle use

assumptions about feed back involving these new signals, which are called or-
acles. So, the oracle signals represent signals that may be fed back during any
of a number of instantaneous transitions and they were designed so that we can
consider the reactions of the chart when signals are absent and when there are
negated triggers in the chart. (We have seen examples of this in sections 3.1 and
3.2.)

The chart we are considering would, therefore, be re-written as in figure 5.

Now, if we want to see what its reactions are when no (external) input is
given there are two experiments to perform: firstly we assume that Sa is in the
set of signals generated by the chart in this step (the fixed-point for this step),
i.e. an experiment with Sae being in the fixed-point; secondly we assume that
Sa is never output for any reason (and so does not appear in the fixed-point)
which means we assume that — Sa is in the fixed-point. The reader can see that
the resulting fixed point of the first experiment is {Sa} and for the second the
fixed-point is {— Sa, Sb, Sa}.

The result of the first experiment is not allowed as a possible behaviour of
the chart since when we assumed that Sa would appear in the fixed-point it
never did. The result of the second experiment is not allowed as a solution either
since a signal (Sa) that we assumed would not appear in the fixed-point did. So,
neither experimental solution is allowed since they each break certain causality
constraints that it seems reasonable to impose.

The first constraint requires that if a signal can appear (because transitions
that produce it as output can take place) then it does: this is self-fulfilment. The
second constraint requires that a signal does not appear as the output of any
transition that takes place because of the non-appearance of that signal: this is
consistency.

So, how is it that we disallow the same causally suspect solutions that the
oracles mechanism does, but without using anything like that mechanism? The
reason lies in the different ways the semantics are given. In our case, we rely
on the usual semantics of set theory and give the semantics in a declarative
fashion. In the case of [9] the semantics is given by a fixed-point construction,
where each ‘iteration’ towards the fixed-point models the idea of one transition
possibly leading to others once its output has been instantaneously fed back as

19

JORaO

| {Sa, Sb} |

Fig. 6. pi-chart with no negated triggers

input, this process continuing until no further transitions are triggered, when
the fixed-point is reached.

In more detail: when computing the fixed-point, the absence of a signal has
to be recorded in order for the causality test to be meaningfully performed.
Otherwise, the reason that at one stage the signal is not in the feedback set (the
so-far-computed fixed-point) might be either because it simply hasn’t appeared
yet or because it must not appear. When we reach the fixed-point we need (for
the causality test) to tell these two situations apart. Hence the oracles: = @
appearing means that @ must never appear; — @ not appearing entails no such
condition. 7

In our case, to get the same causality condition, we do not need the oracles.
This is because our translation imposes global constraints on the possible so-
lutions; constraints which are ‘in force’ permanently. That is, we declare what
constraints a solution must satisfy and then rely on the semantics of Z to ensure
that only acceptable sets are allowed as solutions, according to the usual mean-
ing of the existential quantifier that appears outermost in our translation. Thus,
if some transition is triggered only when a is absent, but some other transition
adds a to the solution set then, since not both of these conditions can be sat-
isfied, such a solution is ruled out. In the oracles case, since the solution set is
essentially built iteratively (gradually computing the fixed-point) and since no
constraints are passed between the iterations, the ‘global’ fact that a has been
banned by the triggering of one transition must be recorded in order that the
causality condition can be checked; simply leaving a out of the set will not do
as it does not distinguish finely enough between two possibilities.

4.2 Extending the use of oracles

The semantics given in [14] differs, as we have mentioned a few times, from that
in [9]. One way that this difference emerges is on the p-chart given in figure 6.
In the absence of any external input, the semantics in [9] means that this
chart does nothing. In contrast, the semantics in [14] means that chart is non-
deterministic: it can either do nothing or both transitions can be triggered. Our

" This relationship between declarative and procedural semantics closely mirrors the
two ways of giving semantics to Prolog programs.

20

translation process produces a description of the chart which agrees with the
latter interpretation.

When we investigate the reasons for this we see that our constraints on
solutions in the translation correspond to replacing not only negated triggers
with negated oracle signals but also doing the same with un-negated trigger
signals. Our conjecture (which we have shown holds for the examples in this
paper) is that extending the use of oracles in this way would, in general, extend
the solutions given by the semantics in [9] to those given by the semantics in [14]
while still ruling out the solutions that offend certain sorts of causality scruples.

5 Uses

Having presented a translation of p-charts into Z we want in this section to
motivate this activity, which we do by giving several positive results of such an
activity.

5.1 Alternative views of the solution

Giving two different views, via the different languages of p-charts and Z, of a
solution to a problem can often give us another chance to see if we have the
right model of a given system. Different aspects of the model may come to light,
given the different expression in the different language, which might lead us to
see mistakes in the model.

Some properties of the system being modelled might be more readily apparent
in the Z view than in the chart view (and wice versa, of course).

5.2 Proof instead of model checking

We have proof available for Z (via, for example, Z/EVES) which means that,
via the translation, we can reason about the reactive model of our system. This
forms an alternative to the sorts of model checking that staying with the p-chart
model would give.

The importance of proof (or deduction) in contrast to model checking has
recently been explored by Pnueli [10], where he makes the following points:

— deduction is based on induction whereas model checking (which he charac-
terises as exploration) is based on computing a set of reachable states

— deduction uses a more expressive language, leading to good ways of express-
ing, especially, parameterised systems

— deduction-based methods have better scalability

Whatever the pros and cons of each method (and whether we accept Pnueli’s

points or not), it is certainly the case that having both model-checking-based and
deduction-based methods at our disposal to investigate systems is advantageous.

21

5.3 Alternative solutions to the problem

Following Weber’s approach in [17], of specifying the problem from a Z perspec-
tive and a Statechart (for us p-chart) perspective (and so having two different
models of the problem, in contrast with the situation in section 5.1 where we
had two expressions of the same solution), and then performing our translation
on the p-chart model, would allow us to directly compare the two models. We
could also more directly check the consistency of the two models if they are both
in Z.

6 Future work

6.1 Commands

In line with the work in [14] we will add commands to the transitions. The idea
of this is to allow the updating of values associated with the chart. For example,
if the chart takes a transition labelled (along with the usual trigger and output
signal set) a := a + 1 then the value of a (which is accessible throughout the
chart) is incremented.

The triggers can also be extended to allow Boolean combinations of expres-
sions involving such values as a, as well as the input signals as currently. Both
the extensions are straightforward in Z.

These extensions allow us to model such things as clocks (where the current
time, for example, is represented by some value which is incremented by one
sub-chart and used by others) or mechanisms which have to wait for certain
external values to reach required levels before performing their tasks. Again, the
external values (say the level in a tank of liquid) can be updated and used by
sub-charts.

6.2 Correctness of the translation

In this paper we have endeavoured to illustrate the translation process, show
some of its properties and mention some motivation for it. It still remains for us
to show that the translation is correct by showing that, for each construct of the
charts, its semantics is the same as the semantics we get going from that chart
construct via the translation to Z and the Z semantics. Given that we have a
compositional semantics for both formalisms this strategy seems to hold some
hope, especially in the light of the transition semantics given in [14]. This is in
a form that is closer to our Z form and which has already been shown to be
equivalent to the original semantics in [14].

6.3 Refinement

[13] and [14] present a refinement calculus for p-charts based on a relationship
of inclusion, i.e. (roughly) Sy refines S; is defined by [S2] C [Si]. This is also

22

the situation with our notion of refinement in [2], so investigating the relation-
ships between these two notions of refinement would be interesting. In our work
schemas are sets of bindings which represent state-and-signal combinations and
in the p-charts work they are sets of state-and-(input/output) signal tuples, so
there are close similarities there.

6.4 A logic of p-charts

We would like to develop a logic for charts, along the line of our logics for Z
[3] [4] [5]. We expect to use the Z translation to at least suggest how this logic
should look, if not use the translation to induce the chart logic from the Z logic.

6.5 Developing implementations

We would like to use the work on program development from Z [2] and the
translation given here to allow program development from reactive specifications
as given by charts.

Acknowledgements

Our thanks to Mark Saaltink, who has suggested to us an ingenious, though
necessarily complicated, schema iterator which does the job we mentioned at
the end of section 2.4 [12].

Thanks also the Peter Scholz for answering some of our basic questions about
ji-charts.

Thanks finally to our colleagues on the ISuRF project [6]: Lindsay Groves,
Ray Nickson and Mark Utting, and to the Foundation for Research, Science and
Technology (FRST) for grant UOWB805 and to the University of Waikato, which
each provided funding which made this work possible.

References

1. D. Harel. Statecharts: A visnal formalism for complex systems. Science of Com-
puting, pages 231-274, 1987.

2. M. C. Henson and S. Reeves. Program development and specification refinement
in the schema calculus. Submitted to ZB2000.

3. M. C. Henson and S. Reeves. Revising Z: I - logic and semantics. Formal Aspects
of Computing Journal, 11(4):359-380, 1999.

4. M. C. Henson and S. Reeves. Revising Z: II - logical development. Formal Aspects
of Computing Journal, 11(4):381-401, 1999.

5. M. C. Henson and S. Reeves. Investigating Z. Journal of Logic and Computation,
10(1):1-30, 2000.

6. The ISuRF web site is http://www.cs.waikato.ac.nz/Research/fm/isurf.html.

7. J. Jacky. The Way of Z: Practical programming with formal methods. Cambridge
University Press, 1997.

8. The ORA web site is http://www.ora.on.ca.

23

10.

11.

12.

13.

14.

16.

17.

18.

J. Philipps and P. Scholz. Compositional specification of embedded systems with
statecharts. In M. Bidoit and M. Dauchet, editors, TAPSOFT ’97: Theory and
Practice of Software Development, number 1214 in LNCS, pages 637-651. Springer-
Verlag, 1997.

A. Pnueli. Deduction is Forever. Unpublished, invited talk at Formal Methods
99, Toulouse, September 1999.

M. Saaltink. The Z/EVES system. In J. Bowen, M. Hinchey, and D. Till, editors,
Proc. 10th Int. Conf. on the Z Formal Method (ZUM), volume 1212 of Lecture
Notes in Computer Science, pages T2-88. Springer-Verlag, Berlin, April 1997.

M. Saaltink, March 2000. Private communication.

P. Scholz. A refinement calculus for statecharts. In E. Estesiano, editor, Fundamen-
tal approaches to software engineering: First International Conference, FASE’9S,
volume 1382 of Lecture Notes in Computer Seience, pages 285-301. Springer-
Verlag, Berlin, 1998.

P. Scholz. Design of Reactive Systems and their Distributed Implementation with
Statecharts. PhD thesis, Institut fiir Informatik, Technische Universitat Miinchen,
August 1998. TUM-19821.

. J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 2nd. edition,

1992.

1. Toyn, editor. Z Notation: Final committee draft, CD 13568.2. 7 Standards
Panel, 1999. ftp://ftp.york.ac.uk/hise_reports/cadiz/ZSTAN/fcd.ps.gz.

M. Weber. Combining statecharts and Z for the design of safety-critical control
systems. In M.-C. Gaudel and J. Woodcock, editors, FME 96, industrial benefit
and advances in formal methods: Third International Symposium of Formal Meth-
ods Burope, volume 1051 of Lecture Notes in Computer Science, pages 307-326,
1996.

J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice
Hall, 1996.

24

