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Abstract. An intrinsic characterization of positive integers which can
be represented as the sum or difference of two cubes is given. Every
integer has a smallest multiple which is a sum of two cubes and such that
the multiple, in the form of an iterated composite function of the integer,
is eventually periodic with period one or two. The representation of any
integer as the sum of two cubes to a fixed modulus is always possible if
and only if the modulus is not divisible by 7 or 9.
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1 Introduction

Consider the beautiful characterization of numbers which are the sum of two
squares, namely [2, Theorem 366] a number n is the sum of two squares if and
only if all the prime factors of n of the form 4m + 3 have even exponent in
the standard factorization of n. This is not matched by any known comparable
condition for the sum of two cubes. In the absence of such a characterization
there has been a great deal of interest in questions related to the sum of two
cubes, see for example [6], [8].

In Section 2 we give an intrinsic characterization, a property of n itself, which
will determine whether it is representable as the sum of two cubes or not. The
characterization is not so simple but is complete, and covers both n = x3 + y3

and n = x3 − y3. To have a representation in either of these forms n must have
a divisor m which satisfies strict conditions: m3 − n/m must be divisible by 3
with quotient l satisfying m2 + 4l is a perfect square. The applicable range for
values of m and sign of l discriminates between the two equations n = x3 + y3

and n = x3 − y3.
In Section 3 the equation n = x3 + y3 modulo m is considered and the main

result of the paper proved. The divisibility of m by 7 or 9 is definitive, in that
it is in these cases, and only in these cases, that the form n ≡ x3 + y3 mod m
does not have a solution for every n.

Every positive integer has a multiple which is the sum of two cubes. This
phenonena is studied in Section 4 where functions, θ(n) and η(n) giving the “min-
imum multiple” of an integer which represents the sum of two cubes, are defined.
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These functions, when iterated, are eventually periodic with period length one
or two.

2 Characterizing the sum of two cubes

Theorem 1. Let n be a positive integer. Then the equation n = x3 + y3 has a
solution in positive integers x and y if and only if the following three conditions
are satisfied:

1a. There exists a divisor m | n with n
1
3 ≤ m ≤ 2

2
3 n

1
3 such that

2a. for some positive integer l, m2 − n/m = 3l and such that
3a. the integer m2 − 4l is a perfect square.

The conditions equivalent to the existence of a solution to n = x3−y3 in positive
integers are as follows:

1b. There exists a divisor m | n with 1 ≤ m < n
1
3 such that

2b. for some positive integer l, n/m−m2 = 3l and such that
3b. the integer m2 + 4l is a perfect square.

Proof. First we show that if the equation n = x3 +y3 has a solution then (1a-3a)
must be satisfied.

(1a) Let n = u3 + v3 = (u + v)(u2 − uv + v2) in positive integers u, v and let
m = u + v so m | n. The form

x2 − xy + y2 =
n

m

is the equation of an ellipse, called here E, with major axis the line y = x, and
(u, v) is a point on the ellipse in the first quadrant.

The straight line m = x + y cuts the x-axis at x = m which is equal or to
the right of the point where the ellipse cuts the axis, namely x =

√
n/m. Hence√

n

m
≤ m ⇒ n

1
3 ≤ m (1).

The length of the major axis of E is
√

2n/m and the distance of the line
x + y = m from the origin m/

√
2. Since the line cuts the ellipse we must have

m√
2
≤

√
2n

m
⇒ m ≤ 2

2
3 n

1
3 (2).

By (1) and (2)
n

1
3 ≤ m ≤ 2

2
3 n

1
3 .

(2a) Substitute v = m− u in n/m = u2 − uv + v2 to obtain the equation

n

m
= 3(u2 −mu) + m2.
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Hence 3 | m2 − n/m. Since, by (1a) n ≤ m3, l = (m2 − n/m)/3 ≥ 0.
(3a) Now consider the value of l: l = −u2 + mu. This means u is an integer

root of the quadratic equation x2 −mx + l = 0 with integer coefficients, so the
discriminant, namely m2 − 4l, must be a perfect square.

(1b) If u ≥ 0 and v < 0 then the point (u, v) lies on E in the fourth quadrant
so the line m = x + y cuts the x-axis to the left of x =

√
n/m leading to the

bound m < n1/3. The proofs of (2b) and (3b) are similar to those of (2a) and
(3a).

Now assume that (1a-3a) are satisfied. (The case (1b-3b) is similar.)
Given m, from (1a) define l using (1b) so 3l = m2 − n/m. Let x1, x2 be the

two integer roots (given by condition (1c) of the quadratic equation

x2 −mx + l = 0

so x1x2 = l, the product of the roots, and m = x1 + x2, the sum of the roots.
Then

n = m · n

m

= (x1 + x2)(m2 − 3l)
= (x1 + x2)((x1 + x2)2 − 3x1x2)
= (x1 + x2)(x2

1 − x1x2 + x2
2)

= x3
1 + x3

2.

3 Modular Constraints

By analogy with the sum of two squares it is natural to consider modular con-
ditions on n for it to be representable as the sum of two cubes. Something
interesting is happening here when the modulus is divisible by 7 or 9:

Example 1. Let n ∈ N be such that n satisfies one of the congruences listed
below. Then n = x3 + y3 has no solution in Z:

1. n ≡ 3 or 4 mod 7,
2. n ≡ 3, 4, 5 or 6 mod 9,
3. n ≡ 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 17, 18, 21,

22, 23, 24, 25, 30, 31, 32, 33, 38, 39, 40,
41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 57,
58, 59, or 60 mod 63.

Theorem 2. Let m,n be such that there exist u, v, x, y with

m ≡ u3 + v3 mod 7
n ≡ x3 + y3 mod 9.

Then there exist integers A,B such that

28m− 27n ≡ A3 + B3 mod 63.

Furthermore, every sum of two cubes modulo 63 arises in this manner.
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Proof. Let A = 28u−27x and B = 28v−27y and expand A3 +B3 modulo 63 to
derive the given equation. A computation verifies the last claim of the theorem
statement.

If N ≥ 2 let

δ(N) =
#{n ∈ {1, . . . , N} : n ≡ x3 + y3 mod N has a solution}

N
.

Lemma 1. Let n ∈ Z be given and p be a prime with p 6= 3. Then if the equation
n ≡ x3 + y3 mod p has a solution so also does the equation n ≡ x3 + y3 mod pα

for every α ≥ 1.

Proof. Let n ≡ x3 +y3 mod p. Assume that p - x. (If p | x and p | y then p | n, so
we can use x = 1 and y = −1.) Assume, using induction, that n ≡ x3+y3 mod pα

has a solution for some α ≥ 1 with p - x. Then

x3 + y3 − n = lpα

for some l ∈ Z and so, if m is an integer to be chosen later,

(x + mpα)3 = y3 − n ≡ x3 + y3 − n + 3mx2pα mod pα+1

≡ pα(l + 3mx2) mod pα+1.

But p 6= 3 and p - x so we can choose m with l + 3mx2 ≡ 0 mod p giving

n ≡ (x + mpα)3 + y3 mod pα+1

and p - x + mpα since p - x. This completes the inductive step.

Lemma 2. Let n ∈ Z be given. Then if the equation n ≡ x3 + y3 mod 32 has a
solution so also does the equation n ≡ x3 + y3 mod 3α for every α ≥ 2.

Proof. Let n ≡ x3 + y3 mod 32. Assume that 3 - x. (If 3 | x and 3 | y then
32 | n, so we can use x = 1 and y = −1.) Assume that n ≡ x3 + y3 mod 3α has
a solution for some α ≥ 2 with 3 - x. Then

x3 + y3 − n = l3α

for some l ∈ Z and so, if m is an integer to be chosen later,

(x + m3α−1)3 = y3 − n ≡ x3 + y3 − n + mx23α mod 3α+1

≡ 3α(l + mx2) mod 3α+1.

Choose m with l + mx2 ≡ 0 mod 3 giving

n ≡ (x + m3α−1)3 + y3 mod 3α+1.

Theorem 3. The positive integer m is such that 7 - m and 9 - m if and only
if δ(m) = 1. If 7 | m and 9 - m then δ(m) = 5/7. If 9 | m and 7 - m then
δ(m) = 5/9. If 7 | m and 9 | m then δ(m) = 25/63.
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Proof. The “if” direction follows directly from the example at the start of this
section, so assume m is such that 7 - m and 9 - m.

By [9], δ(p) = 1 for p 6= 2, 3, 7. Simple computations lead to the values
δ(2) = 1, δ(3) = 1, δ(9) = 5/9, δ(7) = 5/7.

By the Chinese remainder theorem and the definition of addition and multi-
plication in a product ring, if (N,M) = 1, then δ(MN) = δ(M)δ(N). Hence we
need only consider values of m which are prime powers.

By Lemma 1, if p 6= 3, δ(pα) = δ(p) for all α ≥ 1. By Lemma 2, δ(3α) = δ(9)
for all α ≥ 2 and the theorem follows directly.

4 The Functions Theta and Eta

Definition 1. Let n ∈ N. Then θ(n) is the least positive integer such that the
Diophantine equation

nθ(n) = x3 + y3

has a solution with x ≥ 0 and y ≥ 0.

Because
(n + 1)3 + (n− 1)3 = 2n(n2 + 3)

the function θ is well defined and θ(n) ≤ 2(n2 + 3). The positive integer n is
expressible as the sum of two positive cubes if and only if θ(n) = 1.

Sometimes a distinction is made between general solutions to equations like
n = x3+y3 and the narrower class of so called “proper” or “primitive” solutions,
namely those with x and y having no common factors, (x, y) = 1. This is to
exclude the solutions ab3 = (xb)3 + (yb)3, given the representation a = x3 + y3.

Definition 2. Let n ∈ N. Then η(n) is the least positive integer such that the
Diophantine equation

nη(n) = x3 + y3

has a solution with x ≥ 0 and y ≥ 0 and (x, y) = 1.

Because
(n + 1)3 + (n− 1)3 = 2n(n2 + 3)

and satisfies (n + 1, n− 1) = 1 if n is even, and

(
n + 1

2
)3 + (

n− 1
2

)3 = n(
n2 + 3

4
)

satisfies (n+1
2 , n−1

2 ) = 1 if n is odd, the function η is well defined and η(n) =
O(n2) also. The positive integer n is expressible as the sum of two positive cubes
which are coprime if and only if η(n) = 1. Clearly θ(n) ≤ η(n) for all n ∈ N.

Theorem 4. The composite function values θ ◦ θ and η ◦ η satisfy θ2(n) ≤ n
and η2(n) ≤ n for all n ∈ N.
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Proof. By the definition of θ applied to θ(n), there exist x, y such that θ2(n) ·
θ(n) = x3 +y3 and θ2(n) is the smallest multiple of θ(n) which can be expressed
as the sum of two cubes. But n · θ(n) = u3 + v3 for some u, v also. Therefore
θ2(n) ≤ n. The proof for η is similar.

Theorem 5. For each n ∈ N the sequences (θj(n)) and (ηj(n)) are either con-
stant after a finite number of terms or periodic with period 2.

Proof. Since for all n ∈ N, n ≥ θ2(n) ≥ 1, the sequence of values (θj(n) is
eventually periodic. Assume the length of the period is n ≥ 3. Then there exist
distinct integers a1, · · · , an with

θ(a1) = a2, θ(a2) = a3, · · · , θ(an−1 = an, θ(an) = a1.

If n is even a1 ≥ a3 ≥ a5, · · · ≥ an−1 ≥ a1 so a1 = a3 which is false. If n is odd
we cycle through twice:

a1 ≥ a3 ≥ · · · an ≥ a2 ≥ · · · ≥ a1,

so again a1 = a3. Hence the length of the period n must be one or two. The
proof for η is similar.

Note that if (x, y) is the closest integral point on n = x2 − xy + y2 to the
line y = −x and such that x + y > 0 then θ(n) ≤ x + y. Another problem is to
characterize those n such that θ(n) = x + y, this minimum positive value.

Note also that a function like θ can be defined for forms with appropriate
symmetry properties, e.g. f(x, y) = xk + yk for k odd.
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