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Abstract 
 

This article derives a generic, intertemporally-consistent, and arbitrage-free version of 

the popular class of yield curve models originally introduced by Nelson and Siegel 

(1987). The derived model has a theoretical foundation (conferred via the Heath, 

Jarrow and Morton (1992) framework) that allows it to be used in applications that 

involve an implicit or explicit time-series context. As an example of the potential 

application of the model, the intertemporal consistency is exploited to derive a 

theoretical time-series process that may be used to forecast the yield curve. The 

empirical application of the forecasting framework to United States data results in 

out-of-sample forecasts that outperform the random walk over a sample period of 

almost 50 years, for forecast horizons ranging from six months to three years. 

 
 
 
 

Keywords 

yield curve 
term structure of interest rates 

Nelson and Siegel model 
Heath-Jarrow-Morton framework 

 
 
 

JEL Classification 

E43, C22, G12 
 
 
 
 
 
 

Acknowledgements 

I thank Iris Claus, Arthur Grimes, Graeme Guthrie, James Hamilton, Dimitri Margaritis, John 
McDermott, Kenneth West, attendees of the New Zealand Finance Colloquium 2003, the 
Quantitative Methods of Finance conference 2003, and the Australasian Finance conference 
2003 for comments and suggestions on this and earlier related work. I am especially grateful 
for the detailed comments from Carl Chiarella and two anonymous referees that led to a 
considerable improvement in the article. Any errors and/or omissions remain the sole 
responsibility of the author. 
 



1 Introduction

This article derives a generic, intertemporally-consistent, and arbitrage-free ver-
sion of a popular class of yield curve models originally introduced by Nelson and
Siegel (1987). The Nelson and Siegel (1987) model, and subsequent extentions
and respecifications in Svensson (1994), Hunt (1995), Bliss (1997), Mansi and
Phillips (2001), Diebold and Li (2002), and Krippner (2003a), may be classi-
fied as exponential-polynomial or orthonormalised Laguerre polynomial (OLP)
models of the yield curve, based on the functions of maturity used to represent
the underlying forward rate curve at each point in time. OLP models have been
shown to perform favourably in comparison with other approaches to modelling
the yield curve, being straightforward to estimate with output that is sensible
and intuitive, and providing empirical results comparable to more complex and
customised models.1 Not surprisingly then, OLP models are used frequently
by researchers and practitioners in a wide variety of markets and applications,
such as (1) forecasting the yield curve; (2) analysing relative values of fixed in-
terest securities; (3) deriving monetary policy expectations; (4) managing fixed
interest portfolio risk; (5) investigating macroeconomic time-series data; (6)
studying interest rate swap spreads; and (7) providing estimates of zero-coupon
yields as a direct valuation exercise or for subsequent empirical analysis.2

Notwithstanding their popularity and success in empirical applications, there
are two theoretical shortcomings of OLP models that leave some researchers
apprehensive about their application where a time-series context is involved,
which is implicit or explicit in several of the applications noted above. The
first shortcoming is that OLP models cannot be intertemporally consistent (i.e
the yield curves specified by the OLP model at different points in time can-
not be mapped to each other via an underlying stochastic time-series process),
as identified in Björk and Christensen (1999), Filopovíc (1999a), and Filopovíc
(1999b). The second shortcoming is that OLP models have not been established
as being arbitrage-free models of the yield curve, thus falling short of what is
effectively a minimum benchmark in the contemporary literature.3 In addition,
a practical shortcoming of the OLP models currently available in the literature
is the absence of a generic specification, and so the user is not free to choose
the trade-off between parsimony of the model versus the precision of fit to the

1See Dahlquist and Svensson (1996), Seppala and Viertio (1996), Bliss (1997), Fergusson
and Raymar (1998), Subramanian (2001), Ioannides (2003), and Jordan and Mansi (2003) for
comparisons to other yield curve modelling approaches.

2Examples of published work within each category are, respectively: (1) Diebold and Li
(2002); (2) Kacala (1993), and Ioannides (2003); (3) Söderlind and Svensson (1997), Monetary
Authority of Singapore (1999), and Bank for International Settlements (1999) contains sub-
articles and further references regarding ten central banks (of twelve surveyed) that use OLP
models; (4) Barrett, Gosnell and Heuson (1995), Willner (1996), and Diebold and Li (2002);
(5) Diebold, Rudebusch and Aruoba (2003); (6) Brooks and Yong Yan (1999), and Fang
and Muljono (2003); and (7) Diaz and Skinner (2001), Soto (2001), Schmid and Kalemanova
(2002), and Steeley (2004).

3An arbitrage-free model will not necessarily be intertemporally-consistent. For exam-
ple, Brandt and Yaron (2002) notes that arbitrage-free models are often applied in an
intertemporally-inconsistent manner, because parameters assumed to be constant over time
are recalibrated at each point in time without regard to historical data.
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observed yield curve that is most suitable for their application.
The primary motivation of this article is therefore to develop a generic,

intertemporally-consistent, and arbitrage-free model of the yield curve that is
based on the OLP approach, and that therefore retains the empirical simplicity
and intuition that have made OLP models so popular. The resulting volatility-
adjusted OLP (VAO) model of the yield curve may then be used in applications
that involve a time-series context. Indeed, the theoretical foundation underlying
the VAOmodel (conferred via the Heath, Jarrow and Morton (1992) framework)
may offer valuable insights into the issue being investigated. In addition, the
generic form of the VAO model allows the model to be extended arbitrarily,
as might be required to suit the user’s required parsimony versus precision
trade-off.

The practical application of the VAO model in this article is to forecasting
the yield curve. The intertemporal consistency of the VAO model framework
is exploited to derive a convenient vector autoregressive (VAR) process for the
VAO model coefficients, and that VAR process is then used to make out-of-
sample forecasts of the United States (US) yield curve. This complements
and extends related work in Diebold and Li (2002) that uses an OLP model
in conjunction with atheoretical univariate time-series analysis to forecast the
US yield curve, and it offers an alternative to the more complex frameworks
presented in Brandt and Yaron (2002), Duffee (2002), and Ang and Piazzesi
(2003) that have also been used for forecasting the US yield curve.

The article proceeds as follows: section 2 introduces a generic OLP model of
the forward rate curve as a link to the existing literature, and then proceeds to
derive the corresponding generic VAO model of the forward rate curve. Section
3 derives the VAR process to be used for forecasting the yield curve. Section 4
applies the VAO model in tandem with the VAR process to make out-of-sample
forecasts of the United States yield curve over the period 1954 to 2004, and
section 5 concludes. The proofs are contained in the appendices.

2 The volatility-adjusted orthonormalised Laguerre
polynomial model of the forward rate curve

2.1 A generic specification for OLP models of the yield curve

Most OLP models that have been specified in the literature and applied empir-
ically may be nested within the following generic forward rate representation:

f (t,m) =
NX
n=1

βn (t) · gn (φ,m) (1)

where f (t,m) is the (continuously-compounding instantaneous) forward rate
curve at time t as a function of maturity m (≥ 0); N represents the number of
components used to represent the forward rate curve; and βn (t) are the linear
coefficients estimated at time t that are associated with the OLP forward rate
modes gn (φ,m). The latter are time-invariant functions of maturity defined as
g1 (φ,m) = 1, and for n > 1:
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gn (φ,m) = exp (−φm) ·
n−2X
k=0

(−1)k (n− 2)!(2φm)k
(k!)2 (n− 2− k)!

(2)

where φ is a fixed positive constant that governs the rate of exponential decay.4

For example, the OLP(3) model (i.e the N = 3 specification of the OLP model)
has g2 (φ,m) = − exp (−φm), and g3 (φ,m) = − exp (−φm) (−2φm+1), making
equation 1 linearly equivalent to the models of Nelson and Siegel (1987), Hunt
(1995), and Diebold and Li (2002).5 The first three OLP forward rate modes
are illustrated in figure 1, and are named the Level, Slope, and Bow modes
based on their shapes.

[ Figure 1 here ]
The (continuously-compounding zero-coupon) interest rate curve associated

with the generic OLP forward rate curve has a similar functional form ex-
cept the βn (t) coefficients correspond to interest rate modes, i.e: R (t,m) =PN

n=1 βn (t) · sn (φ,m), where sn (φ,m) = 1
m

Z m

0
gn (φ,m) dm. This facilitates

the estimation of the βn (t) coefficients directly from cross-sectional yield curve
data (i.e the market-observed yields and/or prices of a group of similar fixed
interest securities with a span of maturities, all observed at time t). The cross-
sectional fit is sensible and typically close, and the estimated coefficients also
have an intuitive interpretation.6

The natural temptation is then to treat the OLP model coefficients as state
variables of the yield curve, implicitly with stochastic components to allow for
unanticipated changes to the shape of the yield curve as time evolves. Unfor-
tunately, OLP models were only ever proposed as a convenient framework for
modelling cross-sections of yield curve data, and so extensions into the time-
series context lack a sound theoretical foundation. Indeed, Björk and Chris-
tensen (1999), Filopovíc (1999a), and Filopovíc (1999b) have established that
OLP models cannot be intertemporally-consistent, i.e the cross-sectional yield
curves specified by the OLP model at different points in time cannot be mapped
to each other via an underlying stochastic time-series process. This undermines
the validity of using OLP models for applications that involve a time-series
context, and leads Filopovíc (1999a) to conclude that OLP models should not
be used for modelling the yield curve.

However, an alternative to completely abandoning the OLP approach to
modelling the yield curve is to specify a related version of the OLP model

4Courant and Hilbert (1953) pp. 93-97, or Rainville and Bedient (1981) pp. 395-396,
contain more information on OLP modes. They are a series of solutions to the second-order
differential equation noted in Courant and Hilbert (1953) pp. 328-331. Members of such
solution sets are commonly referred to as modes, hence the terminology adopted in this article.

5The OLP models of Svensson (1994), Bliss (1997), and Mansi and Phillips (2001) are anal-
ogous to the generic OLP specification in equation 1, but also contain additional exponential
terms with a different decay rate. The derivations in this article may also be applied directly
to those models, if required.

6Dahlquist and Svensson (1996), for example, details a typical estimation method based on
market-observed data, and Diebold and Li (2002), for example, discusses the intuition behind
each coefficient.
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where intertemporal consistency is assured by construction. Such a model is
derived in the following subsection.

2.2 The volatility-adjusted OLPmodel of the forward rate curve

The derivation of the generic volatility-adjusted OLP (VAO) model of the for-
ward rate curve is based on the framework provided by Heath, Jarrow and
Morton (1992) (hereafter HJM). At each point in time, the HJM framework
specifies an intertemporally-consistent and arbitrage-free relationship between:
(1) the forward rate curve; (2) the expected path of the short rate; (3) the
volatility structure that dictates how the entire forward rate curve can poten-
tially change due to random factors; and (4) the market prices of risk. Defining
functional forms for the latter three components therefore defines a functional
form for the forward rate curve.

Proposition 1 outlines the generic VAOmodel and the essential assumptions,
definitions, and notation involved in its construction. The proof of Proposition
1 is relegated to Appendix A, leaving the remainder of this section to discuss
the intuition of the model from an economic and financial perspective.

Proposition 1 The generic VAO model of the forward rate curve
Assumption 1: At time t and as a function of future time t +m (m ≥ 0),

the expected path of the short rate Et [r(t+m)] under the physical measure is
defined as:

Et [r(t+m)] =
NX
n=1

λn (t) · gn (φ,m) (3)

where Et is the expectations operator as at time t; λn (t) are time-varying coef-
ficients, and gn (φ,m) are the modes defined in section 2.1.

Assumption 2: Potential stochastic changes to the expected path of the short
rate d {Et [r(t+m)]}Stoc. are defined as:

d {Et [r(t+m)]}Stoc. =
NX
n=1

σn · gn(φ,m) · dWn (t+m) (4)

where σn are constant standard deviations, and dWn (t+m) are Wiener incre-
ments under the physical measure.

Assumption 3: The expected market prices of risk associated with each mode,
i.e θn, are constants over time.

Then, at time t as a function of maturity m, the forward rate curve f(t,m)
under the physical measure will have the following functional form:

f(t,m) = σ1θ1m+
NX
n=1

βn (t) · gn (φ,m)−
NX
n=1

σ2n · hn(φ,m) (5)

where βn (t) = γn + λn (t), γn are constant parameters each expressible as
linear combinations of σ1θ1, σ2θ2, . . . , σNθN , and hn(φ,m) are time-invariant
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functions of maturity that may be derived as:

hn(φ,m) =
1

2φ2
·
n−2X
k=0

(−2)k (n− 2)!
(k!)2 (n− 2− k)!

· (k!− Γ [1 + k, φm])2 (6)

where Γ [·, ·] is the incomplete Gamma function.

Proof. In Appendix A.

2.3 Discussion of the VAO model assumptions

2.3.1 The expected path of the short rate, Et [r(t+m)]

The full and formal justification for representing Et [r(t+m)] with OLP modes
is noted in Krippner (2003b). Briefly, Et [r(t+m)] represents the market’s
assessment, given all currently available information, of the future path of the
short rate. This will contain two components: (1) the assessment of the long-run
nominal equilibrium interest rate (i.e the long-run neutral real rate plus long-
run inflation), which is a constant by maturity and is therefore represented by
the constant function λ1 (t) · g1 (φ,m); and (2) the expected deviation of the
path of the short rate from the long-run rate over the short- to medium-term.
This second component corresponds to the current and expected state of the
economic cycle and the associated stance of monetary policy, and is represented
by the remaining modes in the OLP representation, e.g by the Slope and Bow
components λ2 (t) · g2 (φ,m) and λ3 (t) · g3 (φ,m) in the VAO(3) model.

2.3.2 The stochastic component of changes to the expected path of
the short rate, d {Et [r(t+m)]}Stoc.

The expected path of the short rate will continuously be subjected to unan-
ticipated changes as time evolves, as the market incorporates new information
relevant to the assessment of the long-run equilibrium rate and the anticipated
profile of the stance of monetary policy. Equation 4 represents these unantici-
pated changes as stochastic changes to each component of the initial expected
path of the short rate. Because d {Et [r(t+m)]}Stoc. is represented with the
same OLP modes as Et [r(t+m)], then Et [r(t+m)] + d {Et [r(t+m)]}Stoc. =
[λn (t) + σndWn (t)] · gn (φ,m). Hence, d {Et [r(t+m)]}Stoc. will be realised as
stochastic changes to the values of λn (t), and therefore βn (t), as time evolves.

2.3.3 The intertemporal specification of volatility, σndW̃n (t)

Proposition 1 implies that potential stochastic changes to each βn (t) coefficient
are expected to be homoskedastic and independent over time (i.e the volatility in
each coefficient is expected to be constant, and the variance-covariance matrix
is expected to be diagonal). This specification results in the most tractable and
intuitive VAO model, and will typically be reasonable in practice, as discussed
below.

Regarding homoskedasticity, this assumption will be appropriate unless
there is strong evidence at the time of estimation that future volatilities are
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likely to have large and/or persistent time-varying components that will pre-
vail over the medium-term. Indeed, even if there have been structural changes
to volatilities in the past due to changes in economic and/or monetary policy
regimes, it is reasonable to assume that volatilities will remain at the levels
realised in the current regime so long as future potential changes to the regime
cannot be readily anticipated and/or clearly identified.

Regarding independence, the appropriateness of this assumption is largely
an empirical issue. Krippner (2003b) notes that US interest rate data supports
the assumption that changes to the Level coefficient have been independent to
changes in the Slope and Bow coefficients from 1954 to the present, but that
changes to the Slope and Bow coefficients have shown significant negative cor-
relation. However, given that hn(φ,m) for the Slope and Bow modes are several
orders of magnitude smaller than for the Level mode (see figure 2), the practical
implications of assuming independence between the Slope and Bow coefficients
will be negligible relative to a more complex specification where changes are
constructed to be orthogonal (e.g based on principle components analysis of
the covariance matrix of changes to the Level, Slope, and Bow coefficients).

2.3.4 The market prices of risk, θn

In the “real world” (i.e under the physical measure), investors require extra
returns to compensate them for bearing risks relative to the risk-free investment,
i.e a rolling investment in the short rate. Securities on the yield curve bear
interest rate risk associated with unanticipated changes to the shape of the
yield curve, which arise from the potential stochastic changes to the expected
path of the short rate noted previously. The compensation for those risks
are specified via the market prices of risk for each component of Et [r(t+m)],
and Proposition 1 assumes that these market prices of risk are expected to be
constant over time. This specification results in the most tractable and intuitive
VAO model, and will typically be reasonable in practice for the same reasons
as discussed for the homoskedasticity assumption in the previous section. Note
that the market prices of risk would be zero in the risk-neutral version of the
VAO model (i.e investors are indifferent to risk under the risk-neutral measure).

2.4 Discussion of the VAO model of the forward rate curve

The VAO(3) model is developed as a specific example in the discussion that
follows because it is convenient to compare and contrast it with the OLP(3)
model noted in section 2.1. However, this comparison should not be interpreted
as a guide to choosing between the OLP(3) and VAO(3) models; intertemporal
and arbitrage-free consistency should be regarded as essential requirements for
any application, not an aspect that can be traded off for empirical convenience.

Setting N = 3 in equations 5 and 1, the first point of similarity is that the
VAO(3) model retains a cross-sectional functional form that is primarily based
on a linear combination of the Level, Slope, and Bow modes. Most importantly,
the Level, Slope, and Bow coefficients remain as the only coefficients to estimate
for each cross-section of the yield curve; φ remains as a constant parameter,
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and σ1, σ2, σ3 and θ1 are additional constant parameters as discussed below.
The second point of similarity is that the VAO(3) model retains a relatively
simple cross-sectional functional form, and so the Level, Slope, and Bow coef-
ficients may still be estimated directly from a cross-section of yield curve data.
The final point of similarity is that the VAO(3) model nests the OLP(3) model.
Specifically, the VAO(3)model is identical to the OLP(3)model if all volatilities
and the market prices of risk are set to zero, i.e a risk-neutral and deterministic
model of the yield curve. However, this connection clearly exposes the theo-
retical short-comings of OLP models; practical yield curve data will not accord
with these assumptions, and so the OLP(3) model will therefore be inadequate
as a practical model of the yield curve.

The main contrast is that the cross-sectional functional form of VAO(3)
model is more complex than the OLP(3) model, i.e as a result of imposing in-
tertemporal consistency the VAO(3) model has several time-invariant functions
of maturity that appear as adjustments to the OLP(3) model.

The first series of adjustments relates to the explicit modelling of expected
volatility in the HJM framework (hence the name “volatility-adjusted OLP
model”), and these adjustments are of the form

PN
n=1 σ

2
n · hn(φ,m). For

the VAO(3) model h1(φ,m) = 1
2m

2, h2(φ,m) = 1
2φ2
[1− exp (−φm)]2, and

h3(φ,m) =
1
2φ2
[1− exp (−φm)]2− 1

φ2
[1− exp (−φm)− φm exp (−φm)]2.7 These

functions are illustrated in figure 2, and may be interpreted as the effects on the
shape of the forward rate curve per unit of variance in the stochastic component
of each βn (t) coefficient.

[ Figure 2 here ]
The second series of adjustments relates to the explicit modelling of the

expected market prices of risk applied to the expected volatility structure within
the HJM framework. As detailed in Appendix A.3, the market price of risk
for the Level mode leads to an adjustment of non-OLP form, i.e σ1θ1m, but
the remaining adjustments are expressible using OLP modes, i.e as

P3
n=1 γn ·

gn (φ,m) for the VAO(3) model. σ1θ1m+
P3

n=1 γn · gn (φ,m) has the intuitive
interpretation as a term premium function (by maturity) that is expected to
be time-invariant. Note that σ1θ1 and the constants γn would all be zero in
the risk-neutral version of the VAO model, which would correspond to a term
premium function of zero for all maturities.

Empirically, the adjustments are easy to incorporate as modifications to the
OLP(3) model; i.e the additional functions γn · gn (φ,m) are subsumed directly
into βn (t) · gn (φ,m), and σ1θ1m and σ2n · hn(φ,m) are simple functions of
maturity that are easy to allow for in the estimation process. Most importantly,
the adjustments relative to the OLP(3) model do not represent extra degrees
of freedom or additional flexibility to model each individual cross-section of
the yield curve (which is the context implied in Diebold and Li (2002) and

7These volatilty-adjustment terms are the drift terms in the HJM framework under the risk-
neutral measure. The results for h1(φ,m) and h2(φ,m) have been reported in the literature;
see HJM pp. 90-92, or de La Grandville (2001) pp. 368-372. Note that HJM uses the Slope
volatility function exp (−φm/2), so there is a scalar difference between the HJM result and
h2(φ,m) as presented in this article.
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Diebold et al. (2003) in reference to the work of Björk and Christensen (1999)),
because they are time-invariant functions with constant parameters estimated
from historical yield curve data (as discussed in section 4 and Appendix C). In
this context, the adjustments actually impose a constraint on the estimation
of each individual cross-section of the yield curve, and so the VAO(3) model
should typically produce an inferior fit to the cross-sectional yield curve data
than the OLP(3) model.8

Finally, it is worth discussing two aspects of the adjustments that might
seem problematic; i.e the unbounded nature of σ1θ1m and h1(φ,m), both as-
sociated with the Level mode. Firstly, σ1θ1m and h1(φ,m) do not cause any
empirical problems because practical yield curve data typically only ranges up
to 30 years, which is well short of the maturities where the unbounded nature of
h1(φ,m) and σ1θ1mmight potentially start to dominate the estimation process.
Secondly, terms analogous to h1(φ,m) occur in other models of the forward rate
that incorporate constant forward rate volatility for all maturities.9

2.5 Further observations about the VAO model

From the perspective of the wider literature, there are four additional points
about the VAO model that are worthy of note. Firstly, the derivation of the
VAO model provides independent verification of the results from Björk and
Christensen (1999), Filopovíc (1999a), and Filopovíc (1999b), i.e that forward
rate curves specified with OLP functions cannot be intertemporally consistent
when the yield curve evolves with a stochastic component. Specifically, the
stochastic component will lead to functions with form 1

2m
2 and exp (−2φm) ·

(4φm)n that are not expressible within the original OLP specification.
Secondly, the addition of each hn(φ,m) function within the VAO model may

be seen as a “manifold expansion” (i.e the addition of appropriate functions of
maturity) analogous to that suggested by Björk and Christensen (1999) pp.
338-339 to make the Nelson and Siegel (1987) model consistent with the Hull
and White (1990) model.

Thirdly, the VAOmodel is arbitrage-free as a consequence of its construction
via the HJM framework. Arbitrage-free models of the yield curve are usually
estimated to provide a precise fit to each cross-section of yield curve data. How-
ever, such applications are typically intertemporally-inconsistent (e.g see Brandt
and Yaron (2002)), may admit arbitrage while appearing to be arbitrage-free
(e.g see Backus, Foresi and Zin (1998)), and may overfit the measurement errors
and anomalies that exist in the cross-sectional data10 to the detriment of pricing
associated securities (e.g see Brandt and Yaron (2002), and Bliss (1997)). The

8This prediction is consistent with the results reported in Krippner (2003b) for US data.
9For example, the Ho and Lee (1986) model (as noted in Hull 2000, pp. 108 and 572-574),

the examples in HJM pp. 90-92, and the Vasicek (1977) model with zero mean-reversion (as
noted in Hull 2000 p. 567). The latter suggests that bounded versions of the VAO model
could easily be obtained by using g1 (κ,m) = − exp (−κm) with 0 < κ ¿ φ, or alternatively
the Level mode can be seen as the limiting function of a bounded mode associated with very
low mean-reversion.
10For example, due to bid-ask bounce, stale quotes, and genuine temporary distortions in the

yield curve due to large market flows and/or market scarcity in particular physical securities.
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VAO model differs from such arbitrage-free models because it is not intended
to give a precise fit to each cross-section of the yield curve. In this respect, the
VAO model is conceptually similar to the time-consistent no-arbitrage approach
by Brandt and Yaron (2002), which uses a parsimonious representation in con-
junction with some well-behaved yield or price residuals, both for tractability
and to allow for the fact that market-observed data will inevitably contain mea-
surement errors and anomalies. The advantage of the generic specification of
the VAO model is that the user may easily adjust the number of modes to
obtain their required trade-off between parsimony and cross-sectional fit. Of
course, analogous to the suggestion of Brandt and Yaron (2002), if a precise fit
to market-observed data is specifically required, then the number of modes in
the VAO model may in principle be increased to equal the number of securities
used to define the yield curve.

Finally, the VAO model has a term structure of volatility (i.e the volatility of
expected short rates and forward rates as a function of maturity) that is of OLP
form. This naturally allows for the humped shape of forward rate volatilities
that is typically observed in the market, as noted in Hull (2000) pp. 541-542.

3 The VAO model coefficients over time

The intertemporal consistency of the generic VAO model is already implicit
by its construction via the HJM framework, but it is useful to translate that
intertemporal consistency into an explicit stochastic time-series process for the
VAO model coefficients. This shows that the VAO model coefficients can be
interpreted as state variables of the yield curve, and the resulting vector au-
toregressive (VAR) process provides a convenient model for forecasting the yield
curve.

For this article, the derivation of the VAR process is undertaken for the
VAO(3) model used in the empirical work of section 4, but analogous results
apply generally for the VAO(N)model. Proposition 2 specifies the VAR process
for the VAO(3) coefficients and the associated notation. The proof of Propo-
sition 2 is relegated to Appendix B, leaving the remainder of this section to
discuss the economic intuition and the practical interpretation of the model.

Proposition 2 The VAR process for the VAO(3) model coefficients
The intertemporal consistency of the VAO(3) process translates into the fol-

lowing VAR process for the VAO(3) model coefficients:

β (t+ τ) = µ+Φ (φ, τ)β (t) + ε (t+ τ) (7)

where β (t) = {β1 (t) , β2 (t) , β3 (t)}0, a (column) 3-vector containing the VAO(3)
model coefficients at time t; β (t+ τ) is the vector of VAO(3) model coefficients
at time t + τ ; τ (> 0) is a parameter representing an arbitrary future horizon
from time t; µ is a vector of constants; Φ (φ, τ) is a time-invariant 3×3 matrix:

Φ (φ, τ)=

 1 0 0
0 exp (−φτ) −2φτ exp (−φτ)
0 0 exp (−φτ)

 (8)
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and ε (t+ τ) is a vector of independent random variables.

Proof. In Appendix B.
The intuition underlying equation 7 is essentially the expectations hypoth-

esis of the yield curve with an allowance for term premia, i.e after allowing
for term premia, the maturity τ rate from the forward rate curve at time t
implies an expectation of the short rate at time t + τ in the future. Within
the HJM framework, this concept carries over to the entire forward rate curve
and the underlying expected path of the short rate, i.e the expected path of
the short rate today Et [r (t+m)] implies the entire expected path of the short
rate in the future Et [r (t+ τ +m)] (as detailed in Appendix B.1). As shown
in Appendix B.2, if those current and future expected paths of the short rate
are both represented using OLP modes, the expectations hypothesis within the
HJM framework condenses into simple time-series processes for the Level, Slope,
and Bow coefficients. That is, the coefficients at time t imply an expectation
of the coefficients at time t + τ , and those coefficients summarise the entire
expected path of the short rate at time t+ τ .

It is most convenient to represent the time-series processes in vector form,
and so β (t) and β (t+ τ) are vectors containing the Level, Slope, and Bow
coefficients at times t and t + τ respectively. Equation 7 is a first-order VAR
process, where the entries in Φ (φ, τ) relate the current values of the coefficient
to their expected future values.11 Algebraically, β (t) = γ+λ (t), and the vector
λ (t) represents genuine market expectations for the future path of the short
rate, while the vector γ represents the term premia that exist in the various
securities that define the yield curve. These term premia result in the constant
vector µ in equation 7, which would be zero in the absence of term premia.

ε (t+ τ) is the realised forecast error, i.e β (t+ τ) − [µ+Φ (φ, τ)β (t)],
which represents the fact that the expectation of β (t+ τ) as at time t will
inevitably differ to that realised at time t+ τ due to the collection of new infor-
mation that arrives between these times. As time evolves, the current β (t) will
always reflect the up-to-date expectations embedded in the yield curve, which
will be a combination of past expectations and the accumulation of forecast
errors.

The relationship between the expected path of the short rate and the forward
rate curve from equation 5 provides the link to forecasting the forward rate curve
(and hence the yield curve) from the current yield curve, i.e Et [β (t+ τ)] =
µ+Φ (φ, τ)β (t), and so:

Et [f(t+ τ ,m)] = σ1θ1m+ [µ+Φ (φ, τ)β (t)]0 g(φ,m)− v0h(φ,m) (9)

where g(φ,m) = {g1 (φ,m) , g2 (φ,m) , g3 (φ,m)}0, v =
©
σ21, σ

2
2, σ

2
3

ª0 and h(φ,m)
= {h1 (φ,m) , h2 (φ,m) , h3 (φ,m)}0 for the VAO(3) model.
11As an aside, the eigenvalues of Φ (φ, τ) for the VAO(3) model are

{1, exp (−φτ) , exp (−φτ)}, implying a unit root process for the Level coefficient, and
mean-reverting processes for the Slope and Bow coefficients. This prediction is consistent
with the results reported in Diebold and Li (2002) and Krippner (2003b) for US data.
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4 Forecasting the yield curve with the VAO(3)model

The empirical application of the VAO model in this article is to forecasting the
yield curve, i.e forecasting yields on the future yield curve and also the spreads
between yields of different maturities on that future yield curve. The VAO(3)
framework, i.e the VAO(3) model in conjunction with the VAR process derived
for the VAO(3) model coefficients, is used as a basis for the forecasting.12

The interest rate data used are monthly averages of constant maturity bond
rates obtained from the online Federal Reserve Bank of St Louis economic
database. Monthly averages are acceptable for this article because the sample
size is large and the forecasting horizons investigated range from three months
to three years, and so the results (i.e the forecast errors) should not be un-
duly influenced by the averaging of the daily data and the absence of precisely
specified cashflows for each observation of each point on the yield curve.13

The data series used are the federal funds rate (FF, quoted on a simple
interest basis), the 3-month Treasury bill rate (TB3, quoted on a discount
basis), and the yields-to-maturity of the 1-year, 3-year, 5-year, 10-year, and
20-year or 30-year constant maturity bonds (GS1, GS3, GS5, GS10, and GS20
or GS30 respectively, all quoted on a semi-annual basis and with semi-annual
coupons).14 The sample period is July 1954 (the first month FF data is avail-
able) to February 2004 (the last month available at the time of the analysis),
giving 593 monthly observations of the yield curve. Figure 3 illustrates the FF
and GS10 data, the longest and shortest maturity rates available for the entire
data period, and the FF/GS10 spread measure used in the empirical analysis
is the difference between these two rates.

[ Figure 3 here ]
The sample period spans four distinct monetary policy regimes, as specified

in Gordon (1990) and Walsh (1998) and identified in figure 3, which are used
for sub-sample analysis. The regimes are the Bretton Woods / gold price target
(start-of-sample to December 1971), the federal funds rate target (January 1972
to September 1979), the non-borrowed reserves target (October 1979 to October
1982), and the borrowed reserves / federal funds rate target (November 1982
to end-of-sample).

The method used to estimate the VAO(3) model coefficients for each cross-
sections of yield curve data follows the existing literature, and is detailed in
Appendix C for completeness. Figure 4 illustrates the results of this estimation
process for the yield curve data from February 2004. Each monthly observation

12The empirical results regarding the cross-sectional fit of the VAO(3) model to the yield
curve data, and the time-series properties of the VAO(3) model coefficients over the entire
sample have been omitted from this article due to space constraints. Readers interested in
further detail and discussion on these aspects are referred to Krippner (2003b).
13Monthly or quarterly averages would also be acceptable for applications of the VAO model

in conjunction with economic data. However, most financial applications of the model would
require point-in-time quotes for individual securities in conjunction with the precise cashflows
of those securities, as in the application to US swaps data in Krippner (2004).
14GS20 data is unavailable from January 1987 to September 1993, and so GS30 data is used

during this period (with a 30-year maturity in the estimation process noted in the following
section).
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of yield curve data will give an associated estimate of the Level, Slope, and Bow
coefficients for that month, and hence the full sample will provide a time-series
of 593 monthly observations of the 3-vector β (t). The cross-section estimation
process also requires estimates of the VAO(3) model parameters φ, θ1, and
σ = {σ1, σ2, σ3}. These are estimated using the appropriate time-series of
historical yield curve data, as outlined in the following two sections.

4.1 Forecasting the yield curve without a term premium func-
tion

The first application to forecasting the yield curve uses the VAO(3) framework
with no term premia, which is obtained by setting θ1 to zero in equation 5 and
µ = {0, 0, 0}0 in equation 7. This exercise is undertaken as an initial gauge of
the importance of term premia with respect to forecasting the yield curve.

All of the forecasting is out-of-sample and uses recursive estimation of the
VAO(3) model parameters. Specifically, the first three years of data (July 1954
to June 1957) are used to determine the initial estimates of the parameter φ
(using a bisection search to minimise the sum of squared yield residuals from
all past cross-sectional estimations of the yield curve), and the volatility vector

σ (using the usual definition of annualised variance σ2n =
12
T

XT

i=1
[∆βn (i)]

2,
as noted in Hull (2000) pp. 368-369, where T is the number of data points [36
initially], and 12 annualises the monthly data).15

The following steps are then used to obtain yield curve forecasts from the
July 1957 yield curve data: (1) as detailed in Appendix C, β (Jul-57) is esti-
mated using the July 1957 yield curve data and the initial estimates of φ and σ;
(2) β (Jul-57) is used to obtain the forecasts of β (Jul-57+ τ) for the horizons of
3 months, 6 months, 1 year, 1.5 years, 2 years, and 3 years (i.e using equation 7
with µ = {0, 0, 0}0 and τ = 0.25, 0.5, 1, 1.5, 2, and 3 respectively); (3) the fore-
casts of β (Jul-57+ τ) are used in equation 9 with the initial estimates of φ and
σ to obtain forecasts of the forward rate curve and hence the zero-coupon in-
terest rate curve at times Jul-57+τ ; (4) the forecast rates or yields-to-maturity
for FF, TB3, GS1, GS3, GS5, GS10 at times Jul-57+τ are re-constructed using
the forecast zero-coupon curve;16 (5) the forecast FF/GS10 spread is calculated
as the GS10 forecast less the FF forecast; and (6) the estimates of φ and σ
are updated using the methods noted in the previous paragraph and all of the

15An initial estimate of the β (t) coefficients to use for this volatility calculation may be
obtained by firstly assuming zero volatility, i.e σ2n = 0, in equation 5. This creates a two-
step process that may be iterated to convergence, but the volatility estimates obtained from
the initial estimation of the β (t) coefficients are immaterially different from the subsequent
estimates. Alternatively, σn could potentially be calibrated from data for options on interest
rate securities observed at the same time as the yield curve data, if such data are available.
16For the bonds, this reconstruction obtains the coupon rate that corresponds to a par bond

(i.e a principal of 1) using the forecast zero-coupon curve to provide the discount factors.
While this process is more complex than simply using zero-coupon yield data, it is worthwhile
because it avoids any model-induced bias in the forecast error analysis; i.e the forecast yields
are compared directly to the original yield curve data rather than to model-generated or
pre-processed data.
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historical data up to the current month.17 These six steps are repeated for
each subsequent observation of the yield curve from August 1954 to February
2004, producing six series of forecast yields and the series of forecast FF/GS10
spreads for each of the six forecasting horizons τ . The corresponding forecast
errors are calculated as the actual data at time t + τ less the corresponding
forecasts made at time t for horizon τ .

Table 3 contains the root-mean-squared forecast errors (RMSEs) for the
VAO(3) framework forecasts. To save space, only the results for FF, GS10,
and FF/GS10 are shown; the results for intermediate maturities generally fall
between these sets of results. The RMSEs broadly show an increase by horizon,
as expected because the yield curve will be subject to greater amounts of new
information from the time of forecast. The magnitudes of the RMSEs in each
regime broadly follow the interest rate volatilities within those regimes that is
apparent from figure 3. This result is also as expected because higher interest
rate volatility will tend to result in larger forecast errors.

Table 4 contains the RMSEs for the VAO(3) framework forecasts less the
RMSEs for the random walk forecast (which is the typical naive benchmark used
to assess forecasting performance). A negative entry (non-shaded) therefore in-
dicates an outperformance of the random walk model, and the statistical signif-
icance of each entry is estimated using the Diebold and Mariano (1995) method
with the bandwidth set to one less than the forecast horizon in months.18 Over
the whole sample, the FF and FF/GS10 forecasts outperform those of the ran-
dom walk, and the magnitude and significance of the outperformance tends to
rise by forecast horizon. However, the GS10 forecasts consistently underperform
the random walk over the full sample for all horizons.

The sub-sample results offers some insight into the GS10 results; the general
outperformance of the VAO(3) framework during the Bretton Woods, federal
funds rate target, and non-borrowed reserves regimes is more than counterbal-
anced by the significant underperformance during the borrowed reserves target
regime. Another interesting aspect during the latter regime is that the FF
forecasts move from an outperformance for shorter horizons, to an increasing
underperformance for longer horizons. At the same time, the FF/GS10 forecasts
generally show an outperformance over all regimes. This suggests that the poor
forecasting performance in the borrowed reserves regime lies with the forecast
levels of yields rather than their relativities to each other, which in turn sug-
gests that term premia become relatively more important in this regime with
respect to forecasting the yield curve. Further investigation confirmed that
with no allowance for term premia the VAO(3) framework has a strong bias to

17This is the most naive method of recursive estimation, and avoids any hint of data mining
by using a favourable moving-average window. The recursively-estimated values of φ ranged
from 0.83 to 1.33. This compares to an estimate of 0.73 in Diebold and Li (2002), which is
based on zero-coupon data from January 1970 to December 1997 with a maximum maturity
of 10 years.
18This is the procedure suggested in Diebold and Mariano (1995) and used in Diebold and

Li (2002), because it allows for overlapping forecast errors due to the frequency of the data
being greater than the forecast horizons. Note that the small size of the non-borrowed reserves
sub-sample means that statistical significance cannot be ascertained using the Diebold and
Mariano (1995) test, so no indications are given.
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over-forecast yields during the borrowed reserves regime for all of the horizons
investigated, even if the φ and σ parameters are re-estimated using just the
data from this regime alone. Hence, the forecasting exercise is repeated for the
borrowed reserves regime using the VAO(3) framework with an estimated term
premium function.

4.2 Forecasting the yield curve including a term premium func-
tion

The procedure for estimating and forecasting with the VAO(3) framework in-
cluding a term premium function is similar to that outlined in section 4.1,
except that estimates of the parameters θ1 and µ are required in addition to
estimates of φ and σ. This makes the estimation process more complex (as
noted below), and so a single estimation is undertaken for these parameters
over an appropriate period of history rather than using recursive estimation.
Specifically, the period October 1986 to January 1994 (88 months) is chosen as
the parameter estimation period because it spans the first full monetary policy
cycle (i.e a trough-to-trough cycle in the federal funds rate, and a similar cycle
in long—maturity yields) following the period of substantial financial and eco-
nomic change up to the mid-1980s.19 The estimation of θ1 and φ is undertaken
simultaneously using a grid search to minimise the sum of squared yield resid-
uals from all cross-sectional estimations of the yield curve over the parameter
estimation period (the point estimates are θ1 = 1.62 percentage points and
φ = 0.804), and σ is estimated over this period using the calculation noted in
section 4.1 (the point estimate is σ = {0.84, 1.49, 1.17}0 percentage points). µ
is estimated using the mean realised forecast errors over the parameter esti-

mation period, i.e µ = 1
(88−X)

XJan-94

t=Oct-86+X
{β (t+ τ)−Φ (φ, τ)β (t)}, where

X = 12τ is the number of months at the beginning of the parameter estimation
period where no forecasts of β (t+ τ) are available to compare to the realised
β (t+ τ). The point estimates of µ for each horizon are contained in table 3,
and these all result in term premium functions that are positive (i.e forecast
yields overstate realised yields) for all horizons.

Using these estimated parameters, the out-of-sample forecasting exercise
proceeds as outlined in section 4.1 (but without the parameter updating step)
from February 1994 to February 2004. The resulting RMSEs from this pro-
cess less the RMSEs from the random walk forecasts over the same period are
contained in table 4. Negative entries (non-shaded) again indicate an outperfor-
mance of the VAO(3) framework, and the Diebold and Mariano (1995) method
provides the indicated levels of statistical significance. The main point to note
from table 4 is that the VAO(3) framework outperforms the random walk for
all maturities over all horizons, except for the forecasts of long-maturity yields
over short horizons. The magnitude and significance of the outperformance

19For example, financial deregulation (see Gordon (1990) p. 101 and pp. 504-508), the
simplification of reserve requirements (see Gordon (1990) p. 536), and the re-establishment
of price stability and inflation credibility following the late-1970s to early-1980s period of
disinflation under Chairman Volcker (see Walsh (1998) pp. 418-422).
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again tends to rise by forecast horizon, although the smaller sample size results
in less instances of significance than in table 2.

The forecasting performance of the VAO(3) framework is similar to the
out-of-sample results of Diebold and Li (2002) that uses an OLP(3) model in
conjunction with a univariate time-series model for each OLP(3) coefficient.
For example, Diebold and Li (2002) table 7 notes a 90.4 basis point RMSE
for the 10-year zero-coupon rate on a one-year horizon over 1994 to 1997, and
the VAO(3) framework produces a RMSE of 90.0 for the 10-year coupon bond
over same period and horizon. Also, the VAO(3) framework forecast results
are comparable to the substantially more complex framework of Duffee (2002),
which offers a 7.7 basis point RMSE improvement over the random walk for the
10-year zero-coupon rate on a one-year horizon over 1995 to 1998, compared to
9.9 for the VAO(3) framework over the same period and horizon.20

5 Conclusion

Since being introduced in Nelson and Siegel (1987), OLP models of the yield
curve have proved popular with researchers and practitioners alike. The VAO
model of the yield curve derived in this article is based on the OLP approach
and therefore continues the tradition of the OLP model, i.e the VAO model
is straightforward to estimate from cross-sections of yield curve data and it
provides output that is sensible and intuitive.

However, the VAO model makes three important extensions relative to the
OLP model: (1) the VAO model is intertemporally-consistent, and so may be
used in applications that involve an explicit or implicit time series context; (2)
the VAO model is an arbitrage-free model of the yield curve, thus meeting what
is effectively a minimum benchmark in the literature; and (3) the VAO model is
specified in a generic form, so users may easily adjust the model to obtain their
required trade-off between parsimony (of coefficients and parameters) versus
precision (of fitting the yield curve data) for their particular application. In
summary, researchers and practitioners who require a simple yet theoretically-
robust model of the yield curve should find the VAO model a useful tool.

20Brandt and Yaron (2002) and Ang and Piazzesi (2003) also provide out-of-sample forecast
results based on intertemporally consistent models that are more complex than the VAO(3)
framework, but the results are not directly comparable; i.e Brandt and Yaron (2002) quotes
only mean-absolute errors (of 70 to 80 basis points for a one-year forecast horizon), and Ang
and Piazzesi (2003) only forecasts for the one-month horizon.
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A Proof of Proposition 1

The proof of Proposition 1 proceeds in four sections: (1) outlining the details of
the HJM framework relevant to the derivation of the VAOmodel; (2) calculating
the effect of volatility in the VAO model coefficients; (3) calculating the effect
of the market prices of risk for the VAO model; and (4) combining the results
together to obtain the generic VAO model of the forward rate curve.

A.1 The HJM framework

HJM specifies the relationship between the instantaneous forward rate curve
and the instantaneous short rate under the physical measure as:21

r (t+m) = f (t,m) +
NX
n=1

Z m

0
σn (s,m)

·Z m

s
σn (s, u) du

¸
ds

−
NX
n=1

Z m

0
σn (s,m) θnds+

NX
n=1

Z t+m

t
σn (s,m) dWn (s) (10)

where r (t+m) is the short rate at time t+m; f (t,m) is the forward rate curve
at time t, as a function of maturity m (m ≥ 0); N is the number of independent
stochastic processes that impart instantaneous random changes to the forward
rate curve and the short rate; σn (s,m) is the volatility function for the forward
rate curve/short rate process n; dWn (s) are independent Wiener variables un-
der the physical measure; and u and s are dummy integration variables. Note
that the first two integrals in equation 10 have been written with limits 0 and
m (i.e independent of t) because Proposition 1 assumes that the volatility func-
tions are not functions of time, and the market prices of risk are constant. The
third integral retains time dependence via the path of the Wiener process.

Applying Et, i.e the expectations operator as at time t, to equation 10 and
re-arranging provides a relationship that will hold at any point in time, i.e:

f (t,m) = Et [r (t+m)]−
NX
n=1

Z m

0
σn (s,m)

·Z m

s
σn (s, u) du

¸
ds

+
NX
n=1

Z m

0
σn (s,m) θnds (11)

where Et [r (t+m)] is the expected path of the short rate at time t as a function
of future time m, and the expectation of the stochastic term in equation 10 is
zero (see Ross (1997) pp. 541-542). The functional form for Et [r (t+m)] has
already been specified in section 2.2, and it remains to calculate the integral
terms using the definitions and assumptions noted in Proposition 1.

21From HJM equation 5 with the substitution of HJM equation 18. Or see equation 26.16
from Chiarella (2003).
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A.2 The volatility structure in the VAO model

The volatility integral term for the Level mode has already been reported in
the literature as 12m

2 (see HJM pp. 90-92). The volatility integral term for the
remaining modes may be calculated using a generic approach. Firstly, define an
exponential-polynomial volatility function as σ (t, t+m) = σ·exp (−φm) (φm)a,
where a (≥ 0) is an integer, and the volatility functions are dependent on ma-
turity m only.22 Following the HJM approach,

Rm
s σn (s, u) du is calculated

as:

σ ·
Z m

s
exp (−φ [m− u]) (φ [m− u])a du (12a)

= σ ·
·
− 1
φ
Γ [1 + a, φ [m− u]]

¸m
s

(12b)

=
σ

φ
· (−Γ [1 + a, φ (m− s)] + Γ [1 + a, 0]) (12c)

where Γ [·, ·] is the incomplete Gamma function.23 Note that Γ [1 + a, 0] = a!,
the factorial definition, and these expressions are used interchangeably below.
Substituting equation 12c into

Rm
0 σn (s,m)

£Rm
s σn (s, u) du

¤
ds gives:

σ2

φ
·
Z m

0

·
exp (−φ [m− s]) (φ [m− s])a

× (−Γ [1 + a, φ (m− s)] + a!)

¸
ds (13a)

=
σ2

2φ2

h
2a!Γ [1 + a, φ (m− s)]− (Γ [1 + a, φ (m− s)])2

im
0

(13b)

=
σ2

2φ2

h
2 (a!)2 − (a!)2 − 2a! · Γ [1 + a, φm] + (Γ [1 + a, φm])2

i
(13c)

=
σ2

2φ2
(a!− Γ [1 + a, φm])2 (13d)

To calculate hn(φ,m) for n > 1, write the generic OLP volatility function as
a summation of exponential-polynomial terms, i.e σn (m) = σn ·gn(φ,m) = σn ·
exp (−φm) ·Pn−2

k=0
(−1)k(n−2)!(2φm)k
(k!)2(n−2−k)! = σn ·

Pn−2
k=0

(−2)k(n−2)!
(k!)2(n−2−k)! exp (−φm) (φm)

k,

and apply the corresponding results from equation 13d. This gives the result
in equation 6 (which is premultiplied by the σ2n that appears in equation 5).

A.3 The market prices of risk in the VAO model

The constant market prices of risk have a physical realisation on the shape of
the forward rate curve via the integrals

PN
n=1

Rm
0 σn · gn(φ,m) · θndm. This

expression may be calculated directly for each mode as required. For the Level
mode (i.e n = 1)

Rm
0 σ1 · g1 (φ, s) · θ1ds = σ1θ1 [s]

m
0 = σ1θ1m. For the Slope

mode (i.e n = 2)
Rm
0 σ2 · g2 (φ,m) · θ2ds is calculated as:

22 In the HJM notation using time t and time of maturity T , this would be written σ (t, T ) =
σ · exp (−φ [T − t]) (φ [T − t])a, so T = t+m.
23 I.e Γ [1 + a, z] =

R∞
z

xa exp (−x) dx; see Wolfram (1996) p. 740.
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σ2θ2 ·
·
1

φ
exp (−φs)

¸m
0

(14a)

=
σ2θ2
φ

· exp (−φm)− σ2θ2
φ

(14b)

= −σ2θ2
φ

· g2 (φ,m)− σ2θ2
φ

· g1 (φ,m) (14c)

For the Bow mode (i.e n = 3)
Rm
0 σ3 · g3 (φ,m) · θ3ds is calculated as:

σ3θ3 ·
·
1

φ
exp (−φs) (−2sφ− 1)

¸m
0

(15a)

=
σ3θ3
φ

· exp (−φm) (−2mφ− 1) + σ3θ3
φ

(15b)

=
σ3θ3
φ

· exp (−φm) (−2mφ+ 1)− 2σ3θ3
φ

· exp (−φm) + σ3θ3
φ

(15c)

=
σ3θ3
φ

· g3 (φ,m)− 2σ3θ3
φ

· g2 (φ,m) + σ3θ3
φ

· g1 (φ,m) (15d)

For the VAO(3) model then,
P3

n=1

Rm
0 σn (s,m) θnds =

P3
n=1 γn · gn (φ,m),

where γ1 =
1
φ (−σ2θ2 + σ3θ3), γ2 =

1
φ (−σ2θ2 − 2σ3θ3), γ3 = 1

φσ3θ3. Analo-

gous results will hold for the VAO(N) model, i.e
PN

n=1

Rm
0 σn ·gn(φ,m)·θndm =

σ1θ1m+
PN

n=1 γn · gn (φ,m), which follows from Proposition 3.

Proposition 3
Rm
0 σn · gn (φ, s) · θnds for the modes n > 1 will be a linear

expression of the modes gn (φ,m) , gn−1 (φ,m) , . . . , g1 (φ,m).
Proof. gn (φ, s) = − exp (−φs) ·

Pn−2
k=0

(−1)k(n−2)!(2φs)k
(k!)2(n−2−k)! . Write u (s) =Pn−2

k=0 pn,k · sk so du (s) =
Pn−2

k=0 qn,k · sk−1ds where pn,k and qn,k capture all of
the associated constants, and dv (s) = − exp (−φs) ds so v (s) = 1

φ exp (−φs).
Integration by parts, i.e

R
u (s) dv (s) = u (s) v (s)− R v (s) du (s), will result in

the indefinite integral exp (−φs)·Pn−2
k=0 wn,k ·sk−

R
exp (−φs)·Pn−2

k=0 xn,k ·sk−1ds,
where wn,k and xn,k capture all of the associated constants, and the maximum
order of the polynomial term in the new integration term has been reduced by
1. Hence, the repeated application of integration by parts will ultimately result
in a finite sequence of exponential-polynomial functions with a maximum order
polynomial term of n − 2, and a minimum order 0. This may be evaluated
at the limits of integration 0 and m, and the resulting series of exponential-
polynomial functions (with maximum order n−2 and a minimum order 0) may
be re-arranged into an equivalent sequence of OLP functions plus a constant.

A.4 The VAO model forward rate curve

Substituting the results from sections A.2 and A.3 into equation 11 gives the
generic VAO model of the forward rate curve, i.e:
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f (t,m) = σ1θ1m+
NX
n=1

[γn + λn (t)] · gn (φ,m)−
NX
n=1

σ2n · hn(φ,m) (16)

which is equivalent to equation 5 with the substitution βn = γn + λn (t).

B Proof of Proposition 2

The proof of Proposition 2 proceeds in two sections: (1) deriving the intertem-
poral relationship between expected paths of the short rate as time evolves
within the HJM framework; and (2) substituting expected paths of the short
rate as defined within the VAO model into the result from the HJM framework.

B.1 The expected path of the short rate within the HJM frame-
work

Define αn (s,m) =
PN

n=1 σn (s,m)
£−θn + Rm0 σn (s, u) du

¤
in equation 11, so

that f (t,m) = Et [r (t+m)] −PN
n=1

Rm
0 αn (s,m) ds. Hence, given a finite

time-increment τ , f (t, τ +m) = Et [r (t+ τ +m)] −PN
n=1

R τ+m
0 αn (s,m) ds;

and f (t+ τ ,m) = Et+τ [r (t+ τ +m)]−PN
n=1

R τ+m
τ αn (s,m) ds.

Substituting these expressions into equation 4 from HJM, i.e f (t+ τ ,m) =
f (t, τ +m) +

PN
n=1

R τ
0 αn (s,m) ds +

PN
n=1

R t+τ
t σn (s,m) dWn (s), gives the

equality Et+τ [r (t+ τ +m)] −PN
n=1

R τ+m
τ αn (s,m) ds = Et [r (t+ τ +m)] −PN

n=1

R τ+m
0 αn (s,m) ds+

PN
n=1

R τ
0 αn (s,m) ds+

PN
n=1

R t+τ
t σn (s,m) dWn (s).24

The right-hand side of this equality contains two identical integrals with dif-
ferent upper limits of integration. These may be combined into a single in-
tegral with a new lower limit of integration, i.e −PN

n=1

R τ+m
0 αn (s,m) ds +PN

n=1

R τ
0 αn (s,m) ds = −

PN
n=1

R τ+m
τ αn (s,m) ds. The latter integral identi-

cally cancels with the same term on the left-hand side of the equality, giving
the result:

Et+τ [r (t+ τ +m)] = Et [r (t+ τ +m)] +
NX
n=1

Z t+τ

t
σn (s,m) dWn (s) (17)

This is intuitive: the expected path of the short rate would be realised if not for
the impact of new and unpredictable information represented by the summation
of stochastic integrals

PN
n=1

R t+τ
t σn (s,m) dWn (s). These stochastic integrals

do not have closed form solutions but Et

hR t+τ
t σn (s,m) dWn (s)

i
= 0 (see Ross

(1997) pp. 541-542), and with time-invariant σn (s,m) (as assumed for the VAO
model), each integral will be a summation of infinitesimal σn (s,m) dWn (s)
increments expressible as εn (t+ τ) · σn (s,m).
24Note that m on the left-hand side of the equality and τ +m on the right-hand side of the

equality refer to the same future point in time, which is denoted by T (the time of maturity)
in HJM.
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B.2 The expected path of the short rate within the VAO(3)
model

Using the definitions from Proposition 1 and the vector notation introduced
in Proposition 2, the expected path of the short rate at times t + τ and
t from equation 17 may be expressed respectively as Et+τ [r (t+ τ +m)] =
[λ (t+ τ)]0 g (φ,m), and Et [r (t+ τ +m)] = [λ (t)]0 g (φ, τ +m). Each stochas-
tic term

R t+τ
t σn (s,m) dWn (s) may be written as εn (t+ τ) · gn (φ,m) where

ε (t+ τ) has an expected value of zero, and so
PN

n=1

R t+τ
t σn (s,m) dWn (s) may

be written in vector form as [ε (t+ τ)]0 g (φ,m). Substituting these expressions
into equation 17 gives the equality [λ (t+ τ)]0 g (φ,m) = [λ (t)]0 g (φ, τ +m) +
[ε (t+ τ)]0 g (φ,m).

For the VAO(3) model g (φ, τ +m) = [Φ (φ, τ)]0 g (φ,m), where g(φ, τ +
m) = {g1 (φ, τ +m) , g2 (φ, τ +m) , g3 (φ, τ +m)}0, [Φ (φ, τ)]0 is the transpose
of equation 8, and g(φ,m) = {g1 (φ,m) , g2 (φ,m) , g3 (φ,m)}0.25 This enables
the equality for the expected path of the short rate at times t+ τ and t to be
written as [λ (t+ τ)]0 g (φ,m) = [λ (t)]0 [Φ (φ, τ)]0 g (φ,m)+ [ε (t+ τ)]0 g (φ,m).
Adding the term premium function γ0g (φ,m) to both sides of the equality
enables the left-hand side to be written as [β (t+ τ)]0 g (φ,m) = γ0g (φ,m) +
[λ (t)]0 [Φ (φ, τ)]0 g (φ,m)+[ε (t+ τ)]0 g (φ,m)β (t+ τ), because β (t+ τ) = γ+
λ (t+ τ). Factoring out the common term g(φ,m), and then taking the trans-
pose gives the following result (in column-vector form):

β (t+ τ) = γ +Φ (φ, τ)λ (t) + ε (t+ τ) (18)

and this may be rewritten in terms of β (t) as follows:

β (t+ τ) = [I−Φ (φ, τ)]γ +Φ (φ, τ) [γ + λ (t)] + ε (t+ τ) (19a)

= µ+Φ (φ, τ)β (t) + ε (t+ τ) (19b)

where β (t) = γ + λ (t), and µ =[I−Φ (φ, τ)]γ.

C The empirical application of the VAO model to
market-quoted interest rate data

At each point in time, the VAO(3) model coefficients βn are estimated using the
cashflows and market-quoted data for the fixed interest securities that represent
the yield curve at that time. Those securities are typically coupon-bearing,
and so an allowance for multiple cashflows (each with a different zero-coupon
discount rate corresponding to the timing of the cashflow) is required, i.e:26

25This may be verified directly by substitution of the functions gn (φ, τ +m) and gn (φ,m),
matrix multipication, and simplification. The general proof for the VAO(N) model (available
from the author on request) revolves around a step analogous to this, but the required notation
and proof that the factoristion g (φ, τ +m) = [Φ (φ, τ)]0 g (φ,m) always exists is more involved
than for the VAO(3) example.
26This is the most widely used approach for estimating OLP model coefficients directly

from market-quoted data, and is outlined in Söderlind and Svensson (1997) and the articles
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Minimise :
KX
k=1

(wk · εk)2 (20a)

where : εk =

J[k]X
j=1

ajk · exp [−mjk ·R (mjk)] (20b)

and : R (m) =
σ1θ1m

2
+

3X
n=1

βn · sn(φ,m)−
3X

n=1

σ2n · un(φ,m)(20c)

where K is the number of fixed interest securities used to define the yield
curve; wk is a weighting factor, which is set to the inverse of the “basis point
value” (i.e the price change of the security for a yield change of a single ba-
sis point) to obtain a minimisation of yield residuals; J [k] is the number of
cashflows for security k; ajk is the magnitude of the cashflow j for security k
(defined to be negative for the settlement price, and positive for all cashflows
beyond settlement); mjk is the maturity of the cashflow j of security k; and
R (mjk) is the zero-coupon interest rate. The zero-coupon interest rates in
equation 20c are R (m) = 1

m

Rm
0 f(m)dm, so sn(φ,m) = 1

m

Rm
0 gn(φ,m)dm, and

un(φ,m) =
1
m

Rm
0 hn(φ,m)dm. The relevant results for sn(φ,m) and un(φ,m)

in the VAO(3) model are, respectively:

s1(φ,m) = 1 (21a)

s2(φ,m) =
1

φm
[exp(−φm)− 1] (21b)

s2(φ,m) = − 1

φm
[2φm exp(−φm) + exp(−φm)− 1] (21c)

u1(φ,m) =
1

6
m2 (22a)

u2(φ,m) =
1

4φ3m
[4 exp (−φm)− 3 + 2φm− exp (−2φm)] (22b)

u3(φ,m) =
1

2φ3m

 6 exp (−φm)− 3φm exp (−2φm)
+4φm exp (−φm)− 4 + φm

−φ2m2 exp (−2φm)− 2 exp (−2φm)

 (22c)

Because the bond yield data in this article are monthly averages of constant-
maturity yields, they do not correspond to precisely defined cashflows. Hence,
the bond yield data is assumed to correspond to a par bond for the specified
maturity (i.e the cashflows are a settlement price of -1, a principal of 1 for
the given maturity, and semi-annual coupons between settlement and maturity

in the Bank for International Settlements (1999). Zero-coupon interest rate data, as used in
Diebold and Li (2002), can also be used within this set-up by specifying just two cashflows for
each security. However, that zero-coupon data is originally derived from market-quoted data
anyway, and so the direct estimation method is more efficient.
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equal to half the yield). Note that φ, θ1, and the volatility coefficients σn
in equation 20c are parameters that are estimated using historical data, as
discussed in the text. With the cashflows and parameters defined, expression
20 may be estimated using the Newton-Raphson technique.

23



References

Ang, A. and Piazzesi, M. (2003), ‘A no-arbitrage vector autoregression of term
structure dynamics with latent variables’, Journal of Monetary Economics
50, 745—787.

Backus, D., Foresi, S. and Zin, S. (1998), ‘Arbitrage opportunities in arbitrage-
free models of bond pricing’, Journal of Business and Economic Statistics
16, 13—26.

Bank for International Settlements (1999), Zero-coupon Yield curves: Technical
Documentation, Bank for International Settlements.

Barrett, W., Gosnell, T. and Heuson, A. (1995), ‘Yield curve shifts and the
selection of immunization strategies’, Journal of Portfolio Management
Fall, 53—64.

Björk, T. and Christensen, B. (1999), ‘Interest rate dynamics and consistent
forward rate curves’, Mathematical Finance 9(4), 323—348.

Bliss, R. (1997), ‘Testing term structure estimation methods’, Advances in Fu-
tures and Options Research 9, 197—231.

Brandt, M. and Yaron, A. (2002), ‘Time-consistent no-arbitrage models of the
term structure’, Working paper, Wharton School, University of Pennsyl-
vania .

Brooks, R. and Yong Yan, D. (1999), ‘London inter-bank offer rate (LIBOR)
versus Treasury rate: evidence from the parsimonious term structure
model’, Journal of Fixed Income 2, 71—83.

Chiarella, C. (2003), ‘The Heath-Jarrow-Morton Model’, Chapter 26, work in
progress .

Courant, R. and Hilbert, D. (1953), Methods of Mathematical Physics, First
English Edition, Interscience Publishers.

Dahlquist, M. and Svensson, L. (1996), ‘Estimating the term structure of inter-
est rates for monetary policy analysis’, Scandinavian Journal of Economics
98(2), 163—183.

de La Grandville, O. (2001), Bond Pricing and Portfolio Analysis: Protecting
Investors in the Long Run, The MIT Press.

Diaz, A. and Skinner, F. (2001), ‘Estimating corporate yield curves’, Journal
of Fixed Income 3, 95—103.

Diebold, F. and Li, C. (2002), ‘Forecasting the term structure of government
bond yields’, Working paper, University of Pennsylvania .

Diebold, F. and Mariano, R. (1995), ‘Comparing predictive accuracy’, Journal
of Business and Economic Statistics 13(3), 253—263.

24



Diebold, F., Rudebusch, G. and Aruoba, S. (2003), ‘The macroeconomy and the
yield curve: a nonstructural analysis’,Working paper, Center for Financial
Studies .

Duffee, G. (2002), ‘Term premia and interest rate forecasts in affine models’,
Journal of Finance 57(1), 405—443.

Fang, V. and Muljono, R. (2003), ‘An empirical analysis of the Australian dollar
swap spreads’, Pacific-Basin Finance Journal 11, 153—173.

Fergusson, R. and Raymar, S. (1998), ‘A comparative analysis of several popular
term structure estimation models’, Journal of Fixed Income 1, 17—32.

Filopovíc, D. (1999a), ‘Exponential-polynomial families and the term structure
of interest rates’, Working paper, ETH Zurich .

Filopovíc, D. (1999b), ‘A note on the Nelson-Siegal family’, Mathematical Fi-
nance 9(4), 349—359.

Gordon, R. (1990), Macroeconomics, Fifth Edition, Harper Collins.

Heath, D., Jarrow, R. and Morton, A. (1992), ‘Bond pricing and the term struc-
ture of interest rates: a new methodology for contingent claims valuation’,
Econometrica 60(1), 77—106.

Ho, T. and Lee, S. (1986), ‘Term structure movements and pricing interest rate
contingent claims’, Journal of Finance 41, 1011—1029.

Hull, J. and White, A. (1990), ‘Pricing interest rate derivative securities’, Re-
view of Financial Studies 3(4), 573—592.

Hunt, B. (1995), ‘Fitting parsimonious yield curve models to Australian coupon
bond data’, Working paper, School of Finance and Economics, University
of Technology Sydney 51.

Ioannides, M. (2003), ‘A comparison of yield curve estimation techniques using
UK data’, Journal of Banking and Finance 27, 1—26.

Jordan, J. and Mansi, S. (2003), ‘Term structure estimation from on-the-run
Treasuries’, Journal of Banking and Finance 27, 1487—1509.

Kacala, V. (1993), ‘Zero coupon curves part 3: fair bond yields’, Research paper,
Buttle Wilson .

Krippner, L. (2003a), ‘Modelling the yield curve with orthonormalised Laguerre
polynomials: a consistent cross-sectional and intertemporal approach’,
Working paper, University of Waikato .

Krippner, L. (2003b), ‘Modelling the yield curve with orthonormalised Laguerre
polynomials: an intertemporally consistent approach with an economic
interpretation’, Working paper, University of Waikato .

25



Krippner, L. (2004), ‘Optimising fixed interest portfolios with an orthonor-
malised Laguerre polynomial model of the yield curve’, Working paper
presented at the New Zealand Finance Colloqiuim 2004 .

Mansi, S. and Phillips, J. (2001), ‘Modeling the term structure from the on-the-
run Treasury yield curve’, Journal of Financial Research 24(4), 545—564.

Monetary Authority of Singapore (1999), ‘Extracting market expectations of
future interest rates from the yield curve: an application using Singapore
interbank and interest rate swap data’, Occasional paper 17, Economics
Department, Monetary Authority of Singapore .

Nelson, C. and Siegel, A. (1987), ‘Parsimonious modelling of yield curves’,
Journal of Business October, 473—489.

Rainville, E. and Bedient, P. (1981), Elementary Differential Equations, Sixth
Edition, Collier Macmillan.

Ross, S. (1997), Introduction to Probability Models, Sixth Edition, Academic
Press.

Schmid, B. and Kalemanova, A. (2002), ‘Applying a three-factor defaultable
term structure model to the pricing of credit default options’, International
Review of Financial Analysis 11, 139—158.

Seppala, J. and Viertio, P. (1996), ‘The term structure of interest rates: esti-
mation and interpretation’, Discussion paper, Bank of Finland 19.

Söderlind, P. and Svensson, L. (1997), ‘New techniques to extract market ex-
pectations from financial instruments’, Journal of Monetary Economics
40, 383—429.

Soto, G. (2001), ‘Immunization derived from a polynomial duration vector in
the Spanish bond market’, Journal of Banking and Finance 25, 1037—1057.

Steeley, J. (2004), ‘Estimating time-varying risk premia in UK long-term gov-
ernment bonds’, Applied Financial Economics 14, 367—373.

Subramanian, K. (2001), ‘Term structure estimation in illiquid markets’, Jour-
nal of Fixed Income 2, 77—86.

Svensson, L. (1994), ‘Estimating and interpreting forward interest rates: Swe-
den 1992-4’, Discussion paper, Centre for Economic Policy Research 1051.

Vasicek, O. (1977), ‘An equilibrium characterisation of the term structure’,
Journal of Financial Economics 5, 177—188.

Walsh, C. (1998), Monetary Theory and Policy, The MIT Press.

Willner, R. (1996), ‘A new tool for portfolio managers: level, slope, and curva-
ture durations’, Journal of Fixed Income 2, 48—59.

Wolfram, S. (1996), The Mathematica Book, Third Edition, Cambridge Univer-
sity Press.

26



Forecast 
horizon 
(years)

Yield or 
spread 

forecast
Full  

sample

Bretton-
Woods / 

gold price 
target

Federal  
funds rate 

target

Non-
borrowed 
reserves 
target

Borrowed 
reserves / 

federal 
funds rate 

target
FF 122 68 148 367 56

0.25 GS10 61 31 35 139 66
FF/GS10 106 55 139 279 73

FF 169 108 216 446 90
0.5 GS10 88 45 46 150 98

FF/GS10 133 81 190 323 92
FF 220 148 272 557 154

1 GS10 130 63 64 240 150
FF/GS10 152 107 223 353 110

FF 259 157 296 505 221
1.5 GS10 160 75 87 284 186

FF/GS10 158 115 229 254 124
FF 285 151 278 362 274

2 GS10 178 83 96 299 207
FF/GS10 161 113 207 141 136

FF 316 155 169 n/a 338
3 GS10 206 105 95 n/a 235

FF/GS10 170 114 168 n/a 153

Monetary policy regime

Table 1: Root-mean-squared forecast errors for the VAO(3) framework, by
horizon and monetary policy regime.
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Figure 1: The first three OLP modes, gn (φ,m), with φ = 1.

-60

-40

-20

0

20

40

60

0 1 2 3 4 5 6 7 8 9 10

Maturity in years (m )

Fu
nc

tio
n 

va
lu

e

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
Fu

nc
tio

n 
va

lu
e

Level effect (LHS)

Slope effect (RHS)

Bow effect (RHS)

Figure 2: The first three volatility-adjustment functions, hn(φ,m), with φ = 1.
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Figure 3: The time-series data for the federal funds rate (FF) and the 10-
year government bond yield (GS10). The shading indicates the four different
monetary policy regimes that prevailed over the sample.

-30

-20

-10

0

10

20

30

00 03 06 09 12 15 18 21

Maturity in years (m )

Y
ie

ld
 re

si
du

al
 (b

as
is

 p
oi

nt
s)

0

1

2

3

4

5

6
Y

ie
ld

 (p
er

ce
nt

)

Yield residuals (LHS)

Actual yields (RHS)

Fitted 
yields 
(RHS)

Figure 4: The cross-sectional yield curve data for February 2004, and the es-
timated yields using the VAO(3) model. The coefficients are β (Feb-04) =
{5.91, 8.05,−3.21}0 percentage points, and the parameters are φ = 0.804,
θ1 = 1.62 percentage points, and σ = {0.84, 1.49, 1.17}0 percentage points.
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Forecast 
horizon 
(years)

Yield or 
spread 

forecast
Full  

sample

Bretton-
Woods / 

gold price 
target

Federal  
funds rate 

target

Non-
borrowed 
reserves 
target

Borrowed 
reserves / 

federal 
funds rate 

target
FF 1 5 24 -24 -3 

0.25 GS10 4 ** -2 ** 0 2 9 ***
FF/GS10 1 2 28 -48 12 

FF 3 3 12 -3 -8 
0.5 GS10 6 ** -3 * -2 -1 12 **

FF/GS10 -2 -1 7 -29 -1 
FF -8 -9 -36 24 -5 

1 GS10 10 * -4 ** -7 -1 21 **
FF/GS10 -32 * -12 -60 -56 -31 *

FF -24 -29 -118 *** 80 15 
1.5 GS10 13 * -5 * -12 2 31 ***

FF/GS10 -59 ** -22 -146 ** -100 -40 ***
FF -36 -37 -165 *** 122 29 

2 GS10 15 * -4 -15 -3 39 ***
FF/GS10 -75 ** -25 -191 *** -151 -40 ***

FF -44 -9 -225 *** n/a 47 *
3 GS10 18 -4 * -15 n/a 53 ***

FF/GS10 -87 ** 19 -200 *** n/a -49 ***

Monetary policy regime

Table 2: Root-mean-squared forecast errors (RMSEs) for the VAO(3) frame-
work less RMSEs for the random walk, by horizon and monetary policy
regime. A negative entry (non-shaded) indicates VAO model outperfor-
mance, and ***, **, * respectively represent 1, 5, and 10 percent two-tailed
levels of significance using the Diebold and Mariano (1995) method.

µ
component 0.25 0.5 1 1.5 2 3

µ(1) -3.9 -8.8 -22.8 -34.2 -44.9 -58.0
µ(2) 28.5 64.2 150.4 232.8 304.5 466.1
µ(3) -33.9 -62.2 -111.2 -144.5 -167.3 -205.0

Forecast horizon (years)

Table 3: Estimates of the three components of the vector µ over the param-
eter estimation period October 1986 to January 1994, by forecast horizon.
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Yield or
spread 0.25 0.5 1 1.5 2 3

FF -15 ** -25 -33 -26 -32 -65 
TB3 -7 -16 -21 -20 -31 -71 
GS1 -1 -3 -6 -11 -27 -66 
GS3 0 -1 -4 -10 -25 -64 
GS5 -1 -3 -8 -14 -26 -62 

GS10 5 1 -6 -11 * -22 *** -53 ***
GS20 5 4 1 -4 -9 -29 **

FF/GS10 -5 -26 * -53 * -40 -25 -32 

Forecast horizon (years)

Table 4: Root-mean-squared forecast errors (RMSEs) for the VAO(3) frame-
work less RMSEs for the random walk for the period February 1994 to
February 2004, by horizon. A negative entry (non-shaded) indicates VAO
model outperformance, and ***, **, * respectively represent 1, 5, and 10 per-
cent two-tailed levels of significance using the Diebold and Mariano (1995)
method.
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