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 “It is becoming clearer from the burgeoning literature that 

the energetics of coastal organisms are not divorced from the 

surrounding environment, but are indeed subtly and 

beautifully interwoven into the machinery of a very dynamic, 

if increasingly, fragile, coastal ocean.”  

Daniel M. Alongi, 1998 (Coastal Ecosystem Processes, CRC Press) 
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ABSTRACT 

Ecosystems are often connected by the transfer of resource ‘subsidies’ across their 

boundaries. In temperate estuaries, marine macrophyte leaf litter represents an 

obvious and visible detrital subsidy to nearby intertidal areas, where it can 

accumulate in temporally and spatially variable patches. This thesis investigates the 

ecology of macrophyte detrital subsidies, from their production and export (from 

the donor ecosystem), to the ecosystem effects of their decay and accumulation on 

recipient intertidal flats. 

To quantify estuarine detrital subsidies, the fluxes of macrophyte detritus, and other 

sources of primary production and nutrients (dissolved and particulates), were 

measured at the mouth of a mixed habitat temperate estuary. This study 

demonstrates that the estuary (typical of a North Island, New Zealand estuary) acts 

as a net exporter of detritus, total nitrogen (N), and phosphorus (P) to the wider 

coastal environment. While macrophyte detrital subsidies contributed relatively 

little to the total N and P export, they were transported in large and visible quantities. 

This study provides empirical data on the supply of detrital subsidies in temperate 

estuaries, and reveals that they are transported in pulses that vary temporally, in 

both their source and supply.  

To explore how detrital deposition and decay in intertidal soft-sediments alters 

ecosystem function (benthic primary production, metabolism, and nutrient cycling), 

an in situ experiment manipulated the supply of three detrital sources (mangrove, 

macroalgae, and seagrass) to experimental plots on a sandflat.  Benthic chambers 

were used to measure sediment-water solute fluxes as proxies for ecosystem 

function. Detrital enrichment had no significant effects on nutrient cycling, benthic 

metabolism, or macrofaunal community structure. However, detrital addition 
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instigated transient and source-dependent effects on benthic gross primary 

production (GPP), where macroalgae and mangrove detritus initially (4 d) 

decreased GPP, but after 17 d, GPP was slightly enhanced in these detrital 

treatments.  

Another field experiment aimed to determine the effects of detrital deposition on 

benthic ecosystem function in the presence of bioturbating crabs, as well as at 

different intertidal sites (characterised by different sediment properties). The 

presence of crabs and seagrass detritus were manipulated in cages on an intertidal 

sand and muddy-sand flat, and the resulting effects on ecosystem function were 

measured. Detrital enrichment instigated short-term negative effects on GPP in sand 

(regardless of the presence of crabs), and nutrient cycling in muddy-sand (but only 

in the presence of crabs). However, at the site characterised by muddy-sand, detrital 

enrichment also enhanced benthic metabolism and modified macrofaunal 

community structure (regardless of the presence/absence of crabs). These results 

emphasise that the effects of detrital subsidies on ecosystem function are context-

dependent. 

While detrital enrichment did not result in large shifts in benthic community 

structure or function, subtle and transient effects on some functions were found.  In 

these productive intertidal sediments, detritus is unlikely to be an important primary 

food source to benthic communities. However, by physically altering the structure 

and function of receiving sediments, seasonal pulses in the supply of detritus may 

add to the heterogeneous nature of intertidal flats in both time and space. As benthic 

ecosystem responses to detrital deposition vary with detrital species, anthropogenic 

changes to the supply, quality and timing of detrital subsidies (e.g. decline in 

seagrass, and proliferation of macroalgae blooms) could have flow-on effects to the 

structure and functioning of receiving soft-sediment communities. 



 vii   

PREFACE 

The main body of this thesis comprises three research chapters (Chapters 2-4), 

which have been published, or are currently in preparation for publication in peer 

reviewed scientific journals. I was responsible for the field work, laboratory and 

data analysis, and writing. Unless otherwise referenced, the information in this 

thesis was produced from my own ideas, and all work presented was carried out 

under the guidance and supervision of Professor Conrad Pilditch, and Associate 

Professor Ian Hogg from the University of Waikato, as well as Dr Carolyn 

Lundquist and Dr Andrew Lohrer from the National Institute of Water and 

Atmospheric Research Ltd. (NIWA). 

Chapter 2 has been submitted for peer review to Marine and Freshwater Research, 

under the title ‘Quantifying macrodetritus fluxes from a small temperate estuary’ 

by RV Gladstone-Gallagher, DR Sandwell, AM Lohrer, CJ Lundquist, and CA 

Pilditch. 

Chapter 3 has been published in PLoS ONE (2016) volume 11(5), under the title 

‘Effects of detrital subsidies on soft-sediment ecosystem function are transient and 

source-dependent’ by RV Gladstone-Gallagher, AM Lohrer, CJ Lundquist, and CA 

Pilditch. 

Chapter 4 has been accepted and is in press in Marine Ecology Progress Series, 

under the title ‘Site-dependent effects of bioturbator-detritus interactions alter soft-

sediment ecosystem function’ by RV Gladstone-Gallagher, HR Needham, AM 

Lohrer, CJ Lundquist, and CA Pilditch. 





 ix   

ACKNOWLEDGEMENTS 

Thankfully, my PhD was not a lonely journey and many people were there to help 

me along the way. First and foremost, I thank my supervisory panel, Professor 

Conrad Pilditch, Dr Carolyn Lundquist, Dr Andrew Lohrer, and Associate 

Professor Ian Hogg. Conrad and Carolyn, thank you for choosing me for the 

summer research project on juvenile bivalve post-settlement dispersal in 2009, this 

is the moment I became hooked on soft-sediment ecology! Conrad, I am extremely 

grateful for your guidance and mentorship over the years, your constant 

encouragement, infectious enthusiasm, and big thinking has shaped me into the 

scientist I am today. Drew, thank you for your positivity, and laid-back approach, I 

have learned so much from you. Carolyn, your willingness to alter your busy 

schedule to help me in the field is amazing. Ian, thank you for your continuous 

support and approachability over the years. 

I had an enormous amount of help with my field work! I thank Dudley Bell, Dean 

Sandwell, Emily Douglas, Hazel Needham, Warrick Powrie, Chris Morcom, 

Bradley Monahan, Clarisse Niemand, Ryan Hughes, Catherine Kelly, Holly 

Bredin-Grey, Katie Brasell, Mathew Bennion, Jenny Hillman, Brandon Breedt, 

Chris Eager, Laura Hines, Anja Singer, Svenja Schwichtenberg, Melanie Biausque, 

Katrina Stephenson, Rex Fairweather, and Julia Mullarney. I thank Sarah Hailes, 

Ronald Ram, Waiarani Edwards, Anjana Rajendrum, Lisa McCartain, Barry 

Greenfield, Kelly Carter, Annette Rogers, Lee Laborie, and Katie Cartner for 

laboratory support, and Judi Hewitt for statistical advice. Many thanks also to Dean 

Sandwell, Ben Norris, Berengere Dejeans, and Bradley Monahan for cracking my 

MatLab issues!  



 x   

Special mentions and thanks go to the following people: Dudley, your input has 

been invaluable, thank you for the hours in the field and your expertise, particularly 

in the design and use of my detritus nets. Dean, I appreciate your wealth of 

knowledge and ability to design equipment to suit my specific sampling needs 

(especially the sweet bridge hanger for the flowtracker); thank you for helping me 

to measure tidal discharge, and also for your hours spent writing and 

troubleshooting my MatLab code. Emily, I am so glad you decided to do a PhD 

when I did, your company has made it so much fun, and you are the rock who keeps 

everyone going during tough field campaigns! Bradley, thank you for your 

willingness to help me with everything, from staying up all night for water sampling 

and filtering, to MatLab! Hazel, you are a wonderful teacher and role model, thank 

you for your advice, mentorship, encouraging words and helpful comments. Sarah, 

thank you for being an overall loyal and supportive friend, and for your tireless 

hours teaching me how to identify macrofauna and use arcGIS! Cheryl Ward, thank 

you for all of the library help you have given me, you are wonderfully approachable 

and helpful! I am grateful to Gwenda Pennington and the scholarships office for the 

helpful advice during my years of study. 

To my fellow university colleagues, Emily, Bradley, Rachel, Tarn, Clarisse, Ben, 

Victor, Berengere, Peter, Erik, Paola, Mariana, Alex, and Dan, thank you for all the 

pick-me-up conversations and well deserved breaks.  

Finally, I would like to acknowledge my family, without whom I would not have 

got here. In particular, my parents, Martin and Gillian, thank you for your 

encouragement to achieve, for teaching me to think critically, and for the overall 

support.  



 xi   

This project was supported by the University of Waikato Doctoral Scholarship, 

Shirtcliffe Fellowship, Waikato Graduate Women Charitable Trust Merit Award 

for Doctoral Study, and New Zealand Coastal Society PhD scholarship. Some 

funding for sample analysis was provided by the New Zealand Ministry of Business, 

Innovation and Employment (Contract # CO1X1002: Aquatic Rehabilitation, and 

NIWA Coasts & Oceans Research Programme, Project COME1601). I thank the 

New Zealand Marine Sciences Society for providing funding for conference travel 

during my PhD. In addition, I acknowledge the Walter and Andrée de Nottbeck 

Foundation, Alf Norkko and the staff and students at Tvärminne Zoological Station, 

University of Helsinki, Finland, for support during the preparation of the 

manuscript that comprises Chapter 3. 





 xiii   

TABLE OF CONTENTS 

ABSTRACT ............................................................................................................ v 

PREFACE ............................................................................................................. vii 

ACKNOWLEDGEMENTS ................................................................................... ix 

TABLE OF CONTENTS ..................................................................................... xiii 

LIST OF FIGURES ............................................................................................ xvii 

LIST OF TABLES ............................................................................................... xix 

CHAPTER 1: General introduction ........................................................................ 1 

1.1 Background and introduction ................................................................... 1 

1.1.1 Ecological resource subsidies ................................................................ 1 

1.1.2 Estuarine detrital subsidies .................................................................... 4 

1.2 Thesis organisation, aims and objectives ............................................... 12 

CHAPTER 2: Quantifying macrodetritus fluxes from a small temperate estuary  

 ..................................................................................................................... 15 

2.1 Introduction ............................................................................................ 15 

2.2 Materials and methods ........................................................................... 19 

2.2.1 Site description .................................................................................... 19 

2.2.2 Sampling regime .................................................................................. 22 

2.2.3 Laboratory analyses ............................................................................. 25 

2.2.4 Data analysis and material flux calculations ....................................... 26 

2.3 Results .................................................................................................... 27 

2.3.1 Macrodetritus fluxes ............................................................................ 28 

2.3.2 Nitrogen fluxes .................................................................................... 30 

2.3.3 Phosphorus fluxes ................................................................................ 32 

2.3.4 Chlorophyll a fluxes ............................................................................ 33 

2.3.5 Stream contribution to net fluxes ........................................................ 34 

2.4 Discussion .............................................................................................. 34 



 xiv   

CHAPTER 3: Effects of detrital subsidies on soft-sediment ecosystem function 

are transient and source-dependent .............................................................. 45 

3.1 Introduction ............................................................................................. 45 

3.2 Materials and methods ............................................................................ 48 

3.2.1 Experimental treatments and setup ...................................................... 48 

3.2.2 Field measurements ............................................................................. 50 

3.2.3 Laboratory analyses ............................................................................. 52 

3.2.4 Flux calculations and data analysis ...................................................... 52 

3.3 Results..................................................................................................... 55 

3.3.1 Sediment variables ............................................................................... 57 

3.3.2 Detrital decomposition ......................................................................... 60 

3.3.3 Macrofaunal community ...................................................................... 61 

3.3.4 Measures of ecosystem function .......................................................... 62 

3.4 Discussion ............................................................................................... 66 

CHAPTER 4: Site-dependent effects of bioturbator-detritus interactions alter soft-

sediment ecosystem function ....................................................................... 73 

4.1 Introduction ............................................................................................. 73 

4.2 Materials and methods ............................................................................ 77 

4.2.1 Study site and experimental set-up ...................................................... 77 

4.2.2 Field measurements ............................................................................. 79 

4.2.3 Laboratory analyses ............................................................................. 81 

4.2.4 Data analysis ........................................................................................ 82 

4.3 Results..................................................................................................... 83 

4.3.1 Sediment properties and macrofauna ................................................... 83 

4.3.2 Benthic ecosystem function ................................................................. 90 

4.4 Discussion ............................................................................................... 97 

CHAPTER 5: Thesis summary and conclusions ................................................. 107 

5.1 Summary ............................................................................................... 107 



 xv   

5.2 Conclusions and recommendations for future research ....................... 109 

5.2.1 Spatial and temporal scales ............................................................... 111 

5.2.2 Context of the receiving environment ............................................... 114 

5.2.3 Detrital source and state .................................................................... 117 

5.2.4 Tropical-temperate comparisons ....................................................... 119 

5.2.5 Final concluding remarks .................................................................. 120 

REFERENCES .................................................................................................... 123 

APPENDICES .................................................................................................... 143 

Appendix 1: Summary of estuary-to-coast macrodetritus flux studies (Chapters 1 

and 2) .................................................................................................... 143 

Appendix 2: Summary of in situ detrital addition studies (Chapters 1 and 5)   

 .............................................................................................................. 149 

Appendix 3: Discharge models and calculations (Chapter 2) .......................... 165 

Appendix 4: PERMANOVA results of sediment and macrofauna properties 

(Chapter 4) ............................................................................................ 168 

 

 





 

xvii 

LIST OF FIGURES 

Figure 1.1 Diagram of a simplified detrital food web, illustrating two pathways for 

the incorporation of allochthonous detritus ............................................ 3 

Figure 1.2 Photos of deposited macrophyte detritus on intertidal sediments.......... 5 

Figure 1.3 Concept diagram illustrating the processes involved in estuarine detrital 

subsidies, including the concepts on which each thesis chapter is based 

(Chapter 2 - purple; Chapters 3 and 4 - blue). ........................................ 6 

Figure 2.1 Map of North Island, New Zealand (A), Tairua Estuary (B) with the 

intertidal boundary shown by dashed lines, and Pepe Inlet (C), including 

sampling stations ‘○’ and ‘*’, and the distribution of vegetated 

habitats .................................................................................................. 21 

Figure 2.2 Diagram of one of the two sets of macrodetritus nets positioned in the 

main channel at the mouth of Pepe Inlet, Tairua Estuary ..................... 24 

Figure 2.3 Fluxes of macrodetritus from Pepe Inlet, Tairua Estuary, as a function 

of season (Aut = Feb 2014, Win = Jul 2014, Spr = Nov 2014, Sum = Feb 

2015) and tidal direction ....................................................................... 29 

Figure 2.4 Nitrogen flux as macrodetritus (A), particulate (TPN; B), and dissolved 

(TDN, C, and ammonium NH4
+, D), from Pepe Inlet, Tairua Estuary, as 

a function of season (Aut = Feb 2014, Win = Jul 2014, Spr = Nov 2014, 

Sum = Feb 2015) and tidal direction ..................................................... 31 

Figure 2.5 Phosphorus flux as macrodetritus (A), particulate (TPP; B), and 

dissolved (TDP; C), from Pepe Inlet, Tairua Estuary, as a function of 

season (Aut = Feb 2014, Win = Jul 2014, Spr = Nov 2014, Sum = Feb 

2015) and tidal direction ....................................................................... 32 

Figure 2.6 Chlorophyll a (chl a) flux from Pepe Inlet, Tairua Estuary, as a function 

of season (Aut = Feb 2014, Win = Jul 2014, Spr = Nov 2014, Sum = Feb 

2015) and tidal direction ....................................................................... 33 

Figure 2.7 Conceptual diagram of simplified total nitrogen fluxes (in kg N tidal 

cycle-1) in summer, including inputs of total N from Pepe Stream, N as 

NH4
+ from the benthos, and total N exported at the mouth of Pepe 

Inlet ....................................................................................................... 40 

Figure 3.1 Decay rates of Avicennia, Zostera and Ecklonia detritus .................... 60 

Figure 3.2 nMDS ordination of untransformed macrofaunal community data. 

Ordinations (based on Bray-Curtis similarity) show species distributions 

as a function of (A) time: 4, 17 and 46 d post-detrital addition (n = 24) 

and (B) detrital treatments: control, Avicennia, Zostera, and Ecklonia (n 

= 18) ...................................................................................................... 62 



 xviii   

Figure 3.3 Solute fluxes in control and detrital treatments at 4, 17, and 46 d post-

addition. (A) NH4
+ flux (light and dark chamber fluxes pooled); (B) Net 

primary production (NPP; white bars light chambers) and sediment 

oxygen consumption (SOC; black bars dark chambers); and (C) Gross 

primary production normalised for chlorophyll a biomass (GPPchl a), as 

a function of treatment (C = Control, A = Avicennia, Z = Zostera, E= 

Ecklonia) and time (4, 17, and 46 d post-addition) .............................. 63 

Figure 4.1 Example photographs of the sediment surface in each treatment at S 

(sand site): (A) –C–D, (B) –C+D, (C) +C–D, (D) +C+D; and at MS 

(muddy-sand site): (E) –C–D, (F) –C+D, (G) +C–D, (H) +C+D ........ 86 

Figure 4.2 Non-metric multi-dimensional scaling (nMDS) analysis (Bray-Curtis 

similarity) for sites S (A; sand), and MS (B; muddy-sand), showing 

differences in the macrofaunal community composition (excluding adult 

Austrohelice crassa), as a function of the presence and absence of crabs 

(+C, –C) and detritus (+D black triangles; –D white squares) ............. 89 

Figure 4.3 Mean (+1 SE, n = 4) sediment oxygen consumption (SOC), as a function 

of site (S = sand, and MS = muddy-sand), and presence or absence of 

crabs (+C, –C) and detritus (+D black bars, –D white bars) ................ 92 

Figure 4.4 Mean (+1 SE, n = 4) dark (A) and light (B) ammonium fluxes (NH4
+), 

as a function of site (S = sand, and MS = muddy-sand), and presence or 

absence of crabs (+C, –C) and detritus (+D black bars, –D white 

bars) ...................................................................................................... 93 

Figure 4.5 Mean (+ 1 SE, n = 4) net primary production (NPP), as a function of site 

(S = sand, and MS = muddy-sand), and presence or absence of crabs (+C, 

–C) and detritus (+D black bars,–D white bars) ................................... 95 

Figure 4.6 Mean (+ 1 SE, n = 4) gross primary production (A, GPP) and gross 

primary production normalised for chlorophyll a biomass (B, GPPchl a), 

as a function of site (S = sand, and MS = muddy-sand), and presence or 

absence of crabs (+C, –C) and detritus (+D black bars,–D white bars) 

 .............................................................................................................. 96 

Figure A3.1 Correlations used to predict discharge, between velocity × depth 

(ADV/ADCP measurement interval = 10 min) and discrete discharge 

measurements (Flowtracker ADV) on each sampling date (A = May 

2014 - Aut, B = Jul 2014 - Win, C = Nov 2014 - Spr, D = Feb 2015 - 

Sum) ..................................................................................................  165 

Figure A3.2 Predicted and measured discharge as a function of time, on each 

sampling date (A = May 2014 - Aut, B = Jul 2014 - Win, C = Nov 2014 

- Spr, D = Feb 2015 - Sum) ...............................................................  166 

 



 

xix 

LIST OF TABLES 

Table 2.1 Temperature and Rainfall during the seasons that sampling was 

conducted .............................................................................................. 22 

Table 2.2 Input of dissolved nitrogen and phosphorus (TDN, TDP), ammonium 

(NH4
+), particulate nitrogen and phosphorus (TPN, TPP), and 

chlorophyll a (chl a), from Pepe Stream into Pepe Inlet, as a function of 

season (Aut = Feb 2014, Win = Jul 2014, Spr = Nov 2014, Sum = Feb 

2015) ..................................................................................................... 34 

Table 2.3 Nitrogen (N) budget model for Pepe Inlet across seasons (Aut = Feb 2014, 

Win = Jul 2014, Spr = Nov 2014, Sum = Feb 2015). ........................... 41 

Table 3.1 Sediment properties and macrofaunal community variables. Variables 

are reported as a function of detritus treatment (control, Avicennia, 

Zostera, Ecklonia) and time (4, 17, 46 d post-detrital addition) ........... 56 

Table 3.2 Repeated measures PERMANOVA results for sediment properties and 

macrofauna community variables. PERMANOVA tests were performed 

on univariate measures of sediment properties, macrofaunal abundance, 

and taxa richness (Euclidean distance), and multivariate macrofaunal 

community structure (Bray-Curtis similarity), as a function of time (4, 

17, 46 d post-addition) and treatment (C = control, A = Avicennia, E = 

Ecklonia, Z = Zostera) .......................................................................... 58 

Table 3.3 Summary of repeated measures PERMANOVA results on univariate 

measures of ecosystem function. PERMANOVA tests (Euclidean 

distance) were performed on ecosystem function variables, as a function 

of time (4, 17, 46 d post-addition) and treatment (C = control, A = 

Avicennia, E = Ecklonia, Z = Zostera) .................................................. 64 

Table 3.4 Light, temperature, and salinity at the sediment-water interface .......... 65 

Table 4.1 Mean sediment properties (1 SE in brackets, n = 4) for sites S (sand), and 

MS (muddy-sand), as a function of the presence and absence of crabs 

(+C, –C) and detritus (+D, –D) ............................................................. 85 

Table 4.2 Mean (1 SE, n = 4) Austrohelice crassa density and biomass, and detritus 

measured in the experimental cages (0.36 m2), as well as total 

macrofauna abundance and taxa richness (0.013 m2), for sites S (sand), 

and MS (muddy-sand), as a function of the presence and absence of crabs 

(+C, –C) and detritus (+D, –D). ............................................................ 87 

Table 4.3 Results of PERMANOVA (Euclidean distance) comparing measures of 

ecosystem function between crab (C; 2 levels: +C, –C) and detritus (D; 

2 levels: +D, –D) treatments, at each site (sand S, and muddy-sand 

MS) ........................................................................................................ 90 

Table A1.1 Summary of estuary-to-coast macrodetritus flux studies ................. 144  



 xx   

Table A2.1 Summary of in situ detrital addition studies .................................... 150 

Table A3.1 Total calculated discharge (used in flux calculations) as a function of 

sampling date and tidal stage .............................................................. 167 

Table A4.1 Results of PERMANOVA (Euclidean distance) tests comparing 

univariate measures of sediment properties between crab (C; 2 levels: 

+C, –C) and detritus (D; 2 levels: +D, –D) treatments, at each site (sand 

S, and muddy-sand MS). .................................................................... 168 

Table A4.2 Results of PERMANOVA tests comparing univariate measures of crab 

density/biomass, total macrofaunal abundance, species richness, and 

final detritus (Euclidean distance), as well as the multivariate 

macrofaunal community (Bray-Curtis similarity) between crab (C; 2 

levels: +C, –C) and detritus (D; 2 levels: +D, –D) treatments, at the sand 

site (S) ................................................................................................. 169 

Table A4.3 Results of PERMANOVA tests comparing univariate measures of crab 

density/biomass, total macrofaunal abundance, species richness, and 

final detritus (Euclidean distance), as well as the multivariate 

macrofaunal community (Bray-Curtis similarity) between crab (C; 2 

levels: +C, –C) and detritus (D; 2 levels: +D, –D) treatments, at the 

muddy-sand site (MS) ........................................................................ 170 



 1   

1 CHAPTER 1: General introduction 

1.1 Background and introduction 

1.1.1 Ecological resource subsidies 

Ecosystems are nearly always open, linked by the transfer of resources across their 

boundaries. Allochthonous flows of energy across ecosystem boundaries have been 

documented for decades by early ecologists (e.g. Summerhayes & Elton 1923 as 

cited in Witman et al. 2004 p. 335; Elton 1927 as cited in Vanni et al. 2004 p. 3; 

Odum 1968; reviewed in Marczak et al. 2007). However, only recently has the 

seminal work by Gary Polis and colleagues recognised that these allochthonous 

resources can alter the food web structure of a recipient ecosystem (Polis & Hurd 

1996; Polis & Strong 1996; Polis et al. 1997; reviewed in Witman et al. 2004; Vanni 

et al. 2004). This observation lead to the definition of ‘spatial subsidies’ as donor-

controlled resources that alter the productivity or food web dynamics of a recipient 

ecosystem (Polis et al. 1997). In the literature, spatial subsidies have also been 

referred to as ‘cross-boundary’, ‘cross-habitat’, and ‘cross-ecosystem’ subsidies 

(e.g. Polis et al. 1997; Whitman et al. 2004; Marczak et al. 2007; Bartels et al. 2012; 

Hyndes et al. 2012; Hyndes et al. 2014), where the terms appear interchangeable, 

but may be associated with different definitions and/or spatial scales of the 

boundary that the resources cross.   

Since the formulation of the subsidy concept, numerous examples in the literature 

have emerged, documenting subsidies occurring via the transport of nutrients (e.g. 

Akamatsu et al. 2009; Adame & Lovelock 2011; Stieglitz et al. 2013), organic 

detrital matter (e.g. Granek et al. 2009; Spiller et al. 2010; Stoler & Relyea 2011) 
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and/or organisms (e.g. Zhang et al. 2003; Wipfli et al. 2010; Hoekman et al. 2011). 

These studies highlight that subsidies occur across a wide range of ecosystem types, 

as well as spatial and temporal scales. One well documented example of the concept 

is the migration of salmon for several kilometres into North American streams, 

where they spawn, die, and deposit essential marine derived nutrients in both the 

freshwater and surrounding terrestrial ecosystems (e.g. Zhang et al. 2003; Wiplfi et 

al. 2010). Other examples of the subsidy concept include, the utilisation of 

terrestrial organic matter by marine invertebrates and fish of fjord food webs (e.g. 

McLeod & Wing 2007, 2009; Wing et al. 2008; McLeod et al. 2010), as well as the 

utilisation of seabird carrion and guano by terrestrial island food webs (e.g. 

Sánchez-Piñero & Polis 2000). Occurring over smaller spatial scales (metres), 

terrestrial leaf litter subsidies support many freshwater stream invertebrate 

communities (e.g. Hicks 1997; Kominoski et al. 2011). There is now wide 

recognition that ecosystems can rarely be treated as separated distinct entities, but 

should instead be considered open systems allowing allochthonous flows across 

their boundaries (Polis et al. 1997; Leroux & Loreau 2008; Lamberti et al. 2010). 

Detritus (dead, decaying organic matter) is an essential source of allochthonous 

energy in many ecosystems (reviewed in Moore et al. 2004), and recent research 

has drawn attention to the existence of dual pathways for its incorporation into food 

webs: 1) through direct consumption; and 2) through the ‘fertilisation effect’ on 

autochthonous production (Figure 1.1; Moore et al. 2004; Spiller et al. 2010; Hagen 

et al. 2012; Hyndes et al. 2012). While the direct consumption pathway of 

allochthonous detritus by detritivores or microbivores is well-documented (e.g. 

Hicks 1997; Catenazzi & Donnelly 2007; Britton-Simmons et al. 2009; Hyndes et 
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al. 2012), the fertilisation effect has received less attention in the detrital subsidy 

literature (Spiller et al. 2010; Hyndes et al. 2012). 

 

Figure 1.1 Diagram of a simplified detrital food web, illustrating two pathways for the 

incorporation of allochthonous detritus (modified from Moore et al. 2004; with concepts from 

Spiller et al. 2010; Hagen et al. 2012; Hyndes et al. 2012). Green arrows represent the detrital 

pathway that leads to a ‘fertilisation effect’ on autochthonous plant production; and brown 

arrows indicate the pathway of direct consumption by consumers. 

The fertilisation pathway effectively characterises a detrital subsidy to recipient 

producers, rather than the consumers (Spiller et al. 2010). Observed in both 

terrestrial and marine systems, this pathway results in the stimulation of 

autochthonous productivity through the release of detrital nutrients during decay. 

The ‘fertilisation effect’ was termed after the discovery that marine-derived 

macroalgae had cascading effects up the terrestrial food chain of a tropical island, 

with measured increases in plant foliage growth in areas where macroalgae was 

deposited on the soil (Spiller et al. 2010). Similarly, in marine environments, 

transported and deposited decaying kelp detritus can subsidise in situ seagrass 

growth (Hyndes et al. 2012). These findings indicate that detrital subsidies not only 
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support recipient systems that have low resource availability and productivity 

(where the direct consumption pathway is important), but can also be a potentially 

significant part in the functioning of highly productive habitats (e.g. seagrass beds; 

Hyndes et al. 2012; Marczak et al. 2007). 

1.1.2 Estuarine detrital subsidies 

Linkages between and within aquatic systems are undeniable given the fluid 

properties of water, assisting material and organism exchange (Leroux & Loreau 

2008; Lamberti et al. 2010). Focussing on the estuarine environment, Odum (1968) 

devised the ‘outwelling hypothesis’, proposing that surplus organic matter 

produced in productive, shallow water estuaries would be tidally transported to 

support the productivity of coastal and offshore food webs. In temperate estuaries, 

macrophytes (e.g. mangroves, seagrass, and macroalgae) produce substantial 

amounts of organic leaf litter (on the order of t ha-1 yr-1; Valiela et al. 1997; Turner 

2007; Morrisey et al. 2010; Clausen et al. 2014), which can be outwelled from 

growing sites and deposited in unvegetated intertidal sediments (Figure 1.2). 

Further, aquatic ecosystems (such as estuaries) often receive detrital subsidies from 

terrestrial ecosystems simply because gravity promotes allochthonous flows from 

high to low lying systems (Leroux & Loreau 2008). In this thesis, I investigate the 

ecological role of these macrophyte detrital subsidies in temperate estuaries, which 

requires knowledge at each stage, from detrital production as leaf litter, to tidal 

transport away from the production site, and finally to the deposition and decay in 

the receiving environment (Figure 1.3).  
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Figure 1.2 Photos of deposited macrophyte detritus on intertidal sediments. Photos are taken 

on the intertidal sandflats in the Tairua and Whangapoua Estuaries, Coromandel Peninsula, 

New Zealand. Photo source: C. Pilditch (top left), R. Gladstone-Gallagher (top right), and E. 

Douglas (bottom left and right). 
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Figure 1.3 Concept diagram illustrating the processes involved in estuarine detrital subsidies, 

including the concepts on which each thesis chapter is based (Chapter 2 - purple; Chapters 3 

and 4 - blue).  Some of the abiotic and biotic variables that are likely to regulate the subsidy at 

each stage are given in grey boxes, and the variables that are included in this thesis are 

underlined and bolded (concepts based on Harrison & Mann 1975; Kirkman et al. 1982; 

Harrison 1989; Enriquez et al. 1993; Mackey & Smail 1996; Polis et al. 1997; Hansen & 

Kristensen 1998; Cebrian 1999; Lillebø et al. 1999; Childers et al. 2000; Dick & Osunkoya 

2000; Cebrian & Duarte 2001; Cebrian 2002; Holmer & Olsen 2002; Kristensen & Mikkelsen 

2003; Moore et al. 2004; Proffitt & Devlin 2005; Thiel & Gutow 2005; Marczak et al. 2007; 

Turner 2007; Morrisey et al. 2010; Adame & Lovelock 2011; Hyndes et al. 2012; Hyndes et al. 

2014; Treplin & Zimmer 2012; Clausen et al. 2014; Ainley & Bishop 2015). 
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The first process that will regulate the magnitude of the detrital subsidy is the 

production of detritus in the donor ecosystem (Figure 1.3). Detrital production is 

controlled by rates of macrophyte primary production, associated with climatic and 

seasonal variables (e.g. seagrass: Kirkman et al. 1982; reviewed in Clausen et al. 

2014; temperate mangrove productivity: reviewed in Morrisey et al. 2010), as well 

as the availability of light and nutrients (Valiela 1984). Also regulating this first 

stage of the detrital subsidy is the magnitude of leaf shedding and senescence 

(Cebrian & Duarte 2001), as well as in situ herbivory and decay rates, processes 

which remove detritus before it can be exported to the recipient ecosystem 

(reviewed in Dame & Allen 1996; Childers et al. 2000; Cebrian & Duarte 2001; 

Cebrian 2002; Hyndes et al. 2014). Following detrital production, several variables 

regulate detrital transport away from the donor habitat (Figure 1.3), and these 

include hydrodynamics (Cebrian 1999; Childers et al. 2000; Hyndes et al. 2014), 

climatic conditions (e.g. rainfall that can drive the transport of terrestrially derived 

detritus; Hyndes et al. 2014), as well as leaf litter traits (e.g. buoyancy and decay 

rates; reviewed by Thiel & Gutow 2005; Hyndes et al. 2014). The subsequent 

deposition of detrital subsidies in the recipient habitat will likely depend on both 

the complexity of the depositional environment (e.g. root structures that trap the 

detritus), as well as the hydrodynamics (e.g. tidal elevation and slow current 

velocities that promote detrital settling).  

While detrital leaf litter is an obvious and visible subsidy to receiving intertidal 

sediments, its distribution in time and space is patchy, making quantification 

difficult. Further, direct quantification of the tidal transport and fluxes of 

macrophyte detritus have been limited to a few study systems that are atypical of 

temperate mixed habitat estuaries (e.g. saltmarsh or mangrove swamps with low 
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tidal exchange; see summary of macrodetritus flux studies in Table A1.1 in 

Appendices). This potentially leaves a gap in our understanding of the magnitude 

of estuarine detrital subsidies (compared to other sources of production), as well as 

the temporal and spatial scales over which this subsidy occurs. In Chapter 2 of this 

thesis, I address this gap by temporally quantifying the subsidy of detritus that is 

transported from a temperate mixed habitat estuary (Figure 1.3).  

The next process that will regulate macrophyte detrital subsidy pathways is the 

decay of leaf litter into detritus, and its subsequent incorporation into the food web 

once it arrives in the receiving environment (Figure 1.3). Macrophyte leaf litter is 

relatively unpalatable to marine consumers (due to its low nitrogen and high 

secondary metabolite content), however, as it decays, it becomes colonised by 

microbes and enriched with nitrogen, increasing its palatability. Macrophyte detrital 

decay has been correlated with several factors including tidal inundation, climate 

(Mackey & Smail 1996; Dick & Osunkoya 2000; Ainley & Bishop 2015), sediment 

biogeochemistry of the decay site (Harrison 1989; Hansen & Kristensen 1998; 

Holmer & Olsen 2002), and species-specific leaf litter traits of the macrophyte 

species, such as C:N content, and leaf surface area (Harrison & Mann 1975; 

Harrison 1989; Enriquez et al. 1993). The resident macrofauna at the site of decay 

increase detrital fragmentation and microbial colonisation through shredding and/or 

ingestion (Harrison 1989; Lillebø et al. 1999; Kristensen & Mikkelsen 2003; 

Proffitt & Devlin 2005; Treplin & Zimmer 2012). Detrital decay rates (and 

therefore the biotic and abiotic factors that influence decay rate) will regulate the 

incorporation of detrital subsidies into the food web of the recipient ecosystem. 
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In tropical regions, where coastal waters can be nutrient- or resource-limited (e.g. 

coral reefs; Lapointe et al. 1987), exported macrophyte detritus (e.g. from 

mangroves and seagrass leaf litter; Granek et al. 2009; Chiu et al. 2013) provides 

an essential food subsidy at the base of the food web. However, in temperate 

estuaries, the productive unvegetated sediments can be dominated by deposit 

feeders that are better adapted to feed predominantly on labile and nutritive 

microphytobenthos (MPB; Levinton et al. 1984; Leduc et al. 2006; Choy et al. 2008; 

Kanaya et al. 2008; Choy et al. 2009; Antonio et al. 2012). Further, some estuarine 

macrophytes contain secondary metabolites that are unpalatable to consumers (Hay 

& Fenical 1988; Cronin et al. 1997). For these reasons, the direct consumption 

pathway for allochthonous macrophyte detritus may be minimal in temperate 

estuaries, but detritus may instead stimulate benthic primary production by 

fertilising in situ MPB growth during decay.  

On temperate intertidal flats, numerous field studies have documented shifts in 

benthic community structure, and increases in MPB biomass following detrital 

enrichment (see Table A2.1 in Appendices for summary of in situ detrital addition 

studies). While these detrital-induced increases in MPB are thought to be 

attributable to nutrient leaching during detrital decay (Levinton et al. 1984; Rossi 

& Underwood 2002; Bishop et al. 2007; Bishop & Kelaher 2007, 2013a; Dyson et 

al. 2007), another mechanism by which detritus could fertilise in situ MPB is by 

altering sediment biogeochemistry. Decaying detritus alters the oxygen dynamics 

in the sediment, modifying redox layer distribution (Raffaelli et al. 1991; Kristensen 

& Holmer 2001), and the supply of inorganic nutrients available to MPB at the 

sediment-water interface. Furthermore, based on previous studies that have shown 

detrital-induced shifts in community structure (Table A2.1), and others that have 
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linked macrofaunal community structure to changes in sediment biogeochemistry 

(e.g. Braeckman et al. 2014; Kristensen et al. 2014), detrital addition may fertilise 

MPB through macrofaunal community driven changes in biogeochemistry. To date, 

no-one has tested whether increases in MPB biomass are associated with bottom-

up (i.e. fertilising effects) or top-down (i.e. shifts in benthic community) effects of 

detrital deposition (Table A2.1). Given that MPB are one of the dominant primary 

producers in estuaries (up to 50% of total primary production; Underwood & 

Kromkamp 1999), detrital fertilisation of MPB production may represent an 

important pathway for the incorporation of detrital subsidies into this marine food 

web. 

MPB, through their photosynthetic activities, modify the flux of nutrients and 

oxygen between the sediments and the overlying water column (Sundbäck et al. 

1991; MacIntyre et al. 1996; Sundbäck et al. 2000). Thus, sediment-water solute 

fluxes are often used to evaluate soft-sediment ecosystem functions of benthic 

primary production (sediment oxygen production), benthic metabolism (sediment 

oxygen consumption), and nutrient regeneration (organic matter remineralisation 

into inorganic nutrients; e.g. Thrush et al. 2006; Jones et al. 2011; Lohrer et al. 

2012). These measures of ecosystem function could also be useful to determine 

fertilisation effects of detrital deposition in the benthos. If detrital deposition 

fertilises MPB productivity, increases in sediment-water effluxes of dissolved 

oxygen and nutrients are likely to be observed. Therefore, in Chapters 3 and 4 of 

this thesis, sediment-water solute fluxes of oxygen and nitrogen are used as a 

measure of  detrital fertilisation pathways.  
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This thesis uses a combination of observational field sampling and manipulative 

field experiments to gain empirical data on the role of detrital subsidies in altering 

structure and function of receiving soft-sediment communities. Discussions in the 

literature have been centred on the need to incorporate ecologically relevant spatial 

and temporal scales into studies to encompass the natural heterogeneity of 

ecological communities (reviewed in Hewitt et al. 2007; Thrush & Lohrer 2012). 

Thus, empirical field studies like those included in this thesis are valuable, aiming 

to tease apart and understand the complexities of interactions between the physical, 

chemical and biological processes that occur in nature (reviewed in Hewitt et al. 

2007; Thrush & Lohrer 2012).  

The focus of this thesis is temperate estuaries, as they are important sites of marine 

primary production and organic matter remineralisation (Middelburg et al. 1997; 

Underwood & Kromkamp 1999), the ecosystem functions that support societally 

valuable ecosystem services (e.g. fisheries; Townsend et al. 2011; Snelgrove et al. 

2014). Furthermore, macrophyte distribution and abundances are changing with 

shifts in estuarine catchment land uses, altering the supply of detrital subsidies that 

are available to adjacent unvegetated sediments (reviewed in Hyndes et al. 2014). 

Mangrove habitats in many temperate estuaries have expanded as a result of 

increased delivery of terrestrial sediments and nutrients over the last 50 years (Harty 

2009; Morrisey et al. 2010), while globally, seagrass beds have steadily declined 

(Inglis 2003; Moore & Short 2006). The frequency of macroalgal blooms is 

increasing due to estuarine nutrient loading from agriculture, deforestation and 

urban development (Valiela et al. 1997; Teichberg et al. 2010; Fry et al. 2011; Pratt 

et al. 2013). The physical alteration of estuaries by humans can also disrupt detrital 

transport by altering the connectivity between habitats (e.g. human-built structures, 
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such as coastal armouring, can inhibit detrital transport; Heerhartz et al. 2014; 

Hyndes et al. 2014). In a world where anthropogenic degradation of marine 

vegetated habitats is expected to continue, it is important to consider ecosystem 

connectivity and how changes in the supply of detrital subsidies and habitat 

connectivity will affect receiving soft-sediment ecosystems.  

1.2 Thesis organisation, aims and objectives 

Overall, my thesis aims to determine how marine macrophytes in temperate 

estuaries provide a cross-boundary subsidy to recipient intertidal soft-sediment 

communities. My thesis comprises three research chapters describing observational 

and experimental field studies, that collectively investigate macrophyte detrital 

subsidies from their production and export (Chapter 2), through to their 

decomposition and ecosystem effects on the receiving soft-sediments (Chapters 3 

and 4; Figure 1.3). The specific aims and objectives of each chapter are described 

below: 

Chapter 2 

As empirical measurements of estuary-to-coast material fluxes often exclude 

macrodetritus (large pieces of macrophyte leaf litter), the aim of this chapter was to 

quantify the fluxes of macrodetritus subsidies relative to other sources of primary 

production and nutrients. I conducted observational field sampling at the mouth of 

a tidally dominated sub-estuary (Pepe Inlet, Tairua Estuary, New Zealand), to 

comprehensively measure the transport of macrodetritus, chlorophyll a (an 

indicator of phytoplankton biomass), as well as dissolved and particulate forms of 

nitrogen and phosphorus across this estuary-to-coast ecosystem boundary. This 
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study focussed on macrodetritus, and was designed to increase our understanding 

of the temporal variability in the magnitude and source of this subsidy to adjacent 

ecosystems (e.g. intertidal flats).  

Chapter 3 

To better understand the potential pathways for the incorporation of detrital 

subsidies in intertidal soft-sediment ecosystems, I conducted a manipulative field 

experiment using sediment-water solute fluxes as indicators of detrital fertilisation 

effects on benthic primary production, metabolism, and nutrient regeneration 

(measures of ecosystem function). During the experiment, I manipulated the 

addition of three different detrital sources (with varying decay rates and C:N 

content) to the sediment, and then measured ecosystem function variables through 

time using in situ benthic chambers. As differences in decay rates between detrital 

sources may influence the rate of change in the sediment biogeochemistry, I 

explored whether the timing and magnitude of ecosystem responses is detrital 

source-dependent. This study builds on previous research on the effects of detritus 

on intertidal benthic community structure, and was designed to determine the 

transience and source-dependency of detrital subsidies on soft-sediment ecosystem 

function. 

Chapter 4 

In this chapter, I explore the role of benthic bioturbators in detrital processing, and 

the resulting effects on benthic ecosystem function. Laboratory experiments 

investigating the interactions of bioturbators and detrital enrichment have shown 

that bioturbators enhance detrital decay and remineralisation (e.g. Hansen & 

Kristensen 1998; Kristensen & Mikkelsen 2003; Papaspyrou et al. 2004), however 
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observations of these interactions in a field setting are limited (but see Rossi et al. 

2013). On an intertidal sand and mud flat, experimental cages manipulated the 

presence and absence of bioturbators (crabs, Austrohelice crassa) and detrital 

subsidies (from seagrass, Zostera muelleri). Benthic flux chambers were again used 

to measure ecosystem function in each treatment. Since the functional role of A. 

crassa and organic matter decay rates vary in sand vs. mud (Hansen & Kristensen 

1998; Rasheed et al. 2003; Needham et al. 2011), I measured the effects of 

bioturbator-detritus interactions at two intertidal sites characterised by different 

sediment properties. This experiment was designed to explore the ecosystem effects 

of detrital subsidies in different receiving environment contexts (i.e. at sites 

characterised by different sediment properties, and presence/absence of 

bioturbators). 
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2 CHAPTER 2: Quantifying macrodetritus fluxes 

from a small temperate estuary 

2.1 Introduction 

Temperate estuaries/lagoons are considered among the Earth’s most productive 

ecosystems, containing diverse vegetated (e.g. mangroves, saltmarsh, seagrass) and 

unvegetated habitats (e.g. intertidal sand and mud flats) (Underwood & Kromkamp 

1999; Odum 2000; Valiela et al. 2000). Microphytobenthos in unvegetated 

sediments alone can contribute ~50% of the total estuarine primary production 

(Underwood & Kromkamp 1999), and macrophyte beds/forests constitute hotspots 

of productivity, producing substantial amounts of leaf litter detritus (e.g. temperate 

mangroves up to 12.5 t DW ha-1 year-1; reviewed in Morissey et al. 2010). Many 

estuaries tidally exchange large proportions of their water volume with the coastal 

ocean, and these hydrodynamics drive the export of excess estuarine production to 

adjacent less productive offshore waters (up to 100’s kilometres offshore; i.e. the 

‘outwelling hypothesis’ of Odum 1968; Dame & Allen 1996; Odum 2000). 

Through outwelling, estuaries contribute to the coastal oceanic food web (Doi et al. 

2009; Granek et al. 2009; Savage et al. 2012) and the societally valuable ecosystem 

services of that habitat (e.g. fisheries).  

Since the formulation of the ‘outwelling hypothesis’ (Odum 1968), numerous 

studies have attempted to test and expand on it (reviewed in Nixon 1980; Odum 

2000; Childers et al. 2000; Valiela et al. 2000). Naturally occurring stable isotopes 

have confirmed that estuarine primary production is transported (often at a scale of 

kilometres) and utilised by adjacent coastal food webs (e.g. Doi et al. 2009; Granek 

et al. 2009; Savage et al. 2012). In addition, sediment lignin content analyses show 
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that exported estuarine organic matter (e.g. from saltmarsh species) is accumulated 

in coastal sediments (reviewed in Valiela et al. 2000). However, these studies reveal 

little of the magnitude of the subsidy, that is, the amount of organic matter exported 

from estuarine habitats, as well as the proportion of production that is exported vs. 

retained and recycled within the estuarine system (i.e. net fluxes).  

Direct quantification of estuary-to-coast subsidies to date has mostly been focused 

on fluxes of suspended fine particles and solutes (i.e. particulate and dissolved 

matter), which usually involves temporal water sampling in a tidal creek/channel 

(e.g. Borey et al. 1983; Dankers et al. 1984; Baird et al. 1987; Boto & Wellington 

1988; reviewed in Valiela et al. 2000; Sánchez-Carillo et al. 2009). However, this 

leaves a potentially large gap in our understanding of the contributions of estuarine 

production to adjacent coastal environments, namely the large pieces of macrophyte 

leaf litter (macrodetritus). Very few studies have measured estuary-to-coast fluxes 

of macrodetritus, due to the associated logistical challenges. Consequently, 

macrodetritus is often excluded from nutrient/production budgets (e.g. Valiela et al. 

2000), or some attempt to instead estimate the proportion of macrophyte litter that 

is exported as macrodetritus based on in situ production, decay, and consumption 

rates within the ecosystem (e.g. from a mangrove forest: Boto & Bunt 1981; 

Robertson 1986; from a seagrass bed: Pergent et al. 1997; review by Cebrian 2002). 

Since marine macrophytes produce large quantities of leaf litter, estimates can 

sometimes suggest that macrodetritus export from the studied ecosystem is quite 

large (e.g. in a mangrove-dominated inlet, macrodetritus export is estimated to be 

6 × greater than particulate transport; 15.3-19.5 kg DW ha-1 day-1; Boto & Bunt 

1981; Robertson 1986).  
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The form in which production is exported (i.e. dissolved nutrients, particulate, or 

macrodetritus) will have consequences for its utilisation by the receiving 

environment, and influence how quickly this production is incorporated into coastal 

food webs (reviewed in Hyndes et al. 2014). Small particulate organic carbon (C), 

nitrogen (N), and phosphorus (P) are forms that are available to be immediately 

consumed by small animal consumers, while bacteria, macrophytes, and 

microphytes utilise the dissolved forms. However, because macrodetrital decay is 

relatively slow (reviewed in Enriquez et al. 1993), the temporal scales over which 

macrodetritus is utilised may be greater than that of smaller particulates and 

dissolved nutrients, giving it the opportunity to also be transported over greater 

spatial scales. Accordingly, the main role of this form of production may instead be 

in structuring macroinvertebrate communities in receiving environments (e.g. 

Kelaher & Levinton 2003; Bishop & Kelaher 2007), or acting as a primary 

production source to marine environments with low in situ production (e.g. deep 

subtidal marine environments below the photic zone; Britton-Simmons et al. 2009). 

Of the studies that have directly quantified net macrodetrital export from estuaries, 

most have been limited to saltmarsh-dominated lagoon systems in the northern 

hemisphere (Dame 1982; Dame & Stillwell 1984; Hemminga et al. 1996; Bouchard 

& Lefeuvre 2000), and/or focused on macrodetrital fluxes from just one vegetation 

type (e.g. macroalgae, Biber 2007; mangrove litter, Woodroffe 1985; Wattayakorn 

et al. 1990; Silva et al. 1993 as cited in Ramos e Silva et al. 2007 p. 528; Rajkaren 

& Adams 2007; see summary of macrodetritus flux studies in Table A1.1 in 

Appendices). In addition, many of these studies have been conducted in 

estuarine/lagoon systems that are atypical of temperate mixed habitat estuaries. For 

example, Tuff Crater (New Zealand) is a mangrove-dominated, enclosed crater that 
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exchanges tidal water through a single break in the crater wall (Woodroffe 1985); 

Mont Saint-Michel Bay (France) is a macro-tidal bay with a very large average tidal 

range of 12 m (Bouchard & Lefeuvre 2000); whilst Biscayne Bay (Florida, USA) 

is a large, open coastal cut separated by coastal islands (Biber 2007; Table A1.1). 

Thus, generalisation of the fluxes measured in these study systems to other 

temperate estuaries is difficult. Dame and colleagues (Dame 1982; Dame & Stilwell 

1984; Dame et al. 1986) constructed export budgets after sampling all of the 

production size fractions in a South Carolina tidal marsh system (North Inlet), and 

suggested that macrodetritus constituted a relatively small proportion of the total 

outwelled production. I took a similar approach here to evaluate estuary-to-coast 

subsidies in a well-defined part of a small New Zealand estuary.  

As the supply and quality of estuarine subsidies are temporally variable (reviewed 

in Odum 2000), it is important that estuary-to-coast flux studies effectively 

encompass temporal variability. In temperate climates, marine macrophyte 

productivity is highly seasonal, with temporal pulses in the supply of macrophyte 

leaf litter associated with seasonal production peaks (usually in summer or spring; 

e.g. Turner 2007; Imgraben & Dittmann 2008; Gladstone-Gallagher et al. 2014a). 

Temporal variation in the supply of terrestrially derived detritus and nutrients is 

likely to be associated with differences in tidal magnitude (i.e. larger tides will reach 

more terrestrial habitats to mobilise detritus), and seasonal rainfall levels (that can 

wash terrestrial detritus into the marine system). Further, shallow-water 

unvegetated benthic habitats rely on light reaching the sediment surface for 

production (Lohrer et al. 2004; Needham et al. 2011), which may be coupled with 

seasonal day length and weather conditions. 
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At the mouth of a tidally-dominated temperate sub-estuary, this study 

comprehensively measured the transport of macrodetritus, dissolved and particulate 

forms of N and P, as well as chlorophyll a (chl a; an indicator of phytoplankton 

biomass). Quarterly, I measured the transport of these materials over a 24 h period 

(encompassing two ebb and two flood tides), to increase understanding of the 

temporal variability in both the source and quantity of production that is transported 

across the boundary of a small temperate estuary. The study aimed to obtain 

empirical data on the magnitude of macrodetrital fluxes from a mixed habitat 

estuary that is typical of estuaries in the North Island of New Zealand (i.e. large 

intertidal areas, with large tidal water exchange). This study was designed to 

increase our knowledge of the magnitude of export vs. retention of production in a 

tidal estuary, with particular emphasis on the contribution of macrodetritus to the 

total exported production, N and P. More broadly the study was conducted to 

contribute to understanding of how anthropogenic habitat degradation (e.g. 

mangrove forest clearances and seagrass bed declines; Inglis 2003; Moore and 

Short 2006; Orth et al. 2006; Harty 2009) may impact the ecosystem services 

associated with production outwelling from temperate estuaries. 

2.2 Materials and methods 

2.2.1 Site description 

Tairua Estuary (37° 00’ 05” S, 175° 50’ 42” E) is located on the east coast of the 

Coromandel Peninsula (Figure 2.1), and is representative of a common type of 

estuary in the North Island of New Zealand (Hume et al. 2007). Tairua Estuary is a 

605 ha barrier-enclosed lagoon, of which 71% (of the high tide area) is intertidal 

(Figure 2.1), and the mean water depth at mid-tide is ~2 m (Hume & Herdendorf 
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1993; Bell 1994). The estuary is well flushed, taking 1.3 tidal cycles to flush the 

entire tidal prism, and 82% of the water that enters the estuary during each flooding 

tide is ‘new’ ocean water (Bell 1994). The estuary has spring and neap tidal ranges 

of 1.63 m and 1.22 m, respectively (Liu 2014). The estuary’s 29,381 ha catchment 

is occupied by a number of land uses, including forestry, pasture, and small urban 

settlements, as well as indigenous forest and scrub (O’Donnell 2011). 

Pepe Inlet is a 26 ha tidally-dominated sub-estuary of the Tairua Estuary (Figure 

2.1). The inlet tidally drains through a single mouth (~37 m wide), and has one main 

freshwater input at Pepe stream, which discharges on average 0.23 m3 s-1 of water 

into the estuary (mean annual discharge; Liu 2014). Pepe Inlet supports diverse 

marine vegetated habitats, which include mangrove forest (Avicennia marina subsp. 

australasica; ~3 ha; areas found using GIS), seagrass beds (Zostera muelleri; ~2 

ha), and saltmarsh (~10 ha; made up of various rushland, saltwater paspallum, 

Spartina sp., salt meadow, and saltmarsh ribbonwood species, some of which is 

above high tide; Figure 2.1C; Graeme 2008; Felsing & Giles 2011). Macroalgae 

(Hormosira banksii) also grow within and outside the mouth of the inlet (Graeme 

2008). The unvegetated sediments within Pepe Inlet are comprised mainly of fine 

to medium sands (Felsing & Giles 2011). Sampling was done at the mouth of Pepe 

Inlet, and at Pepe Stream (Figure 2.1C) to determine the flux of macrodetritus, 

dissolved and particulate nutrients from this sub-estuary to the wider estuary/coastal 

system. The well constrained mouth, as well as the mixture of vegetation types 

within Pepe Inlet make this estuary an ideal place to study material fluxes.  
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Figure 2.1 Map of North Island, New Zealand (A), Tairua Estuary (B) with the intertidal 

boundary shown by dashed lines, and Pepe Inlet (C), including sampling stations ‘○’ and ‘*’, 

and the distribution of vegetated habitats. Water sampling for dissolved and particulate N and 

P, and chlorophyll a was carried out at both ‘○’ and ‘*’, and sampling of macrodetritus was 

carried out only at ‘*’. Data source: Waikato Regional Council, Hamilton, New Zealand (GIS 

vegetation layers). 
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During the study period (May 2014-February 2015), the Coromandel region had 

maximum and minimum daily air temperatures of 28.9°C and -1.8°C, respectively 

(Table 2.1 shows the maximum and minimum daily air temperatures, as well as the 

total rainfall within each season). Total rainfall over a 48 h period (24 h before, and 

during each sampling period) was 0.4, 0.2, 12.8, and 6.8 mm, in May, July, 

November, and February, respectively. 

Table 2.1 Temperature and Rainfall during the seasons that sampling was conducted (climate 

data obtained from the NIWA CliFlo database at http://cliflo.niwa.co.nz; data from the 

Whitianga weather station, ~30 km from Tairua).  

Season Maximum daily 

air temperature 

(°C) 

Minimum daily 

air temperature 

(°C) 

Total rainfall 

(mm) 

Aut (1 Mar-31 May 2014) 27.8 -0.8 328 

(Sampled 20-21 May 2014)    
Win (1 Jun-31 Aug 2014) 18.8 -1.8 501 

(Sampled 17-18 Jul 2014)    
Spr (1 Sept-30 Nov 2014) 24.8 1.0 329 

(Sampled 11-12 Nov 2014)    
Sum (1 Dec 2014-28 Feb 2015) 28.9 5.0 296 

(Sampled 24-25 Feb 2015)    

 

2.2.2 Sampling regime 

To derive material fluxes, I sampled macrophyte detritus, water column chl a, total 

dissolved N and P (TDN and TDP; includes both inorganic and organic 

components), as well as total particulate N and P (TPN and TPP) concentrations, 

over a 24 h period (two ebb and two flood tides). The 24 h sampling was repeated 

in May (late-autumn = Aut), July (mid-winter = Win), November (late-spring = 

Spr), and February (late-summer = Sum). 24 h sampling periods were chosen during 

spring tides, and sampling encompassed both midday and midnight high tides to 

reduce the variability between sampling dates that may be confounded by diurnal 
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uptake of inorganic nutrients (i.e. by microalgae during photosynthesis; Lohrer et 

al. 2004). 

Suspended macrodetritus was sampled using nets positioned in the mouth of Pepe 

Inlet, which were emptied on each slack tide (as the tidal flow direction changed). 

Three nets (opening: 50 × 100 cm, length: 100 cm, mesh size: 4 × 4 mm) were 

placed at two positions within the 37 m wide channel (6 nets total; sampling 5.4% 

of the channel width), with three nets stacked on top of one another (Figure 2.2). 

The bottom and middle nets were kept at a fixed depth, while the top net floated 

and sunk as the tide rose and fell to sample the surface waters. All nets were attached 

to a central pole, enabling them to change direction with the water flow. 

Preliminary depth profiles (as well as hourly depth profiles during all sampling 

dates; 0.1 m depth intervals) of salinity, temperature, and dissolved oxygen (DO; 

Multi-parameter water quality Sonde 600QS; YSI Incorporated), in the centre of 

Pepe Inlet channel, indicated that the Pepe Inlet channel remained well mixed for 

most of the tidal cycle (and during times of greatest tidal exchange). Because the 

channel remained well-mixed, water samples (1 L) were collected half hourly in the 

centre of the channel using a Van Dorn water sampler (3.2 L, PVC, ENVCO) 

lowered just below the water surface. In addition, to sample the freshwater input 

into the estuary, a portable vacuum sampler (model: VST, Manning Environmental 

Inc.) was positioned to collect surface water (0.5 L) in the centre of Pepe Stream 

half hourly into acid washed containers.  
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Figure 2.2 Diagram of one of the two sets of macrodetritus nets positioned in the main channel 

at the mouth of Pepe Inlet, Tairua Estuary (diagram is not to scale). 

One 100 ml water sample from each half hourly sampling was immediately pressure 

filtered through two 25 mm Whatman GF/C fibreglass filters, and the filtrate and 

filters were frozen for later analysis of dissolved nutrients and chl a, respectively. 

The remaining water from each half hour sample was then pooled across 2 h for 

measurement of TPN and TPP, and filtered through pre-weighed 45 mm Whatman 

GF/C fiberglass filters using a vacuum pump (~0.5-1.75 L filtered through each 

filter, depending on suspended content in the sample). Filters for TPN and TPP 

were also frozen awaiting analysis.  

During each 24 h sampling period, either a Triton ADV (averaging interval 1 min, 

sampling interval 10 min; ~65 cm above seafloor; deployed in Win, Spr, Sum) or a 

SonTek Argonaut ADCP (XR 3000 kHz; averaging interval 2 min, sampling 
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interval 5 min; 20 cm above seafloor; deployed in Aut) was positioned in the centre 

of the Pepe Inlet channel to measure current velocity. A Solinist Levelogger 

(measuring absolute water pressure) was placed in the centre of the channel to 

measure water depth, and a Solinist Barologger was used to compensate the depth 

obtained by the Levelogger for barometric pressure. A SonTek FlowTracker 

Handheld ADV (YSI Inc.) was also used to profile the channel, and measure and 

calculate discharge using the 0.6 depth and multipoint methods (Sontek/YSI Inc. 

2007), approximately hourly during the daylight hours.  

2.2.3 Laboratory analyses 

Plant detritus collected by the nets was washed, separated by source (e.g. mangrove, 

seagrass, terrestrial/marsh, macroalgae), dried to constant weight at 60°C, and 

weighed (dry weight, DW). Half hourly filtered water samples were pooled in the 

laboratory across one hour and subsamples taken for measurements of TDN, TDP, 

and ammonium (NH4
+) on a LACHAT Quickchem 8500 series 2 Flow Injection 

Analyser (FIA). NOx and PO4
3- were also measured, but results were unreliable and 

data is not presented. TDN consists of dissolved NH4
+ + NOx + organic N, and TDP 

consists of dissolved PO4
3- + organic P, but the proportions of NOx and PO4

3-, as 

well as dissolved organic N and P are unknown. Water samples for TDN and TDP, 

and filters for TPN and TPP (one filter for each two hourly sampling) were first 

digested (potassium persulphate solution) and autoclaved (30 min at 121°C, 15 psi), 

before analysis of total N and P on the FIA. Water column chl a concentrations 

were determined by steeping and grinding filters (two filters for each half hour 

sampling) in 90% buffered acetone, and then pigment concentrations were 
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measured fluorometrically (Turner 10-AU fluorometer) before and after 

acidification (Arar & Collins 1997). 

2.2.4 Data analysis and material flux calculations 

A linear correlation between the discrete discharge measurements (Flowtracker 

ADV during the day) and the continuous water velocity × depth (5-10 min 

measurement interval) was used to predict discharge over the 24 h sampling period 

(correlation r2 = 0.94, 0.94, 0.96, 0.84 for Aut, Win, Spr, and Sum, respectively; see 

Figure A3.1 in Appendices for correlations). The total discharge volume for each 

flood and ebb tide was then estimated by summing the predicted discharge rate at 

10 min intervals within each tidal stage (Figure A3.2, and Table A3.1 in 

Appendices).  

TDN, TDP, TPN, TPP, and chl a concentrations averaged over the 4 h of peak flow 

(estimated from velocity measurements) were used to calculate the fluxes from 

Pepe Inlet, where the 4 h average concentration was multiplied by the discharge 

volume for each ebb and flood tide. Using the mean annual discharge from Pepe 

Stream (0.23 m3 s-1; Liu 2014), I estimated the input of TDN, TDP, TPN, TPP, and 

chl a from Pepe Stream into Pepe Inlet over a tidal cycle (i.e. stream input = stream 

discharge scaled to a tidal cycle × average solute or particulate concentration 

measured at Pepe Stream). As none of the sampling periods fell during periods of 

high stream flow (<13 mm of rain in the 24 h prior to and during sampling), I 

consider the mean annual discharge suitable for estimating stream inputs. The 

maximum flow measured previously in this stream is <1.5 m3 s-1 (Liu 2014).  
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Fluxes of macrophyte detritus were calculated by summing the total detritus DW 

collected in the nets during each flood and ebb tide, and this total was multiplied by 

the width of the channel (i.e. macrodetritus flux = total detritus DW × 37 m / 2 m 

sampling width of nets; similar flux calculations are described in Bouchard & 

Lefeuvre 2000). This calculation assumes that our nets sample the entire water 

column throughout the tidal cycle; a reasonable assumption given that just ~0.6 m 

of the water column was omitted during high tide, but during times of peak flow 

(mid-tide) the entire water column was sampled by the nets. Further, the top and 

the bottom nets captured the majority of the macrodetritus (>72%, but 

usually >90%), suggesting that detritus usually either floats or is transported along 

the seafloor, and little was caught suspended in the middle of the water column 

(<28%, but usually <10%). To estimate the flux of macrodetritus N and P, and to 

allow comparisons with other sources (dissolved and particulate), detrital DW was 

converted to N and P using the average values (as % of DW) for each detrital source 

(or similar sources) from the Enriquez et al. (1993) review, as well as from N 

content measured for Z. muelleri, A. marina, and E. radiata in Gladstone-Gallagher 

et al. (2016).   

2.3 Results 

Across sampling dates, the channel at the mouth of Pepe Inlet remained well mixed 

for ~75% of the tidal cycle (determined from hourly depth profiles of salinity, 

temperature and DO in the channel), only becoming stratified for ~3 h at slack low 

tide when tidal exchange was minimal. During low tide stratification (i.e. channel 

depth ~0.7-0.9 m), the salinity at the bottom of the channel was greater than in the 

surface waters, and the difference was <14.2 ppt. Temperature was also lowest in 
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the surface waters, but differences between the bottom and surface waters were 

<2.9 °C. In addition, during the low tide stratification DO was greatest in the surface 

waters compared to the bottom waters and these differences were <2.2 mg L-1. 

During the remainder of the tidal cycle when the water column was well mixed (i.e. 

channel depth ~0.9-2.2 m), salinity differences between the bottom and surface 

waters were <4.9 ppt (but often <0.5 ppt), with surface vs. bottom water differences 

in temperature <1.9 °C (but often <0.5 °C), and DO <0.68 mg L-1. Across the 

sampling dates, salinity, temperature, and DO concentration, averaged across the 

tidal cycle, ranged from 24.2-31.6 ppt, 11.4-20.3°C, and 7.5-9.3 mg L-1, 

respectively. 

2.3.1 Macrodetritus fluxes 

The magnitude of the flood and ebb macrodetritus fluxes varied across seasons, by 

both weight and source (Figure 2.3). Seagrass (Z. muelleri) was the dominant 

detrital source to be transported by flood tides in all seasons (40-92% of flood 

fluxes). In Spr and Sum, macroalgae (including unidentified green and brown 

species) were equally dominant, contributing 49 and 36% to the Spr and Sum flood 

tide fluxes, respectively. Ebb tide macrodetrital transport was highly temporally 

variable and dominated by mangrove litter (A. marina) in Spr (61% of the ebb flux), 

but by seagrass in Aut and Win (39 and 52%, respectively), and macroalgae in Sum 

(38%). The transport of terrestrial/marsh detritus (broadly grouped and not 

identified to species level) was consistent across seasons in terms of absolute 

contribution (0.1-5.3 kg DW tide-1 on both flooding and ebbing tides), but varied 

across seasons in relative contribution to the total macrodetritus fluxes (Ebb fluxes: 

50% Aut, 32% Win, 16% Spr, 19% Sum; Flood fluxes: 4% Aut, 33% Win, 6% Spr, 
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12% Sum; Figure 2.3). The majority of the macrodetritus (> 76%) were caught in 

the top net, suggesting that most species are transported as floating detritus (except 

wood in Aut, of which 72% was found in the bottom net, and seagrass in Win and 

Sum, of which 43-47% was caught in the bottom net).  

 

Figure 2.3 Fluxes of macrodetritus from Pepe Inlet, Tairua Estuary, as a function of season 

(Aut = Feb 2014, Win = Jul 2014, Spr = Nov 2014, Sum = Feb 2015) and tidal direction (ebb 

tide fluxes are indicated by positive numbers, and flood tide fluxes are negative; fluxes are the 

mean of two flood or ebb tides). The net flux (ebb minus flood) is given above/below the bar 

(in kg DW tidal cycle-1) for each season, and fluxes are separated by source. 

The net fluxes of macrodetritus (ebb flux minus flood flux) show that Pepe Inlet 

acted as a net exporter of macrodetritus on three of the four sampling dates (Aut, 

Win, and Sum; Figure 2.3). The greatest export occurred in Sum, where 10 kg DW 

tidal cycle-1 of macrodetritus was exported from Pepe Inlet. The Sum macrodetritus 

export comprised 43% macroalgae, 33% terrestrial/marsh, 17% seagrass, and 7% 

mangrove detritus. In Aut, the small net export was largely made up of 
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terrestrial/marsh litter (83%), and in Win, the export was comprised equally of the 

four sources (i.e. mangrove, seagrass, terrestrial/marsh, and macroalgae all 

contributed 20-30% of the net export). However, in Spr there was a net import into 

the inlet (11 kg DW tidal cycle-1), which was predominantly comprised of seagrass 

and macroalgae (Figure 2.3) that offset a small export of mangrove detritus (1.6 kg 

tidal cycle-1). Using the average of the net fluxes across seasons, it is estimated that 

~449 kg DW yr-1 of macrodetritus is exported from Pepe Inlet, and scaled to the 

area that is occupied by macrophytes (~15 ha of mangroves, seagrass and saltmarsh 

within Pepe Inlet) gives 30 kg DW ha-1 yr-1. In Sum and Win, the net fluxes were 

relatively small compared to the total ebb or flood fluxes (net fluxes 18-34% and 

22-52% of the total flood and ebb flux, respectively). 

2.3.2 Nitrogen fluxes 

The dominant form of N transported by both flooding and ebbing tides was TDN, 

which comprised >94% of the total fluxes in Aut, Win and Spr. In Sum, TDN was 

lower and comprised 80 and 85% of N on ebb and flood tides, respectively (Figure 

2.4). TDN fluxes consisted of 6-28% NH4
+ (compare Figure 2.4C with D), but the 

proportion of NOx and organic N is unknown. Across seasons, macrodetritus 

contributed <3% to the total N flux on both flood and ebb tides. In Aut, Win, and 

Spr, TPN contributed <5% to the total N fluxes, whereas, in Sum, when TDN fluxes 

were lower, the TPN comprised 13 and 17% of flood and ebb tide fluxes, 

respectively (Figure 2.4).  

Across seasons, Pepe Inlet was a net exporter of N (dissolved and particulate N 

exports offset macrodetritus imports in Spr), exporting a total of 2-12 kg N tidal 

cycle-1. The dominant form of N exported in Aut, Win and Spr was dissolved 
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(TDN >93% of the total net N exports). Macrodetritus and particulate matter 

contributed relatively little to the total net N export (<7%), except for in Sum where 

dissolved fluxes were low, and macrodetritus and particulate N contribution were 

13 and 66% of the net N export, respectively (Figure 2.4). Annual estimates of net 

N fluxes are 6 kg N yr-1 imported as macrodetritus, 467 kg N yr-1 exported as 

particulates, and 4684 kg N yr-1 exported as dissolved (total annual N export = 5145 

kg N). 

 

Figure 2.4 Nitrogen flux as macrodetritus (A), particulate (TPN; B), and dissolved (TDN, C, 

and ammonium NH4
+, D), from Pepe Inlet, Tairua Estuary, as a function of season (Aut = Feb 

2014, Win = Jul 2014, Spr = Nov 2014, Sum = Feb 2015) and tidal direction (ebb tide fluxes 

are indicated by positive numbers, and flood tide fluxes are negative; fluxes are the mean of 

two flood or ebb tides). White bars indicate the total flux for each tide, and the net flux (ebb 

minus flood) is indicated with black bars and given as kg N tidal cycle-1 below/above bars. The 

scale of the y-axes differ between sub-plots. 
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2.3.3 Phosphorus fluxes 

In Aut and Spr, P fluxes transported by both flood and ebb tides were dominated by 

TDP (TDP contribution in Aut = 74-82%, and Spr = 82-87% of total P fluxes). 

Whereas, in Win and Sum, P fluxes transported in both flood and ebb tides were 

dominated by TPP (TPP contribution in Win = 51-55%, and Sum = 87% of total P 

fluxes). Across seasons, macrodetritus contributed relatively little to the total P 

fluxes of both flood and ebb tides (<13%; Figure 2.5). 

 

Figure 2.5 Phosphorus flux as macrodetritus (A), particulate (TPP; B), and dissolved (TDP; C), 

from Pepe Inlet, Tairua Estuary, as a function of season (Aut = Feb 2014, Win = Jul 2014, Spr 

= Nov 2014, Sum = Feb 2015) and tidal direction (ebb tide fluxes are indicated by positive 

numbers, and flood tide fluxes are negative; fluxes are the mean of two flood or ebb tides). 

White bars indicate the total flux for each tide, and the net flux (ebb minus flood) is indicated 

with black bars and given as kg P tidal cycle-1 below/above bars. In Sum TDP was below 

detection limit. The scale of the y-axes differ between sub-plots. 
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In Win, Spr, and Sum, Pepe Inlet acted as a net exporter of P (macrodetritus imports 

in Spr were offset by TDP and TPP exports), exporting a total of 0.5-1.5 kg P tidal 

cycle-1, but in Aut, Pepe Inlet imported 0.5 kg P tidal cycle-1.  In Win (when all 

forms of P were exported from Pepe Inlet), macrodetritus, TDP, and TPP 

represented 2.3, 57.2, and 40.4% of the total net export of P, respectively (Figure 

2.5). Annual estimates of net P fluxes are 8 kg P yr-1 imported as macrodetritus, 164 

kg P yr-1 exported as particulates, and 206 kg P yr-1 exported as dissolved (total 

annual export = 362 kg P). 

2.3.4 Chlorophyll a fluxes 

Pepe Inlet was also a net exporter of chl a, where 35-146 kg tidal cycle-1 of chl a 

was exported from the inlet (except in Spr where 14 kg tidal cycle-1 of chl a was 

imported; Figure 2.6). Annually, it is estimated that Pepe Inlet exports 39145 kg chl 

a. 

 

Figure 2.6 Chlorophyll a (chl a) flux from Pepe Inlet, Tairua Estuary, as a function of season 

(Aut = Feb 2014, Win = Jul 2014, Spr = Nov 2014, Sum = Feb 2015) and tidal direction (ebb 

tide fluxes are indicated by positive numbers, and flood tide fluxes are negative; fluxes are the 

mean of two flood or ebb tides). White bars indicate the total flux for each tide, and the net flux 

(ebb minus flood) is indicated with black bars and given in kg tidal cycle-1 below/above bars. 
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2.3.5 Stream contribution to net fluxes 

The contribution of nutrients and chl a from Pepe Stream was temporally variable, 

and contributed 10-42% of the total N, and 10-19% to the total P exports at the 

mouth of Pepe Inlet (Table 2.2). In Aut, the stream contributed 20-55% to the 

exports of TDN, TDP, TPN, TPP, and chl a measured at the mouth of the Inlet, but 

in Win, the stream contributed less to these material exports (just 6-19% of the net 

exports were from the stream). In Spr, the stream inputs of TDN and TDP were low 

(8 and 4%, respectively), while inputs of TPN and TPP were relatively high (51 and 

74%, respectively). In Sum, Pepe Stream inputs accounted for 10-44% of the 

material exports from Pepe Inlet, except for TDN, where the input from the stream 

was almost double the net export out of Pepe Inlet (Table 2.2). 

Table 2.2 Input of dissolved nitrogen and phosphorus (TDN, TDP), ammonium (NH4
+), 

particulate nitrogen and phosphorus (TPN, TPP), and chlorophyll a (chl a), from Pepe Stream 

into Pepe Inlet, as a function of season (Aut = Feb 2014, Win = Jul 2014, Spr = Nov 2014, Sum 

= Feb 2015). Values are the mean of two tidal cycles, and given in brackets is the percentage 

contribution of the stream to the net exports from Pepe Inlet (a percentage is not given in the 

case of a net import into Pepe Inlet). The total N (TDN + TPN) and P (TDP + TPP) contributed 

by Pepe Stream are also given. 

Source Aut  Win  Spr  Sum  

TDN (kg N tidal cycle-1) 1.228 (20%) 1.006 (12%) 0.870 (8%) 0.568 (149%) 

NH4
+ (kg N tidal cycle-1) 0.248 (55%) 0.155 (6%) 0.218  0.213 (44%) 

TDP (kg P tidal cycle-1) 0.096  0.037 (13%) 0.068 (4%) 0.041  

TPN (kg N tidal cycle-1) 0.136 (30%) 0.084 (19%) 0.279 (51%) 0.188 (16%) 

TPP (kg N tidal cycle-1) 0.042 (32%) 0.028 (14%) 0.090 (74%) 0.050 (10%) 

Chl a (kg tidal cycle-1) 30.210 (55%) 3.609 (10%) 90.727  43.957 (30%) 

Total N (kg N tidal cycle-1) 1.364 (21%) 1.090 (12%) 1.149 (10%) 0.756 (42%) 

Total P (kg P tidal cycle-1) 0.136  0.065 (13%) 0.158 (10%) 0.091 (19%) 

 

2.4 Discussion 

Anthropogenic degradation of estuarine vegetated habitats changes the supply and 

composition of macrodetritus (and other forms of production) that is available for 
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export to adjacent coastal ecosystems. As empirical measurements of macrodetritus 

fluxes from temperate estuaries are rare and often excluded from estuarine nutrient 

budgets, this study was designed to quantify the relative contribution of 

macrodetritus to the overall estuary-to-coast flux of primary production, N and P. I 

found that across most seasons, Pepe Inlet was a net exporter of macrodetritus, chl 

a, as well as total N and P. The dissolved and small particulate fractions dominated 

the net fluxes of total N and P from Pepe Inlet. Given that coastal marine primary 

production is regulated by both N and P, with dissolved N often being the limiting 

nutrient (Herbert 1999; Tyrell 1999), estuaries including Pepe Inlet potentially play 

an important role as exporters of nutrients, supporting production in the open 

coastal ocean. Whilst the contribution of macrodetritus to the total N and P export 

out of the inlet was small (usually <7% and <3% of N and P exports, respectively), 

macrodetritus flux was relatively large in terms of DW. As macrodetritus is an 

obvious and visible source of estuarine primary production, its degradation and 

accumulation in receiving habitats (e.g. coastal soft-sediments) has the potential to 

alter ecosystem structure and function.   

Scaling up the macrodetritus weights to estimate the amount of litter that is exported 

annually from Pepe Inlet yields ~30 kg DW ha-1 of vegetated area within the inlet 

(~15 ha of seagrass, mangroves and marsh habitat). This estimate is comparable to 

the macrodetritus export that was measured in the mangrove basin, Tuff Crater, 

New Zealand (7-42 kg DW ha-1 yr-1 when converted to area of vegetation; 

Woodroffe 1985), and although hydrodynamically different, Tuff Crater is similar 

in area to Pepe Inlet. In addition, my estimated annual export of macrodetritus is 

also comparable to that of North Inlet (USA), which exported 27 kg DW ha-1 of 

saltmarsh annually (annual export scaled to saltmarsh area; Dame & Stilwell 1984; 
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Dame et al. 1986). Others have found lower macrodetritus exports than Pepe Inlet, 

which is likely related to the specific hydrodynamics of the systems in question, 

being temperate marsh systems that have high water residence times and less 

frequent tidal inundation (Table A1.1; Hemminga et al. 1996; Bouchard & Lefeuvre 

2000).  It is also worth noting that, in Pepe Inlet, the individual flood and ebb 

macrodetritus fluxes were often much higher than net fluxes (net fluxes 18-52% of 

the total flood/ebb flux in summer and winter), suggesting that some of the 

macrodetritus transported out of the estuary probably returns with the subsequent 

flooding tide (i.e. there is a lot of macrodetritus moving around, but the export is 

relatively small by comparison).  

Whilst Pepe Inlet annually exported macrodetritus in terms of dry weight, it was a 

net importer of macrodetritus N and P on an annual basis (imports = 6 kg N yr-1 and 

8 kg P yr-1; Table A1.1). The N and P content of macrodetritus depends on the 

macrophyte species; where macroalgae are 1.0-3.9% N and 0.2-0.4% P, while 

mangrove litter contains 0.7-1.2% N and 0.1% P, and seagrass litter is 1.3-4.0% N 

and 0.6-2.5% P (Enriquez et al. 1993). Because imports into Pepe Inlet were 

generally dominated by macroalgae and seagrass, and exports were dominated by 

mangrove and terrestrial/marsh leaf litter, the resulting annual flux of macrodetritus 

N and P were imports (i.e. imports of relatively N and P rich macrodetritus offset 

exports of relatively N and P poor macrodetritus). Pepe Inlet acts as a net importer 

of macrodetritus N and P (albeit minimal), but an exporter of other forms of N and 

P (particulates and dissolved), suggesting the potential role of these estuaries as 

organic matter transformers. 
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In their review of estuary-to-coast flux studies, Childers et al. (2000) used 

regression analysis (using data from 20 studies) to identify the physical factors 

regulating material transport across estuarine-to-open ocean boundaries. Tidal 

range explained 40% of the variation in dissolved nutrient flux, where systems 

switched from importers to exporters at tidal ranges >1.2 m (similar results were 

also found by Adame & Lovelock 2011, when reviewing the hydrological factors 

that affect nutrient export from mangrove forests). The size of the system being 

drained from a single tidal channel was also found to affect the magnitude of 

particulate organic matter export; where smaller systems (<54 ha) showed greater 

exports (Childers et al. 2000). However, since direct quantification of macrodetritus 

fluxes are rare, the extensive review (by Childers et al. 2000) did not identify factors 

regulating macrodetritus transport. Of course, the specific hydrodynamics of the 

estuarine system will influence the macrodetritus transport dynamics, because 

marine macrophytes can occur above the mean high tide mark, limiting their 

connectivity with the wider estuary (through infrequent tidal inundation; Adame & 

Lovelock 2011). Further, the size of the estuary will affect the relative proportions 

of marine macrophyte habitats (i.e. catchment size will be associated with terrestrial 

detritus supply, and the size of the intertidal area will control the amount of 

mangrove and seagrass habitats), and therefore the amount of detritus that is 

available to be exported from these habitats. Tairua Estuary not only has a relatively 

high tidal exchange (82% of water exchanged each tide; Bell 1994), but the majority 

of vegetated habitats in Pepe Inlet (seagrass and mangroves, as well as some of the 

marsh) occur below the high tide mark.  Pepe Inlet is also relatively small (i.e. < 54 

ha), has a spring and neap tidal range of 1.63 m and 1.22 m, respectively, and 

freshwater input from Pepe Stream, which discharges on average 0.23 m3 s-1 (Liu 
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2014). These hydrodynamic properties will undoubtedly influence the material 

exchanges, and to some extent limit the generalisability of my results to other 

temperate estuaries.  However, Pepe Inlet represents a common estuary type, at least 

in the North Island of New Zealand context (Hume et al. 2007), in that it is a largely 

intertidal, ebb-dominated (i.e. discharge volume was greater on the ebb tide 

compared to the flood tide; see Figure A3.2), mixed habitat estuary. 

Fluxes of all forms of N and P varied across seasons. Most markedly was the 

difference in summer (compared to other seasons), where macrodetritus and chl a 

transport (and export) peaked, and dissolved N and P dropped. The summer peak 

in macrodetritus transport is not surprising given that many marine macrophytes 

show seasonal peaks in production in summer. New Zealand mangroves produce 

77% of their total litter production between November and February (Gladstone-

Gallagher et al. 2014a). In addition, macroalgae senescence and erosion, and 

seagrass growth and production, can also be greatest in summer (Brown et al. 1997; 

Turner 2007). However, when organic matter is imported into the estuary (e.g. 

macrodetritus in spring), or when exports are low (i.e. high retention of 

macrodetritus), decay and remineralisation processes will occur within the estuary. 

If in situ decay and organic matter transformations are high, then outwelled 

production may be in the form of dissolved inorganic nutrients rather than organic 

detritus.  

Organic matter transformations that occur within the estuary are likely to modify 

the form in which production and nutrients are outwelled, and they may help to 

explain some of the temporal fluctuations in N and P fluxes. In Pepe Inlet, the 

contribution of the stream was temporally variable, contributing between 10-55% 
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of the estuary’s total N, P and chl a exports. Analysing each form of N and P 

separately revealed some interesting results, for example, the summer input of TDN 

from Pepe Stream was 149% of the TDN exported from Pepe Inlet. However, for 

total N (i.e. TDN + TPN + macrodetritus N), Pepe Stream only contributed 42% to 

the total N exported. This further indicates that processes within the estuary 

transform and utilise some of this dissolved N before it can be exported at the 

estuary mouth. As the net export of chl a was also highest in summer, the dissolved 

inorganic N may be utilised by in situ phytoplankton during summer, exporting N 

as particulate organic N.  

My study design did not detail within-estuary processes, and instead focuses on the 

differences between measured inputs (at Pepe Stream) and outputs (at the mouth of 

Pepe Inlet).  Nevertheless, processes within the estuary can be discussed, in an 

attempt to illuminate the simple ‘black box’ model (depicted in Figure 2.7). In 

summer and winter, >67% of the net exports of macrodetritus were from marine 

sources, and therefore it is likely that this production mostly occurred within the 

inlet itself, rather than transported by the stream (although the terrestrial/marsh 

sources were important in autumn). Other processes within the estuary, including 

the solute fluxes across the sediment-water interface, are likely to contribute to the 

export of nutrients from the inlet. In temperate estuaries, sediment-water effluxes 

of dissolved inorganic N (NOx and NH4
+) and P (PO4

3-) occur through nutrient 

remineralisation processes in the benthos (e.g. Lohrer et al. 2004; Norkko et al. 

2013). It is estimated that up to 50% of global organic matter remineralisation 

occurs in the coastal soft-sediments (Middelburg et al. 1997), and therefore these 

sediments may supply dissolved N and P to the water column that is available to be 

outwelled to the adjacent coastal waters.  
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Figure 2.7 Conceptual diagram of simplified total nitrogen fluxes (in kg N tidal cycle-1) in 

summer, including inputs of total N from Pepe Stream, N as NH4
+ from the benthos, and total 

N exported at the mouth of Pepe Inlet. Benthic fluxes are the night and day average of those 

measured in Pepe Inlet in Chapter 4 (n = 16, with adult crab densities of 12–108 ind. m-2), and 

are scaled up to the estuary area (259909 m2 found from GIS), and approximate time that the 

majority of the intertidal flat area is covered by water (~6 h, personal observation) (range for 

benthic fluxes is shown in brackets; positive benthic fluxes indicate an efflux of NH4
+ out of 

the sediment and into the water column, and negative indicates uptake by the sediments).  

Within Pepe Inlet, I measured summertime sediment-water solute fluxes of NH4
+ 

(see Chapter 4), and since NH4
+ is the dominant form of dissolved inorganic N that 

is moved out of the sediments (~88% of inorganic N efflux; Pratt et al. 2014a), these 

fluxes can be used to estimate the contribution of the unvegetated sediments to the 

export of N. Using the summertime measurements in Pepe Inlet, I estimate that on 

average ~0.7 kg of N tidal cycle-1 comes from the sediments in the form of NH4
+, 

accounting for ~40% of the total N exported (Figure 2.7). To explore this same N 

budget model for the other seasons, I used the NH4
+ flux values from Pratt et al. 

(2014a), who measured benthic ecosystem function across nine estuaries in 

different seasons (Table 2.3). Based on maximum benthic NH4
+ fluxes documented 

in Pratt et al. (2014a; scaled to the area of Pepe Inlet), it is plausible that in autumn 

and summer, the benthic fluxes could account for the differences in inputs and 
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outputs of N in Pepe inlet (0.46 kg and 0 kg N unaccounted for in autumn and 

summer, respectively). However, in winter and spring there is some N that is 

unaccounted for by this budget (3.29 and 5.67 kg N tidal cycle-1, respectively; Table 

2.3). The sources of N contributing to this shortfall remain unknown, but could be 

associated with seasonal differences in rainfall and groundwater discharge (Santos 

et al. 2012; Santos et al. 2014). Benthic NH4
+ fluxes may be outwelled as NH4

+, but 

may also be utilised within the estuary (e.g. by in situ phytoplankton production) 

and exported in another form. This has been suggested for dissolved C and N in the 

North Inlet estuary (saltmarsh-dominated inlet), where it is thought that dissolved 

nutrients are rapidly utilised within the estuary and instead exported as particulates 

(Dame et al. 1986). Whilst my calculations do not account for the contribution of 

NOx or PO4
3- from the sediments, the calculation highlights that the benthos is likely 

to represent a significant source of outwelled nutrients (Figure 2.7; Table 2.3).  

Table 2.3 Nitrogen (N) budget model for Pepe Inlet across seasons (Aut = Feb 2014, Win = Jul 

2014, Spr = Nov 2014, Sum = Feb 2015). Values are in kg N tidal cycle-1. N supplied to the 

water column from the benthos for Pepe Inlet are the night and day average of those measured 

in Pepe Inlet in Chapter 4 (n = 16, with adult crab densities of 12–108 ind. m-2), and benthic 

fluxes from Pratt et al. (2014a) are measured in nine estuaries across a comprehensive seasonal 

range (n = 143; the maximum and minimum values reported here represent the average of 

values above the 90th percentile and below the 10th percentile). NH4
+ fluxes (from Chapter 4 

and Pratt et al. 2014a) are scaled up to the estuary area (259909 m2 found from GIS), and 

approximate time that the majority of the intertidal flat area is covered by water (~6 h, personal 

observation) (positive benthic fluxes indicate an efflux of NH4
+ out of the sediment and into the 

water column, and negative indicates uptake by the sediments). 

     NH4
+ from benthos N unaccounted 

for using range 

of benthic fluxes  

Season Stream Macro- 

detritus 

Total 

export 

Unaccounted 

N   

Pepe Inlet 

(Chapter 4) 

Pratt et al. 

(2014a) 

from Pratt et al. 

(2014a) 

Aut 1.36 0.03 6.62 5.23 Mean 0.72 Mean 1.23 0.46 

Win 1.09 0.02 9.17 8.06 Min -0.43 Min -0.19 3.29 

Spr 1.15 -0.31 11.59 10.44 Max 3.23 Max 4.77 5.67 

Sum 0.76 0.23 1.81 0.82   0 
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Seasonal flux differences may be confounded by differences in the lunar cycle stage 

during times of sampling. I aimed to sample within 2-3 tidal cycles of the peak 

spring tide (to standardise flow conditions across the sampling dates), however, 

some variability in the tidal amplitude was inevitable (Table A3.1). This will have 

particular consequences for estimating the transport of terrestrial and marsh 

production, as some terrestrial/marsh habitats may be inundated only by large 

spring tides (and neap tides were not sampled in this study). Other abiotic factors, 

such as rainfall, wind speed/direction, and stream flow conditions are likely to 

influence the mobilization and transport of detritus, in particular the transport of 

terrestrially derived detritus will be greatest in times of increased stream flow (this 

study omitted storm/flood conditions from sampling). Thus, smaller scale temporal 

variability in abiotic conditions may confound the perceived seasonal patterns in 

detrital transport, and further sampling across multiple years are required to truly 

tease apart the temporal variability within seasons from the variability between 

seasons. Further, macrodetritus fluxes may be either slightly under- or over-

estimated, due to the use of such a simple calculation to scale up the macrodetritus 

fluxes to the width of the channel, where some variability in the flow and discharge 

across the channel cross-sectional area is omitted. However, this does not limit my 

ability to draw conclusions around the direction of fluxes (i.e. net import or export), 

and at the very least ebb vs. flood fluxes are accurate relatively. Another limitation 

of this study relates to the model used to predict discharge, where in some months 

the predicted discharge was more accurate than others (Figure A3.2). However, 

reassuringly, exports of both macrodetritus and particulates are greatest for 

February, where the calculations for macrodetritus do not rely on the discharge 

measurements (while the fluxes of particulates do).  
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This study provides real-world quantification of the magnitude of macrodetritus 

fluxes, as well as the simultaneous measurements of other forms of production 

exported from a typical temperate New Zealand estuary. This type of data can be 

useful to inform studies of estuarine food webs, nutrient budgets, and the ecosystem 

services provided by temperate estuaries, which are important when predicting 

ecosystem effects of anthropogenic degradation of marine habitats. Whilst 

macrodetritus represents a relatively minor source of N and P, its transport (here up 

to 10 kg net tidal cycle-1) and accumulation in large patches will have important 

effects on receiving ecosystems, for example, its effects in structuring benthic 

infaunal communities (e.g. Kelaher & Levinton 2003; Bishop & Kelaher 2007), or 

its role in modifying ecosystem function in receiving habitats (see Chapters 3 and 

4 of this thesis). Because detritus is transported in relatively large quantities, and it 

decays slowly, it may represent an important source of primary production to 

offshore, deeper food webs that have low in situ productivity (e.g. sediments below 

the photic zone; Britton-Simmons et al. 2009). My results also emphasise the role 

of temperate estuaries as sites of efficient organic matter transformation, where 

there is a net export of total N and P, but when broken down into the various 

components of material transport, some materials are imported (e.g. macrodetritus 

in spring), but processed within the estuary and exported in a different form (e.g. 

dissolved N). 
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3 CHAPTER 3: Effects of detrital subsidies on soft-

sediment ecosystem function are transient and 

source-dependent 

3.1 Introduction 

In coastal marine systems, detritus (dead, decaying leaf litter) from seagrass, 

mangroves, salt marsh and macroalgae is transported by the currents, potentially 

supplying a subsidy to adjacent unvegetated soft-sediment habitats. The role of 

these detrital subsidies in structuring benthic macrofauna communities in temperate 

soft-sediments has been well documented and is an important mechanism for 

creating patchiness and heterogeneity in these recipient habitats (e.g. Kelaher & 

Levinton 2003; Bishop & Kelaher 2008; Olabarria et al. 2010; Taylor et al. 2010; 

Gladstone-Gallagher et al. 2014b). Furthermore, some studies have indicated that 

detrital addition increases the biomass of benthic microphytes (e.g. Rossi & 

Underwood 2002; Bishop & Kelaher 2007; Rossi et al. 2013), but collectively how 

these changes influence ecosystem functioning (e.g. benthic primary production, 

community metabolism, and nutrient regeneration) is not well understood (but see 

Kelaher et al. 2013).  

Detritus may influence soft-sediment ecosystem function via shifts in macrofaunal 

community composition in response to a new resource, but detritus could also alter 

nutrient regeneration, and subsequently influence primary production. The 

degradation of organic matter in soft-sediments can increase nutrient regeneration 

at the sediment-water interface (e.g. Blackburn et al. 1993; García-Robledo et al. 

2008; Lohrer et al. 2011; García-Robledo et al. 2013; Rodil et al. 2013), fuelling 

microphytobenthos (MPB) productivity and growth. The observed increases in 
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MPB biomass post-addition of detritus (e.g. Rossi & Underwood 2002; Rossi 2006; 

Bishop & Kelaher 2007, 2008, 2013a, b) may therefore indicate a ‘fertilisation 

effect’ from the detrital subsidy as a result of nutrient mineralisation during detrital 

decay (Moore et al. 2004; Hyndes et al. 2012). Given that MPB can account for up 

to 50% of the total estuary autochthonous production (Underwood & Kromkamp 

1999), this could be an important process maintaining ecosystem productivity. 

Alternatively, the observed MPB increases may also suggest a removal of grazing 

pressure through macrofaunal community changes associated with detrital addition 

(as discussed by Bishop & Kelaher 2008, 2013a). In the field, I explore whether 

detrital subsidies and the temporal dynamics of decay influence MPB primary 

production and nutrient regeneration, and whether these associated changes are 

related to indirect food web effects (i.e. the fertilisation of MPB during detrital 

decay) or direct macrofaunal community changes in response to detrital subsidies. 

Responses of the macrofauna and MPB to detrital addition are dependent on detrital 

source identity (Bishop et al. 2010; Bishop & Kelaher 2013b), yet questions remain 

as to how differences in detrital quality (here, defined as the combination of decay 

rate and C:N content) among macrophyte sources control these responses and the 

subsequent effects on ecosystem function. The rate of litter decay (an indicator of 

detrital quality) is likely to influence the magnitude and any corresponding response 

in the food web. Therefore, any change in ecosystem function in response to detritus 

could depend on differences in decay rates among detrital sources. For example, in 

temperate latitudes mangrove leaf litter (e.g. Avicennia marina) is refractory and 

slow to decay (e.g. C:N = 23-47, half-life (t50) = 56-157 d; Gladstone-Gallagher et 

al. 2014a; Ainley & Bishop 2015), while macroalgae, on the other hand, is more 

labile and decays rapidly (e.g. Macrocystis integrifolia C:N = 14.3, t50 = ~2 weeks; 
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Albright et al. 1980). To explore how differences in the detrital quality among 

sources may influence soft-sediment ecosystem function, I chose three dominant 

detrital sources with different decay rates and C:N contents which I added to 

sediments in situ.  

Macrophyte detritus decays exponentially, beginning with the rapid leaching of 

labile materials, which is then followed by the slow degradation of the recalcitrant 

portion (reviewed by Wieder & Lang 1982). Despite these important temporal 

dynamics, previous studies investigating the role of detrital addition on soft-

sediment ecosystems have mostly considered responses that occur at one or 

possibly two fixed points in time (most commonly after 2-3 months; e.g. Bishop et 

al. 2007; Bishop et al. 2010; O’Brien et al. 2010; Taylor et al. 2010; Bishop & 

Kelaher 2013a, b; Kelaher et al. 2013). These studies reveal little about the temporal 

evolution in ecosystem responses to detrital subsidies associated with the changes 

that occur during decay. One of the only studies to consider spatio-temporal patterns 

in macrofaunal community response to detrital additions, revealed significant 

species-specific variations through time (Kelaher & Levinton 2003). My 

experimental design incorporated a temporal element, to explore whether detrital 

subsidies may have variable effects on benthic ecosystem function. 

I added three dominant detrital sources (of different detrital quality) to the 

sediments on an intertidal sandflat, and then through time measured how these 

different detrital subsidies influence soft-sediment ecosystem function and benthic 

macrofaunal community composition.  Based on observations that sediment 

chlorophyll a (chl a; a measure of MPB biomass) increases with the addition of 

detritus (e.g. Bishop & Kelaher 2007, 2013a), I expected that detritus would elevate 
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the benthic primary production of MPB, either by releasing nutrients during decay 

or by altering the macrofaunal community structure. In addition, it was predicted 

that community metabolism would increase during the aerobic decay of the detritus. 

I also investigated whether the magnitude of these ecosystem responses depends on 

detrital quality, and varies through time at the different stages of decay. The 

experiment was designed to increase our understanding of how detrital subsidies 

contribute to benthic ecosystem function in a field setting. 

3.2 Materials and methods 

3.2.1 Experimental treatments and setup 

To explore the effects of detrital subsidies on soft-sediment benthic ecosystem 

function, an experiment was conducted on a mid-intertidal sand flat (tidal elevation 

~+0.5 m above lowest astronomical tide; LINZ data service, Chart NZ 5312) in the 

Whangapoua Estuary, North Island, New Zealand (36° 44' 19.3" S, 175° 39' 02.8" 

E). The site was relatively sheltered and not exposed to strong wind wave currents. 

The sediment at the site consists of organic poor (~1% organic content; OC) 

medium sands, with very little mud (silt/clay particles <63 µm) content (<5% by 

volume). The experiment began in February 2014 (late austral summer) coinciding 

with peak detrital production and decay (Woodroffe 1982; Turner 2007; Gladstone-

Gallagher et al. 2014a) and ended in May.  

Twenty-four 2 m2 (1.4 m × 1.4 m) plots separated by approximately 2 m were 

established at low tide in a 4 by 6 array. To ensure interspersion, one of the four 

experimental treatments (three detrital treatments and one control, n = 6 per 

treatment) was randomly assigned to one plot in each of the rows. Detrital 
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treatments were mangrove (Avicennia marina subsp. australasica), seagrass 

(Zostera muelleri), and macroalgae (Ecklonia radiata) detritus, hereafter referred 

to as Avicennia, Zostera, and Ecklonia treatments, respectively. At low tide, 220 g 

m-2 of detritus (dry weight, DW) was added to the addition plots, by gently mixing 

it by hand into the surface sediments (0-5 cm depth) (as in Kelaher & Levinton 

2003; Bishop & Kelaher 2008; Bishop et al. 2010; Gladstone-Gallagher et al. 

2014b). Control plots were treated in the same manner as detrital plots (i.e. 

sediments mixed by hand), however no detrital material was added. In addition to 

the control plots, I measured ecosystem function variables, sediment properties and 

macrofaunal community structure in ambient undisturbed sediments, to confirm 

that there were no significant effects caused by the disturbance of finger churning 

the sediments. The chosen detrital types represent three of the dominant detrital 

sources present in temperate New Zealand estuaries (Singleton 2007; Needham et 

al. 2013), and include a range of different detrital decay rate and C:N content 

combinations; from the refractory slow decaying Avicennia detritus (C:N = 56, t50 

= 46 d), to the more labile and rapidly decaying Ecklonia detritus (C:N = 18, t50 = 

3 d), whereas Zostera detritus has an intermediate decay rate (C:N = 18, t50 = 28 d) 

(see results). 

In order to eliminate treatment effects associated with decay state, the detritus was 

collected fresh (realistic of what enters the system). Yellow senescent, ready-to-fall 

leaves were selected from A. marina trees and live E. radiata thalli and Z. muelleri 

blades were hand-picked.  To simulate the natural fragmentation of detritus 

deposited in the sediments, leaf material was dried at 60°C to constant weight, 

ground into pieces ~2 mm in dia. and stored (<2 weeks) before addition to the plots. 

The drying process is thought to be similar to that experienced by washed up detrital 
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material during a summer afternoon low tide (e.g. Bishop & Kelaher 2013b), and 

enabled us to standardise the amount and surface area of detritus added to each plot.  

At 4, 17 and 46 d post-detrital addition, I measured benthic solute fluxes across the 

sediment-water interface, as well as macrofaunal community structure and 

sediment properties in each of the 24 plots. A different (randomly selected) quarter 

(0.5 m2) of each square plot was sampled on each date. Sampling times were chosen 

to encompass sedimentary and macrofaunal responses associated with the initial 

leaching and decay that litter experiences during decomposition (Gladstone-

Gallagher et al. 2014a; Ainley & Bishop 2015), as well as the possible longer-term 

effects on macrofauna identified in previous studies (e.g. Bishop et al. 2007; Bishop 

et al. 2010). In order to determine the variability in ambient light and temperature 

levels between sampling dates, four HOBO data loggers (5 min. sampling interval) 

were placed within the study site during solute flux measurements. To determine 

source-specific decay rates for my study location, litterbags were positioned on the 

sediment surface (16 cm × 16 cm, 2 mm mesh; Woodroffe 1982; Gladstone-

Gallagher et al. 2014a) with a known initial DW of detritus. Litterbags were then 

retrieved at 4, 17, and 46 d post-addition (n = 4 bags per detrital type, per retrieval 

date). To eliminate decay effects associated with differences in the leaf surface area, 

and therefore obtain a relative decay rate between the detrital sources, I shredded 

the detritus for the litterbags to ensure that all types had a similar surface area to 

seagrass blades. 

3.2.2 Field measurements 

During a midday high tide, in situ benthic chambers were used to measure fluxes 

of dissolved oxygen and inorganic nutrients across the sediment-water interface (as 
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in Lohrer et al. 2010; Lohrer et al. 2011). In each plot, two circular chambers (one 

transparent ‘light’, and one blacked out ‘dark’) were placed side-by-side on an 

incoming tide incubating the sediment and overlying water (chamber sediment 

surface area = 0.016 m2, water vol. = 0.85 L). Each chamber had a sampling port 

and an inlet port that allowed ambient water to enter the chamber during sample 

extraction. After flushing with ambient seawater, the chambers were incubated for 

approximately 4 h (2 h before and after high tide) with water samples collected at 

the start and end of the incubation period. For each sample, the first 20 ml of water 

withdrawn from the chamber was discarded (i.e. water contained in the 1.5 m of 

sample tubing) before a further 60 ml sample was collected for analysis. To account 

for water column processes in the chamber flux calculations, three pairs of light and 

dark 1.5 L bottles were filled with ambient seawater, incubated just above the 

seabed, and sampled at the same time as the benthic chambers. Immediately 

following water sample collection, dissolved oxygen concentration was measured 

using an optical DO probe (PreSens Fibox 3 PSt3), then the sample filtered through 

a 24 mm Whatman GF/C filter, and immediately frozen awaiting analysis of 

dissolved inorganic nutrients.  

After completion of the chamber incubations, one core (13 cm dia. × 15 cm depth) 

was collected from under the dark chamber in each plot, and the material retained 

on a 500 µm mesh sieve preserved in 70% isopropyl alcohol for macrofaunal 

community analysis. Surface sediment properties (chl a, OC, and grain size - GS) 

were measured in each plot by taking three pooled sediment cores (3 cm dia. × 2 

cm depth). Sediment samples were transported back to the laboratory on ice and 

then frozen prior to analysis. To reduce the disturbance created by sampling, core 

holes were infilled with defaunated sand (as in Lohrer et al. 2010).  
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3.2.3 Laboratory analyses 

Filtered water samples were analysed for dissolved inorganic nutrient species 

(NH4
+, NO3

-, NO2
-, PO4

3-) on a LACHAT Quickchem 8500 series 2 Flow Injection 

Analyser (FIA). Sediment chl a and phaeophytin (Phaeo) pigments were extracted 

using 90% buffered acetone, and concentrations (µg g-1) were determined on a 

Turner 10-AU fluorometer, before and after acidification (Arar & Collins 1997). 

Sediment OC was determined by weight loss on ignition, after drying at 60°C to 

constant weight and then subsequent combustion at 550°C for 4 h. Sediment GS 

was measured using a Malvern Mastersizer 2000 (particle size range: 0.05-2000 

µm), following organic matter digestion in 10% hydrogen peroxide. Macrofauna 

were separated from sediment and shell hash after staining with Rose Bengal stain, 

and then identified to the lowest feasible taxonomic level (usually species). To 

quantify the amount of detritus remaining in plots, macrofaunal core samples (with 

the fauna removed) were elutriated in a sugar solution to separate the less dense 

detrital material from heavier shell hash and sediment (Anderson 1959). Elutriated 

material was dried to constant weight at 60°C and then weighed. Litterbag samples 

were washed, dried at 60°C to constant weight and then weighed, to determine 

percentage weight loss through time. In addition, the initial C and N content in each 

detrital source was measured (n = 3) using an Elementar-vario EL cube analyser.  

3.2.4 Flux calculations and data analysis 

Fluxes of dissolved oxygen and inorganic nutrients across the sediment-water 

interface were calculated by subtracting the initial from the final concentration, and 

standardising this difference by incubation time, chamber water volume, and the 

enclosed sediment surface area. Chamber fluxes were also corrected for water 
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column processes (mostly <5% of the measured chamber flux). These fluxes were 

used to derive the following measures of ecosystem function: net primary 

production (NPP; light chamber O2 flux), sediment oxygen consumption (SOC), 

which is used as a proxy for benthic community metabolism/respiration in the 

absence of MPB photosynthesis (dark chamber O2 flux), and gross primary 

production (GPP; light minus dark chamber O2 flux). Normalising GPP by sediment 

chl a content accounts for variation in MPB biomass providing an estimate of 

photosynthetic efficiency (GPPchl a). Concentrations of NO2
-, NO3

-, and PO4
3- were 

below or near detection limits (0.004 mg L-1) resulting in uncertainty and variability 

in flux calculations, therefore these nutrient species were not considered further. 

NH4
+ fluxes in light and dark chambers were considered a proxy for inorganic 

nutrient regeneration in this study, as NH4
+ is the first nitrogenous product of 

organic matter remineralisation and is linked to MPB production in New Zealand 

estuaries (e.g. Lohrer et al. 2004; Thrush et al. 2006). Preliminary analysis of NH4
+ 

fluxes showed no significant difference between the light and dark chambers 

(PERMANOVA, p = 0.3) on any sampling dates, so were averaged for each light-

dark chamber pair prior to statistical analysis.  

t-tests were used to confirm that there was no procedural effect by comparing 

univariate response variables (sediment properties, solute fluxes, macrofauna 

abundance/richness) between ambient and control plots on d 4. t-tests were 

performed in the STATISTICA software package (Statsoft Inc.) on untransformed 

data after checking that the data met assumptions of independence, normality, and 

homogeneity of variance. In addition, a multivariate one-factor permutational 

analysis of variances (PERMANOVA) based on a Bray-Curtis similarity matrix 
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was used to compare the macrofaunal community structure between ambient 

sediments and control plots.   

I used a repeated measures PERMANOVA to determine treatment effects through 

time on each univariate response variable (OC, chl a, phaeo, median GS, mud 

content, detritus remaining, macrofauna abundance and taxa richness, NH4
+, SOC, 

NPP, GPP, GPPchl a; using Euclidean distance matrices), as well as the multivariate 

macrofauna data (Bray-Curtis similarity), and multivariate sediment properties (OC, 

chl a, phaeo, median GS, mud content; Euclidean distance). The analysis had 

treatment (4 levels) and time (3 levels) as fixed factors, and plot (6 levels) as a 

random factor nested within treatment. As my hypotheses were based upon an 

anticipated temporal succession in treatment effects, time was considered a fixed 

(treatment) factor (Anderson et al. 2008). Main effects (treatment and time) were 

not considered if the time × treatment interaction was significant, instead post-hoc 

pair-wise tests were undertaken to identify differences between treatment effects 

for each sampling date. In the absence of a time × treatment interaction, pair-wise 

tests determined differences between treatments and sampling dates. Non-metric 

Multidimensional Scaling analysis (nMDS) was used to visualise patterns in 

multivariate macrofaunal community species data among treatments and sampling 

dates, and SIMPER analysis used to determine which species were contributing to 

community differences. Raw, untransformed macrofauna species data were used in 

PERMANOVA and nMDS analyses, because abundances were spread relatively 

evenly across taxa, making transformations unnecessary. Univariate response 

variables were also left untransformed.  PERMANOVA, nMDS and SIMPER 

analyses were all performed in the PRIMER 7 statistical software program (Clarke 

& Gorley 2006; Anderson et al. 2008).  
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Single exponential decay models (X(t) = e-kt; Wieder & Lang 1982) were used to 

estimate decay rates of the detritus using untransformed data collected at 4, 17 and 

46 d. In the model, X(t) = the proportion of detritus remaining in the litterbags after 

time t (days), and k = detrital decay constant (d-1). In using the litterbag method, 

decay represents not only decomposition, but the potential loss of litter pieces that 

are smaller than the litterbag mesh (<2 mm). t50 (i.e. time in days it takes for the 

detritus to decay to half its original weight) was then calculated as: t50 = k-1 × ln2, 

along with the 95% confidence intervals of the decay curves. Decay models were 

fitted using STATISTICA (Statsoft Inc.).  

3.3 Results 

I found no procedural effects (of hand mixing the sediments) on the sediment 

properties (Table 3.1) and ecosystem function variables (GPP, NPP, SOC, GPPchl a 

and NH4
+ flux) in t-tests comparing control and ambient sediments after 4 d (t-tests 

p > 0.3). Sediment mixing had no effect on the macrofaunal community structure 

(PERMANOVA df = 1, pseudo-F = 0.6, p = 0.7), total abundance or taxa richness 

(t-tests p > 0.4). Therefore, results measured from ambient plots were excluded 

from all further analyses. 
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Table 3.1 Sediment properties and macrofaunal community variables. Variables are reported as a function of detritus treatment (control, Avicennia, Zostera, Ecklonia) 

and time (4, 17, 46 d post-detrital addition). Day 4 ambient data were included to test for procedural effects (see text) and data represent the mean ±1 SE (n = 6 (4 for 

ambient plots)). 

Day Variable Ambient Control Avicennia Zostera Ecklonia 

4 OC (%) 1.08 ± 0.07 1.11 ± 0.03 1.48 ± 0.06 1.35 ± 0.06 1.26 ± 0.03 

  Chl a (µg g-1) 7.5 ± 1.0 7.2 ± 0.4 6.4 ± 0.3 7.0 ± 0.7 6.5 ± 1.1 

  Phaeo (µg g-1) 3.6 ± 1.2 3.9 ± 0.6 6.4 ± 0.8 5.6 ± 0.6 8.7 ± 1.1 

  Mud content (%) 2.5 ± 1.0 3.1 ± 0.7 3.0 ± 0.6 3.0 ± 0.2 2.7 ± 0.4 

  Median GS (µm) 274 ± 7 265 ± 5 266 ± 5 261 ± 3 263 ± 4 

 Amount of detritus (g DW core-1) 0.35 ± 0.17 0.49 ± 0.13 0.84 ± 0.17 1.42 ± 0.63 0.57 ± 0.10 

  Macrofauna total abundance (core-1) 206 ± 57 175 ± 24 218 ± 39 177 ± 27 218 ± 25 

  Macrofauna taxa richness (core-1) 20.8 ± 1.5 18.8 ± 1.6 19.8 ± 1.7 19.5 ± 0.9 20.0 ± 0.8 

17 OC (%)       1.18 ± 0.15 1.24 ± 0.05 1.38 ± 0.10 1.19 ± 0.08 

  Chl a (µg g-1)       7.5 ± 1.10 6.3 ± 0.4 9.1 ± 1.3 5.9 ± 0.5 

  Phaeo (µg g-1)       6.9 ± 1.3 7.1 ± 1.1 5.6 ± 1.1 6.5 ± 1.5 

  Mud content (%)       3.1 ± 0.2 3.3 ± 0.6 3.5 ± 0.4 3.7 ± 0.3 

  Median GS (µm)       265 ± 3 263 ± 4 255 ± 3 264 ± 4 

 Amount of detritus (g DW core-1)    0.35 ± 0.09 1.04 ± 0.50 0.94 ± 0.20 0.56 ± 0.15 

  Macrofauna total abundance (core-1)       226 ± 24 239 ± 17 269 ± 19 291 ± 24 

  Macrofauna taxa richness (core-1)       25.2 ± 2.2 22.0 ± 0.8 22.7 ± 1.5 25.0 ± 1.2 

46 OC (%)       1.23 ± 0.09 1.21 ± 0.03 1.34 ± 0.02 1.16 ± 0.10 

  Chl a (µg g-1)       7.9 ± 0.4 7.51 ± 1.2 8.49 ± 1.1 7.71 ± 1.7 

  Phaeo (µg g-1)       4.4 ± 0.8 4.4 ± 0.5 4.5 ± 0.8 4.0 ± 0.7 

  Mud content (%)       2.4 ± 0.5 2.7 ± 0.2 3.0 ± 0.5 2.9 ± 0.5 

  Median GS (µm)       265 ± 3 275 ± 5 264 ± 6 266 ± 4 

 Amount of detritus (g DW core-1)    0.61 ± 0.27 0.38 ± 0.11 1.00 ± 0.41 0.42 ± 0.08 

  Macrofauna total abundance (core-1)       183 ± 21 200 ± 19 203 ± 31 202 ± 15 

  Macrofauna taxa richness (core-1)       17.3 ± 0.5 20.2 ± 1.0 21.5 ± 1.4 21.3 ± 0.8 

OC = total organic content of sediment; Chl a = sediment chlorophyll a pigment content; Phaeo = sediment phaeophytin pigment content; GS = grain size; Mud = silt/clay 

(particles <63 µm); DW = dry weight 
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3.3.1 Sediment variables 

Four days post-detrital addition, sediment OC was elevated by 11-33% in treatment 

plots relative to the controls (Table 3.1). A similar pattern was also seen in the 

amount of detritus recovered (by sugar elutriation), where addition plots were 

elevated by 14-65% compared to controls. These increases in OC and detritus 

recovered however were only statistically significant for Zostera, which remained 

elevated throughout the experiment (Table 3.2).  

Other sediment properties were mostly unaffected by the detrital addition, except 

for chl a and phaeo. Chl a was consistently higher in Zostera plots compared to 

Avicennia and Ecklonia plots, but none of the detritus treatments differed from 

controls. Phaeo was higher in Avicennia and Ecklonia plots relative to controls after 

4 d, but no treatment effects were observed 17 and 46 d post-addition. Mud content 

and median GS differed between sampling dates (Tables 3.1 and 3.2). A 

multivariate PERMANOVA analysing treatment and time effects on all sediment 

properties combined revealed no treatment effects (df = 3, pseudo-F = 1.18, p = 

0.3), but significant time effects were found (df = 2, pseudo-F = 4.68, p = 0.01), and 

post-hoc pair-wise tests revealed that multivariate sediment properties at 46 d were 

significantly different to those at 4 and 17 d (p < 0.05).  
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Table 3.2 Repeated measures PERMANOVA results for sediment properties and macrofauna community variables. PERMANOVA tests were performed on univariate 

measures of sediment properties, macrofaunal abundance, and taxa richness (Euclidean distance), and multivariate macrofaunal community structure (Bray-Curtis 

similarity), as a function of time (4, 17, 46 d post-addition) and treatment (C = control, A = Avicennia, E = Ecklonia, Z = Zostera). Significant effects (p < 0.05) are 

indicated in bold. In the instance of time × treatment interactions, p values are not given for main effects, and PERMANOVA post-hoc pair-wise tests show treatment 

effects on each sampling date, separately. 

Variable Source df MS Pseudo-F p(perm) Post-hoc pair-wise tests 

OC Time × Treatment 6 0.05 2.13 0.0676   

 Time 2 0.03 1.16 0.3233   

  Treatment 3 0.14 3.48 0.0387 C=A, C=E, C<Z, A=E, A=Z, E<Z 

  Plot(treatment) 20 0.04 1.67 0.0784   

  Residual 40 0.02       

Chl a Time × Treatment 6 2.56 0.83 0.5652   

 Time 2 7.75 2.50 0.0924   

  Treatment 3 8.92 5.77 0.0041 C=A, C=E, C=Z, A=E, A<Z, E<Z 

  Plot(treatment) 20 1.54 0.50 0.9617   

  Residual 40 3.11       

Phaeo Time × Treatment 6 10.05 2.37 0.0433 4 d: C<A, C<E, C=Z, A=E, A=Z, E>Z;  

 Time 2 32.78 7.74  17 and 46 d: ns 

  Treatment 3 7.10 1.38    

  Plot(treatment) 20 5.14 1.21 0.2896   

  Residual 40 4.23             
Mud content Time × Treatment 6 0.41 0.55 0.7725  

 Time 2 2.55 3.47 0.0418 4 d=17 d, 4 d=46 d, 17 d>46 d 

  Treatment 3 0.34 0.23 0.8913   

  Plot(treatment) 20 1.46 1.99 0.0319   

  Residual 40 0.73       

Median GS Time × Treatment 6 56.54 1.20 0.3310  

 Time 2 214.30 4.56 0.0152 4 d=17 d, 4 d=46 d, 17 d<46 d 

  Treatment 3 184.66 1.14 0.3610   

  Plot(treatment) 20 162.21 3.46 0.0005   

  Residual 40 46.95       
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Table 3.2 continued. 

Variable Source df MS Pseudo-F p(perm) Post-hoc pair-wise tests 

Amount of detritus Time × Treatment 6 0.31 0.70 0.6725  

 Time 2 0.32 0.71 0.5234  

 Treatment 3 1.56 3.98 0.0181 C=A, C=E, C<Z, A=E, A=Z, E<Z 

 Plot(treatment) 20 0.39 0.87 0.6202  

 Residual 40 0.45    

Macrofauna total  Time × Treatment 6 1949.90 0.63 0.7006   

abundance Time 2 28342.00 9.23 0.0005 4 d<17 d, 4 d=46 d, 17 d>46 d 

 Treatment 3 5478.10 1.87 0.1681   

  Plot(treatment) 20 2929.40 0.95 0.5265   

  Residual 40 3071.80              

Macrofauna taxa  Time × Treatment 6 15.08 2.20 0.0621   

richness Time 2 128.43 18.70 0.0001 4 d<17 d, 4 d=46 d, 17 d>46 d 

 Treatment 3 9.20 0.75 0.5339   

  Plot(treatment) 20 12.25 1.78 0.0590   

  Residual 40 6.87       

Macrofaunal community Time × Treatment 6 366.81 0.81 0.7831  

(Multivariate) Time 2 3614.10 8.02 0.0001 4 d≠17 d, 4 d≠46 d, 17 d≠46 d 

 Treatment 3 494.18 0.80 0.7174  

 Plot(treatment) 20 620.46 1.38 0.0122  

 Residual 40 450.53    

OC = total organic content of sediment; Chl a = sediment chlorophyll a pigment content; Phaeo = sediment phaeophytin pigment content; GS = grain size; 

Mud = silt/clay (particles <63 µm) 
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3.3.2 Detrital decomposition 

Initial litter C:N ratios (±1 SE, n = 3) were 55.9 (±0.3) for Avicennia (N = 0.82%), 

18.49 (±0.06) for Zostera (N = 1.49%), and 18.39 (±0.06) for Ecklonia (N = 1.83%). 

Leaf litterbag results confirmed distinct differences in detrital decay rates among 

Avicennia, Zostera, and Ecklonia detritus. After 46 d, Avicennia lost 48% of its 

weight, Zostera litter 65%, and Ecklonia decayed the fastest with no litter left at the 

end of the experiment (Figure 3.1). These differences in weight lost were reflected 

in t50 values (95 % CI), which were 46 d (41-53 d), 28 d (23-37 d), and 2.6 d (2.5-

2.8 d) for Avicennia, Zostera, and Ecklonia detritus, respectively.  

 

Figure 3.1 Decay rates of Avicennia, Zostera and Ecklonia detritus. Data represent the mean 

percentage (±1 SE; n = 4) of initial dry weight (DW) remaining in litterbags as a function of 

time. 
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3.3.3 Macrofaunal community 

I collected 52 different macrofaunal species/taxa, with a total of 16,425 individuals 

across the 24 plots on three sampling occasions. The dominant group were the 

polychaetes, making up 54% of the total abundance comprising 20 species. Of the 

remaining groups, bivalves contributed 23% to the total abundance (6 species), 

amphipods 8% (8 species), gastropods 4% (8 species), with the remainder (~10%) 

in the classes Anthozoa, Crustacea (orders not including Amphipoda), 

Rhabditophora, Polyplacophora, Clitellata and Nemertea, all of which had just 1-2 

species each.  

Multivariate macrofaunal community structure, and univariate abundance and 

richness changed through time (Tables 3.1 and 3.2; Figure 3.2A). Pair-wise tests 

revealed that univariate measures of abundance and taxa richness were higher on d 

17 compared to d 4 and 46, whereas multivariate community structure differed 

among all three sampling dates.  SIMPER analysis showed that the same species 

(the polychaetes Prionospio aucklandica and Aonides trifida, bivalves Austrovenus 

stutchburyi and Lasaea parengaensis, and amphipod Paracalliope novizealandiae) 

were responsible for 50% of the cumulative dissimilarity between sampling dates, 

indicating that temporal differences in community structure were likely driven by 

changes in the relative abundances of these species. No significant effects of detrital 

addition on univariate or multivariate measures of macrofaunal community 

structure were detected (Table 3.2; Figure 3.2B). 
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Figure 3.2 nMDS ordination of untransformed macrofaunal community data. Ordinations 

(based on Bray-Curtis similarity) show species distributions as a function of (A) time: 4, 17 and 

46 d post-detrital addition (n = 24) and (B) detrital treatments: control, Avicennia, Zostera, and 

Ecklonia (n = 18). Each data point represents the macrofaunal community in one core sample. 

3.3.4 Measures of ecosystem function 

NH4
+ flux and SOC were unaffected by the addition of detritus throughout the 

experiment, but both showed significant temporal variability (Table 3.3; Figure 

3.3A and B). The NH4
+ flux was higher (19-26%) on d 4 and 46 compared to d 17.  

The SOC measured at 4 and 17 d post-detrital addition was double that measured 

on d 46. Light levels at the sediment-water interface and salinity also varied across 

the sampling dates (Table 3.4). 
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Figure 3.3 Solute fluxes in control and detrital treatments at 4, 17, and 46 d post-addition. (A) 

NH4
+ flux (light and dark chamber fluxes pooled); (B) Net primary production (NPP; white bars 

light chambers) and sediment oxygen consumption (SOC; black bars dark chambers); and (C) 

Gross primary production normalised for chlorophyll a biomass (GPPchl a), as a function of 

treatment (C = Control, A = Avicennia, Z = Zostera, E= Ecklonia) and time (4, 17, and 46 d 

post-addition). Data represent the mean +1 SE (n = 6). PERMANOVA pair-wise test results 

(within a sampling date) for significant time × treatment interaction are shown as letters above 

bars, where bars sharing the same letter are not significantly different (p < 0.05).
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Table 3.3 Summary of repeated measures PERMANOVA results on univariate measures of ecosystem function. PERMANOVA tests (Euclidean distance) were 

performed on ecosystem function variables, as a function of time (4, 17, 46 d post-addition) and treatment (C = control, A = Avicennia, E = Ecklonia, Z = Zostera). 

Significant effects (p < 0.05) are indicated in bold. In the instance of time × treatment interactions, p values are not given for main effects, and PERMANOVA post-

hoc pair-wise tests show treatment effects on each sampling date, separately. 

Ecosystem function variable Source df MS Pseudo-F p(perm) Post-hoc pair-wise tests 

NH4
+ Time × Treatment 6 3542 1.21 0.2883   

 Time 2 7914 2.71 0.0362  4 d>17 d, 4 d=46 d, 17 d<46 d 

  Treatment 3 2175 0.76 0.6051   

  Plot(treatment) 20 2867 0.98 0.5024   

  Residual 40 2923              

SOC Time × Treatment 6 211230 1.60 0.1711  

 Time 2 23157000 175.84 0.0001 4 d=17 d, 4 d>46 d, 17 d>46 d 

  Treatment 3 53999 0.37 0.7813   

  Plot(treatment) 20 147280 1.12 0.3716   

  Residual 40 131690       

NPP Time × Treatment 6 3106900 9.33 0.0001 4 d: C>A, C>E, C=Z, A<E, A<Z, E<Z;  

 Time 2 11620000 34.88  17 and 46 d: ns 

  Treatment 3 3376000 9.52    

  Plot(treatment) 20 354700 1.06 0.4158   

  Residual 40 333140      
GPP Time × Treatment 6 3512100 6.94 0.0001 4 d: C>A, C>E, C=Z, A<E, A<Z, E=Z;  

 Time 2 2767900 5.64  17 d: C=A, C=E, C=Z, A>E, A=Z, E=Z;  

  Treatment 3 490980 0.97  46 d: C<A, C=E, C=Z, A=E, A=Z, E=Z 

  Plot(treatment) 20 490980 0.97 0.5094   

  Residual 40 505960      

GPPchl a Time × Treatment 6 113300 7.85 0.0001 4 d: C>A, C=E, C=Z, A<E, A<Z, E=Z;  

 Time 2 11896 1.28  17 d: C<A, C=E, C=Z, A=E, A>Z, E>Z; 46d: ns 

  Treatment 3 9264 0.64    

  Plot(treatment) 20 9264 0.64 0.8593   

  Residual 40 14437             
NH4

+ = ammonium flux; SOC = sediment oxygen consumption; NPP = net primary production; GPP = gross primary production; GPPchl a = GPP normalised 

for chlorophyll a biomass 
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Table 3.4 Light, temperature, and salinity at the sediment-water interface. For light and 

temperature, the mean (±1 SE; n = 4 loggers) for each incubation period is presented, and for 

salinity, the results of a single measurement are shown 

Day Light (Lux) Temperature (°C) Salinity 

4 12493 ± 3828 22.2 ± 0.1 25.2 

17 22282 ± 12130 20.1 ± 0.1 30.7 

46 5573 ± 1138 20.1 ± 0.1 24.3 

 

Ecosystem function variables related to primary production (NPP, GPP, GPPchl a) 

showed significant time × treatment interactions (Table 3.3), indicating that detrital 

treatment effects varied among the sampling dates. PERMANOVA pair-wise 

comparisons revealed that 4 d after the addition, NPP was lower in Avicennia and 

Ecklonia treatments compared to that measured in control and Zostera plots (Table 

3.3; Figure 3.3B). In Avicennia and Ecklonia treatments, there was a drawdown of 

oxygen into the sediments (a negative flux of ~-260 to -1350 µmol O2 m
-2 h-1) while 

in the control and Zostera treatments there was an efflux of oxygen out of the 

sediments and into the water column (a positive flux ~1200 µmol O2 m-2 h-1). 

However, these treatment effects on NPP were not found on subsequent sampling 

dates. Like NPP, GPP was reduced in Avicennia (by 59%) and Ecklonia (by 23%) 

plots compared to control plots, but only on d 4. GPPchl a was reduced by similar 

amounts on d 4 in Avicennia and Ecklonia (marginally significant at p = 0.09) plots, 

but interestingly after 17 d Avicennia plots had higher GPPchl a (by 23%) compared 

to control plots. After 46 d, there was no detrital treatment effects on GPPchl a (Table 

3.3; Figure 3.3C). 



 

 66   

3.4 Discussion 

Previous studies have highlighted the role that macrophyte detrital subsidies play 

in structuring benthic macrofaunal communities and influencing MPB biomass on 

temperate intertidal flats (e.g. Kelaher & Levinton 2003; Bishop et al. 2007; Bishop 

et al. 2010; O’Brien et al. 2010; Bishop & Kelaher 2013a). This study, however, is 

the first to measure the temporal succession of in situ benthic primary production, 

community metabolism, and nutrient regeneration following the addition of detritus 

to the sediments. Four days after the addition, sediment OC was raised in detrital 

treatment plots relative to controls (by 11-33%), though this was only significant 

for Zostera, which remained raised throughout the experiment. Ecosystem 

responses to detrital additions however were not as predicted from their differences 

in C:N ratios and decay rates. I expected that the responses among detrital sources 

would vary through time due to differences in detrital quality, and that initially the 

fastest decaying, most labile detrital source (Ecklonia) would show the greatest 

response in ecosystem function, with the slowest decaying (Avicennia) having the 

least response. Instead, Avicennia and Ecklonia detritus (t50 = 46 and 2.6 d, 

respectively) both influenced short-term primary production of the sediments, with 

no effects of the addition of Zostera detritus (t50 = 28 d), and these effects changed 

as the experiment progressed. Nutrient regeneration, community metabolism, and 

the macrofaunal community showed no response to the addition of detritus, but 

were instead dominated by temporal changes.  

My measures of community metabolism (SOC) and nutrient regeneration (NH4
+ 

flux) varied through time and were unaffected by detrital enrichment (or the 

interaction of these two factors). Macrofauna are known to regulate ecosystem 
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functions, such as SOC and NH4
+ fluxes (Hewitt et al. 2006; Lohrer et al. 2010; 

Rodil et al. 2013; Braeckman et al. 2014; Pratt et al. 2014a), and the subtle shifts in 

the relative abundances of a few species among the sampling dates (e.g. high 

abundances at 17 d) may be responsible for the temporal changes in NH4
+ flux. 

Furthermore, correlations between sediment properties and ecosystem functions, 

(such as SOC) have been found previously (e.g. Pratt et al. 2014a), and in my study, 

the temporal differences in several sediment properties could explain the 

differences I found in SOC (i.e. both multivariate sediment properties and SOC 

changed on 46 d).  

Unlike SOC and NH4
+, ecosystem functions associated with benthic primary 

production (NPP, GPP, GPPchl a) showed significant time × treatment interactions, 

revealing that detrital enrichment effects changed and evolved through time. It is 

common for soft-sediment communities to show temporal variation (e.g. Morrisey 

et al. 1992; Thrush et al. 1994), and it has been suggested that heterogeneity in soft-

sediment ecosystems contributes to ecosystem stability and resilience (Thrush et al. 

2008; Hewitt et al. 2010; Lohrer et al. 2015). My results have found that detritus 

creates transient responses in function, therefore potentially contributing to the 

heterogeneous nature of intertidal sandflat ecosystems. Here, I demonstrate that 

sampling at one point in time gives us only a snap-shot of benthic ecological 

function, while omitting important transient processes that evolve over varying time 

scales in response to detrital decay processes. My detrital decay curves show that 

the initial rapid leaching stage (Wieder & Lang 1982) occurred in the first 4 days 

of decay for all sources, which was then followed by the slow decay of the 

recalcitrant components of the leaf. Detritus-induced changes to benthic primary 

production are likely associated with the time scales of decay, which may explain 
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the changes in primary production through time that I detected (e.g. the initial 

suppression of primary production at 4 d).  

Source-dependent detrital effects were not related to differences in detrital decay 

rate, and instead the fastest and slowest decaying sources (Ecklonia and Avicennia) 

were the sources to have effects on sediment primary production. This suggests that 

detrital responses may be controlled by the chemical composition and palatability 

of the detrital source, rather than the decay rate. The initial suppression (4 d) of 

NPP, GPP and GPPchl a in Avicennia and Ecklonia was unexpected, given my 

prediction that detrital subsidies could ‘fertilise’ and stimulate MPB primary 

production. The absence of treatment effects on SOC in the dark chambers mean 

that treatment differences in GPP and GPPchl a are associated with changes in the 

light chambers (NPP), where photosynthesis by MPB occurs. Both mangrove and 

kelp detritus contain secondary chemical compounds (deterrents for consumers), 

such as tannins, that leach during decomposition (Arnold & Targett 2002).  This 

leaching of plant compounds may be responsible for the short-term suppression in 

GPP and GPPchl a, either in a photo-inhibitory manner as the brown colour of 

leached compounds may inhibit light reaching MPB (I observed the brown colour 

in plots at 4 d), or through toxic effects on MPB. Secondary compounds in 

mangrove leaves, such as tannins, have negative effects on soft-sediment meiofauna 

(Alongi 1987), and it is possible that they have similar negative effects on MPB, 

though this requires further investigation. After 17 d, Avicennia detritus 

significantly increased GPPchl a (but not GPP), possibly due to a ‘fertilisation effect’ 

as the detritus slowly decays (Moore et al. 2004; Hyndes et al. 2012). However, this 

increase in GPPchl a was not associated with any changes in macrofaunal community, 

and therefore I suggest that the response was instead microbial.  
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I expected to see shifts in macrofaunal community structure with detrital 

enrichment that have been found previously (e.g. Bishop & Kelaher 2007; O’Brien 

et al. 2010; Olabarria et al. 2010), but these responses were absent at my site. Site-

dependent macrofaunal responses have been found by others (e.g. Rossi & 

Underwood 2002; Bishop & Kelaher 2013b), and my results confirm that 

macrofaunal responses to detrital enrichment must be context-specific, and are 

perhaps regulated by the resident macrofaunal community or sediment type. 

Significant shifts in macrofaunal abundances and species compositions have been 

noted in sites with muddy sediments (e.g. Kelaher & Levinton 2003; Bishop et al. 

2010; O’Brien et al. 2010; Bishop & Kelaher 2013a, b). My study site had relatively 

sandy sediments, which generally have low background organic content compared 

to mud (Pratt et al. 2014a). Increased organic loading in mud may induce greater 

microbial and macrofaunal responses associated with reaching a threshold of 

organic enrichment and anoxia, which may not occur in organic-poor sands. 

Additionally, specific species are responsible for detrital-induced faunal 

community changes, and these have included deposit-, scavenger- and suspension-

feeding species from families Capitellidae, Cirratulidae, Orbiniidae, Nereididae, 

and Oligochaeta, as well as the sabellid polychaete, Euchone variabilis, and the 

bivalve, Macomona deltoidalis (Rossi & Underwood 2002; Kelaher & Levinton 

2003; O’Brien et al. 2010’ Olabarria et al. 2010; Bishop & Kelaher 2013b). While 

some of these taxa (i.e. species from the same family) were present at my site in 

low abundances (e.g. Capitellidae, Orbiniidae, Nereididae, Oligochaeta, bivalve 

Macomona liliana), others were absent (Sabellidae, Cirratulidae), and perhaps the 

resident macrofaunal community was not supported by a detrital-based food web. 

Studies across multiple sites have demonstrated that macrofaunal species that 
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respond to detritus at some sites do not always respond at other sites (Bishop & 

Kelaher 2013b).  

The lack of response by the macrofaunal community to the detrital additions may 

be a function of the amount added.  However, the amount (220 g DW m-2) and the 

form (shredded) of the added detritus is comparable to other studies that found 

significant macrofaunal responses (e.g. Kelaher & Levinton 2003; Olabarria et al. 

2010; Bishop & Kelaher 2013a). It is possible that the more productive sandy 

communities (Pratt et al. 2014a) are perhaps less reliant on detritus as a primary 

food source than muddy communities. The productive MPB offer a palatable source 

of lipids and proteins for benthic consumers, whereas macrophyte detritus contains 

complex structural carbohydrates that must go through a microbial pathway before 

they can be effectively ingested. Therefore, in many estuaries the benthic food web 

is thought to be supported by MPB, which is more efficiently assimilated and 

nutritious (reviewed by Miller et al. 1996). 

I show that on a small spatial scale (2 m2), soft-sediment ecosystem responses to 

detrital addition are short-term, temporally variable, and macrophyte source-

dependent. The detrital effects I saw in the benthic primary production suggest that 

detrital subsidies are likely to contribute to the transient and heterogeneous nature 

of temperate sandflats by altering important ecosystem functions. Further research 

is needed to tease apart the potential pathways (i.e. fertilisation effects or direct 

consumption) through which this detritus enters the food web (e.g. expanding on 

isotope experiments by Rossi 2007; Oakes et al. 2010; Rossi et al. 2011). 

Furthermore, the role of detrital subsidies in changing benthic ecosystem function 

may be enhanced over the larger spatial scales that are characteristic of washed-up 
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detrital matter in temperate intertidal ecosystems (e.g. wrack accumulations; Rodil 

et al. 2008), and this would be worthy of further investigation.  My study, along 

with previous studies, have found that ecosystem responses to detrital addition 

depend on the detrital source, and this restates that current and projected changes in 

macrophyte abundance and distributions in temperate estuaries may have 

implications for connected ecosystems that receive detrital subsidies. 
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4 CHAPTER 4: Site-dependent effects of 

bioturbator-detritus interactions alter soft-sediment 

ecosystem function 

4.1 Introduction 

Anthropogenically driven changes in biodiversity are predicted to have far reaching 

effects on coastal marine ecosystem function (e.g. productivity and nutrient 

processing), and therefore the ecosystem services that society values (Norkko et al. 

2013; Snelgrove et al. 2014). This biodiversity change is of particular concern in 

coastal soft-sediments, where catchment land-use changes and over-harvesting 

have often resulted in the decline of functionally important flora (e.g. decline of 

seagrass habitat; Inglis 2003; Moore & Short 2006) and fauna (e.g. shellfish; 

Rothchild et al. 1994; Thrush et al. 2003). In these habitats, complex interactions 

between organisms and their sedimentary environment regulate important 

ecosystem functions involving the decomposition of organic matter, and the flux of 

particles and solutes across the sediment-water interface that support pelagic 

production (e.g. Thrush et al. 2006; Fanjul et al. 2011; Volkenborn et al. 2012; 

Norkko et al. 2013; Snelgrove et al. 2014). Since approximately 50% of global 

organic matter remineralisation occurs in coastal benthic habitats (Middelburg et al. 

1997), declines in the benthic species that regulate ecosystem functions associated 

with nutrient cycling are likely to have wider consequences for coastal food webs. 

Bioturbating macrofauna oxygenate seabed sediments by mixing and actively 

ventilating them, altering sediment biogeochemistry (e.g. Williamson et al. 1999; 

Welsh 2003; Vopel et al. 2003; Volkenborn et al. 2010, 2012). By altering redox 

layer distribution, bioturbators can speed up microbial processes associated with 
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nutrient regeneration (i.e. faster remineralisation processes in oxic layers; Aller 

1988; Kristensen et al. 1995; Kristensen 2000). Bioturbators also increase the 

transport of remineralised nutrients between the sediment and overlying water, 

through processes including pore water advection and sediment particle reworking, 

as without them solute transport is largely limited to diffusion across the benthic 

boundary layer (reviewed in Kristensen et al. 2012). Furthermore, fauna can 

directly influence sediment-water nutrient fluxes through excretion, increasing 

nutrient availability at the sediment-water interface (Welsh 2003; Welsh et al. 2015; 

Woodin et al. 2016). Accordingly, bioturbation makes a positive contribution to 

benthic and water column primary production in the photic zone by releasing 

biologically available inorganic nitrogen from seabed sediments (e.g. measured as 

an efflux of nitrogen across the sediment-water interface; Kristensen & Hansen 

1999; Lohrer et al. 2004; Fanjul et al. 2008; Sandwell et al. 2009; Fanjul et al. 2011; 

Needham et al. 2011; Norkko et al. 2013).  

Adding to the complexity of organism-sediment interactions, bioturbators also 

facilitate vertical movement of organic matter in the sediment column, as fauna-

induced sediment mixing either buries or uncovers organic material (reviewed in 

Graf & Rosenberg 1997; Kristensen et al. 2012).  Bioturbators effectively modify 

the position of particulate organic matter in the redox profile (e.g. Papaspyrou et al. 

2004; Fanjul et al. 2015), speeding up or slowing down organic matter degradation. 

Whilst many burrow-dwelling species (e.g. polychaetes) subduct organic material 

deep (~10 cm) into the sediment (e.g. Levin et al. 1997; Shull & Yasuda 2001; 

Papaspyrou et al. 2004), other surface-dwelling bioturbators mix and expose 

organic matter at the surface (e.g. heart urchins, Lohrer et al. 2005; reviewed in 

Kristensen et al. 2012).  
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The combined role of organisms in changing sediment biogeochemistry, and the 

vertical redistribution of organic matter in the sediment column, is likely to have 

important feedbacks in areas of macrophyte detrital deposition (i.e. washed up 

detritus from seagrass, macroalgae, mangroves). In the laboratory, the feeding and 

irrigation behaviours of the polychaete, Nereis diversicolor, have been attributed to 

increased processing/degradation of algae detritus, and detrital N and C 

regeneration in marine sediments (e.g. Hansen & Kristensen 1998; Kristensen & 

Mikkelsen 2003; Papaspyrou et al. 2004). However, other macrofauna (e.g. 

lugworms, Arenicola marina) can actually slow down detrital recycling by 

subducting it to anoxic depths (Rossi et al. 2013). Thus, the bioavailability and 

cycling of marine macrophyte detritus, as well as how an ecosystem responds to 

detrital enrichment, depends largely on the functional behavioural traits of the 

dominant bioturbators. 

Some herbivorous intertidal crab species construct semi-permanent burrows that 

efficiently trap detrital organic matter through passive deposition in burrow 

openings. Accordingly, intertidal crab burrow beds have been considered 

‘macrodetritus retention areas’, as they effectively retain and recycle detritus within 

the system (e.g. Iribarne et al. 1997; Iribarne et al. 2000; Botto et al. 2006; Gutiérrez 

et al. 2006).  Although these crabs may reduce the export of particulate organic 

material from the system, the effects on ecosystem functions (e.g. benthic 

metabolism, primary production, and nutrient regeneration) require further 

investigation.  

In New Zealand, the small intertidal mud crab (carapace width < 26 mm), 

Austrohelice crassa (formerly Helice crassa; Family: Grapsidae), is often abundant 
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in the upper intertidal (McClay 1988), where detrital subsidies can also accumulate. 

A. crassa can occur at high densities (up to 462 individuals m-2; Jones & Simons 

1983), forming extensive burrows (up to 5.7 burrows per crab in muddy sediments; 

Needham et al. 2010), with mean maximum burrow depths up to 29 cm below the 

sediment surface recorded (Morrisey et al. 1999). A. crassa has displayed functional 

plasticity across sediment types, associated with differences in burrow permanency 

and rates of sediment reworking (Morrisey et al. 1999; Needham et al. 2010, 2011). 

In sandy permeable sediments, A. crassa effectively mix and bulldoze sediments, 

as burrows collapse and are reformed regularly, whereas in muddy cohesive 

sediments burrows persist for long periods and they fulfil the role of a burrow 

builder. As a result, rates of sediment reworking by A. crassa in sand are an order 

of magnitude greater than those in mud (Needham et al. 2010). These differences 

in burrow permanency and sediment re-working rates translate into differences in 

ecosystem function (Needham et al. 2011). In this study, I explore the consequences 

of this functional plasticity on detrital processing.   

A manipulative field experiment was designed to establish how A. crassa and 

detritus (from the intertidal seagrass, Zostera muelleri) interact to influence solute 

fluxes across the sediment-water interface (proxies for ecosystem function). I 

expected that detrital degradation/processing would be enhanced in the presence of 

crabs, and that this interaction would feed back to ecosystem function. Considering 

the functional plasticity displayed by A. crassa across sediment types (Needham et 

al. 2011), as well as the expected organic matter decay differences in sand vs. mud 

(Hansen & Kristensen 1998; Rasheed et al. 2003), I also expected that bioturbator-

detritus interactions (and their effects on benthic ecosystem function) would differ 

between cohesive muddy sediments and permeable sandy sediments. I anticipated 
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that the bulldozer/mixing behaviour of A. crassa in permeable sediments would 

play a role in accelerating detrital decay through increased sediment turnover and 

oxygenation, while their burrow builder function in cohesive sediments may result 

in the burial of organic matter deep within the anoxic sediments (effectively 

slowing down decay). This experiment was undertaken to increase our 

understanding of how the predicted changes to both benthic infauna and marine 

macrophytes (supply of detritus) will impact on coastal ecosystem function. 

4.2 Materials and methods 

4.2.1 Study site and experimental set-up 

A field experiment, to assess the role of bioturbator-detritus interactions on soft-

sediment ecosystem function, was established at two upper intertidal sites, 

described in Needham et al. (2011), in the Tairua Estuary, North Island, New 

Zealand. The sediment at the sand site (S;  37° 00’11.64” S, 175° 50’46.05” E) 

consisted of mainly fine permeable sands (median grain size 196 µm; 5% silt/clay 

content), while at the muddy-sand site (MS; 36° 59’ 53.36” S, 175° 51’ 40.77” E) 

the sediments were cohesive owing to a greater mud (i.e. silt/clay particles <63 µm) 

content (median grain size 243 µm; 14% silt/clay content). A. crassa are common 

in the intertidal areas throughout the Tairua Estuary (with adult densities up to 86 

ind. m-2; Needham et al. 2011), and the dominant macrophyte detrital source comes 

from the extensive intertidal Z. muelleri beds within the estuary (~31 ha, 10% of 

the intertidal area; Felsing & Giles 2011). 

To manipulate the presence and absence of both A. crassa and Z. muelleri detritus, 

sixteen crab cages (0.4 × 0.6 × 0.6 m, h × l × w; 4 × 6 mm mesh) were partially 
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buried (0.2 m) at each site. To remove large macrofauna (>2 mm; see Needham et 

al. 2011 for details) and homogenise the experimental units, the sediment in each 

cage was sieved (2 mm mesh) prior to treatment allocation. The experiment was 

conducted in summer, coinciding with peak seagrass production (Turner 2007), and 

high crab activity (Beer 1959; Nye 1974). Cages were arranged on the intertidal flat 

in four groups, with at least 2 m between each cage, and 5 m between groups (in a 

20 × 20 m area). The slightly larger separation between groups of cages provided 

walking corridors through the study site to minimise disturbance during benthic 

chamber measurements. To ensure interspersion of treatments, one cage from each 

group was randomly assigned one of four experimental treatments: 

+Crabs+Detritus (+C+D), +Crabs–Detritus (+C–D), –Crabs+Detritus (–C+D), or –

Crabs–Detritus (–C–D).  

After deployment, the cages were left for ~21 d to re-establish natural sedimentary 

chemical gradients, after which 35 adult A. crassa (>8 mm carapace width) were 

introduced into +C cages (initial adult density of 97 ind. m-2). A. crassa were 

translocated from the surrounding area on the same day. In order to account for crab 

losses during the experiment, the target initial density of A. crassa was chosen to 

be slightly greater than peak densities of adult crabs in the study area, and is 

equivalent to the highest crab density used by Needham et al. (2011). Crabs were 

left to re-establish for 4 d (~25 d after original cage deployment), before 130 g of 

dried Z. muelleri detritus (360 g m-2 dry weight; DW) was added to +D cages. The 

amount of detritus added was similar to that used in previous detrital addition 

experiments (e.g. Bishop et al. 2010; Taylor et al. 2010), and is representative of 

detrital patch quantities observed in Tairua Estuary (personal observation). Locally 

collected, fresh Z. muelleri blades were first dried to constant weight at 60°C to 
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standardise detrital decay state and quantity. To mimic the natural deposition and 

desiccation of macrophyte detritus observed on intertidal flats, dried whole pieces 

of detritus were added to the cages by gently pressing into the sediment surface.  

4.2.2 Field measurements 

10-12 d after the Z. muelleri detrital addition (~35 d after cages were established) 

benthic chambers (0.25 m2) were deployed in the centre of each cage to measure 

fluxes of dissolved oxygen (DO) and ammonium (NH4
+) across the sediment-water 

interface (as in Lohrer et al. 2004; Needham et al. 2011). This time frame was 

chosen to encompass the rapid initial breakdown of the litter (half-life of Z. muelleri 

is 28 d, but the fastest decay occurs within 0-4 d, see Gladstone-Gallagher et al. 

2016). Metal chamber bases (0.5 × 0.5 m) were pressed into the sediment within 

the cages at low tide, and transparent Perspex dome lids were fitted to seal a known 

volume (30 L) of water above the sediment surface on the incoming tide. 50 ml 

samples were drawn through 1.5 m of 3.2 mm dia. nylon tubing attached through 

the wall of the chamber. Samples were taken initially and then every 45 min for 4 

h. To avoid stratification of the boundary layer, chamber water was recirculated 

using Sea-bird Electronics pulsed, non-directional pumps (SBE5M-1; 25 ml s-1 flow 

rate). DO was immediately measured in each water sample using a handheld DO 

probe (PreSens Fibox 3 PSt3), before being filtered (GF/C; 1.2 µm), and stored 

frozen in the dark for later inorganic nutrient analysis. HOBO loggers (5 min 

measurement interval) were placed inside four of the chambers during incubations 

to measure experimental light and water temperature just above the sediment-water 

interface.  In order to obtain flux measurements from the same sediment patches in 

the presence and absence of sunlight, incubations were made during consecutive 
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midday and midnight high tides. At low tide, between the day and night incubations, 

chamber lids were lifted off to re-equilibrate the system to ambient conditions, 

while the chamber bases were left in place. The meshed caging remained in place 

when the plots were unattended to prevent experimental crabs from escaping. On 

the next incoming tide (in the dark), chamber lids were re-fitted in order to initiate 

the dark incubations. Light DO fluxes were used to estimate net primary production 

by microphytobenthos (MPB), whereas dark incubations provided a measure of 

sediment community oxygen consumption (i.e. systemic metabolism in the absence 

of photosynthesis). During each incubation, three 1.5 L bottles were filled with 

ambient seawater and anchored just above the sediment surface, to correct 

measured fluxes for water column processes. 

Once the incubations were completed, sediment properties were determined from 

three amalgamated cores (2.5 cm dia. × 2 cm depth) collected from the centre of 

each incubation chamber. These samples were stored frozen and in the dark until 

laboratory analysis of sediment chlorophyll a (chl a), phaeopigment (phaeo), 

organic content (OC) and grain size (GS). Sediment cores were also collected from 

four uncaged positions at each site (A. crassa present) for comparison with the 

sediment properties within the cages. In addition, one core (13 cm dia. × 15 cm 

depth) for the analysis of the macrofaunal community (i.e. fauna that could migrate 

through the 4 × 6 mm cage mesh) was taken from the centre of each cage, sieved 

on a 500 µm mesh, and the contents preserved in 70 % isopropyl alcohol (IPA) 

awaiting species identification. Finally, sediments within the chambers were 

excavated and sieved on a 2 mm mesh to recover all remaining crabs (preserved in 

70% IPA) and seagrass detritus (frozen). The remaining sediment within the cage 
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was also processed in this way to ensure that all of the crabs and seagrass detritus 

in the cages at the end of the experiment were accounted for. 

4.2.3 Laboratory analyses 

Filtered water samples from the chamber incubations were analysed for dissolved 

inorganic ammonium (NH4
+) on a LACHAT Quickchem 8500 series 2 Flow 

Injection Analyser (FIA).  Other forms of inorganic nitrogen and phosphorus were 

not measured, because NH4
+ has been found to be the dominant form of dissolved 

inorganic nitrogen released from sediments in New Zealand estuaries (> 88%; e.g. 

Thrush et al. 2006; Sandwell et al. 2009; Jones et al. 2011; Pratt et al. 2014a, 2014b; 

Gladstone-Gallagher et al. 2016), and temperate coastal primary production is 

thought to be generally regulated by nitrogen availability (Herbert 1999). Sediment 

OC was measured by drying sediment to constant weight (60°C), and then 

determining weight loss after furnace combustion (550°C for 4 h). Sediment chl a 

and phaeo content was determined by extracting pigments in 90% buffered acetone, 

and then measuring pigment content fluorometrically, before and after acidification 

(Turner 10-AU fluorometer; Arar & Collins 1997). Sediment GS was determined, 

after digestion in 10% hydrogen peroxide, on a Malvern Mastersizer 2000 

(lasersizer particle size range: 0.05-2000 µm). Macrofauna were stained with Rose 

Bengal, sorted, and species identified to the lowest practicable taxonomic level 

(usually species). The carapace width of all crabs collected from within the benthic 

chamber and the remaining cage area were measured using digital callipers, and the 

blotted wet weight (BWW) determined. All seagrass detritus recovered from the 

cage was washed in freshwater, dried to constant weight (at 60°C), and weighed. 
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4.2.4 Data analysis 

Solute fluxes were calculated using the slope of the linear regression of solute 

concentrations as a function of incubation time, sediment area, and chamber volume. 

Chamber flux calculations were also corrected for water column processes 

measured in the bottles (usually <10% of the sediment flux). DO fluxes were used 

to infer net primary production (NPP; light DO flux), and community metabolism 

(sediment oxygen consumption, SOC; dark DO flux), as well as gross primary 

production (GPP, calculated from the difference between light and dark fluxes, i.e. 

NPP-SOC).  In order to account for variability in MPB biomass, I normalised the 

GPP obtained in each cage by the respective sediment chl a content to provide an 

estimate of photosynthetic efficiency (GPPchl a; i.e. gross production per unit of chl 

a). In this study, light and dark NH4
+ fluxes were used as a proxy for the amount of 

inorganic nitrogen regenerated/taken up by the benthos.  

Permutational analyses of variances (PERMANOVA) were used to compare solute 

fluxes, sediment properties, final crab density and biomass, detritus weights, 

macrofauna total abundance and macrofauna species richness (Euclidean distance 

matrices), and macrofauna community (Bray-Curtis similarity matrix on 

multivariate community data, excluding adult A. crassa) between treatment factors 

of crabs (fixed, 2 levels: +C and –C) and detritus (fixed, 2 levels: +D and –D), at 

each site separately. Since the experiment was conducted over a relatively small 

study area (20 × 20 m), and the experimental units were homogenised at the 

beginning of the experiment (sediments sieved), I did not anticipate a significant 

blocking effect on response variables. Initial analyses (with block as a random 

factor, and treatment as a fixed factor) confirmed that block was insignificant (p > 
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0.05 in all cases). Block was therefore excluded from subsequent PERMANOVA 

analyses in order to test for crab × detritus interactions. I chose to perform statistical 

tests for each site separately, because significant site × treatment interactions were 

found in preliminary analyses, and the variability in day light conditions made inter-

site comparisons problematic (see results). I examined site-dependent treatment 

effects by interpreting how the treatment effects and their interactions differed 

between the sites. For significant factor interactions, post-hoc PERMANOVA pair-

wise tests were performed. I adopted an α level of 0.05, however in some instances 

I obtained p-values between 0.05-0.06. When present in combination with relatively 

large effect sizes (> 50% difference in means), I reported on these ‘marginally 

significant’ results also. SIMPER analysis (Bray-Curtis similarity) on the 

macrofaunal community data determined which taxa contributed to treatment 

differences. PERMDISP analysis confirmed homogeneity of multivariate 

dispersion among treatments (p > 0.08 at both sites).  Raw, untransformed data were 

used in all PERMANOVA analyses, and all data analyses were done using the 

PRIMER 7 statistical software package, with the PERMANOVA+ addition 

(Anderson et al. 2008; Clarke & Gorley 2006). 

4.3 Results 

4.3.1 Sediment properties and macrofauna 

Treatment effects on sediment properties were only found at S, where the presence 

of crabs significantly reduced both the phaeo and mud content of the sediment 

(Table 4.1; p = 0.009 and 0.03, respectively; PERMANOVA results for sediment 

properties are given in Table A4.1 in Appendices). No detrital-induced sediment 

anoxia was observed at either site (i.e. the surface brown oxic layer was present in 
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both +D and –D treatments; Figure 4.1). Sediment scouring around the cage edges 

did not occur, suggesting that cage-hydrodynamic interactions did not substantially 

alter the sedimentary environment within the cages. However, phaeo (at MS) and 

chl a (at S) appeared to be reduced (by 40-68% and 25-45%, respectively) in caged 

treatments compared to the surrounding ambient sediment (Table 4.1).    

Visually there was less detritus remaining on the sediment surface at S compared 

to MS, and there was also on average ~25% less seagrass detritus biomass recovered 

from the cages at S (Table 4.2; Figure 4.1B and D vs. 4.1F and H). The presence of 

crabs also appeared to reduce the amount of detritus recovered from the +D cages 

by ~20% (Table 4.2), although this was not significant (crab effect p = 0.06 and 

0.18 at S and MS, respectively; PERMANOVA results are given in Table A4.2 and 

A4.3 in Appendices). Not all of the A. crassa introduced to +C cages at the 

beginning of the experiment were recovered at the end (Table 4.2), likely due to a 

combination of mortality and escapes (the proportion of each not known). Moreover, 

some crabs managed to enter –C cages.  Nevertheless, at both sites, +C treatments 

had on average 2-4 × more adult A. crassa abundance and 5 × greater total biomass 

(which includes juveniles) than –C cages, and these differences were significant (p 

< 0.005; Table 4.2, A4.2 and A4.3).
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Table 4.1 Mean sediment properties (1 SE in brackets, n = 4) for sites S (sand), and MS (muddy-sand), as a function of the presence and absence of crabs (+C, –C) 

and detritus (+D, –D). Sediment properties for ambient uncaged sediments are also given for comparison with caged treatments. 

Site Treatment  Sediment properties  
Crabs Detritus OC (%) Chl a (µg g-1) Phaeo (µg g-1) Mud content (%) Median GS (µm) 

S +C  +D 4.4 (0.2) 15.4 (1.6) 2.9 (1.2) 4.5 (0.4) 194 (4) 

   - D 4.5 (0.5) 15.5 (2.7) 4.7 (0.4) 4.9 (0.9) 205 (11) 

  -C  +D 4.4 (0.3) 15.8 (2.9) 5.9 (0.1) 6.2 (0.8) 191 (12) 

   - D 5.1 (0.2) 21.2 (1.8) 5.8 (1.1) 6.3 (0.6) 189 (8) 

  Ambient  5.1 (0.6) 28.2 (6.8) 3.9 (1.5) 4.6 (0.4) 196 (4) 

MS +C +D 4.4 (0.4) 13.4 (1.3) 3.9 (1.6) 12.2 (2.8) 244 (33) 

   - D 4.3 (0.2) 12.8 (1.3) 5.0 (0.4) 12.2 (3.5) 271 (17) 

  -C +D 4.8 (0.1) 14.1 (1.7) 4.8 (0.8) 15.6 (2.2) 225 (7) 

   - D 4.2 (0.1) 11.6 (2.8) 2.7 (1.5) 11.4 (0.9) 270 (20) 

  Ambient  4.6 (0.2) 14.4 (2.6) 8.4 (1.0) 13.6 (1.5) 243 (12) 

OC = sediment organic content; Chl a = sediment chlorophyll a pigment content; Phaeo = sediment phaeophytin pigment 

content; Mud = particles <63 µm; GS = sediment grain size 
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Figure 4.1 Example photographs of the sediment surface in each treatment at S (sand site): (A) 

–C–D, (B) –C+D, (C) +C–D, (D) +C+D; and at MS (muddy-sand site): (E) –C–D, (F) –C+D, 

(G) +C–D, (H) +C+D; photographs show the sediment enclosed within the 0.25 m2  benthic 

incubation chamber
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Table 4.2 Mean (1 SE, n = 4) Austrohelice crassa density and biomass, and detritus measured in the experimental cages (0.36 m2), as well as total macrofauna 

abundance and taxa richness (0.013 m2), for sites S (sand), and MS (muddy-sand), as a function of the presence and absence of crabs (+C, –C) and detritus (+D, –D). 

Site Treatment 

Crabs  Detritus 

Final adult 

A. crassa  

(ind. cage-1) 

Adult A. 

crassa inside 

chamber (%) 

Final juvenile 

A. crassa (ind. 

cage-1) 

Final A. crassa 

biomass  

(g BWW cage-1) 

Macrofauna 

abundance 

(ind. core-1) 

Macrofauna 

taxa richness 

(taxa core-1) 

Final detritus  

(g DW cage-1) 

S +C  +D  20 (3) 67 (4) 4 (2) 19.1 (4.3) 44 (11) 9.5 (0.7) 37.8 (3.3) 

    - D  26 (1) 79 (4) 3 (1) 23.1 (2.2) 42 (8) 6.3 (1.0) 0 

  -C  +D  6 (1) 33 (4) 13 (5) 4.5 (1.0) 44 (10) 9.3 (1.9) 47.5 (4.1) 

    - D  8 (2) 25 (12) 13 (3) 4.9 (0.7) 57 (11) 10.0 (0.5) 0 

MS +C  +D  20 (2) 76 (8) 11 (4) 15.2 (1.9) 30 (10) 7.8 (2.2) 50.5 (7.6) 

    - D  16 (4) 59 (13) 6 (4) 13.6 (2.9) 103 (18) 5.8 (0.9) 0.5 (0.6) 

  -C  +D  7 (2) 40 (13) 12 (4) 2.8 (0.6) 23 (4) 8.5 (0.7) 63.7 (7.4) 

    - D  9 (5) 43 (20) 14 (4) 6.9 (4.8) 140 (10) 8.3 (2.5) 0 

DW = dry weight; BWW = blotted wet weight; Juvenile A. crassa = carapace width <8 mm; Adult A. crassa = carapace width >8 mm 
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There were significant treatment effects on macrofauna. The total abundance of 

macrofauna at MS was affected by the presence of detritus, with 6 × more 

individuals in –D cages than in +D cages (p = 0.0003; Table 4.2 and A4.3). The 

treatments had no effect on total abundance at S, but there was a significant C × D 

interaction for taxonomic richness (p = 0.02).  That is, the number of taxa was 

significantly lower in +C–D treatments relative to –C–D treatments at S (Table 4.2 

and A4.2). The nMDS ordinations of the macrofaunal community data (i.e. the 

community as a whole, excluding adult A. crassa) also showed different responses 

between sites. At S, treatment effects were not clear, as shown by the overlap in the 

nMDS points among treatments (Figure 4.2A). In contrast, at MS, the clear 

clustering of the communities in +D cages compared to –D cages, as well as the 

wider spread of sample data from +D treatments, suggested that detritus added 

variability to the macrofauna community (Figure 4.2B). These trends were also 

reflected in the community PERMANOVA analyses; community structure at S was 

unaffected by both treatments (although detritus effect marginally significant, p = 

0.059; Table A4.2), whereas at MS, significant treatment effects were driven by 

detritus only (p = 0.0004; Table A4.3). SIMPER analysis revealed that the 

community differences between treatments at MS were driven primarily by a 

decrease in the amphipod, Paracorophium excavatum, in +D cages (in comparisons 

between +D and –D cages, P. excavatum alone contributed to >80% of the 

dissimilarity).  
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Figure 4.2 Non-metric multi-dimensional scaling (nMDS) analysis (Bray-Curtis similarity) for 

sites S (A; sand), and MS (B; muddy-sand), showing differences in the macrofaunal community 

composition (excluding adult Austrohelice crassa), as a function of the presence and absence 

of crabs (+C, –C) and detritus (+D black triangles; –D white squares). Each point on the 

ordination represents the community in each flux chamber.  
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4.3.2 Benthic ecosystem function 

Treatment effects on dark DO flux magnitude were site dependent. At S, rates of 

sediment oxygen consumption in the dark (SOC) were 12-21% higher in +C 

treatments compared to –C (p = 0.04), with no detrital treatment effects. Whereas, 

at MS, 12-29% more SOC occurred in +D treatments compared to –D (p = 0.01), 

with no crab treatment effects (Figure 4.3; Table 4.3). NH4
+ fluxes were mostly 

positive indicating an efflux of NH4
+ out of the sediment, however, in a few cases 

(–C treatments) NH4
+ fluxes were negative or close to zero. At S, dark NH4

+ efflux 

was 75-82 µmol N m-2 h-1  in +C cages, while in –C cages fluxes were negative 

indicating an uptake by the sediments rather than an efflux (p = 0.002), and the 

effect of crabs was significant regardless of the detrital treatment (i.e. no C × D 

interaction; Figure 4.4; Table 4.3). A similar result was observed in light chambers, 

where NH4
+ efflux was 6 × greater in +C than in –C cages and independent of 

detrital treatment (Figure 4.4B; Table 4.3).  In contrast, dark NH4
+ fluxes at MS 

were variable and affected by both crab and detrital treatments (C × D interaction, 

p = 0.03). Whilst none of the pair-wise tests were significant, the comparison 

between +C–D and –C–D cages  was marginally significant (p = 0.056), suggesting 

a crab effect on dark NH4
+ flux, but only in the absence of detritus at MS (Figure 

4.4A; Table 4.3). Light NH4
+ fluxes were unaffected by treatment at MS (Figure 

4.4B; Table 4.3). 

Table 4.3 (overleaf) Results of PERMANOVA (Euclidean distance) comparing measures of 

ecosystem function between crab (C; 2 levels: +C, –C) and detritus (D; 2 levels: +D, –D) 

treatments, at each site (sand S, and muddy-sand MS). Significant results are indicated in bold 

(p < 0.05), and pair-wise post-hoc results are given for significant interactions. Main effects are 

only considered in the absence of an interaction. 
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Site Variable Source df MS Pseudo-F p Pair-wise tests 

S SOC C × D 1 34000 0.405 0.5449  

  C 1 432620 5.149 0.0439 +C > -C 

    D 1 73365 0.873 0.3700  

    Residual 12 84028                   

 NH4
+  C × D 1 5 0.002 0.9700  

  (dark) C 1 40620 12.632 0.0025 +C > -C 

    D 1 140 0.044 0.8392  

    Residual 12 3216                    

 NH4
+  C × D 1 474 2.542 0.1374  

  (light) C 1 14052 75.436 0.0001 +C > -C 

  D 1 237 1.272 0.2768  

  Residual 12 186    

 NPP C × D 1 4198800 9.979 0.0091 +D: +C = -C; -D: -C > +C 

        +C: -D > +Da ; -C: -D > +D 

    C 1 10154000 24.131 0.0005  

    D 1 21664000 51.486 0.0001  

    Residual 12 420770                   

 GPP C × D 1 4899100 11.881 0.0057 +D: +C = -C; -D: -C > +C 

       +C: -D = +D ; -C: -D > +D 

  C 1 6496600 15.756 0.0025  

  D 1 19392000 47.031 0.0001  

  Residual 12 412340    

 GPPchl a C × D 1 56 0.014 0.8945  

   C 1 3319 0.818 0.3877  

    D 1 28308 6.980 0.0254 -D > +D 

    Residual 12 4055                   

MS SOC C × D 1 47824 1.180 0.2931  

  C 1 3301 0.081 0.7838  

    D 1 383340 9.457 0.0123 +D > -D 

    Residual 12 40535                   

 NH4
+  C × D 1 9364 5.002 0.0295 +D: +C = -C; -D: +C > -Ca 

 (dark)      +C: +D = -D; -C: +D = -D 

   C 1 3406 1.819 0.2091  

   D 1 259 0.138 0.7640  

   Residual 12 1872                   

 NH4
+  C × D 1 385 0.451 0.5100  

 (light) C 1 725 0.848 0.3742  

  D 1 51 0.060 0.8149  

  Residual 12 854    

 NPP C × D 1 1850 0.012 0.9049  

   C 1 219570 1.479 0.2439  

    D 1 106360 0.716 0.4056  

    Residual 12 148490                   

 GPP C × D 1 30861 0.208 0.6471  

  C 1 169020 1.139 0.3036  

  D 1 85864 0.578 0.4546  

  Residual 12 148440    

 GPPchl a C × D 1 7×10-2 4.452×10-

5 
0.9950  

   C 1 1988 1.300 0.2877  

    D 1 12 0.008 0.9409  

    Residual 12 1529                    

SOC = Sediment oxygen consumption; NPP = Net primary production; GPP = Gross primary 

production; GPPchl a = GPP normalised for chlorophyll a biomass (chl a); NH4
+ = ammonium flux; 

+C = crabs present; -C = crabs absent; +D = detritus present; -D = detritus absent; a indicates post-

hoc pair-wise test p = 0.057 
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Figure 4.3 Mean (+1 SE, n = 4) sediment oxygen consumption (SOC), as a function of site (S 

= sand, and MS = muddy-sand), and presence or absence of crabs (+C, –C) and detritus (+D 

black bars, –D white bars).  PERMANOVA pair-wise test results for significant effects are 

depicted as letters, where bars sharing the same letter within a site are not significantly different 

(p > 0.05). Full PERMANOVA results are given in Table 4.3. 
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Figure 4.4 Mean (+1 SE, n = 4) dark (A) and light (B) ammonium fluxes (NH4
+), as a function 

of site (S = sand, and MS = muddy-sand), and presence or absence of crabs (+C, –C) and detritus 

(+D black bars, –D white bars).  PERMANOVA pair-wise test results for significant effects are 

depicted as letters, where bars sharing the same letter within a site are not significantly different 

(p > 0.05). Full PERMANOVA results are given in Table 4.3. 
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Day time light levels at the seabed during chamber incubations varied by an order 

of magnitude between sites (S = 24381±11937 Lux, and MS = 2081±812 Lux; mean 

±1 SE, n = 4), and these differences appeared to influence photosynthetic rates. DO 

flux in light chambers (NPP) at S was positive, indicating that photosynthetic 

oxygen production was greater than total community oxygen demand during the 

incubation period (Figure 4.5), whereas at MS, where light levels were naturally 

lower due to increased turbidity, NPP was negative. At S, both crabs and detritus 

decreased NPP, where the mean individual effects approximately equalled their 

combined effects (Figure 4.5). There was a C × D interaction at site S (p = 0.009), 

and pair-wise comparisons revealed that crabs decreased NPP, but only in the 

absence of detritus (p = 0.03). Detritus also supressed NPP, both in the absence (p 

= 0.03) and presence of crabs (although only marginally significant, p = 0.057; 

Table 4.3). Similar treatment effects were found for GPP at S (Figure 4.6A; Table 

4.3). On the other hand, GPPchl a at S was decreased (by ~28%, p = 0.03) in the 

presence of detritus, but there was no crab effect (Figure 4.6B; Table 4.3). At MS, 

both NPP, GPP, and GPPchl a were unaffected by treatment (Figure 4.5 and 4.6; 

Table 4.3). 
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Figure 4.5 Mean (+ 1 SE, n = 4) net primary production (NPP), as a function of site (S = sand, 

and MS = muddy-sand), and presence or absence of crabs (+C, –C) and detritus (+D black 

bars,–D white bars).  PERMANOVA pair-wise test results for significant effects are depicted 

as letters, where bars sharing the same letter within a site are not significantly different (p > 

0.05). Full PERMANOVA results are given in Table 4.3. 
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Figure 4.6 Mean (+ 1 SE, n = 4) gross primary production (A, GPP) and gross primary 

production normalised for chlorophyll a biomass (B, GPPchl a), as a function of site (S = sand, 

and MS = muddy-sand), and presence or absence of crabs (+C, –C) and detritus (+D black 

bars,–D white bars).  PERMANOVA pair-wise test results for significant effects are depicted 

as letters, where bars sharing the same letter within a site are not significantly different (p > 

0.05). Full PERMANOVA results are given in Table 4.3. 
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4.4 Discussion 

In this in situ experiment, I manipulated the presence/absence of A. crassa and the 

supply of detritus (from Z. muelleri) to explore how interactions between 

bioturbating crabs and detrital decay rates influence ecosystem function in soft-

sediment habitats. Although the densities of crabs recovered from cages at the end 

of my experiments differed from the initial target densities of 0 and 35 ind. cage-1 

(in –C and +C cages, respectively), crab densities nevertheless differed significantly 

by treatment at both my study sites. By comparing ecosystem responses in these 

low and high crab density treatments, I was able to demonstrate effects of A. crassa 

on key ecosystem functions at both sites. At S, crabs dominated the effects on 

benthic metabolism (SOC) and NH4
+ regeneration (light and dark fluxes) and no 

detrital effects were observed. Conversely, at MS, effects on SOC were dominated 

by detritus (with no crab effect). This lack of crab effect may be associated with the 

larger variability and smaller differences in final crab densities between the +C and 

–C treatments at my muddy-sand site. However, crabs did affect dark NH4
+ flux at 

this site, but only in the absence of detritus. My results highlight the context-

dependent role of detrital subsidies in modifying ecosystem function of intertidal 

soft-sediments.   

Treatment effects on benthic metabolism were site-specific, where SOC was 

stimulated in +C treatments at site S, but at MS, SOC was enhanced in +D 

treatments. Crab density is understood to be positively correlated with sediment 

oxygen demand, associated with both the respiratory demands of these animals and 

the indirect effects of bioturbation on sediment biogeochemistry (Needham et al. 

2011). Respiration rates for A. crassa in New Zealand estuaries indicate this species 
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consumes ~6.8 µmol O2 g
-1 DW h-1 (Shumway & Jones 1981; Hawkins et al. 1982), 

which when scaled to the crab biomass in my cages would account for 24-52% of 

the difference in SOC between –C and +C treatments (at S). Accordingly, the crab 

treatment effect on SOC in the sandy sediments can only be partially explained by 

crab respiration. In general, the fauna-mediated oxygen consumption (i.e. indirect 

effects on sediment biogeochemistry and microbial respiration) has been previously 

found to exceed the respiratory demands of many bioturbators (reviewed in Glud 

2008). Site differences in crab treatment effects on SOC may be confounded by the 

variability in the final densities of crabs remaining in the treatments between sites. 

However, the differences can also be plausibly explained by the higher activity and 

sediment reworking that is associated with the higher frequency of burrow 

rebuilding by A. crassa in sandier sediments (Needham et al. 2010). Associated 

with increased sediment mixing and activity, I also found that at high densities (+C), 

crabs reduced the sediment mud content, when compared to low density –C 

treatments, but this only occurred at the sandier site, a result consistent with 

previous studies showing A. crassa’s functional plasticity across sedimentary 

gradients (Needham et al. 2010, 2011). 

Detrital breakdown is enhanced and facilitated by oxygen consuming bacteria (Sun 

et al. 1993; Hulthe et al. 1998; Kristensen 2000), and so I anticipated that detrital 

addition would stimulate SOC. However, detrital treatment effects on SOC were 

only found at MS. Detrital recovery at the sandier site was also ~25% less than in 

the muddy-sand (see Table 4.2), indicating either greater decay in the permeable 

sediments or hydrodynamically enhanced export through the mesh. Site differences 

in detrital effects on SOC may therefore be driven by differences in detrital loss 

between sites, with detrital effects on SOC being greatest in muddy-sand where 
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detrital loss was lowest. Alternatively, the effects of detritus on soft-sediment 

ecosystem function may be more apparent in cohesive sediments that typically have 

a higher background organic content (Trask 1938; Mayer et al. 1985; Thrush et al. 

2012; Pratt et al. 2014a). As such, increasing organic loading in already organically 

enriched sediments may cause stronger responses in ecosystem function associated 

with organic matter ‘priming’ (i.e. inputs of new organic matter may stimulate the 

remineralisation of background organic matter; Hee et al. 2001; van Nugteren et al. 

2009).   

Site-specific treatment responses were also found in the community of fauna that 

were small enough to migrate through the cage mesh. The addition of crabs did not 

significantly alter the macrofaunal community structure at both sites, and this is 

likely because the resident macrofauna at these naturally crab-dominated study sites 

are well adapted to co-existing with A. crassa. However, as with SOC, detrital 

effects on the macrofaunal community were only significant at MS. Treatment 

differences were driven, in part, by the increased variability in the community with 

the addition of detritus (i.e. the wide spread of +D sample data in Figure 4.2B). 

Additionally, at MS, detrital addition drove a large decrease in the abundance of 

suspension-feeding amphipods. My results highlight that detrital enrichment can 

influence community structure by altering the relative abundances of species. 

Benthic solute fluxes are understood to be influenced by macrofaunal biodiversity 

and abundance (Lohrer et al. 2004; Hewitt et al. 2006; Kristensen et al. 2014; 

Norkko et al. 2015), and the detrital-induced shifts in macrofaunal abundances at 

MS may have contributed to the observed changes in function (i.e. direct decay 

effects vs. indirect effects via macrofaunal community changes). Furthermore, 

detritus has been found to modify and structure benthic macrofaunal communities 
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in other temperate intertidal settings (e.g. Kelaher & Levinton 2003; Bishop et al. 

2010; O’Brien et al. 2010), and my results confirm that the ecological effects of 

detrital enrichment are likely to be context-specific, and may be correlated with the 

sediment type of the depositional environment.  

In tropical climates, numerous studies have highlighted the functional role of crabs 

in enhancing leaf litter decay, through shredding and/or ingestion (Robertson 1986; 

reviewed in Lee 1998). I measured 20% less detritus remaining in +C cages 

compared to –C cages,  and although not statistically significant, I suggest that this 

result highlights a potential role of crabs in detrital matter removal. While increased 

detrital burial caused by burrowing can slow down decay (Rossi et al. 2013), other 

examples show that macrofauna can increase the decay of marine leaf litter detritus, 

both through bioirrigation (which increases the oxygen in the sediments available 

for aerobic decay), and ingestion (which increases surface area for microbial 

colonisation of the organic matter; e.g. reviewed in Harrison 1989; Lillebø et al. 

1999; Kristensen & Mikkelsen 2003; Proffitt & Devlin 2005). Whether enhanced 

loss of detritus from +C cages was due to direct effects of the crabs, including 

consumption, and increased fragmentation, or indirect effects resulting from 

enhanced remineralisation or physical export of detritus through sediment mixing 

and destabilisation remains unknown. However, since I found no evidence of 

synergistic effects of crabs and detritus on SOC or NH4
+ fluxes, it is unlikely that 

crabs enhanced detrital remineralisation. Furthermore, since A. crassa derive much 

of their diet from grazing on MPB (Alfaro et al. 2006), detrital loss through 

consumption/ingestion was probably minimal. However, by physically enhancing 

detrital export from the benthic system, A. crassa may influence the removal of 
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deposited organic material on intertidal flats, and this is likely greater in sand where 

A. crassa are more active at reworking the sediments (Needham et al. 2010).  

As laboratory studies have previously found fauna to enhance organic matter 

remineralisation (e.g. Hansen & Kristensen 1998; Kristensen & Mikkelsen 2003; 

Papaspyrou et al. 2004), I expected to find synergistic effects of crabs on NH4
+ 

regeneration in the presence of detritus. Instead, as with SOC, the NH4
+ fluxes in 

sand were only affected by crabs (i.e. there were no detrital treatment effects or 

interactions), where A. crassa enhanced NH4
+ effluxes (in both light and dark 

chambers) from the sediments at high densities. NH4
+ fluxes out of the sediments 

are often high in sediments inhabited by large macrofauna (including crabs), which 

is attributed to both excretion and the release of NH4
+ from the pore water during 

bioturbation (e.g. Fanjul et al. 2011; Jones et al. 2011; Needham et al. 2011; Norkko 

et al. 2013). Assuming a respired oxygen:excreted nitrogen ratio of 27.8 (found for 

Hemigrapsus crenulatus; Urbina et al. 2010) and using respiration rates for A. 

crassa (Shumway & Jones 1981; Hawkins et al. 1982) reveals that NH4
+ excretion 

rates are likely to represent <26% of the NH4
+ fluxes measured in this study. This 

confirms that crab effects are mostly associated with indirect bioturbation effects, 

which has also been suggested by Woodin et al. (2016) for deposit feeding bivalves 

(Macomona Liliana) and heart urchins (Echinocardium cordatum). Seagrass 

detritus, on the other hand, represents a low quality nitrogen resource (mean leaf N 

<2%; reviewed in Duarte 1990) in temperate estuaries, and therefore NH4
+ 

remineralisation during decay may be minimal and/or too low to detect as a flux 

across the sediment-water interface.  
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My ability to detect detrital treatment effects may also have been limited by only 

measuring NH4
+ fluxes if detritus enhances nitrification/denitrification pathways 

that rapidly convert NH4
+ into other forms of inorganic nitrogen. Water column 

nitrate concentrations are low in many New Zealand estuaries (Jones et al. 2011; 

Pratt et al. 2014a), and therefore in oxic sediments (like those at my sandy site) 

nitrification and denitrification are coupled. This means that nitrification of NH4
+ 

into NO3
- (in the oxic sediments) is immediately denitrified into N2 in the 

underlying anoxic layer (Rysgaard et al. 1994; Sloth et al. 1995; Seitzinger et al. 

2006). Thus, remineralised detrital NH4
+ may have been rapidly converted to NO2

-, 

NO3
- or N2, limiting my ability to detect detrital treatment effects on NH4

+ 

regeneration at my sandy site.  Having said this, in a previous field experiment 

conducted at a sandy site, seagrass, mangrove and kelp detritus did not increase 

NO2
- or NO3

- fluxes across the sediment-water interface (Gladstone-Gallagher et al. 

2016).   

At MS, results suggest that crabs enhanced dark NH4
+ efflux, but only in the 

absence of detritus (Table 4.3). The lack of crab effect in the presence of detritus 

could be due to changes in crab behaviour that reduced the contribution of excretion 

and/or bioturbation to NH4
+ efflux (e.g. a reduction in crab burrowing or foraging 

behaviours). Another possibility is that the addition of detritus influenced sediment 

biogeochemistry (note that SOC was also increased by detritus at MS) and 

nitrification/denitrification pathways, thereby affecting the form of nitrogen 

released from the sediment. Both benthic fauna and organic matter enrichment can 

independently and interactively increase rates of nitrification and denitrification 

(e.g. Caffrey et al. 1993; Sloth et al. 1995; Dunn et al. 2012). For example, faunal 

activities can increase rates of nitrification by burying organic detritus, creating 
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anoxic microniches that are sites of increased denitrification (e.g. Dunn et al. 2012). 

Perhaps similar fauna-organic matter interactions stimulated coupled 

nitrification/denitrification in my study, rapidly removing the excess NH4
+ from 

pore waters before it entered the water column. The interaction between crabs and 

detritus on benthic NH4
+ regeneration demonstrates the potential role of detritus in 

modifying ecosystem processes on crab dominated mudflats, and the need for 

further investigation.  

Two separate treatment processes affected benthic primary production in sandy 

sediments. Both crabs and detritus reduced NPP, and their combined effects 

approximately equalled their individual effects (C × D interaction; although not all 

pair-wise tests were significant). NPP is a measure of the photosynthetic production 

minus the oxygen consumed during respiration of the benthos, while GPPchl a gives 

the total production per unit of MPB biomass (i.e. photosynthetic efficiency). Thus, 

the significant detrital treatment effects on GPPchl a suggest that detritus reduces the 

photosynthetic efficiency of MPB productivity regardless of changes to biomass. 

The detrital inhibition of both NPP and GPPchl a is therefore likely to be associated 

with the shading effect that detritus has on the sediment surface. Because the crab 

treatment had no effect on GPPchl a, their effects on NPP and GPP is likely explained 

by the fact that grazing that reduces MPB biomass at high crab densities.  

Observations of the sediment surface in –C–D cages at the sand site show a MPB 

biofilm that is not obvious in other treatments, supporting the interpretation that A. 

crassa reduces benthic primary production via grazing (compare Figure 4.1A and 

C). Treatment effects on NPP, GPP, and GPPchl a were not found at my muddy-sand 

site, and site comparisons of these ecosystem functions were not possible because 

of the variable and low light conditions during day time incubations.  
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I added whole seagrass detritus, in realistic quantities, but in many previous studies, 

detritus has been added in a ground form or slightly buried to simulate the 

incorporation of partially decayed and fragmented organic matter into the sediments 

(e.g. Kelaher & Levinton 2003; Bishop et al. 2010; Gladstone-Gallagher et al. 2016). 

The form in which detritus enters a system could influence the ecosystem response. 

Ecosystem responses to detritus enrichment are temporally variable, and 

fragmented detritus can suppress primary production in the short term (4 d), but 

enhance it over longer temporal scales (2-3 weeks; Gladstone-Gallagher et al. 2016). 

Leaf surface area is known to affect decomposition rate (Harrison & Mann 1975), 

and here, primary production was supressed 10 d after the detrital addition, perhaps 

suggesting that positive effects on ecosystem function may be delayed with whole 

detritus. One of the limitations of this experimental design is that, due to destructive 

sampling (necessary to determine final crab and other macrofauna densities), I only 

gained a snap-shot of the functionality of the system at one time point. This has 

particular relevance when studying detrital enrichment, as the importance of the 

detritus may be more apparent at different stages of its decay, and further 

investigations are required to try to tease apart the interacting processes of decay 

stage, and the natural temporal variability in soft-sediment ecosystem function 

(Morrisey et al. 1992; Thrush et al. 1994; Hewitt et al. 2007). 

At a global scale, seagrass habitats are in decline (Inglis 2003; Moore & Short 2006) 

and loss of biodiversity in coastal systems is predicted to rise (Snelgrove et al. 2014). 

Changes in the abundance of functionally important species, such as seagrass and 

key macrofaunal species, such as A. crassa are likely to impact on the ecosystem 

functioning of coastal systems and the goods and services they provide. In situ 

manipulations highlight the complexities of functional interactions in coastal 
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habitats, and therefore help to tease apart the relationships in a more realistic 

manner than laboratory studies alone. Here, I demonstrate that in situ crab-detritus 

interactions behaved differently than indicated from individual effects in controlled 

laboratory studies on functionally similar species (e.g. Hansen & Kristensen 1998). 

This study suggests that detrital subsidies may have negative effects on ecosystem 

function in muddier habitats dominated by burrowing crabs by reducing the efflux 

of NH4
+, a critical source of nitrogen sustaining primary production in New Zealand 

estuaries. However, in muddy sediments, detrital enrichment may also be important 

for regulating ecosystem function by stimulating benthic metabolism, and altering 

macrofaunal community structure.  Compared to the MS site, the effects of detritus 

were less at the S site, which appears to be more functionally robust as detrital 

subsidies did not induce large shifts to ecosystem function (except through shading 

effects on primary production). My results emphasise that context is paramount 

when understanding the effects of changes in biodiversity on ecosystem function, 

and now more research is required to tease apart the site-specific properties that 

regulate this context-dependency. 
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5 CHAPTER 5: Thesis summary and conclusions 

5.1 Summary 

The three inter-linked research chapters of this thesis used both observational 

studies and in situ manipulative experiments to investigate processes relating to the 

pathways of detrital subsidies from temperate marine macrophytes, from their 

production and export (Chapter 2), to the effects of their accumulation and decay 

on receiving intertidal flats (Chapters 3 and 4) (Figure 1.3).  

Empirical measurements of estuary-to-coast material fluxes usually exclude the 

fraction of primary production that is exported as macrodetritus, potentially leaving 

a gap in our understanding of the role of estuaries as outwelling systems. In Chapter 

2, I conducted a survey of the material fluxes into and out of a small temperate 

estuary, to estimate the transport of macrodetritus relative to other sources of 

production. I demonstrated that macrodetritus is tidally transported in large 

quantities providing an obvious and visible resource subsidy, but contributes 

relatively little (<13% across all the sampling dates) to the total N and P that is 

outwelled from the estuary. I also showed that detritus is transported in temporally 

variable pulses, with the timing of highest transport coinciding with summer leaf 

litter production peaks that have been found previously (e.g. Woodroffe 1982; 

Turner 2007; Gladstone-Gallagher et al. 2014a). Pulses in the source and supply of 

macrodetritus may have consequences for the temporal scales over which this 

resource subsidy affects receiving ecosystems (discussed below). My results are 

valuable because they give real-world estimates of macrodetrital transport from a 

typical mixed habitat temperate estuary (at least in the North Island, New Zealand 

context), and put into perspective how macrodetritus contributes to the overall 
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production outwelling from estuaries. These types of observational studies are 

useful to inform estuarine nutrient budgets that aim to quantify the ecosystem 

services provided by temperate estuaries. 

On temperate intertidal flats, detrital enrichment can modify macrofaunal 

community structure and increase microphytobenthos (MPB) biomass (e.g. Rossi 

& Underwood 2002; Bishop & Kelaher 2007, 2013a), however the pathways for 

detrital incorporation by these soft-sediment communities are not well understood 

(i.e. direct effects on macrofauna vs. indirect effects via fertilising in situ MPB 

production). The field experiment comprising Chapter 3 was designed primarily to 

determine if detrital deposition on intertidal flats affect ecosystem function by 

fertilising in situ benthic primary production. By measuring benthic ecosystem 

function through time after the addition of three detrital sources (mangrove, 

macroalgae and seagrass), I was also able to demonstrate that detrital enrichment 

effects are transient and source-dependent. However, contrary to my expectation 

that the magnitude and timing of detrital effects would correlate with source-

dependent decay rates, I found that the largest ecosystem effects were in response 

to the fastest and slowest decaying sources (macroalgae and mangrove detritus, 

respectively). While these two detrital sources initially (after 4 d) created a 

disturbance and suppressed benthic primary production, they enhanced primary 

production (albeit minimally) 17 d after enrichment. In this study, I did not observe 

detrital-induced shifts in macrofauna community abundance or structure that have 

been found previously. Accordingly, effects on benthic primary production are 

likely to be associated with a direct effect of the decaying detritus, rather than 

indirect effects of shifts in the macrofaunal community. 
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Through passive trapping and burial of detritus in their burrows, bioturbating 

macrofauna modify organic matter retention/export from coastal soft-sediments. In 

Chapter 4, I set out to explore how bioturbating intertidal crabs affect detrital 

processing in areas of intertidal detrital deposition, and how these crab-detritus 

interactions feedback to affect ecosystem function. Because both the functional role 

of bioturbating crabs and organic matter decay rates vary in sand vs. mud (Hansen 

& Kristensen 1998; Rasheed et al. 2003; Needham et al. 2011), I repeated this 

experiment at intertidal sand and muddy-sand sites. During my in situ experiment, 

I found site-dependent, complex interactions between bioturbators and detrital 

enrichment that were not as predicted from laboratory studies using functionally 

similar species (e.g. Hansen & Kristensen 1998). At my sandy site, I found no 

detrital enrichment effects on nutrient regeneration or benthic metabolism, but both 

detritus and bioturbators reduced benthic primary production. At my muddy-sand 

site, benthic metabolism (sediment oxygen consumption) was stimulated by detritus, 

regardless of the presence or absence of bioturbating crabs, but detritus supressed 

crab enhanced nutrient regeneration (measured by NH4
+ fluxes). Further, detritus-

induced shifts in macrofaunal community structure were found in muddy-sand, but 

not in sand. The results of this chapter suggest that the effects of detrital deposition 

on soft-sediment ecosystem function depend on the context of the receiving 

environment (and this context dependency may be related to the sediment properties 

and presence of bioturbating fauna). 

5.2 Conclusions and recommendations for future research 

Together the chapters of my thesis show that temperate estuaries are sites of 

effective organic matter processing and transformation. Chapter 2 shows how 
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macrodetritus is transported in coastal systems in visibly large amounts, but 

sometimes detritus is retained (low net exports), and probably processed and 

decayed to be exported in another form (e.g. as dissolved nutrients). Further, the 

relatively subtle and short-term effects of detrital enrichment on benthic community 

structure and function that I found (Chapters 3 and 4) suggest that the benthic 

communities in these systems may not rely on macrophyte detrital subsidies as a 

primary food source. Instead, detritus is probably efficiently decayed and removed 

from the sediments before it can elicit large shifts in ecosystem structure and 

function. 

When I designed the studies that comprise Chapters 3 and 4, I had a set of 

expectations relating to the potential role of detritus in altering benthic ecosystem 

function in receiving intertidal soft-sediments. My expectations were formulated on 

the results of previous studies, which showed that detritus addition to the sediments 

can modify macrofaunal communities and MPB biomass (see summary of in situ 

detrital addition studies in Table A2.1 in Appendices). Accordingly, I anticipated 

that changes in macrofauna and MPB communities may be associated with the 

indirect fertilisation pathway of detrital incorporation (Moore et al. 2004; Spiller et 

al. 2010; Hagen et al. 2012; Hyndes et al. 2012). However, I did not detect the 

macrofaunal and MPB responses that others have observed (at least in my sandy 

sites), and the changes to benthic ecosystem function were not as expected (i.e. they 

were complex and site-dependent).  

Collectively, the results of Chapters 3 and 4 reveal that detrital enrichment of 

intertidal sediments will result in subtle and complex effects on ecosystem function 

that are not easily predictable from one context, time, or source to another. However, 
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by holistically viewing the findings of my thesis with previous research on the 

effects of detrital enrichment on benthic community structure, some factors that 

may contribute to the variable ecosystem responses can be identified and discussed; 

including spatial and temporal scales of detrital accumulation, context of the 

receiving environment, as well as the source and form/state of detritus that enters 

the system.  

5.2.1 Spatial and temporal scales 

Patches of detrital accumulation in intertidal areas can occur over varying spatial 

scales (i.e. patches can be centimetres to metres wide; personal observation), which 

may have consequences when drawing conclusions on the ecosystem level effects 

of detrital enrichment based on field studies conducted over relatively small spatial 

scales (often 0.25 m2 detrital enrichment; Table A2.1). Further, the temporal scales 

at which detrital deposition may impact the receiving environment are hard to 

predict, and will be influenced by temporal variability in detrital transport (shown 

in Chapter 2), as well as both the hydrodynamics (i.e. how easily the detritus is 

washed away after deposition) and detrital decay rates. Therefore, detrital patches 

could persist in receiving environments for scales of hours to days or weeks.  

In Chapter 3, I encompassed spatial scales of a 2 m2 detrital addition, and temporal 

scales of 4-46 d after the detrital enrichment (which includes the decay half-lives 

for the three detrital sources). In Chapter 4, detrital addition patches of 0.36 m2 were 

used, and the temporal response scale was 10 d. Although the spatial and temporal 

scales of the experiments described in Chapters 3 and 4 are realistic of naturally 

occurring detrital patches on intertidal flats, they do not encompass the large and 

variable nature of the spatial and temporal scales that detrital patches occur in. Thus, 
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discussions around relating small-scale experimental results to broader scale 

environmental heterogeneity (reviewed by Hewitt et al. 2007) are particularly 

relevant when investigating the effects of detrital deposition on benthic 

communities. 

Conducting field experiments over large and realistic spatial and temporal scales is 

often impractical. Small-scale experimental studies like the ones described in this 

thesis have several limitations associated with their generalisability. However, they 

offer a way to directly test a priori predictions of the patterns and processes that are 

identified by observational studies and meta-analysis (discussed and reviewed in 

Thrush & Lohrer 2012). The experiments that comprise this thesis were designed 

incorporating the observations from the collective detrital subsidy literature, and 

thus they complement previous research in this field. For example, the timing of the 

sampling in Chapter 3 was based on observations of detrital decay rates, and the 

predictions of detrital source-dependency were based on previous experiments that 

have found different detrital sources to elicit different ecosystem responses (Table 

A2.1). However, future research endeavours need to take this further, viewing the 

detrital subsidy literature collectively to inform experimental designs that aim to 

further tease apart the transient effects of detrital subsidies over numerous and 

realistic patch size scales (see section 5.2.2 for recommendations of spatial 

replication and gradient studies).  

Further complicating research on detrital subsidies in soft-sediment ecosystems is 

the influence of multiple resource subsidies and resource pulses (allochthonous or 

autochthonous) that can overlap in both space and time (Anderson et al. 2008; Yang 

et al. 2008). These resources can interact and have synergistic effects on the 
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receiving ecosystem, depending on whether their timing is ‘in-phase’ or not (e.g. 

seabird guano subsidies and pulsed rainfall events on island ecosystems; Anderson 

et al. 2008). Macrophyte detrital subsidies to intertidal soft-sediment ecosystems 

can be considered as a pulsed spatial subsidy (i.e. their supply and transport is 

temporally variable; Chapter 2). Intertidal estuarine sediments also receive resource 

subsidies from other sources, such as terrestrially derived nutrients and sediments 

(which are increased by anthropogenic modification of catchments; review by 

Kennish 2002), and these resources may interact with macrophyte detrital subsidies 

if they occur in the same space and time. The studies that form this thesis did not 

consider detrital interactions with other pulsed or continuous resources, but this 

would be an interesting avenue of future investigation, and is of particular relevance 

with the predicted anthropogenic changes to estuarine catchments (e.g. increased 

anthropogenic nutrient input into estuaries and the decline in some detrital subsidies, 

such as from seagrass). Experimental designs aiming to tease apart the interactions 

between resource subsidies and/or pulsed resources in temperate estuaries could 

manipulate the supply of several resource types to the sediments (e.g. anthropogenic 

nutrients, as in Douglas et al. 2016, and detrital additions) monitoring their 

interaction effects on ecosystem function through time. These experiments would 

also benefit from manipulating the frequency of additions to simulate multiple 

pulses that occur over time (e.g. expanding on experiments by Bishop & Kelaher 

2007), as systems that have continuous pulses of detrital subsidies are likely to 

respond differently to those that receive infrequent pulses of the resource.  

Detrital subsidies can also be considered as natural disturbances that structure the 

macrofaunal communities in intertidal soft-sediments (i.e. initial macrofaunal 

responses to detritus are often negative resulting from decay-induced sediment 
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anoxia, e.g. Kelaher & Levinton 2003; Bishop et al. 2010; Taylor et al. 2010), and 

thus the disturbance ecology literature can offer some insight into the factors that 

might regulate ecosystem responses to detrital pulses. Field experiments (across 

ecosystems) have highlighted that macrofauna recovery of defaunated plots 

depends on the spatial extent of the disturbance (e.g. Brooks & Boulton 1991; 

Thrush et al. 1996; Whitlatch et al. 1998), associated with differences in the 

availability of recruits from the surrounding area, which is directly related to patch 

size, as well as the mobility of the species. Further, the recovery of the sediment 

community following disturbances can be temporally variable associated with 

timing of macrofaunal recruitment (Thrush et al. 1996). The principles from this 

literature body can be useful as a framework for setting some a priori predictions 

for future research surrounding the scales at which detrital subsidies will influence 

soft-sediment ecosystem function. For example, it is likely that patches of detrital 

accumulation that span for several metres (e.g. macroalgae blooms) will elicit larger 

ecosystem responses than smaller-scale patches of a few centimetres, and future 

experiments could manipulate detrital additions over different spatial scales (i.e. by 

manipulating plot size).  

5.2.2 Context of the receiving environment  

Considering the results of Chapters 3 and 4 holistically, I could conclude that 

benthic ecosystem responses to detrital addition are more pronounced in mud than 

in sand. However, these two studies investigated responses to detrital enrichment 

in just two sand sites (Chapter 3 and 4) and one muddy-sand site (Chapter 4). My 

experimental design follows a reductionist approach (Hewitt et al. 2007), whereby 

it uses a categorical design that aims to answer specific ecological questions by 
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controlling for as much environmental variability as possible. These types of studies 

are common in ecology, however the main limitation of this design is that broader 

level conclusions around the context in which detrital subsidies elucidate a response 

cannot be accurately answered. To date, I am aware of 22 studies (including those 

in Chapters 3 and 4) that investigate the effects of detrital subsidies on benthic 

macrofaunal community structure and/or ecosystem function in receiving intertidal 

flats. Of these 22 studies, 18 of them consist of manipulative detrital addition 

experiments in just one or two locations, and only four of them compare detrital 

enrichment effects across three or more sites simultaneously (Table A2.1). When 

looking at them collectively it becomes clear that responses are dependent on the 

context of the receiving environment. However, it is impossible to determine, 

without speculation, which environmental variables are driving the differences in 

responses between sites, as in many cases the characteristics of the site are not 

described in the publications. For example, many of the studies do not detail the 

sediment characteristics of the field site, of which sediment mud and background 

organic content may influence the ecosystem response to detrital enrichment (Table 

A2.1).  

When reviewing the limitations of scaling up results from studies conducted over 

limited temporal and spatial scales, Hewitt et al. (2007) state that “The importance 

of constraints to experimental outcomes becomes more apparent as a greater range 

of locations in space and time are studied” (p. 399). Indeed, this statement certainly 

holds true for research on the effects of detrital subsidies on soft-sediment 

communities. Whilst mine and other small-scale manipulative experiments provide 

a basis to suggest that detrital subsidies influence benthic ecosystem function in 

some contexts, but not others (probably associated with site-specific sediment 
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characteristics or hydrodynamics), future research can build on this knowledge 

when designing experiments to determine the relative ecological value of detrital 

subsidies across different sites. Thus, future research ventures need to incorporate 

environmental variability into detrital addition studies rather than omit it, and this 

can be done by asking ecological questions over scales of naturally occurring 

environmental gradients (recommended by Hewitt et al. 2007; example of this 

implemented in study by Pratt et al. 2014a). The challenge is in identifying the 

environmental gradients of relevance to the ecological question, but experimental 

designs can be guided by the collective detrital subsidy literature to form a priori 

predictions about the environmental variables and contexts that may drive 

ecosystem responses to detrital subsidies in the receiving environment (as in Thrush 

et al. 2000). These factors can then be incorporated into spatially replicated field 

experiments to increase the generality of the experiment and enhance our 

understanding of how broader-scale processes (e.g. from sandflat to sandflat) might 

modify local small-scale processes (e.g. within the small experimental unit/plot; 

Thrush et al. 2000; Thrush & Lohrer 2012).   

Incorporating the patterns identified in the studies of this thesis (and those 

summarised in Table A2.1), as well as the recommendations in Hewitt et al. (2007) 

and Thrush et al. (2000), detrital additions could be manipulated in several estuaries 

encompassing a wide range of sedimentary properties (e.g. a sand to mud gradient 

as in Pratt et al. 2014a), or hydrodynamic regimes (e.g. gradient from exposed to 

sheltered sites). By replicating small-scale field experiments across these gradients, 

and measuring the variables that are predicted to influence the ecosystem responses 

to detrital enrichment (e.g. sediment type and hydrodynamics), causal relationships 
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can be established through regression analysis of continuous environmental 

variables. 

5.2.3 Detrital source and state 

The results of Chapter 3 (and other studies in Table A2.1) show that detrital source 

is important, however contrary to my original expectations, source-dependent 

effects on benthic community structure and function cannot be predicted from 

differences in their decay rates. Instead, it appears that ecosystem responses 

probably depend on the chemical composition of the detrital species, as well as the 

form/state in which it enters the system (i.e. fragmented/shredded detritus vs. whole 

wrack). In Chapter 3, fragmented seagrass detritus was added to the sediments with 

no measured ecosystem response, while in Chapter 4 whole seagrass wrack 

modified ecosystem functions of benthic primary production (in sand), community 

metabolism, and nutrient cycling (in mud). The timing of responses is also likely to 

be driven by the form that the detritus enters the system, where fragmented 

mangrove and macroalgae detritus were shown to suppress short-term benthic 

primary production after 4 d (Chapter 3), while whole seagrass wrack had similar 

effects on primary production after 10 d (Chapter 4). The results of this thesis 

provide a basis to suggest that the temporal scales over which detrital enrichment 

modifies benthic ecosystem structure and function is linked to both the detrital 

source identity, as well as the state in which it is deposited in.  

Whilst this thesis did not link ecosystem responses to detrital enrichment with 

detrital decay differences, it has highlighted the source-dependent nature of the 

responses that may be associated with the species-specific traits of the leaf litter 

(Chapter 3). Through global meta-analyses, terrestrial ecologists have elucidated 
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that plant functional traits (and their associated leaf litter traits) are more important 

for determining litter decomposition rates (an important ecosystem function that 

drives global carbon cycling) than climatic factors (Cornelissen & Thompson 1997; 

Cornwell et al. 2008). This has implications for global carbon cycling in an 

anthropogenically modified world, as shifts in forest species composition (and 

therefore plant functional traits) will also result in shifts in biogeochemical cycling. 

Leaf litter C, N and P content in marine macrophytes are good predictors of 

decomposition rates (Enriquez et al. 1993), however, other leaf traits (e.g. leaf 

potassium, silicon, lignin contents, as well as leaf toughness, mass per area, specific 

leaf area) could also potentially effect decomposition, and therefore the cycling of 

carbon in the marine ecosystem (Cornelissen & Thompson 1997; Cornwell et al. 

2008). In the marine environment, leaf litter traits, such as their N content (and 

therefore their decomposition and incorporation into the benthic food web), also 

vary with environmental context (i.e. intraspecific variation with latitude and 

nutrient status of the estuary; Ainley et al. 2016; Nicastro et al. 2016), which may 

contribute to the context-dependent responses to detrital subsidies that I have 

identified through review of the collective detrital subsidy literature in this thesis. 

These functional traits could be further explored in the marine environment (as they 

have been for terrestrial plants; and building on research such as Ainley et al. 2016; 

Nicastro et al. 2016) to try to predict how changes in marine macrophyte 

communities/distributions, as well as the trophic status of estuaries, will affect the 

carbon cycling and food web dynamics in spatially subsidised receiving 

environments like intertidal soft-sediments.  
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5.2.4 Tropical-temperate comparisons 

In the tropical marine environment, stable isotope studies have found macrophyte 

detrital signatures in marine invertebrates several km away from their growing site. 

One example is that of mangrove leaf litter that has been traced in coral reef 

invertebrates up to 10 km away from the mangrove forest (Granek et al. 2009). In 

these tropical marine benthic ecosystems, macrophyte detritus can form a major 

part of the diet of invertebrate consumers (Fry & Smith 2002; Doi et al. 2009; 

Granek et al. 2009; Connolly & Waltham 2015). Tropical coastal waters can be 

nutrient-limited (Thomas 1970; Lapointe et al. 1987; Fourqurean et al. 1993), and 

therefore allochthonous detritus can provide an important alternative food source in 

areas where in situ production is low. In contrast, temperate, shallow-water, soft-

sediments often have high in situ benthic and pelagic primary production 

(Underwood & Kromkamp 1999), and in these coastal environments some studies 

have found that macrophyte detritus contributes a relatively small proportion of the 

diet of invertebrate consumers (e.g. Schlacher & Wooldridge 1996; Leduc et al. 

2006; Choy et al. 2008; Kanaya et al. 2008; Choy et al. 2009). This may be in part 

because the macroinvertebrate communities in these temperate soft-sediments can 

be dominated by deposit feeders that graze the nutritive MPB (e.g. Leduc et al. 2006; 

Kanaya et al. 2008; Choy et al. 2009; Antonio et al. 2012).  

It is difficult to directly compare the effects of detrital subsidies in the tropics 

compared to temperate ecosystems, because methods of experimentation are quite 

different. There is numerous research on the structuring effects of detrital 

deposition on benthic infaunal communities inhabiting temperate mudflats, but 

similar experiments are absent in the tropics (Table A2.1). An interesting avenue 
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for future investigations would be to combine stable isotope labelling of detrital 

material with manipulative detrital addition experiments in both tropical and 

temperate benthic environments (e.g. building on experiments by Rossi 2007; 

Oakes et al. 2010; Karlson et al. 2016). Combined labelling and manipulative 

experimentation could tease apart the two pathways for the incorporation of detrital 

carbon and nitrogen: 1) through measuring isotope signatures in invertebrates, and 

2) measuring how the isotopic label is incorporated into the MPB and/or 

remineralised as inorganic nutrients available to the water column. Tropical-

temperate experimental comparisons would be valuable to determine the relative 

differences in the ecosystem services that marine vegetation provides to adjacent 

connected marine ecosystems.  

5.2.5 Final concluding remarks  

Whilst I expected the fertilisation pathway to be an important pathway of detrital 

incorporation into productive temperate benthic food webs, my field studies in 

Chapters 3 and 4 found fertilisation effects to be either absent or minimal (i.e. ~30% 

increase in benthic primary production after 17 d of enrichment; Chapter 3). 

Perhaps in these temperate systems, where in situ primary production and nutrients 

are high, the effects of deposited detritus are not associated with incorporation into 

the food web (as in the tropics), but rather related to the physical presence of detritus 

accumulated in the surface sediments (e.g. suspected shading effects of the detritus 

on benthic primary production in Chapters 3 and 4). By physically altering the 

structure and function of receiving sediments, seasonal pulses in the supply of low 

quality detritus add to the heterogeneous nature of intertidal flats in both time and 

space. In some contexts, patches of detritus have seemingly minor negative effects 
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on ecosystem function (suppression of primary production in sand, and reduction 

of nutrient cycling in crab-dominated mudflats), but in other contexts detritus can 

have potentially important positive effects on function (stimulation of benthic 

metabolism and increased macrofaunal community variability on mudflats).  

As anthropogenic changes to catchment land use continue to rise, so do changes in 

marine macrophyte distributions, for example the global decline in seagrass beds 

(Inglis 2003; Moore & Short 2006), and the proliferation of macroalgae blooms 

(Valiela et al. 1997; Teichberg et al. 2010; Fry et al. 2011; Pratt et al. 2013).  The 

results of my thesis (and others in Table A2.1) suggest that benthic ecosystem 

responses to detrital deposition vary with detrital species and physical state, thus 

changes to the supply, quality and timing of detrital subsidies from marine 

macrophytes are likely to have far-reaching effects on the structure and function of 

receiving soft-sediment communities.   The logical next step in macrophyte detrital 

subsidy research is to expand manipulative field experiments to encompass 

differences in spatial and temporal scales of detrital subsidies, as well as natural 

gradients in sediment and hydrodynamic properties in the receiving soft-sediments. 

These types of experiments will increase our understanding of the contexts and 

scales at which detrital subsidies modify soft-sediment community structure and 

function in temperate estuaries. 
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APPENDICES 

Appendix 1: Summary of estuary-to-coast macrodetritus flux 

studies (Chapters 1 and 2) 

I conducted a literature search to summarise the published research on estuary-to-

coast macrodetritus fluxes (i.e. large pieces of macrophyte leaf litter). The summary 

in Table A1.1 (p. 128), only includes studies that infer direction (i.e. import or 

export) of macrodetritus fluxes, across a semi-enclosed estuary or bay-to-open coast 

boundary. Fluxes of other forms of production (dissolved and particulates) are only 

included when they were measured simultaneously with macrodetritus fluxes. 



 

    

 

Table A1.1 Summary of estuary-to-coast macrodetritus flux studies. The source of the data is given in as superscripted numbers in the ‘location’ column that 

correspond to the list of references on p. 132. Abbreviations are defined in the table footnotes (p. 131). 

Location  Estuary description 
Location of 

measurements 
Estuary area Form 

Season/ 

Annual 

estimate 

Position Direction Fluxes 

Fluxes per area 

of estuary (ha-1 

yr-1) 

North Inlet Bar-built estuary In the 3 main 3200 ha Md Annual  S (60 cm) E 63257 kg DW 19.8 kg DW 

South Carolina Ebb-dominated tidal channels 21% tidal creeks     21000 kg C 6.6 kg C 

USA (33° N)1-3 Small freshwater input (up to 180 m  73% saltmarsh     240 kg N 0.08 kg N 

 Tidal flushing = 55% each) 5% mudflats     24 kg P 0.008 kg P 

 water replaced per tide  1% oyster reef Par  S,M,B E 3000000 kg C (as POC) 937.5 kg C 

 Spr tidal range = 2.2 m   Dis  S,M,B E 7800000 kg C (as DOC) 2437.5 kg C 

 Mean tidal range = 1.6 m       171000 kg N (as NH4
+ + NOx) 53.4 kg N 

 3 major tidal creeks       40000 kg P (as PO4) 12.5 kg P 

 Current velocities = max. 

2.3 m s-1 

        

Tuff Crater Mangrove basin In the single  21.6 ha Md Nov S (50 cm) E 0.035-0.036 kg DW tidal cycle-1  

Auckland Tidally drained by breach tidal creek entirely   Dec   0.3-1.5 kg DW tidal cycle-1  

New Zealand in the crater wall  mangroves  Annual   162-915 kg DW 7.5-42.4 kg DW 

(36° S)4  Minimal freshwater input         

 Spr tidal range = 2.69 m         

 Neap tidal range = 1.99 m         

 (in Waitemata Harbour, but 

the ranges in the crater are 

much less) 

        

Klong Ngao  Mangrove swamp drained In mouth of  1150 ha Md Annual S E 0.06-0.25 kg DW ha-1 day-1 21.9-91.3 kg DW 

Estuary,  from a single tidal  Tidal channel  almost entirely Dis Dry   E 26 kg N day-1 (as NOx)  

Thailand (9° N)5 channel (47 m width) mangroves  season   (other forms of N, P and C were   

 Annual rainfall = 4 m       not measured during the dry   

 Rains for 190 d per year       season)  

 Spr tidal range = 4.4 m    Wet  E 15 kg N day-1 (TDN)  

 Mean tidal range = 2.4 m    season   (of which 4 kg N day-1 as NOx)  

 Mangroves are only       13 kg P day-1 (TDP)  

 totally submerged 1-2       (of which 0.2 kg P day-1 as PO4)  

 times per month       5600 kg C day-1 (TOC incl. Dis 

and Par) 

 



 

    

 

Table A1.1 Continued. 

Location  Estuary description 
Location of 

measurements 
Estuary area 

For

m 

Season/ 

Annual 

estimate 

Position Direction Fluxes 

Fluxes per area of 

estuary (ha-1 yr-1) 

Sepetiba Bay Mangrove-dominated 

bay 

Not reported 4 ha mangroves Md Annual Not 

reported 

E 420 kg DW ha-1 420 kg DW 

Brazil  enclosed by two tidal         

(23° S) creeks         

Silva et al. Peak tidal range = 2.0 m         

1993 as cited 

in6,7 

Freshwater input 

minimal 

        

Saeftinge marsh Tidal marsh with many  In one of the  2800 ha Md Annual B E 550 kg DW 0.2 kg DW 

Westerschelde tidal creeks many tidal  saltmarsh       

Estuary Upper marsh is relatively  creeks (36 m         

Netherlands closed to the tide (above width)        

(51° N)8 mean neap tide level)         

          

Mont Saint- Macro-tidal estuary In one channel  19000 ha mudflat Md Annual S (40 cm) E 33 kg DW  6.6 kg DW 

Michel Bay Mean tidal range = 12 m draining 5 ha  4000 ha      14 kg C  2.8 kg C 

Brittany Spr tidal range = 16 m watershed  saltmarsh     0.5 kg N  0.1 kg N 

France (48° N)9 Marsh infrequently  (3 m width)        

 inundated (<16% of 

tides) 

        

          

Biscayne Bay Coastal cut separated  Entrance of  NA Md Aug WC I 109 kg DW tidal cycle-1  

Florida from the open ocean by several coastal    Dec  I 104 kg DW tidal cycle-1  

USA (25° N)10 Islands (open system) cuts   May  I 424 kg DW tidal cycle-1  

 Current velocities =       (measured macroalgae fluxes   

 0.5-0.7 m s-1 through the       only)  

 inlet         

 

 



 

    

 

Table A1.1 Continued. 

Location  Estuary description 
Location of 

measurements 
Estuary area Form 

Season/ 

Annual 

estimate 

Position Direction Fluxes 

Fluxes per area of 

estuary (ha-1 yr-1) 

Mngazana Mangrove dominated  In mouth of  118 ha mangrove Md Nov S (25 cm) E 1.5 kg DW day-1  

Estuary, South Estuary, drains to the  tidal channel   June  E 0.4 kg DW day-1  

Africa (31° S)11 open ocean through a    Par Annual S E 36000 kg C ha-1 (as POC) 36000 kg C 

 single mouth         

 River dominated         

Pepe Inlet Barrier enclosed estuary In the single  ~26 ha Md May (Aut) WC E 2.89 kg DW tidal cycle-1  

Tairua Estuary Ebb-dominated tidal channel  Includes:    E 0.03 kg N tidal cycle-1  

New Zealand Tidal flushing = 82 % (37 m width) ~10 ha saltmarsh    E 0.005 kg P tidal cycle-1  

(37° S)12 water replaced per tide  (some above high   Jul (Win)  E 1.14 kg DW tidal cycle-1  

 Spr tidal range = 1.63 m  tide)    E 0.02 kg N tidal cycle-1  

 Neap tidal range = 1.22 m  ~2 ha seagrass    E 0.011 kg P tidal cycle-1  

 Freshwater input from  ~3 ha mangroves  Nov (Spr)  I 11.05 kg DW tidal cycle-1  

 Pepe stream  ~20 ha sandflat    I 0.31 kg N tidal cycle-1  

       I 0.125 kg P tidal cycle-1  

     Feb (Sum)  E 9.56 kg DW tidal cycle-1  

       E 0.23 kg N tidal cycle-1  

       E 0.064 kg P tidal cycle-1  

     Annual  E 449 kg DW  17.3 kg DW 

       I 6 kg N 0.2 kg N 

       I 8 kg P 0.3 kg P 

    Par May (Aut) S E 0.46 kg N tidal cycle-1   

       E 0.13 kg P tidal cycle-1  

     Jul (Win)  E 0.44 kg N tidal cycle-1  

       E 0.20 kg P tidal cycle-1  

     Nov (Spr)  E 0.55 kg N tidal cycle-1  

       E 0.12 kg P tidal cycle-1  

     Feb (Sum)  E 1.20 kg N tidal cycle-1  

       E 0.47 kg P tidal cycle-1  

     Annual  E 467 kg N  18.0 kg N 

       E 164 kg P 6.3 kg P 



 

    

 

 

Table A1.1 Continued. 

Location  Estuary description 
Location of 

measurements 
Estuary area Form 

Season/ 

Annual 

estimate 

Position Direction Fluxes 
Fluxes per area of 

estuary (ha-1 yr-1) 

Pepe Inlet     Dis May (Aut) S E 6.13 kg N tidal cycle-1  

(continued)12       I 0.64 kg P tidal cycle-1  

     Jul (Win)  E 8.71 kg N tidal cycle-1  

       E 0.29 kg P tidal cycle-1  

     Nov (Spr)  E 11.35 kg N tidal cycle-1  

       E 1.52 kg P tidal cycle-1  

     Feb (Sum)  E 0.38 kg N tidal cycle-1  

        P below detection limit  

     Annual  E 4684 kg N  180.1 kg N 

       E 206 kg P  7.9 kg P 

Form: Md = macrodetritus, Par = particulates, Dis = dissolved; Direction: E = export, I = import; Position: S = surface waters, M = mid-water column, B = bottom, WC = whole 

water column; Fluxes: scale of fluxes (e.g. annual vs. daily or tidal cycle-1; or whole estuary vs ha-1) are given as they appear in the publications; Fluxes per area of estuary (ha-1 yr-

1): where the area of the estuary is given, I have standardised the annual estimates to estuary area; DW = dry weight; C = carbon; P = phosphorus; N = nitrogen; In the current study13, 

annual fluxes are estimated by multiplying the average of the seasonal fluxes by the number of tidal cycles in one year (705 tidal cycles in Tairua Estuary in 2014) 
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Appendix 2: Summary of in situ detrital addition studies 

(Chapters 1 and 5) 

I conducted a literature search to summarise the research on the effects of detrital 

subsidies on intertidal soft-sediment benthic community structure and function. 

Table A2.1 (p. 134), only includes results from studies that conducted in situ 

manipulations of detrital enrichment on intertidal flats (laboratory mesocosm 

studies, experiments on the effects of live macroalgal mats, and studies on exposed 

sandy beaches are excluded). Table A2.1 also only includes those studies that 

measured the subsequent benthic macrofaunal community response and/or changes 

in sediment-water solute fluxes following the addition of detritus (studies 

investigating detrital enrichment effects on faunal recolonisation of defaunated 

sediments were omitted).  

 



 

 

 

1
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Table A2.1 Summary of in situ detrital addition studies. The source of the data is given in as superscripted numbers in the ‘location’ column that correspond to the 

list of references on p. 147. Abbreviations and symbols for the strength of ecosystem response are defined in the table footnotes (p. 146). 

              Ecosystem responses to detrital enrichment 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Bay of 

Fundy, Nova 

Scotia 

(44°N)
1 

Spartina 

alterniflora 

(Salt marsh) 

400 1.5 S  Mud up to 4 

months 

NA NA NA NA +++++ SOC for 4 

months; +++++ 

CO2 flux for 4 

months; +++++ 

DOC flux for 2 

months (field 

collected cores 

incubated in the 

lab) 

Flax Pond, 

Long Island, 

New York 

(40°N)
2 

Ulva rotundata 

(macroalgae) 

208 0.12 S Mud 10 d ++ NA NA NA NA 

416 0.12 S Mud 10 d ++ NA NA NA NA 

Sleek of  Enteromorpha 300 1 S Mud 8 w NA +++++ NA Capitella sp. NA 

Tarty,  Spp.    (~40%       

Ythan 

Estuary, 

Scotland 

(57°N)3 

    mud 

content) 
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Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Botany Bay, 

NSW, 

Australia 

(34°S)
4 

Wrack mainly 

composed of 

Zostera 

capricornii and 

red macroalgae 

4.8 kg 

(wet) 

 0.25 W 

buried 

2 Sand 

(particle 

size 0.63-

500 µm), 

and 3 

mud 

(particle 

sizes 

500-1000 

µm) 

6 w +++++ at 

all sites 

Variable 

across sites 

and species 

NA Muddy sites: 

Capitellidae 

+++++, 

Nereidae +; 

Sandy sites: 

Orbinids and 

Oligochaeta 

+++++ 

NA 

Flax Pond, 

Long Island, 

New York 

(40°N)
5 

Ulva rotundata 

(macroalgae) 

208 1 S Mud 2, 4, 6, 8, 

10 w 

NA initial -----; 

then +++++ in 

some species 

----- up to 4 w Capitella 

capitata and 

Paranais 

litoralis after 6 

weeks 

NA 

Flax Pond, 

Long Island, 

New York 

(40°N)
6 

Ulva rotundata 

(macroalgae) 

56 0.16 S Mud 30 d   ++++ Nil Capitella spp.  NA 

Oosterschelde 

Estuary, The 

Netherlands 

(51°N)
7 

Ulva sp. 

(macroalgae) 

400 g 

(wet) 

0.25 W 

buried 

3 sites, 

sediment 

type not 

reported 

2, 4 w + after 4 

w at two 

of the 

sites 

- (ns) - Loss of rare 

species (e.g. 

Carcinus 

moenas, 

Scrobicularia 

plana) 

NA 
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Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Quibray Bay, 

Botany bay, 

Sydney 

(34°S)
8 

Zostera 

capricornii 

(seagrass) 

120 0.25 S Mud 8, 16, 24 

w 

+++++ 

after 16 

w 

+ (ns) after 24 

w 

+ (ns) after 24 

w 

NA NA 

    360 0.25 S Mud 8, 16, 24 

w 

+++++ 

after 16 

w 

Nil Nil NA NA 

Quibray Bay, 

Botany Bay, 

Sydney, 

Australia 

(34°S)
9 

Posidonia 

australis 

(seagrass) 

536 0.25 S  Mud 8 w ++ -----  -- Mediomastus 

australiensis, 

Hydrococcus 

brazieri, 

Euchone 

variabilis, 

Owenia 

australis 

NA 

Quibray Bay, 

Botany bay, 

Sydney, 

Australia 

(34°S)
10 

Posidonia 

australis 

(seagrass) 

120 0.25 S Mud 12 w Nil + (ns) + (ns)   NA 

240 0.25 S Mud 12 w + (ns) + (ns) Nil   NA 

Sargassum sp. 

(macroalgae) 

120 0.25 S Mud 12 w + (ns) + (ns) Nil   NA  

240 0.25 S Mud 12 w + (ns) + (ns) Nil   NA 

Avicennia 

marina 

(mangrove) 

120 0.25 S Mud 12 w Nil + (ns) Nil   NA  

240 0.25 S Mud 12 w Nil Nil - (ns)   NA  
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Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Quibray Bay, 

Botany Bay, 

Sydney, 

Australia 

(34°S)
11 

Phyllospora 

comosa 

(macroalgae) 

120 0.25 S  Mud 8 w NA + Nil Nephtys 

australiensis 

NA 

240 0.25 S  Mud 8 w NA Nil Nil   NA  

360 0.25 S  Mud 8 w NA Nil Nil   NA  

Ecklonia 

radiata 

(macroalgae) 

120 0.25 S  Mud 8 w NA ----  Nil Tellina 

deltoidalis 

NA  

240 0.25 S  Mud 8 w NA --- Nil Tellina 

deltoidalis 

NA  

360 0.25 S  Mud 8 w NA --- Nil Tellina 

deltoidalis 

NA  

Sargassum 

sp.(macroalgae) 

120 0.25 S  Mud 8 w NA Nil Nil   NA  

240 0.25 S  Mud 8 w NA --- Nil Tellina 

deltoidalis 

NA  

360 0.25 S  Mud 8 w NA --- Nil Tellina 

deltoidalis 

NA  

Port Phillip 

Bay, Victoria, 

Australia 

(37°S)
12 

Ulva sp. 

(macroalgae) 

4 kg 

(wet) 

0.25 W 

buried 

1 mud 

site, 1 

sand site 

6 w Nil + (ns) Nil Capitella sp. at 

sand site and 

Cirratulidae at 

mud site 

NA 
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Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Galican 

Coast, Spain 

(42°N)
13 

Sargassum 

muticum 

(macroalgae) 

160 0.25 S 2 sand 

sites 

4, 6 w Nil + (ns) Nil Capitella 

capitata 

NA 

240 0.25 S 2 sand 

sites 

4, 6 w Nil + (ns) Nil Capitella 

capitata and 

Pygospio 

elegans 

NA  

480 0.25 S 2 sand 

sites 

4, 6 w Nil + (ns) Nil Capitella 

capitata 

NA  

Quibray Bay, 

Botany Bay, 

Sydney, 

Australia 

(34°S)
14 

Caulerpa 

taxifolia 

(macroalgae) 

120 0.25 S Mud 7 w NA ---- Nil Euchone 

variabilis, 

Nephtys 

australiensis, 

Salinator 

fragilis and 

Gammarid 

amphipod  

NA 

360 0.25 S Mud 7 w   ----- ---- Same as above NA  

120 0.25 S Mud 7 w   ---- Nil Same as above NA  

360 0.25 S Mud 7 w   ----- ---- Same as above NA  

 

 



 

 

 

1
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Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Quibray Bay, 

Botany Bay, 

Sydney, 

Australia 

(34°S)
15 

Posidonia 

australis 

(seagrass) 

120 0.25 S Mud 8, 16 w Nil ++ until 8 

weeks 

Nil Detritivores, 

predators and 

scavengers 

across 

treatments 

NA 

240 0.25 S Mud 8, 16 w Nil ++ until 8 

weeks 

Nil   NA  

Caulerpa 

taxifolia 

(macroalgae) 

120 0.25 S Mud 8, 16 w Nil ++ for at least 

16 w 

Nil   NA  

240 0.25 S Mud 8, 16 w ++ for at 

least 16 

weeks 

+ until 8 weeks Nil   NA  

Zostera 

capricorni 

(seagrass) 

120 0.25 S Mud 8, 16 w Nil + until 8 weeks Nil   NA  

240 0.25 S Mud 8, 16 w ++ until 

8 weeks 

+ until 8 weeks Nil   NA  
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Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Mullet Creek, 

Hawkesbury 

River 

Estuary, 

Sydney, 

Australia 

(33°S)
16 

Treatments 

with different 

detrital mixture 

combinations 

of sources  

120-240 0.25 S Mud 8 w NA Upto ++++ in 

some detrital 

mixtures 

Nil Platynereis sp. NA 

Quibray Bay, 

Botany Bay, 

Sydney, 

Australia 

(34°S)
16 

 Treatments 

with different 

detrital mixture 

combinations 

of sources 

120-240 0.25 S Mud 8 w NA Nil Nil Euchone 

variabilis and 

Macoma 

deltoidalis 

relative 

abundances 

changed with 

detrital 

enrichment 

NA 

Grays Point, 

Port Hacking, 

Sydney, 

Australis 

(34°S)
16 

 Treatments 

with different 

detrital mixture 

combinations 

of sources 

120-240 0.25 S Mud 8 w NA Upto ++++ in 

some detrital 

mixtures 

+ in some 

detrital 

mixtures 

Platynereis sp. NA  
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Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Botany Bay, 

Sydney, 

Australia 

(34°S)
17 

Treatments 

with different 

detrital mixture 

combinations 

of sources 

120-240 0.25 S Mud 8 w NA NA NA NA Measured from 

cores incubated 

in the lab: NPP, 

GPP + in 

mixtures with 

lower detrital 

richness; Fluxes 

of dissolved N 

were influenced 

by detrital source 

identity. i.e. N 

fluxes were 

greater in some 

mixtures than 

others 

Oosterschelde 

Estuary, The 

Netherlands 

(51°N)
18

 

Ulva sp. 

(macroalgae) 

40 1 W  Fine sand 4 w +++ with 

no 

Arenicola 

present 

Nil Nil   Measured benthic 

respiration in lab 

incubated cores: 

Nil effects of 

detrital 

enrichment 

  

100 1 W  Fine sand 4 w +++ with 

no 

Arenicola 

present 

----- with 

Arenicola 

present  

----- with 

Arenicola 

present 

Mainly 

Hydrobia ulvae 

but also 

Nereids, 

Spionids and 

Bivalves 
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Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Whangamata 

Estuary, New 

Zealand 

(37°S)
19 

Avicennia 

marina subsp. 

australasica 

(mangrove) 

260 1  S Fine sand 

(median 

grain size 

= 198 

µm, 14% 

mud 

content) 

2, 4, 6, 8, 

12, 24 w 

Nil --- throughout 

24 w 

experiment 

Nil Prionospio 

aucklandica 

and Aonides 

trifida 

NA 

          Muddy 

sand 

(median 

grain size 

= 131 

µm, 30% 

mud 

content) 

  Nil --- throughout 

24 w 

experiment 

- throughout 

24 w 

experiment 

Prionospio 

aucklandica 

and 

Heteromastus 

filiformis 

NA  

            



 

 

 

1
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Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Sandon River 

and Wooli 

River, 

northern 

NSW, 

Australia 

(30°S)
20

   

Ulva sp. 200 0.25 S 2 sites 

fine/ 

medium 

sand 

(mean 

grain size 

260 µm)  

1, 7,30, 

60 d 

---- after 

7 d (at 

one site 

only) 

----- for at least 

7 d (at one site 

only) 

Nil Mysella vitrea, 

Urohaustorius 

gunni, and 

Gammarus sp. 

NA 

  400 0.25 S 2 sites 

fine/ 

medium 

sand 

(mean 

grain size 

260 µm)  

1, 7,30, 

60 d 

--- after 1 

d (at one 

site only) 

----- for at least 

1 d (at one site 

only) 

Nil Mysella vitrea, 

Urohaustorius 

gunni, and 

Gammarus sp. 

NA 
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Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Jervis Bay 

and St 

Georges 

Basin, 

southern 

NSW, 

Australia 

(35°S)
20

 

Ulva sp. 200 0.25 S 2 sites 

fine/ 

medium 

sand 

(mean 

grain size 

260 µm) 

1, 7,30, 

60 d 

At one 

site: +++ 

after 7 d, 

-- after 

30; at 

other 

site: -- 

after 1 d, 

and 60 d  

++++ after 30 

d (at one site 

only) 

+ after 30 d (at 

one site only) 

At one site: 

Mysella vitrea, 

Galeomatidae 

sp., Salinator 

fragilis; At 

other site: 

Mediomastus 

australiensis, 

Neries sp., 

Perinereis sp. 

NA 

  400 0.25 S 2 sites 

fine/ 

medium 

sand 

(mean 

grain size 

260 µm) 

1, 7,30, 

60 d 

+++++ 

after 7 d 

(at one 

site only) 

--- after 30 d at 

one site; and at 

the other site 

+++++ after 1 

d and then --- 

after 60 d 

- throughout 

the 60 d 

experiment (at 

one site only) 

At one site: 

Mysella vitrea, 

Galeomatidae 

sp., Salinator 

fragilis; At 

other site: 

Mediomastus 

australiensis, 

Neries sp., 

Perinereis sp. 

NA 
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Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Whangapoua 

Estuary, New 

Zealand 

(36°S)
21 

Avicennia 

marina subsp. 

australasica 

(mangrove) 

220  2 S Fine sand 

(median 

grain size 

= 275 

µm, 3% 

mud 

content) 

4, 17, 46 

d 

Nil Nil Nil   ----- NPP and 

GPP after 4 d; + 

GPP after 17 d 

(in situ 

incubations) 

Zostera 

muelleri 

(seagrass) 

220  2 S Fine sand 

(median 

grain size 

= 275 

µm, 3% 

mud 

content) 

 4, 17, 46 

d 

Nil Nil Nil   Nil 

Ecklonia 

radiata 

(macroalgae) 

220  2 S Fine sand 

(median 

grain size 

= 275 

µm, 3% 

mud 

content) 

4, 17, 46 

d 

Nil Nil Nil 
 

----- NPP and 

GPP after 4 d; + 

(ns) GPP after 17 

d 

 

 



 

 

 

1
6
2
 

 

 

Table A2.1 continued. 

Location Detrital source Amount 

added 

(g DW 

m-2) 

Plot 

area 

(m2) 

Form Sediment 

type 

Sampling 

time 

after 

addition 

MPB  Macrofaunal 

total 

abundance 

Macrofaunal 

species 

richness 

Macrofauna 

species driving 

responses 

Sediment-water 

solute fluxes 

Tairua 

Estuary, New 

Zealand 

(37°S)
22 

Zostera 

muelleri 

(seagrass) 

360 0.36  W Fine sand 

(median 

grain size 

= 196 

µm, 5% 

mud 

content) 

10 d Nil Nil Nil   ----- NPP; ----- 

GPP (in situ 

incubations) 

 
      Muddy 

sand 

(median 

grain size 

= 243 

µm, 14% 

mud 

content) 

 10 d Nil -----   Nil Paracorophium 

excavatum 

++ SOC; - (ns) 

NH4
+ in the 

presence of crabs 

Form: S = shredded, W = whole wrack; Sediment type: broadly classified as sand or mud, unless more detailed information is given in the paper; Magnitude of community 

or ecosystem response to detrital addition: + (ns) or - (ns) =  increased/decreased slightly but not significant; + or - = increased/decreased <20%; ++ or -- = 

increased/decreased by 20-30%; +++ or --- = increased/decreased by 30-40%; ++++ or ---- = increased/decreased by 40-50%; +++++ or ----- = increased/decreased by >50%; 

Nil = no response; NA = information not reported; MPB = microphytobenthos response measured from sediment chlorophyll a content; Sediment-water solute fluxes: SOC 

= sediment oxygen consumption; NPP = net primary production; GPP = gross primary production; NH4
+ = ammonium flux 
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Appendix 3: Discharge models and calculations (Chapter 2) 

 

Figure A3.1 Correlations used to predict discharge, between velocity × depth (ADV/ADCP 

measurement interval = 10 min) and discrete discharge measurements (Flowtracker ADV) on 

each sampling date (A = May 2014 - Aut, B = Jul 2014 - Win, C = Nov 2014 - Spr, D = Feb 

2015 - Sum). 
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Figure A3.2 Predicted and measured discharge as a function of time, on each sampling date (A 

= May 2014 - Aut, B = Jul 2014 - Win, C = Nov 2014 - Spr, D = Feb 2015 - Sum). Discharge 

is predicted using a correlation between velocity × depth (ADV/ADCP measurement interval = 

10 min), and discrete discharge measurements in the first half of the tidal cycle (using 

Flowtracker ADV; i.e. measured; see Figure A3.1 for correlations). 
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Table A3.1 Total calculated discharge (used in flux calculations) as a function of sampling date 

and tidal stage. 

Sampling date Total discharge (m3) 

May 2014 (Aut):  

Flood 1 146030 

Ebb 1 202860 

Flood 2 188820 

Ebb 2 230140 

Jul 2014 (Win):   

Flood 1 213490 

Ebb 1 288120 

Flood 2 228060 

Ebb 2 298270 

Nov 2014 (Spr):   

Flood 1 191160 

Ebb 1 271240 

Flood 2 153050 

Ebb 2 187350 

Feb 2015 (Sum):   

Flood 1 247490 

Ebb 1 356440 

Flood 2 236910 

Ebb 2 316850 
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Appendix 4: PERMANOVA results of sediment and 

macrofauna properties (Chapter 4) 

Table A4.1 Results of PERMANOVA (Euclidean distance) tests comparing sediment 

properties between crab (C; 2 levels: +C, –C) and detritus (D; 2 levels: +D, –D) treatments, at 

each site (sand S, and muddy-sand MS). Significant results are indicated in bold (p < 0.05), and 

pair-wise post-hoc results are given for significant interactions. Main effects are only 

considered in the absence of an interaction. 

Site Variable Source df MS Pseudo-F p Pair-wise test 

S OC C × D 1 0.33 1.01 0.3299  

  C 1 0.45 1.38 0.2579   

    D 1 0.54 1.64 0.2222   

    Residual 12 0.33                    

 Chl a C × D 1 27.67 1.70 0.1997   

   C 1 37.06 2.27 0.1532   

    D 1 30.93 1.90 0.1855   

    Residual 12 16.31                    

 Phaeo C × D 1 3.24 1.48 0.2489   

   C 1 16.58 7.57 0.0094 -C > +C  

    D 1 2.91 1.33 0.2887   

    Residual 12 2.19                    

 Mud content C × D 1 0.08 0.06 0.8125  

   C 1 9.48 6.69 0.0251 -C > +C  

    D 1 0.17 0.12 0.7334   

    Residual 12 1.42                    

 Median GS C × D 1 169.61 0.68 0.4409  

   C 1 368.28 1.49 0.2498   

    D 1 84.07 0.34 0.5782   

    Residual 12 247.97                    

MS OC C × D 1 0.23 1.04 0.3313  

  C 1 0.06 0.28 0.6019   

    D 1 0.33 1.52 0.2459   

    Residual 12 0.22                    

 Chl a C × D 1 3.76 0.36 0.5671  

   C 1 0.31 0.03 0.8631   

    D 1 9.79 0.93 0.3460   

    Residual 12 10.56                    

 Phaeo C × D 1 10.18 2.50 0.1398  

   C 1 2.23 0.55 0.4658   

    D 1 0.95 0.23 0.6401   

    Residual 12 4.07                    

 Mud content C × D 1 17.61 0.90 0.3433   

   C 1 6.27 0.32 0.5754   

    D 1 17.15 0.88 0.3651   

    Residual 12 19.53                    

 Median GS C × D 1 298.60 0.22 0.6310  

   C 1 370.18 0.27 0.6170   

    D 1 5266.10 3.84 0.0700   

    Residual 12 1369.80                    

OC = sediment organic content; Chl a = sediment chlorophyll a pigment content; Phaeo = 

sediment phaeophytin pigment content; Mud = particles <63 µm; GS = sediment grain size; 

+C = crabs present; -C = crabs absent; +D = detritus present; -D = detritus absent  
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Table A4.2 Results of PERMANOVA tests comparing crab density/biomass, total macrofaunal 

abundance, species richness, and final detritus (Euclidean distance), as well as the macrofaunal 

community structure (Bray-Curtis similarity) between crab (C; 2 levels: +C, –C) and detritus 

(D; 2 levels: +D, –D) treatments, at the sand site (S). Significant results are indicated in bold (p 

< 0.05), and pair-wise post-hoc results are given for significant interactions. Main effects are 

only considered in the absence of an interaction. 

Site Variable Source df MS Pseudo-F p Pair-wise 

S Final adult  C × D 1 14 1.64 0.2058   

  A. crassa density C 1 1073 125.26 0.0001 +C > -C   

  D 1 60 7.01 0.0248 -D > +D  

    Residual 12 9                    

 Final juvenile  C × D 1 2 0.05 0.8425  

  A. crassa density C 1 371 11.35 0.0024 -C > +C  

   D 1 3 0.09 0.7664   

    Residual 12 33                    

 Final A. crassa  C × D 1  12  0.64 0.4236    

  biomass C 1 1078 57.46  0.0002  +C > -C   

    D 1  19  1.04 0.3238    

    Residual 12  19       

 Total macrofauna  C × D 1 156 0.62 0.4465   

  abundance C 1 132 0.53 0.4727   

   D 1 156 0.62 0.4454   

    Residual 12 250                    

 Macrofauna taxa  C × D 1 16 7.25 0.0196  -D: -C > +C; +D: -C = +C 

  richness       -C: -D = +D; +C: -D > +Da 

   C 1 12 5.55 0.0393   

    D 1 9 4.08 0.0687  

    Residual 12 2                   

 Macrofauna  C × D 1 594 0.58 0.3062  

 community  C 1 1110 1.08 0.3490  

 (multivariate) D 1 2115 2.05 0.0586  

  Residual 12 1031    

 Final detritus DW C × D 1 94 4.48 0.0721   

   C 1 94 4.48 0.0606   

    D 1 7278 344.97 0.0001 +D > -D  

    Residual 12 21                    

DW = dry weight; +C = crabs present; -C = crabs absent; +D = detritus present; -D = detritus absent; a 

indicates post-hoc pair-wise test is significant at p = 0.0561  
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Table A4.3 Results of PERMANOVA tests comparing crab density/biomass, total macrofaunal 

abundance, species richness, and final detritus (Euclidean distance), as well as the macrofaunal 

community structure (Bray-Curtis similarity) between crab (C; 2 levels: +C, –C) and detritus 

(D; 2 levels: +D, –D) treatments, at the muddy-sand site (MS). Significant results are indicated 

in bold (p < 0.05), and pair-wise post-hoc results are given for significant interactions. Main 

effects are only considered in the absence of an interaction. 

Site Variable Source df MS Pseudo-F p Pair-wise 

MS Final adult  C × D 1 39 1.19 0.2893  

  A. crassa density C 1 452 13.73 0.0051 +C > -C   

  D 1 5 0.15 0.6896   

    Residual 12 33                    

 Final juvenile  C × D 1 49 0.89 0.3593   

  A. crassa density C 1 81 1.47 0.2563   

   D 1 12 0.22 0.647   

    Residual 12 55                    

 Final A. crassa  C × D 1 33 1.27  0.2685  

  biomass C 1 365 13.85  0.0045 +C > -C   

    D 1 6  0.23  0.6270   

    Residual 12 26       

 Total macrofauna  C × D 1 1620 1.90 0.1936   

  abundance C 1 885 1.04 0.3214   

   D 1 38123 44.72 0.0003 -D > +D  

    Residual 12 853                    

 Macrofauna taxa  C × D 1 2 0.24 0.6231   

  richness C 1 9 0.98 0.3475   

   D 1 4 0.43 0.5128   

    Residual 12 9                    

 Macrofauna  C × D 1 1238 1.01 0.3403  

 community  C 1 736 0.60 0.6173  

 (multivariate) D 1 18733 15.26 0.0004 +D ≠ -D 

 
 Residual 12 1227    

 Final detritus DW C × D 1 187 2.21 0.1441   

   C 1 161 1.90 0.1828   

    D 1 12940 152.89 0.0001 +D > -D  

    Residual 12 85                    

DW = dry weight; +C = crabs present; -C = crabs absent; +D = detritus present; -D = detritus 

absent 

 


