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Abstract 
 
 

Cloning by somatic cell nuclear transfer (SCNT) forces cells to lose their 

lineage-specific epigenetic marks and become totipotent again. This 

reprogramming process often results in epigenetic and transcriptional 

aberrations that compromise development. Development rates after SCNT 

can thus serve as a functional assay for genome-wide epigenetic 

reprogramming. Dolly the sheep, the first mammalian SCNT clone, was 

derived from a donor cell that was induced into quiescence by serum 

starvation. We hypothesized that quiescence alters the epigenetic status 

of donor cells and elevates their reprogrammability. In order to test this 

idea, we compared chromatin composition and cloning efficiency of 

serum-starved, quiescent (G0), bovine fibroblasts vs non-starved, diploid 

G1 controls. Mechanically synchronized G1 cells were generated by mitotic 

shake-off and harvested within 3 h post-mitosis. Based on morphological 

assessment and EdU incorporation during continuous labeling, >93% of 

cells were captured in G1.  

Using quantitative confocal immunofluorescence microscopy and 

fluorometric ELISA, we show that G0 fibroblasts were significantly 

hypomethylated at lysines (K) of histone 3 (H3), specifically H3K4me3, 

H3K9me2, H3K9me3 and H3K27me3, but not H3K9me1. Histone 

acetylation was reduced at H3K9 and H4K5, increased at H3K12 and 

remained unchanged at H3K16. G0 cells also significantly reduced 

DNAme. In addition, they significantly down-regulated the nuclear 

abundance of RNA polymerase II, histone variant H2A.Z, as well as 

Polycomb group (PcG) proteins EED, SUZ12, PHC1 and RING2. Histone 

variant H3.3, PcG proteins EZH2 and histone deacetylase HDAC1 did not 

change compared to the G1 controls. Following NT into metaphase-

arrested oocytes, G0 DNA condensed slower than that of G1 cells, 

indicating a more relaxed chromatin configuration. After seven days of in 

vitro culture, H3K9me3, but not H3K4me3, H3K27me3, SUZ12 and 

RING2, remained hypomethylated in G0- vs G1-derived NT blastocysts, 

both in the inner cell mass and trophectoderm. Furthermore, G0 donors 

significantly improved development into cloned blastocysts. In conclusion, 

quiescence induced long-term epigenetic changes, specifically H3K9me3 

hypomethylation, that correlated with increased donor cell 

reprogrammability. 
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1 Chapter One: Review of literature 
  

1.1 Introduction 

Reproduction is the key for continuation of life as no multicellular organism 

can live forever. The fertilised egg or zygote is the starting point for such a 

continuation in mammals. Following the union of egg and sperm, the 

zygote cleaves further to form early embryos. Zygote and cleavage-stage 

blastomeres, the constituents of each embryo, are the only totipotent cells, 

i.e. they are able to give rise to all embryonic and extra-embryonic 

lineages (Kelly 1977). The inner cell mass (ICM) of an early 

preimplantation embryo (‘blastocyst’) can give rise to all embryonic, but 

not extra-embryonic lineages and is thus pluripotent. As the blastocyst 

develops further, cells get progressively committed to forming particular 

lineages, ultimately leading to terminally differentiated cells in adult 

animals.  

Even though almost all cells within an individual animal are genetically 

identical, the cells acquire different gene expression patterns (Morgan, 

Santos et al. 2005). These changes in gene activity without changes in 

DNA sequence are referred to as epigenetic (Probst, Dunleavy et al. 

2009). Epigenetic changes impose heritable cellular memories to guide 

differentiation of pluripotent cells into different cell types, progressively 

acquiring distinct epigenetic modifications (Hemberger, Dean et al. 2009). 

During development, germ cells are set aside in the early gastrulating 

embryo. 

‘Epigenetic reprogramming’, i.e. the dynamic changes to epigenetic marks, 

happens twice during normal mammalian development. These two 

reprogramming periods are gametogenesis and early embryogenesis 

(Reik, Dean et al. 2001). Extensive genome-wide DNA demethylation first 

occurs in primordial germ cells (PGCs), erasing epigenetic marks at most 
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imprinted and non-imprinted genes (Morgan, Santos et al. 2005). Before 

fertilization, sex-specific methylation at imprinted loci is re-established in 

both male and female gametes (Delaval & Feil 2004). Another wave of 

genome-wide reprogramming follows between fertilization and blastocyst 

formation. This second wave resolves the early parental asymmetry in 

histone modifications (Santos, Peters et al. 2005, van der Heijden, Dieker 

et al. 2005, Torres-Padilla, Parfitt et al. 2007), DNA methylation (DNAme) 

(Dean, Santos et al. 2001) and polycomb group (PcG) proteins 

(Puschendorf, Terranova et al. 2008) that exists up to the eight-cell stage. 

It generates methylation marks in both DNA and histones that correlate 

with the first differentiation event during preimplantation development, 

namely the specification of an embryonic and extraembryonic lineage 

(Torres-Padilla, Parfitt et al. 2007). These lineages later diversify into 

hundreds of different cell types of a multicellular organism. 

 

 

Figure 1: Process of nuclear transfer (Adapted from Oback & Wells, 2003).  

Activation

Embryo culture

Electrical fusion

(Nuclear transfer)

Enucleate oocytes
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Epigenetic reprogramming can also be induced by experimental 

manipulations, such as nuclear transfer (NT) cloning (Figure 1) or induced 

pluripotent stem cell (iPSC) -derivation. During NT, a somatic cell nucleus 

is transplanted into an enucleated oocyte where its epigenetic marks must 

be cleared to regain totipotency. This technique is used to either produce 

animals whose genome is identical to that of the donor cell or to generate 

pluripotent embryonic stem (ES) cells for regenerative medicine 

(Campbell, Fisher et al. 2007).  

NT is also the preferred method of generating genetically modified animals 

in species where ES cell are not available. The ES cells generated from 

NT and fertilized blastocysts are transcriptionally, post-transcriptionally 

and functionally very similar (Brambrink, Hochedlinger et al. 2006, Ding, 

Guo et al. 2009). However, epigenetic differences in imprinted regions are 

apparent after long-term culture (Chang, Liu et al. 2009). Lack of proper 

imprinting in NT- derived ES cells is attributed to inefficient reprogramming 

by metaphase (M) II-arrested enucleated oocyte (cytoplast). The inefficient 

reprogramming is also a major cause of low cloning efficiency (Wakayama 

2007). Cloning efficiency, defined as the number of viable animals 

surviving into adulthood as a proportion of cloned embryos transferred into 

surrogate mothers, ranges from 0-10% in most mammalian species 

(Oback 2009). 

1.2 Factors affecting the efficiency of cloning 

Reprogramming efficiency after NT critically depends on two processes: 1) 

the ability of the oocyte to carry out the reprogramming reactions and 2) 

the ability of the nuclear donor cell to be fully reprogrammed. It is currently 

unclear which process is more important for reprogramming success. 

Here, we will focus on the influence of the donor cell.  
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1.2.1 Donors  

1.2.1.1 Cell type 

Several cell types have been successfully used for cloning. They generally 

fall into three categories: embryonic, germ or somatic cells. The cloning 

techniques are thus called embryonic cell nuclear transfer (ECNT), germ 

cell nuclear transfer (GCNT) or somatic cell nuclear transfer (SCNT), 

respectively (Oback & Wells 2007). Early success in cattle cloning was 

realised through use of blastomeres from early embryos (Prather, Barnes 

et al. 1987). After the first SCNT success using cumulus and oviduct 

epithelial cells (Kato, Tani et al. 1998), several other somatic cells were 

successfully used in cattle SCNT. This includes cells derived from the 

follicle (Wells, Misica et al. 1999), adult and fetal skin (Hill, Winger et al. 

2000), mammary gland epithelium (Kishi, Itagaki et al. 2000), uterus, ear, 

liver (Kato, Tani et al. 2000), lung and muscle (Powell, Talbot et al. 2004). 

Whilst there is still no consensus on the ideal somatic donor type, fetal 

fibroblasts are the most commonly used donor cells in domestic species. 

For ECNT, early totipotent blastomeres can achieve better cloning 

efficiency than late-stage blastomeres (Cheong, Takahashi et al. 1993, 

Hiiragi & Solter 2005). In cattle, cloning efficiency progressively decreases 

with developmental stage of donor cells, from morula to fetal fibroblast to 

adult fibroblast (Heyman, Chavatte-Palmer et al. 2002). Similarly, mouse 

cloning efficiency from particular pluripotent ES cell lines was better than 

commonly used cumulus (Rideout, Wakayama et al. 2000), fibroblast 

(Eggan, Akutsu et al. 2001) and mature Sertoli cells (Wakayama & 

Yanagimachi 1999). For the reasons not clearly known, exceptional high 

cloning efficiency of mouse ES cells is only associated with F1 hybrid of 

the 129 genotype. In direct comparison, there was no difference in cloning 

efficiency between ES cells and adult neural stem cells. In summary, 

cloning efficiency progressively decreases with each blastomere could not 

be confirmed for several cell types and cell lineages across the somatic 

differentiation continuum (Oback 2010). However, the hypothesis 
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postulated that somatic differentiation status is inversely proportional to 

cloning efficiency (Jaenisch, Eggan et al. 2002, Oback & Wells 2002).  

1.2.1.2 Passage number 

The age of the donor cell in a dividing population, which is proportional to 

the number of doublings or passages in cell culture, could also potentially 

influence cloning efficiency (Kasinathan, Knott et al. 2001a). Some reports 

suggested that lower passage numbers were better nuclear donors (Roh, 

Shim et al. 2000, Gao, Chung et al. 2003), but others found no significant 

difference between them (Hill, Winger et al. 2001). Some reports even 

claimed that later donor passages developed better into NT embryos than 

earlier ones (Kubota, Yamakuchi et al. 2000, Arat, Rzucidlo et al. 2001). 

Despite this, lower passage numbers are generally preferred as they are 

presumed to have more epigenetic plasticity and thus get better 

reprogrammed by oocytes. Successful cloning of animals from donor cells 

derived from 13 and 17 years old animals suggests that age of animal 

from which donor cells are derived does not matter (Kubota, Yamakuchi et 

al. 2000, Enright, Taneja et al. 2002). This was further substantiated by 

the fact that there was no difference in embryonic development rate, when 

fetal and adult cells of the same genotypes were used as NT donors (Hill, 

Winger et al. 2000). 

1.3 Epigenetic modifications 

Differences in cellular phenotype and function are due to different 

characteristic gene expression profiles that are set by an epigenetic 

program early in the development of that organism (Eilertsen, Power et al. 

2007). These expression profiles are achieved by chemical modification to 

DNA and its associated histone proteins, but without modifying DNA 

sequence (Probst, Dunleavy et al. 2009). These heritable epigenetic 

modifications are crucial for development and survival of an organism, but 
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can be reversible and reprogrammable (Wilmut, Schnieke et al. 1997, 

Takahashi & Yamanaka 2006). 

1.3.1 DNA methylation 

The epigenetic reprogramming associated with DNA itself involves 

removal and resetting of DNAme patterns. DNAme is established at 5′ 

cytosine by a set of enzymes called DNA methyl transferases (DNMTs). 

These enzymes catalyse transfer of a methyl group from S-Adenosyl 

methionine (AdoMet) to cytosine (Chen & Riggs 2011). There are three 

well-known types of DNMTs: DNMT1, DNMT3a and DNMT3b (Bestor 

2000). DNMT1 preferentially methylates hemimethylated CpG sites 

(Pradhan, Bacolla et al. 1999) and is required for maintaining the 5-

methylcytosine (5mC) patterns on newly synthesised DNA strands (Chen 

& Li 2004) and on imprinted genes in the developing embryo (Li, Beard et 

al. 1993). DNMT3a and -3b are involved in de novo methylation (Okano, 

Bell et al. 1999, Gowher & Jeltsch 2001). DNMT3b methylates pericentric 

satellite repeats (Okano, Bell et al. 1999), while DNMT3a methylates most 

loci of germ cells (Kaneda, Okano et al. 2004, Sasaki & Matsui 2008), 

which is essential for spermatogenesis (Hata, Okano et al. 2002). 

DNMT3a is also essential for establishing the maternal and paternal 

imprinting (Kaneda, Okano et al. 2004) and for later development (Gowher 

& Jeltsch 2001).  

In vertebrates, DNAme mainly occurs as 5mC, predominantly at the 

symmetrical CpG dinucleotides (Bird & Wolffe 1999). The genomic regions 

with high frequency of these CpG dinucleotides are known as CpG islands 

(CGI) and most CpGs in CGIs are methylated. In plants and animals, 

DNAme is also found at CpNpG and CpNpN, where N represents either 

nucleotide C, T or A (Clark, Harrison et al. 1995). Normally, high levels of 

DNAme at the promoter region are associated with gene silencing (Bird 

2002). In mammals, tissue- and cell type-specific methylation is present in 

a small fraction of 5′ CpG Island promoters, while a far bigger fraction 
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emerges across gene bodies (5' UTRs, coding exons, introns and 3' 

UTRs), which can act as regulator of intragenic alternative promoters 

(Maunakea, Nagarajan et al. 2010). Genome-wide single base resolution 

maps of methylated cytosines in human ES cells found non-CpG 

methylations, associated with gene bodies, which positively correlated with 

gene expression, rather than with promoters. In human lung fetal 

fibroblasts, this non-CpG methylation is absent (Lister, Pelizzola et al. 

2009). The DNAme repression mechanism works both directly, by 

interfering with transcription factor binding, and indirectly, by recruiting 

proteins with a methyl binding domain (MBD), such as MeCP2 (Fuks, Hurd 

et al. 2003), MBD1 (Ng, Jeppesen et al. 2000) and MBD2 (Jiang, Jin et al. 

2004), which subsequently recruit histone deacetylases (HDACs) that 

silence the gene. 

DNAme also occurs in the form of 5-hydroxymethylcytosine (5hmC), now 

referred to as the sixth base (Penn, Suwalski et al. 1972). It is found in 

brain of human, rat, mouse and frog (Penn, Suwalski et al. 1972, 

Kriaucionis & Heintz 2009, Maunakea, Nagarajan et al. 2010), heart of 

mouse and human (Kinney, Chin et al. 2011) and liver of rat (Penn, 

Suwalski et al. 1972). It is also present in human and mouse ES cells 

(Tahiliani, Koh et al. 2009, Stroud, Feng et al. 2011, Wu, D'Alessio et al. 

2011). 5hmC is generally associated with gene bodies of actively 

transcribed genes (Stroud, Feng et al. 2011, Wu, D'Alessio et al. 2011), 

but its presence on extended promoter regions of polycomb-repressed 

developmental regulators may indicate some tissue- and site-specific dual 

regulation (Wu, D'Alessio et al. 2011).  

DNA demethylation is a complex process. In mammals, ten eleven 

translocation (TET) 1 converts 5mC to 5hmC by oxidation (Tahiliani, Koh 

et al. 2009, Guo, Su et al. 2011). All TET proteins (TET 1, TET 2 and TET 

3) generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) from 

5hmC (Ito, Shen et al. 2011). Base excision of 5caC by thymine-DNA-
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glycosylase (TDG) results in unmodified cytosine and thus achieves 

complete DNA demethylation from 5mC nucleotides (He, Li et al. 2011).  

1.3.2 Histone modifications 

Histones were long thought to be the basic nucleosomal proteins around 

which the DNA is wound to form the chromatin. This view of histones as 

mere helpers to form higher-order chromatin structure and neutralize DNA 

turned out to be incorrect. Advancements over the past years have linked 

histones in gene regulation (Jenuwein & Allis 2001, Campos & Reinberg 

2009). Gene regulation is achieved through a set of modifications on the 

amino terminal tail of histones by several chromatin modifiers. The set of 

the histone modifications (Figure 2) governing gene silencing and 

activation is referred to as “histone code” (Jenuwein & Allis 2001). It has 

been proposed that this code is recognised by a variety of chromatin-

modifying agents and leads to distinct functional readouts of chromosomal 

DNA in accordance with the code (Lachner, Sengupta et al. 2004, 

Campos & Reinberg 2009). Covalent post-translational modifications 

(PTMs) of histones alter the inherent characters of a nucleosome on which 

it is present and influence the binding of chromatin-modifying complexes 

and the higher-order folding of the chromatin itself. The core of chromatin 

is the nucleosome formed by 147 base pairs of DNA wound around the 

histone octamer comprising two histone H3-H4 dimers linked together as 

tetramer and flanked by two H2A-H2B dimers. These nucleosomes 

interact through hydrophobic globular domains, referred to as histone fold 

domains (Luger, Mader et al. 1997, Davey, Sargent et al. 2002). Individual 

nucleosomes are linked by a linker histone H1 that protects the 

internucleosomal linker DNA. Crystal structures of the nucleosome core 

revealed NH2-terminals (N-terminal) of the histone tails protruding outside 

the core. These tails are amenable for PTMs, such as acetylation, 

methylation, phosphorylation, ubiquitinisation, sumoylation and ADP-

ribosylation (Van Holde 1988). Overall these modifications modulate gene 
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expression in cis or trans by binding to chromatin-modifying complexes 

(Kubicek, Schotta et al. 2006a). There is also a possible internucleosomal 

crosstalk. Methylated residues are bound by chromo-like domains 

(chromo, malignant brain tumour (MBT) and Tudor), plant homeodomain 

(PHD) and ankyrin repeats, while acetylated residues are bound by 

bromodomains and phosphorylated residues are bound by 14-3-3 proteins 

(Izzo & Schneider 2010).  

1.3.2.1 Histone methylation 

Histone methylation is implicated in heterochromatin formation, PcG-

mediated gene silencing, X-chromosome inactivation (XCI) and life-span 

regulation (Schotta, Lachner et al. 2004a, Martin & Zhang 2005, Peters & 

Schubeler 2005, Han & Brunet 2012). Histone methylation can occur 

mostly on H3 and H4 at various basic amino acids, lysine (K), arginine (R) 

and histidine (H), along various positions. Lysines could be mono- (Kme1), 

di- (Kme2) or tri- (Kme3) (Figure 3) methylated (Bannister, Schneider et al. 

2002). In contrast to acetylation and phosphorylation, histone charge is 

unaltered by histone methylation. 

1.3.2.1.1 Histone lysine methylation 

Histone lysine methylations are catalysed by lysine methyl transferases 

(KMTs). H3K9-targeting SUV39h1 (KMT1A) was identified as the first 

histone KMT (HKMT) (Rea, Eisenhaber et al. 2000). Later several other 

HKMTs that mostly methylate the N-terminal regions have been identified. 

All HKMTs use cofactor AdoMet as a donor to transfer methyl groups to ε-

amino group of lysine (Figure 3). All HKMTs that methylate N-terminal tale 

lysines comprise of catalytically active Su(var)3-9 and enhancer of zeste 

(SET) domain, with the exception of DOT1, which methylates H3K79, the 

lysine within the globular histone structure (Bannister & Kouzarides 2011).  
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Figure 2: Histone (H3, H4, H2A and H2B) modifications overview. Oval structures 

representing the globular structure and the amino tail terminal is represented by individual 

amino acids. Numbers represent the position of the amino acids. Hexagons represent the 

modifications. While most known PTMs of histones occur on the amino terminal tail, 

some occur on globular structures. (Modified from Zhang & Reinberg, 2001). 

 

 

Figure 3: Different histone lysine methylation states. Illustrated is the enzymatic 

conversion of lysine by KMTs to different states of lysine methylations using AdoMet as 

the methyl donor. State of lysine methylation depends on the type of KMT. (Modified from 

Zhang & Reinberg, 2001). 
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Extensive work on the epigenetic marks has led to the understanding that, 

generally, transcriptionally active genes are methylated at H3K4 (Santos-

Rosa, Schneider et al. 2002, Schubeler, MacAlpine et al. 2004), H3K79 

(Schubeler, MacAlpine et al. 2004) and H3K36 (Krogan, Kim et al. 2003), 

while transcriptionally repressed genes carry H3K9 (Nielsen, Schneider et 

al. 2001, Ait-Si-Ali, Guasconi et al. 2004), H3K27 (Cao & Zhang 2004a), 

H3K64 (Daujat, Weiss et al. 2009) and H4K20 (Lachner, Sengupta et al. 

2004, Schotta, Lachner et al. 2004b). However, there are some reports 

that implicate some of these modifications in contradicting functions at 

regions of the genome. Hence it is possible that function of these marks 

depends on genomic location, degree of methylation and presence of 

other cis/trans acting cross-talking histone marks (Campos & Reinberg 

2009, Izzo & Schneider 2010, Bannister & Kouzarides 2011) 

Histone methylation was long thought to be a permanent mark (Lachner, 

Sengupta et al. 2004) as its ε-amino group is refractory to direct cleavage. 

It was therefore, considered a potential mark that can steadily perpetuate 

through many cell divisions (Kubicek & Jenuwein 2004, Lachner, 

Sengupta et al. 2004). This notion of irreversible methylation was 

supported by the experimental evidence that the half-life of the histone 

mark is nearly equal to that of histone itself (Byvoet, Shepherd et al. 1972, 

Thomas, Lange et al. 1972). At last, a lysine-specific demethylase (LSD1 

or KDM1A), an amine oxidase, that could remove mono- and di-, but not 

tri- methylation of H3K4 was demonstrated in human (Shi, Lan et al. 

2004). From then on several lysine demethylases (KDMs) were identified. 

These can demethylate most of the known histone methylations (Bannister 

& Kouzarides 2011). 

Both demethylating and methylating enzymes occur in macromolecular 

complexes harboring HDACs, SWItch/Sucrose NonFermentable 

(SWI/SNF) remodelling factors, along with PHD and chromodomain-
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containing proteins (Mosammaparast & Shi 2010), indicating that they all 

act together to modulate gene activity through histone PTMs.  

1.3.2.1.1.1 H3K4 methylation 

Methylation on H3K4 can occur as mono-, di- and tri-methylation 

(H3K4me1, -me2 and -me3, respectively) and H3K4me1 or -me2 is 

required to acquire H3K4me3 (Shilatifard 2006). In mammals, H3K4 is 

largely methylated by trithorax (TRX) group proteins, a group of SET 

domain-containing proteins (Schuettengruber, Martinez et al. 2011). The 

first H3K4 KMTase to be discovered was SET1 in yeast (Briggs, Bryk et al. 

2001). It is a crucial component of the H3K4 methylating complex, 

complex proteins associated with SET1 (COMPASS) (Miller, Krogan et al. 

2001) that can generate all three H3K4 methylation states (Wang, Lin et 

al. 2009). Mammalian homologues of SET1, mixed-lineage leukemia 

(MLL) 1 - MLL4 (KMT2A-D), human SET1A and SET1B (KMT2F and 

KMT2G) are associated with COMPASS-like complexes (Wang, Lin et al. 

2009) and are commonly known as KMT2 family proteins. The diverse 

KMT2 family members have non-overlapping functions, probably 

governing site-specific methylation (Ruthenburg, Allis et al. 2007).  

It is postulated that H3K4 and H3K36 methylation are involved in early 

events of transcription and elongation, respectively (Peters & Schubeler 

2005). H3K4me3 might be playing a supportive role in elongation. It was 

found in humans that it was bound by CHD1, which bridges spliceosomal 

components, to facilitate the maturation of pre-mRNA (Sims, Millhouse et 

al. 2007). Several KDMs responsible for removal of H3K4 methylations 

have been found (Table 1). 
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Table 1: Enzymes involved in different states of H3K4 methylation and demethylation 

H3K4 

modification 
K4 KMTs K4 KMDs 

me1 

 

KMT2A (MLL1) (Patel, Dharmarajan et 

al. 2009) 

KMT2E (MLL5) (Fujiki, Chikanishi et al. 

2009) 

 KMT7 (SET7/9) (Nishioka, Chuikov et 

al. 2002) 

 

KDM1A (LSD1) (Shi, Lan et al. 

2004)  

KDM1B (LSD2) (Fang, Barbera et al. 

2010) 

me2 

 

NSD2 (MMSET) (Kang, Choi et al. 

2009) 

NSD3 (Kim, Kee et al. 2006) 

 

KMT2E (MLL5) (Fujiki, Chikanishi et al. 

2009) 

 

KDM1A (LSD1) (Shi, Lan et al. 

2004) 

KDM1B (LSD2) (Fang, Barbera et al. 

2010) 

KDM5B (JARID1B) (Christensen, 

Agger et al. 2007) 

KDM5D (JARID1D) (Iwase, Lan et 

al. 2007)  

me3 

 

KMT2E (MLL5) (Dou, Milne et al. 2005) 

 

KMT2B (MLL2)  (Demers, Chaturvedi et 

al. 2007) 

KMT2C (MLL3)  (Goo, Sohn et al. 

2003) 

KMT2D (MLL4)  (Lee, Lee et al. 2006) 

 

KMT2F (SET1A)  (Wu, Wang et al. 

2008) 

KMT2G (SET1B)  (Wu, Wang et al. 

2008) 

KMT3E (SMYD) (Hamamoto, Furukawa 

et al. 2004) 

PRDM9 (Hayashi, Yoshida et al. 2005)  

 

KDM2B (JHDM1B) (Frescas, 

Guardavaccaro et al. 2007)  

KDM5A (JARID1A) (Christensen, 

Agger et al. 2007)  

KDM5B (JARID1B) (Yamane, 

Tateishi et al. 2007) 

KDM5C-D (JARID1C-D) (Iwase, Lan 

et al. 2007)  

NO66 (Sinha, Yasuda et al. 2010) 
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Function 

H3K4me3 is enriched in promoters of most eukaryotes from yeast 

(Pokholok, Harbison et al. 2005) to mammals (Bernstein, Kamal et al. 

2005, Heintzman, Stuart et al. 2007). While H3K4me3 enriched at the 

transcription start sites, H3K4me1 and -me2 progressively spread along 

the gene body (Pokholok, Harbison et al. 2005, Heintzman, Stuart et al. 

2007). High-resolution genome-wide mapping in human CD4+ T cells 

shows H3K4me3 to be more localised at -300 and +100 from either side of 

the transcription start site (TSS), followed by H3K4me2 at -500 and +700 

and H3K4me1 at -900 and +1000. All three forms correlate with gene 

activation (Barski, Cuddapah et al. 2007). Enhancers of various cell types 

enrich for H3K4me1 but not -me3 (Heintzman, Stuart et al. 2007). H3K4 

methylation is also found in active genes of the Homeobox (Hox) cluster, 

probably driving their expression (Bernstein, Kamal et al. 2005). All three 

states of H3K4 methylations found at the CCCTC binding factor (CTCF) 

binding insulators may function as barrier for heterochromatin spreading 

(Barski, Cuddapah et al. 2007).  

1.3.2.1.1.2 H3K9 methylation 

H3K9 methylation can also occur in the form of H3K9me1, -me2 or -me3. 

Doubling of H3K9me3 amount after replication is evidence of faithful 

inheritance of this mark through several replication cycles (McManus, 

Biron et al. 2006). SET domain-containing KMT1A was the first 

mammalian KMTase to be identified (Rea, Eisenhaber et al. 2000), 

followed by SUV39h2 (KMT1B) (O'Carroll, Scherthan et al. 2000). There 

are several KMTs and KDMs that regulate the dynamics of H3K9me3 in 

the cell (Table 2) Both KMT1A and -B are responsible for pericentric 

H3K9me3. This defines a region adjacent to the centromeric 

heterochromatin consisting of major satellite repeats. The KMT1A is also 

involved in suppression of a set of retinoblastoma protein target genes 
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(Nielsen, Schneider et al. 2001), particularly S phase genes. It targets 

these genes in differentiating, but not in cycling cells (Ait-Si-Ali, Guasconi 

et al. 2004), indicating that this suppression is required for permanent, but 

not for transient silencing. There is also evidence for DNAme requiring 

hierarchal deposition of H3K9me3 (Tamaru & Selker 2001, Jackson, 

Lindroth et al. 2002, Lehnertz, Ueda et al. 2003). In mammals, this seems 

to be site-dependent, as only pericentric repeats depend on SUV39 

KMTase-mediated methylation, while centromeric repeats do not 

(Lehnertz, Ueda et al. 2003).  

SET domain and ankyrin repeat domain-containing G9a (KMT1C) and 

GLP (KMT1D) KMTases are responsible for H3K9me1 and -me2 

(Tachibana, Sugimoto et al. 2001, Tachibana, Ueda et al. 2005). KMT1C 

can also guide DNAme by binding to DNMT3a/b DNA methylases through 

its ankyrin domain (Epsztejn-Litman, Feldman et al. 2008). Both KMT1C 

and KMT1D silence E2F1-5, myc and brachyury-responsive genes in 

quiescent cells, by forming a complex with E2F6, heterochromatin protein 

(HP) 1γ and PcG proteins (Ogawa, Ishiguro et al. 2002). KMT1A-B/HP1, 

guided by retinoblastoma, silences the genes involved in S-phase 

progression in differentiating cells (Nielsen, Schneider et al. 2001, Ait-Si-

Ali, Guasconi et al. 2004), again implying that KMT1A/B-mediated 

silencing may be involved in long term effects.  
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Table 2: Enzymes involved in different states of H3K9 methylation and demethylation 

H3K9 

modification 
K9 KMTs K9 KDMs 

me1 

 

KMT1C (EHMT2)  (Tachibana, 

Sugimoto et al. 2001) 

KMT1D (EHMT1)  (Tachibana, Ueda 

et al. 2005)  

KMT1E (SETDB1) (Loyola, Tagami et 

al. 2009). 

 

PHF2 (JHDM1E) (Wen, Li et al. 

2010) 

PHF8 (JHDM1F) (Liu, Tanasa et al. 

2010) 

KDM3A-B (JMJD1A-B , JHDM2A-B) 

(Yamane, Toumazou et al. 

2006) 

KDM7 (JHDM1D) (Tsukada, Ishitani 

et al. 2010) 

KDM1A (LSD1) (Metzger, Wissmann 

et al. 2005) 

me2 

 

KMT1C (EHMT2) (Tachibana, 

Sugimoto et al. 2001) 

KMT1D (EHMT1)  (Tachibana, Ueda 

et al. 2005) 

KMT8 (PRDM2) (Kim, Geng et al. 

2003) 

KMT1A (SUV39H1) (Murayama, 

Ohmori et al. 2008) 

 

KDM3A-B (JMJD1A-B, JHDM2A-B) 

(Yamane, Toumazou et al. 

2006) 

KDM7 (JHDM1D) (Tsukada, Ishitani 

et al. 2010) 

KDM4C-D (JMJD2C-D, JHDM3C-D) 

(Whetstine, Nottke et al. 

2006)  

PHF8 (JHDM1F) (Zhu, Wang et al. 

2010)  

KDM1A (LSD1) (Metzger, Wissmann 

et al. 2005) 

PHF2 (JHDM1E)  (Baba, Ohtake et 

al. 2011) 

me3 

 

KMT1A (SUV39H1) (Rea, Eisenhaber 

et al. 2000) 

KMT1B (SUV39H2) (O'Carroll, 

Scherthan et al. 2000) 

KMT1E (SETDB1)  (Wang, An et al. 

2003) 

KMT1F (SETDB2) (Falandry, Fourel 

et al. 2010).  

 

KDM4A-D (JMJD2A-D, JHDM3A-D) 

(Whetstine, Nottke et al. 

2006) 
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Function 

A high-resolution genome-wide histone methylation profiling shows 

H3K9me3 and H3K9me2 in higher concentration around silent than active 

genes across 10 kb of the TSS. High levels of H3K9me1 near the 5′ end of 

active promoters and enhancer regions correlate well with gene 

expression (Barski, Cuddapah et al. 2007), contradicting an earlier report 

of H3K9me1 association with silent chromatin (Sims, Houston et al. 2006). 

H3K9me3 was also present at some of active promoters (Squazzo, 

O'Geen et al. 2006), as well as in transcribed regions (Vakoc, Mandat et 

al. 2005, Brinkman, Roelofsen et al. 2006). Barski et al. found highly 

localised peaks of H3K9me3 in active genes, such as STAT1 and STAT4. 

These reports hints at the gene-specific action of the H3K9me3 mark 

(Barski, Cuddapah et al. 2007). 

Despite this, H3K9me3 is still generally regarded as a proven mark of 

pericentric heterochromatin and well implicated in gene repression 

(Bannister, Zegerman et al. 2001, Lehnertz, Ueda et al. 2003, Su, Brown 

et al. 2004). H3K9me3 at pericentric heterochromatin recruits HP1 

isoforms HP1α and HP1β (Lehnertz, Ueda et al. 2003). HP1 facilitates 

heterochromatin formation by compacting individual chromatin fibres (Fan, 

Rangasamy et al. 2004) through its ability to oligomerise (Thiru, 

Nietlispach et al. 2004). This compaction of chromatin is believed to be 

non-permissive for transcription (Nakayama, Rice et al. 2001). Dimers of 

HP1, in turn, can spread pericentric methylation of H3K9me3, H4K20me3 

and 5mC by recruiting the respective enzyme machinery (Campos & 

Reinberg 2009). H3K9me2 is one of the major repressive marks (Barski, 

Cuddapah et al. 2007, Wang, Zang et al. 2008), that maintain imprinting 

independently of DNAme (Lewis, Mitsuya et al. 2004, Umlauf, Goto et al. 

2004) and is also associated with the inactivated X-chromosome (Xi) in 

females (Heard 2004). Demethylation of H3K9me2 and acetylation of 

H3K9 determines the re-expression of OCT4 and NANOG during 
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reprogramming of HEK 293T cells (Freberg, Dahl et al. 2007). H3K9me2 

methylation and H3 deacetylation determines the repression of rDNA loci 

during energy deprived state (Murayama, Ohmori et al. 2008).  

Cells lacking both KMT1A and -B fail to localise HP1α and –β. Instead of 

H3K9me3, they enrich H3K9me and H3K27me3 marks at pericentric 

heterochromatin. They also fail to segregate centromeres properly during 

mitosis, resulting in increase of ploidy and genomic instability (Peters, 

O'Carroll et al. 2001). The loss of KMT1A/B-mediated H3K9me3 also 

leads to altered DNAme (Lehnertz, Ueda et al. 2003) and loss of 

H4K20me3 at pericentric heterochromatin (Schotta, Lachner et al. 2004b). 

Knock-out mice for KMT1C and -D show reduced H3K9me1 and -me2 at 

euchromatic regions in ES cells, resulting in retarded growth and early 

embryo lethality (Tachibana, Sugimoto et al. 2002, Tachibana, Ueda et al. 

2005). KMT1C or -D deficient mouse ES cells also show reduction in 

DNAme (Dong, Maksakova et al. 2008, Epsztejn-Litman, Feldman et al. 

2008, Tachibana, Matsumura et al. 2008).  

1.3.2.1.1.3 H3K27 methylation  

In mammals, enhancer of zeste homolog 2 (EZH2) is a major H3K27 

methylase. Although EZH1 and other enzymes are capable of methylating 

H3K27, this is not substantial (Kim, Kee et al. 2006, Margueron, Li et al. 

2008, Shen, Liu et al. 2008, Wu & Rice 2011). EZH1 and EZH2 are part of 

the polycomb repressive complexes (PRCs). These PRC proteins are 

discussed later in this chapter (section 1.5.1). Enzymes that can 

demethylate H3K27 methylation have been identified recently (Table 3). 
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Table 3: Enzymes involved in different states of H3K27 methylation and demethylation 

H3K27 

modification 
K27 KMTs K27 KDMs 

me1 

 

KMT1C (EHMT2) (Wu, Chen et al. 

2011) 

KMT1D (EHMT1) (Wu, Chen et al. 

2011)  

KMT6A (EZH2) (Margueron, Li et 

al. 2008) 

KMT6B  (EZH1) (Margueron, Li et 

al. 2008) 

 

KDM7 (JHDM1D) (Tsukada, Ishitani 

et al. 2010) 

me2 

 

NSD3 (Kim, Kee et al. 2006) 

 

KMT6A (EZH2) (Margueron, Li et 

al. 2008) 

KMT6B (EZH1) (Margueron, Li et 

al. 2008) 

 

KDM6A (UTX)  (Lan, Bayliss et al. 

2007)  

KDM6B (JMJD3) (Agger, Cloos et al. 

2007) 

KDM7 (JHDM1D) (Tsukada, Ishitani 

et al. 2010)  

PHF8 (Liu, Tanasa et al. 2010) 

me3 

 

KMT6A (EZH2) (Cao & Zhang 

2004)  

KMT6B (EZH1)  (Margueron, Li et 

al. 2008) 

 NSD3 (Kim, Kee et al. 2006) 

 

KDM6A (UTX)  (Agger, Cloos et al. 

2007)  

 

KDM6B (JMJD3) (Agger, Cloos et al. 

2007) 

H3K27me1 was shown to be enriching at heterochromatin regions in 

mammalian cells (Peters, Kubicek et al. 2003). A high-resolution genome-

wide study of histone modifications shows H3K27me2 and -me3 at high 

levels in silent promoters and at reduced levels in promoters and 

transcribed regions of genes that expressed at low levels. The same study 

also describes H3K27me1 peaking at the 5′ region and evenly distributing 

throughout the transcribed region of active genes, which correlates with 

gene expression (Barski, Cuddapah et al. 2007). Most of the TSS with 

transposon exclusion zones, domains with little or no identifiable 

transposon derived sequence, have H3K27me3 (Bernstein, Mikkelsen et 

al. 2006). In Hela cells, H3K27me3 is predominantly found in places where 
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H3 is unmethylated at K36 (Yuan, Xu et al. 2011). In certain region of 

chromatin, it can co-occur with the active mark H3K4me1 (Rada-Iglesias, 

Bajpai et al. 2011) or -me3 (Bernstein, Mikkelsen et al. 2006). Such 

regions are termed ‘bivalent’ domains. In ES cells, bivalent domains would 

contain H3K27me3 along with either H3K4me3 in highly conserved 

noncoding elements (HCNE) rich loci (Bernstein, Mikkelsen et al. 2006) or 

H3K4me1 in enhancer regions (Rada-Iglesias, Bajpai et al. 2011). HCNEs 

cluster within regions that harbour genes for transcription factors involved 

in development. About 50% of the identified bivalent domains are binding 

sites of pluripotency-associated transcription factors NANOG, SOX2 and 

OCT4 (Bernstein, Mikkelsen et al. 2006). Trimethyl H3K4 and -K27 

bivalent domains are also reported in human T cells (Roh, Cuddapah et al. 

2006, Barski, Cuddapah et al. 2007). The bivalent domains are implicated 

in maintaining ES cell identity by keeping many developmentally essential 

transcription factor genes poised for later expression (Bernstein, 

Mikkelsen et al. 2006). In differentiated somatic cells, these bivalent 

domains are largely resolved to contain either of the two marks (Bernstein, 

Mikkelsen et al. 2006).  

Function 

H3K27 methylation is a repressive mark that is linked to homeotic gene 

silencing, XCI and genomic imprinting (Ringrose & Paro 2004). Higher 

levels of H3K27me3 methylation at the TSS correlates with gene 

repression (Boyer, Plath et al. 2006, Lee, Jenner et al. 2006, Roh, 

Cuddapah et al. 2006, Barski, Cuddapah et al. 2007). H3K27me3 can 

maintain imprinting independent of DNAme in the placenta (Lewis, Mitsuya 

et al. 2004, Umlauf, Goto et al. 2004). 

Knockdown of EZH2-PRC2, but not EZH1-PRC2 complex, results in 

globally reduced H3K27me2 and -me3, and increased H3K27me1 

(Margueron, Li et al. 2008, Shen, Liu et al. 2008). EZH1 can still maintain 
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H3K27 methylation at a subset of PcG target genes in EZH2-/- mouse ES 

cells (Shen, Liu et al. 2008). In differentiated cells, EZH2 and EZH1 

maintain repression in different ways. While EZH2 acts through H3K27 

methylation, EZH1 acts through chromatin compaction (Margueron, Li et 

al. 2008). Knockdown effects of other PRC proteins, which can affect 

H3K27me3, are discussed later in this chapter (section 1.5.1).  

1.3.2.2 Histone acetylation 

In 1964, Allfrey and co-workers showed that both methylation and 

acetylation occur on histones right after their synthesis. Based on this they 

postulated an involvement in regulation of transcription (Allfrey, Faulkner 

et al. 1964). Particularly, acetylation on these new histones is required for 

their deposition into nucleosomes and is removed following deposition. 

Now it is well known that regions of transcribed genes are 

hyperacetylated, while regions of heterochromatin are hypoacetylated 

(Shahbazian & Grunstein 2007). The hyperacetylation correlates well with 

gene activation (Lee, Shibata et al. 2004, Pokholok, Harbison et al. 2005, 

Roh, Cuddapah et al. 2005). Gene activation is thought to be due to the 

acetyl groups neutralizing the positively charged lysine residue, both in tail 

and core domains of histones. Specifically, histone tail hyperacetylation 

reduces its interaction with core DNA (Hong, Schroth et al. 1993) and 

linker DNA, and also between surrounding nucleosomes, thereby 

loosening the nucleosomal core structure (Shahbazian & Grunstein 2007). 

This loosening of structure would either directly facilitate the loading of the 

RNA polymerase II (Pol II) or promote the binding of transcription factors 

and their associated chromatin remodeling machinery. Either event could 

ultimately result in transcription. In contrast, deacetylation of lysine 

restores its positive charge, which results in increased interaction between 

histone tails, DNA, and neighbouring nucleosomes. These interactions 

result in chromatin compaction, which can eventually suppress the gene 

expression (Bannister & Kouzarides 2011). 
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In addition to its role in gene activation, acetylation suppresses 

heterochromatin spreading, chromatin compaction and nucleosome 

assembly (Shahbazian & Grunstein 2007). Various studies have 

implicated histone acetylation in even much wider and more diverse 

functions, such as DNA repair, cell cycle progression, growth and 

development, and even gene silencing (Carrozza, Utley et al. 2003).  

1.3.2.2.1 Histone acetyl transferases and deacetylases 

Histones are acetylated through the post-translational transfer of an acetyl 

group from acetyl-CoA to the ε-amino group of lysine by enzymes known 

as histone acetyl transferases (HATs). Even though the fraction with HAT 

activity was isolated in 1979 (Cano & Pestana 1979), it was the 

breakthrough discovery of transcriptional co-activator GCN5 (KAT2A) as 

the HAT (Brownell, Zhou et al. 1996) that lead to a surge of identification 

of other HATs (Kimura, Matsubara et al. 2005) and HAT-containing 

complexes (Carrozza, Utley et al. 2003).  

Post-translational modification of histone acetylation carried out by HATs 

is reversed by HDACs (Bannister & Kouzarides 2011). HDACs were 

initially found in 1996 (Rundlett, Carmen et al. 1996, Taunton, Hassig et al. 

1996) and many more were identified by 2005 (Ekwall 2005). They are 

divided into four classes. While class I, II, and IV encompass zinc-

dependent HDACs, Class III enzymes encompass NAD+-dependent sirtuin 

family (Peserico & Simone 2011). Individual members of class I comprise 

HDAC1-3 and HDAC8; class II comprise HDAC4-7 and HDAC9-10; class 

IV comprise its sole member HDAC11; and class III comprise members of 

the sirtuin family, SIRT1-7 (Peserico & Simone 2011).  

Both HATs and HDACs work in multisubunit complexes and their 

specificity is dependent on other members in the complex, encompassing 

special domains. These special domains include: chromodomain that 

binds methylated lysine residue (Nielsen, Nietlispach et al. 2002); TUDOR 
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domain that binds dimethylated arginine (Sprangers, Groves et al. 2003) 

and methylated lysine (Kim, Daniel et al. 2006); PHD finger that binds Zn2+ 

(Pascual, Martinez-Yamout et al. 2000) and methylated lysine residues 

(Pena, Davrazou et al. 2006); bromodomain that binds acetylated lysine 

residues (Owen, Ornaghi et al. 2000); and WD40 repeat that binds H3 tail 

(Suganuma & Workman 2010), possibly H3K4me2 (Couture, Collazo et al. 

2006) and ubiquitin (Pashkova, Gakhar et al. 2010). Both class I and II 

HDACs are involved in repression of diverse signaling pathways (Kao, 

Downes et al. 2000). Particularly the HDAC1-containing complex is 

implicated in regulating the Notch pathway of signal transduction (Kao, 

Ordentlich et al. 1998). HDAC1 and HDAC2 regulate G1-to-S progression 

of cell cycle usually by suppressing p21 and p57 expression, which block 

cell cycle progression (Yamaguchi, Cubizolles et al. 2010).  

Understanding the dynamic regulation of acetylation is difficult. Presence 

of more than one HAT or HDAC in the same complex makes it difficult to 

know which enzyme acts on which modification (Bannister & Kouzarides 

2011). Furthermore, the same HAT and HDAC can act on more than one 

histone lysine target (Vaquero, Scher et al. 2004). Both HATs and HDACs 

enrich at active genes and positively associate with gene transcription. 

Based on these observations, it was postulated that the association of 

HDAC with Pol II is essential to manage the acetylation levels in active 

genes (Wang, Zang et al. 2009).  

1.3.2.2.2 Acetylation of H3K9 

KAT9 and KAT2A HATs, belonging to same family of histone 

acetyltransferases, are found to be acetylating H3K9 in mammals (Wang, 

Mizzen et al. 1997, Kim, Lane et al. 2002). Both SIRT1 and SIRT6, class 

III HDACs, present in the nucleus, have been shown to be deacetylating 

H3K9ac (Vaquero, Scher et al. 2004, Michishita, McCord et al. 2008). 
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SIRT1 deacetylates both H3K9ac and H4K16ac in vitro and in vivo. 

Deacetylation of both H3K9 and H4K16 by overexpression of SIRT1 

causes loss of H3K79 methylation and silences the reporter gene through 

heterochromatinization (Vaquero, Scher et al. 2004). Deacetylation of 

H3K9ac at telomeres is required for the recruitment of Werner (WRN) 

protein to the telomeres, which is essential for proper functioning of 

telomeres and preventing premature cellular senescence. Accordingly, 

depletion of SIRT6 results in uncharacteristic chromosome structure and 

increased premature senescence (Michishita, McCord et al. 2008). 

Furthermore, deacetylation of NF-κB target promoters at H3K9 by SIRT6 

is involved in preventing premature aging and increasing the life-span of 

mouse (Kawahara, Michishita et al. 2009). 

Function 

Gene-rich regions have high levels of H3K9 acetylation. However, only 

hyperacetylation at promoters and gene regulatory regions correlates with 

gene expression (Roh, Cuddapah et al. 2005). H3K9ac at promoter 

regions promotes low nucleosome density around the TSS (Nishida, 

Suzuki et al. 2006), which in turn might facilitate Pol II transcription 

through chromatin (Kim, Lane et al. 2002). By contrast, 5′ H3 acetylation is 

dependent on the Pol II elongation at some genes (Rybtsova, Leimgruber 

et al. 2007). In agreement with its role in inducing open chromatin, 

H3K9ac, along with H3K4me3, associates with rapidly inducible genes 

(Roh, Cuddapah et al. 2006). A genome-wide high-resolution study shows, 

enriched H3K9ac surrounding the TSS of active genes (Wang, Zang et al. 

2008). H3K9 and -K14 acetylation islands, clusters of histone lysine 

acetylation, in the intergenic and transcribed regions have been proposed 

to predict functional regulatory elements (Roh, Cuddapah et al. 2005). 
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1.3.2.2.3 Acetylation of H4- K5/K12/K16 

Histone H4 is acetylated by several classes of HATs with considerable 

overlapping activities. While KAT1, -2A, -3A, -3B, -5 and -7 acetylate 

H4K5 and H4K12, KAT2A, -3A, -3B and -8 acetylate H4K16 (Khare, Habib 

et al. 2012). Although HATs responsible for all H4 acetylations are 

reported, deacetylases are only known for H4K16ac. SIRT1 and SIRT2 

are reported to act as H4K16 deacetylases (Khare, Habib et al. 2012). On 

the contrary, in HoxA9 loci, SIRT1 positively regulate H4K16Ac by 

deacetylating KAT8, acetylation of which prevents its acetylation activity 

on H4K16 (Lu, Li et al. 2011). 

Function 

H4K16ac is characteristically present in euchromatin. A genome-wide 

high-resolution study shows H4 -K5, -K12 and- K16ac enriching at 

promoters and throughout transcribed regions of active genes. 

Furthermore, gene promoters with the highest gene transcriptional activity 

have both H4K5 and -K16ac (Wang, Zang et al. 2008). Intriguingly, 

mammalian cells deficient for KMT2A/B, enzymes responsible for 

generating H3K9me3, show invasion of H4K16ac at constitutive 

heterochromatic region, even though SIRT1, the enzyme responsible for 

deacetylating H4K16 is not affected. Strikingly, none of the other 

euchromatic marks invade this region where H4K16ac is present 

exclusively (Vaquero, Scher et al. 2007). 

In mammals, H4K5 and -K12ac are required for incorporation of newly 

synthesized histones into nucleosomes. This deposition-related histone 

H4 acetylation is conserved through evolution (Sobel, Cook et al. 1995). In 

fibroblasts, re-stimulation of serum-starved cells induces H4 acetylations 

through c-Myc at several target loci, which is necessary for induction of 

those genes (Frank, Schroeder et al. 2001). Furthermore, H4K5 and -

K12ac are shown to be required for normal S-phase progression (Doyon, 
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Cayrou et al. 2006). SIRT2 specifically deacetylates H4K16ac during 

mitosis, which is believed to be essential for chromatin condensation 

(Fraga, Ballestar et al. 2005). While hyper-acetylated H4K16 (H4K16ac) 

resists heterochromatin spreading by a NAD+-dependent HDAC (Suka, 

Luo et al. 2002), non-acetylated H4K16 is required for the chromatin to 

form higher-order structures (Shogren-Knaak, Ishii et al. 2006). 

Accordingly, H4 acetylation is absent from Xi, which is considered one of 

its hallmarks (Jeppesen & Turner 1993). H4K16ac is also an important 

marker in cancer diagnosis. Global loss of H4K16ac and H4K20me3, with 

concomitant DNAme gain at CpG islands and loss at repetitive DNA 

sequences are all diagnostic features of cancer cells (Fraga, Ballestar et 

al. 2005).  

1.4 Histone variants 

Metazoans produce two types of histone variants. First, there are 

replication-dependent (RD) variants, whose synthesis is tightly coupled to 

DNA replication. Second, there are replication-independent (RI) variants, 

which are produced throughout the cell cycle and also in quiescence 

(Loyola & Almouzni 2007). While H3 and H2A have species-dependent 

variants, H4 and H2B are invariant (Malik & Henikoff 2003). The 

mammalian H3 variants are RD H3.1 and H3.2, RI H3.3, centromeric-

specific centromeric protein A and testis-specific H3t (Loyola & Almouzni 

2007). H2A variants are H2A.Z, the major variant, and H2A.Bdb and 

macroH2A, the minor variants (Campos & Reinberg 2009). Histone 

variants can affect transcriptional activity by modifying nucleosome 

structure. 

1.4.1 H3 variants 

H3.1, the major variant of H3, is encoded by a cluster of 10 intronless 

genes. By contrast, H3.2 is encoded by single gene (Koessler, Doenecke 

et al. 2003). Both H3.1 and H3.2 differ by a single amino acid and their 
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transcripts are regulated by stem-loop binding proteins (Banaszynski, Allis 

et al. 2010). Both their expression is coupled to S-phase and they are 

incorporated in RD manner. Two intron-containing genes, H3.3A and 

H3.3B, which encode identical proteins, encode H3.3. H3.3 differs from 

H3.1 by 5 amino acids. H3.3 is transcribed throughout the cell cycle and is 

a major H3 variant deposited into chromatin in a RI manner (Ahmad & 

Henikoff 2002). Aging and differentiating cells accumulate H3.3 and have 

reduced H3.1 (Orsi, Couble et al. 2009). 

Loyola and co-workers (Loyola, Bonaldi et al. 2006) characterised the 

PTM patterns of human H3.1 and H3.3 in nucleosomal and non-

nucleosomal fractions. While the non-nucleosomal fraction of both H3.1-

H4 and H3.3-H4 dimers enriches for H4K5 and -K12 acetylations, the 

nucleosomal fraction enriches for different lysine methylations. Both non-

nucleosomal H3.1 and H3.3 lack lysine methylation marks except for K9, 

but have no detectable K9me3. Non-nucleosomal H3.3, has K9me1 

(17%), K9me2 (4%) and K9 and K12 diacetylation (5%). The same study 

also found that a subset of H3.1-containing K9me2 and diacetylated K9 

and K12 resists the action of SUV39 to form K9me3, while K9me1 or 

unmodified K9 are amenable to SUV39 modification. These findings 

implicate initial marks and histone variants in influencing the final PTMs on 

the chromatin.  

Function 

Generally, H3.3 is found in regulatory elements, promoters and 

transcribed regions (Talbert & Henikoff 2010). Its presence in transcribed 

regions correlates with gene transcription and hence its loading is 

speculated to be reliant on Pol II-dependent displacement of the core 

nucleosome structure (Loyola & Almouzni 2007, Campos & Reinberg 

2009, Orsi, Couble et al. 2009). Supporting its role as an active chromatin 

mark, H3.3 has two fold more acetylation compared to H3.1 (Loyola, 
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Bonaldi et al. 2006). Compared to H3.1, H3.3 is more enriched in active 

marks, such as K4 and K36 methylations, as well as acetylated K9, K18 

and K23 (Hake, Garcia et al. 2006, Loyola & Almouzni 2007).  

The nucleosomes containing H3.3 are unstable, while H3.3 itself 

undergoes rapid turnover (Campos & Reinberg 2009). This rapid turnover 

is linked to maintaining the accessibility of chromatin or regulatory 

elements to their respective binding partners to influence epigenetic 

inheritance (Henikoff 2008). H3.3 also contributes for inefficient 

reprogramming after NT. In Xenopus NT experiments, the epigenetic 

memory carried by the H3.3, probably at K4, is implicated in resisting 

reprogramming. H3.3 persists at myogenic gene MyoD and drive its 

expression at non-muscle lineages, even after 24 cell divisions in the 

absence of transcription (Ng & Gurdon 2008). In mammals, the same 

mechanism is suspected after fertilisation to carry and transmit the male-

specific epigenetic information through mature sperm. Human sperm has 

~15% of histones, including H3.3 (Ooi & Henikoff 2007). Mature sperm of 

both mouse and human contains histone variants (H3.1/H3.2), which have 

been shown to contribute to the paternal zygotic chromatin (van der 

Heijden, Ramos et al. 2008). H3.3 is also linked to male infertility. 

Homozygous H3.3 male mutants results in death of 50% transgenic mice 

and reduced fertility of surviving mutants (Couldrey, Carlton et al. 1999). 

1.4.2 H2A.Z 

Unlike other histone variants, H2A.Z has been conserved during evolution 

from lower to higher eukaryotes. By contrast, other H2A variants H2A.Bdb 

and macroH2A are only found in vertebrates and mammals (Campos & 

Reinberg 2009). H2A.Z can influence the higher-order structure through its 

ion-binding pocket on the surface (Suto, Clarkson et al. 2000). The acidic 

patch on H2A.Z would enhance binding with HP1α compared to H2A and 

the same patch would also facilitate the binding of chromatin-remodelling 

complexes (Talbert & Henikoff 2010). Nucleosomes-containing H3.1 and 
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H2A.Z are more stable than H3.3 and H2A, and as stable as H3 and H2A. 

By comparison, H3.3 and H2A.Z-containing nucleosomes are unstable. 

Function 

Nucleosomes concurrently carrying H3.3 and H2A.Z are found at highly 

expressed gene promoters, enhancers and coding regions (Jin & 

Felsenfeld 2007). In humans, +1 to -2 nucleosomes that flank active 

genes, enrich for H2A.Z (Campos & Reinberg 2009). At the same time, 

H2A.Z presence both down- and up-stream of TSS correlates well with 

gene transcription, whilst its presence within transcribed gene body 

regions moderately correlates with gene silencing in human CD4+ T cells 

(Barski, Cuddapah et al. 2007). These contradicting functions could be 

due to the effect of different PTMs, such as acetylation and 

monoubiquitylation of H2A.Z (Talbert & Henikoff 2010). In humans, 

acetylated H2A.Z enriches more at euchromatic regions than at 

heterochromatin (Hardy, Jacques et al. 2009). RING2 is the ubiquitinating 

enzyme that can preferentially monoubiquitinate H2A.Z, resulting in 

silencing (Creyghton, Markoulaki et al. 2008). H2A.Z is also found 

enriched at transcriptional repressor CTCF-binding insulators, as well as 

at enhancers (Barski, Cuddapah et al. 2007). Its presence on either side of 

the CTCF-occupied site might act to restrict the spreading of the silent 

marks or heterochromatin (Campos & Reinberg 2009). 

Cells lacking H2A.Z show poor HP1α localisation to heterochromatin and 

improper chromosome segregation (Rangasamy, Greaves et al. 2004), 

even though they have H3K9me3 (Greaves, Rangasamy et al. 2007). 

Mice lacking the H2A.Z variant die shortly after implantation (Faast, 

Thonglairoam et al. 2001). 
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1.5 Polycomb group proteins 

The complex nature of higher multicellular organisms requires 

maintenance of the genome and variegated gene expression patterns over 

several cellular replications. Homeotic genes encode major groups of 

proteins that determine the segmentation patterns of the body by their 

variegated expression. Variegated expression needs the creation and 

maintenance of active and inactive domains, which involves two 

evolutionarily conserved antagonistic groups of proteins, namely PcG and 

TRX. PcG proteins are transcriptional repressors that maintain the 

repressive state of certain key genes during development (Cao, Wang et 

al. 2002), while TRX proteins act to maintain the active state of PcG target 

genes (Poux, Horard et al. 2002). We focused on PcG proteins because 

their repressive functions may be particularly relevant for quiescent cells, 

which are generally transcriptionally repressed.  

1.5.1 Polycomb repressive complexes 

The PcG proteins are mainly required for suppressing homeotic genes, 

especially of the Hox family. In addition, they are also implicated in XCI, 

maintaining stem cell identity, germ cell development and cancer 

metastasis (Cao & Zhang 2004a). PcG proteins work in multi-protein 

complexes. There are two families of complexes, namely PRC2 and PRC1 

(Simon & Kingston 2009). The mammalian PRC2 complex comprises four 

core subunits: i) EZH, a SET domain-containing H3K27 KMTase; ii) 

suppressor of zeste 12 (SUZ12) and iii) embryonic ectoderm development 

(EED), both required for stimulating EZH2, and iv) retinoblastoma-

associated protein p48, which is predicted to be involved in histone 

binding through its WD repeats domain (Simon & Kingston 2009). The 

mammalian family of PRC1 forms two different complexes. The first 

complex consists of the classically defined PRC1 complex with core 

members RING2, CBX4, BMI1 and PHC. The second complex consists of 

core members RING1, RING2, NPSC1, BCOR and KDM2B (Simon & 



Chapter One: Review of Literature 

 31   

 

Kingston 2009). Both PRC2 and PRC1 components in mammals have 

variants, resulting in various forms of PRC2 complexes. The best known 

variants are EZH1 and EZH2. EZH2 is highly expressed during 

embryogenesis and proliferating cells, while EZH1 is expressed in adult 

and non-dividing cells. 

Function 

In vivo EED is essential for EZH2 activity. EED-EZH2 complex action is 

not limited to developmentally regulated genes, as both EED-EZH2 and 

H3K27 are essential for imprinting of XCI of extra-embryonic female cells 

and embryonic cells undergoing differentiation (Kuzmichev, Jenuwein et 

al. 2004). In mammals, EED is also implicated in PRC2-independent 

methylation activity (Pasini, Bracken et al. 2004). In addition, EED may be 

involved in propagation of the H3K27me3 mark (Margueron, Justin et al. 

2009). Likewise, SUZ12 is also essential for establishment of proper 

H3K27 methylations (Pasini, Bracken et al. 2004). Specifically, SUZ12 and 

EZH2 are required for H3K27me2 and -me3 but not -me1, while EED is 

required for all forms H3K27 methylations (Montgomery, Yee et al. 2005). 

The EED-EZH2 complex silences developmentally regulated genes by 

trimethylation of H3K27 and this methylation guides the binding of PRC1 

complex (Cao, Wang et al. 2002).  

The exact mechanism of gene suppression activity by PcG proteins is still 

largely unknown. Initially, it was speculated that PRC2-mediated 

H3K27me3 could act as a binding site for the chromodomain of PRC1 

leading to ubiquitination of H2AK119 by RING2, which would impede the 

loading of Pol II to the chromatin (de Napoles, Mermoud et al. 2004, Fang, 

Chen et al. 2004). RING2 presence on Xi of both trophoblast stem (TS) 

and differentiating ES cells correlates with monoubiquitinated H2AK119 

(H2AK119ub) on Xi (Fang, Chen et al. 2004). However, EED-/- ES cells 

that lack H3K27me3 still maintains RING2-mediated H2AK119ub, 
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indicating that recruitment of RING2 can be both dependent and 

independent of PRC2 activity (Schoeftner, Sengupta et al. 2006). This 

suggests that wide-spread PRC2-dependent targeting of PRC1 may not 

be universal. At times, even RING2-mediated H2AK119ub does not 

correlate with gene suppression (Schoeftner, Sengupta et al. 2006). 

Therefore, the mechanism of H3K27me3- and H2AK119ub-mediated gene 

suppression still remains to be elucidated (Bracken, Dietrich et al. 2006, 

Schoeftner, Sengupta et al. 2006, Simon & Kingston 2009).  

Both PRC2 and PRC1 members have chromatin condensation activity 

independent of each other. Changes in composition of PRCs enable them 

to perform this task. For example, association of PRC2 complex with 

EZH1 instead of EZH2 could enables the complex to condense 

chromatinised templates in vitro, while having reduced KMTase activity. 

On the other hand, the EZH2-containing PRC2 complex does not 

condense chromatin, but has a high KMTase activity (Margueron, Li et al. 

2008, Shen, Liu et al. 2008). Likewise, RING2 association with CBX4, 

BMI1 and PHC1 can enable it to compact chromatin, while association 

with RING1, NPSC1, BCOR and KDM2B would enable it to H2AK119 

ubiquitination (Simon & Kingston 2009). In mouse, RING2 is involved in 

Hoxb and Hoxd loci contraction. Chromatin compaction activity of RING2 

was independent of its ubiquitinating activity (Eskeland, Leeb et al. 2010, 

Bantignies & Cavalli 2011).  

In loss of functional assays, EZH2 -/- mouse ES cells do not show any 

effect on H3K27me1. Even though there is a major reduction in 

H3K27me3, some genes, particularly development-related genes, still 

preserve this mark. As a consequence, EZH2-/- ES cells lose their 

capability to go through mesodermal differentiation. (Shen, Liu et al. 

2008). During early development, the EZH2-/- mutation is lethal as 

mutants never complete gastrulation (O'Carroll, Erhardt et al. 2001). In 

EED-/- ES cells, all forms of H3K27 methylation are disrupted, leading into 
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target gene de-repression and loss of ability to properly differentiate. 

However, these cells remain fully pluripotent and contribute to chimeras 

(Chamberlain, Yee et al. 2008, Leeb, Pasini et al. 2010). EED-/- cells, 

although initiate XCI, fail to complete it. (Kuzmichev, Jenuwein et al. 

2004). EED-/- embryos show disrupted anterior-posterior patterning and 

fail to normally gastrulate (Faust, Schumacher et al. 1995, Shumacher, 

Faust et al. 1996). SUZ12-/- ES cells can be generated and proliferated, 

but lose H3K27 methylation. However, the loss of H3K27 methylation 

leads to gain of H3K27 acetylation and H3K36 methylation, reducing their 

ability to properly differentiate. During differentiation, SUZ12-/- ES cells 

show characteristic de-repression of differentiation-specific genes and fail 

to repress ES cell-specific markers. Even though these ES cells increase 

H3K27me3 at specific genes, they fail to repress them, suggesting that 

activation cues are stronger than the repression (Pasini, Bracken et al. 

2004, Pasini, Bracken et al. 2007, Jung, Pasini et al. 2010). Knockdown of 

SUZ12 in Hela cells results in cell growth defects, alteration in H3K27 

methylation and up-regulation of Hox genes (Cao & Zhang 2004b). 

SUZ12-/- mice show severe developmental and proliferative defects and 

die during post-implantation stage. Specifically, those embryos lose both 

H3K27me2 and -me3 (Pasini, Bracken et al. 2004, Pasini, Bracken et al. 

2007, Jung, Pasini et al. 2010). Depletion of RING2 in ES cells results in 

de-repression of subset of development-related genes and 

unsynchronized differentiation-associated pathways. They also down-

regulate pluripotency markers REX-1 and SOX2, but still maintain other 

ES cell-specific markers, such as OCT4, NANOG and alkaline 

phosphatase (van der Stoop, Boutsma et al. 2008). RING2-/- embryos 

result in defects in both embryonic and extraembryonic tissues leading to 

gastrulation arrest. Genetically manipulated repression of the Cdkn2a 

(Ink4aARF) locus overcomes the gastrulation arrest effect in RING2-/- 

embryos. This implicates RING2 in cell cycle regulation during gastrulation 

(Voncken, Roelen et al. 2003). 
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1.6 Epigenetic reprogramming in germ cells  

Mammalian fertilisation involves fusion of two specialised types of germ 

cells, sperm and oocytes. Differentiation of PGC into mature germ cells 

occurs in two phases of epigenetic reprogramming, which are conserved 

in mammals (Hyldig, Croxall et al. 2011). In the first phase, loss of 

H3K9me2 and DNAme are seen just before or at G2-stage arrest of PGCs. 

The arrest continues up to the accumulation of H3K27me3. The early 

PGCs also accumulate H3K4me2, -me3 and H3K9Ac, probably acquiring 

a bivalent state that correlates with expression of Nanog, Oct4, Sox2 and 

Stella (Hemberger, Dean et al. 2009). In the second phase, after entry into 

the developing gonads, where most cells are cycling, PGCs start to 

gradually demethylate DNA in imprinting and other regions, which were 

not demethylated in first phase (Hyldig, Croxall et al. 2011). At this stage, 

the PGCs lose linker H1 and chromocenters, centres formed by clustering 

of many pericentric heterochromatin regions, down-regulate H3K9me3 

and H3K27me3, and redistribute or down-regulate factors associated with 

facultative and constitutive heterochromatin. They also down-regulate a 

component of PRC1 like complex, CBX2 (Hemberger, Dean et al. 2009). 

Comparison of the two phases of PGC reprogramming indicates general 

down-regulation of most of the repression-associated epigenetic 

modifications. Reprogramming in these phases results in larger nuclei and 

lost chromocenters, reflecting a decondensed chromatin, that is amenable 

for further reprogramming (Hajkova, Ancelin et al. 2008). Following 

resetting of histone modifications, DNA remethylation takes place in the 

male germ line, creating specific patterns at differentially methylated 

regions of imprinting control regions (ICRs). In the female germ line, this 

remethylation takes place postnatally during oocyte growth, creating 

maternal-specific ICR patterns (Sasaki & Matsui 2008).  
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1.7 Epigenetic reprogramming in early embryos 

Fertilisation of oocyte and sperm returns the newly formed zygote to a 

totipotent state. Chromatin organisation differs dramatically between the 

maternal and paternal gametes. While mature sperm chromatin is tightly 

packed by protamines and some sperm-specific histone variants (Govin, 

Escoffier et al. 2007), MII oocyte chromatin is packaged with histones.  

 

Figure 4: Dynamic reprogramming of global DNAme in bovine preimplantation embryos. 
(a) The bovine paternal genome (purple) undergoes active demethylation, while the 
maternal genome (red) is passively demethylated up to the eight-cell stage, after which 
de novo methylation (black line) is observed. EM, embryonic and EX, extra-embryonic 
lineages. Adapted from Dean, W., et al. (2003), 

After fertilisation, the paternal genome immediately undergoes global 

TET3-dependent (Gu, Guo et al. 2011) DNA demethylation, only sparing 

pericentric heterochromatin and paternal imprints. The maternal DNA 

undergoes progressive demethylation until the eight-cell and morula stage 

in bovine and mouse, respectively. Thereafter, de novo methylation of 

both maternal and paternal DNA starts (Dean, Santos et al. 2003) (Figure 

4). De novo methylation at the eight-cell stage coincides with the presence 

of DNMT1o, an oocyte-specific maintenance DNMT (Fulka, St John et al. 

2008). In bovine, there are also reports of active demethylation and de 

novo methylation of both DNA and H3K9me3 of the paternal pronucleus to 

the level of the maternal pronucleus before the two-cell stage (Park, Jeong 
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et al. 2007). In most preimplantation embryos, DNA and H3K9 methylation 

is linked (Santos, Zakhartchenko et al. 2003, Lepikhov, Zakhartchenko et 

al. 2008). At the blastocyst stage, de novo methylation ensures 

hypermethylation of the ICM compared to the trophectoderm (TE) in some 

mammalian species, such as mouse and pig (Morgan, Santos et al. 2005). 

In bovine, the ICM is only slightly hypermethylated than TE (Santos, 

Zakhartchenko et al. 2003), while in human and monkey, the ICM is 

hypomethylated compared to the TE (Fulka, St John et al. 2008). 

Germinal vesicle (GV)- and MII-stage oocytes can de novo methylate 

H3K9, an ability which is lost after fertilisation (Liu, Kim et al. 2004). Upon 

fertilization sperm protamines are replaced by highly acetylated maternal 

histones from the oocyte cytoplasm. These histones lack H3K4me1 and -

me3, H3K9me2 and -me3, H3K27me2 and -me3 and H4K20me3, but 

carry H3K9me1 and H3K27me1. Meanwhile, the maternal genome 

completes meiosis and enrich for DNAme, as well as, H3K4- and H3K9 

methylations, H3K27me1 and -me3, H4K20me3 and H4 acetylation (Liu, 

Kim et al. 2004, Morgan, Santos et al. 2005). Maintenance of this 

asymmetric methylation pattern after fertilisation is an active process (Liu, 

Kim et al. 2004). During pronuclear development, the paternal genome 

acquires H3K4me1 and -me3, H3K9me2 and H3K27me2 and -me3 (Liu, 

Kim et al. 2004, Morgan, Santos et al. 2005). Even though Suv39h is 

present from the immature oocyte up to the blastocyst stage, its function is 

stalled until embryonic genomic activation. H3K9 methylation gradually 

decreases from two-eight cell stage and increases from the morula up to 

the blastocyst stage (Santos, Zakhartchenko et al. 2003). H3K27me3 

progressively decreases from bovine immature oocytes up to eight-cell 

stage, which coincides with absence of EED and SUZ12 in the nucleus. 

Thereafter, it increases from the morula to the blastocyst stage (Ross, 

Ragina et al. 2008). H3K4me3 follows a similar pattern as H3K27me3 

(Wu, Li et al. 2011). H3K9Ac (Kubicek, Schotta et al. 2006a) and H4K5Ac 

(Monteiro, Oliveira et al. 2010) are dynamically regulated in early embryos, 
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and correlates with HDAC level (Kubicek, Schotta et al. 2006a). At the 

blastocyst stage, H3K9me3, all forms of H3K27 methylation, H4K20me3 

and H3K9ac are re-established. In mouse, all these marks are up-

regulated in the ICM compared to the TE. In the TE, H3K27me2 and -me3 

are present only on Xi (Hemberger, Dean et al. 2009). By contrast, bovine 

blastocysts do not show any H3K -4me3 and -27me3 differences between 

the ICM and TE (Ross, Ragina et al. 2008, Wu, Li et al. 2011). H3K9me2 

is distributed evenly between ICM and TE, and heterochromatin of both 

the ICM and TE is marked by H3K9me3 (Morgan, Santos et al. 2005).  

1.8 Epigenetic reprogramming after nuclear transfer 
compared to in vitro fertilisation (IVF) 

Even though the oocyte has the ability to reprogram a somatic cell, in 

principle, this does not result in efficient production of live animals 

(Wakayama 2007). This is attributed to the difficulty of reprogramming the 

epigenetic patterns associated with progressive donor cell differentiation. 

Supporting this notion, toti- and pluripotent cells, such as early 

blastomeres (Hiiragi & Solter 2005) and ES cells, respectively, (Rideout, 

Eggan et al. 2001) are often more amenable to reprogramming than 

somatic cells. It is intriguing that even though SCNT constructs down-

regulate genes involved in chromatin modification compared to IVF 

embryos (Monteiro, Oliveira et al. 2010), there is little difference between 

SCNT and IVF-derived ES cells. This includes high similarity in DNAme, 

imprinted genes, as well as mRNA, microRNA and protein expression 

profiles (Brambrink, Hochedlinger et al. 2006, Wakayama 2006, Ding, Guo 

et al. 2009). This similarity is thought to be due to culture systems tailored 

for efficient derivation of ES cells. In contrast to the formation of live 

offspring, ES cell derivation appears to be rather tolerant to epigenetic 

abnormalities.  

For successful NT cloning, the donor chromatin must be reprogrammed to 

the level capable of supporting further development. However, epigenetic 



Chapter One: Review of Literature 

 38   

 

profile of NT embryos resembles that of the somatic donor. Moreover 

epigenetic reprogramming during NT is haphazard, as each NT embryo 

exhibits different epigenetic profiles (Kang, Koo et al. 2001a). There are 

obvious differences in the epigenetic profiles of bovine embryos produced 

by IVF and NT (Han, Kang et al. 2003). In contrast to IVF embryos, where 

DNA demethylation and reduction in H3K9me3 occurs in parallel up to the 

eight-cell stage, NT embryos exhibit hypermethylated DNA and H3K9me3 

at all stages (Santos, Zakhartchenko et al. 2003), the pattern of which is 

reminiscent of donor cells (Dean, Santos et al. 2003). The increased 

DNAme can be attributed to abnormal expression of somatic DNMT1 in 

NT embryos (Fulka, St John et al. 2008). In bovine, inadequate DNA 

demethylation of somatic nuclei is linked to the absence of the maternal 

chromatin (Kang, Koo et al. 2001b). In bovine NT blastocysts, 

hypermethylation of the ICM for both H3K9 and DNA is not evident and 

the TE is as methylated as the ICM (Santos, Zakhartchenko et al. 2003, 

Wu, Li et al. 2011). NT embryos with a normal DNA and H3K9 methylation 

epigenotype show better blastocyst development (Santos, Zakhartchenko 

et al. 2003). High levels of H3K9 methylation in extraembryonic tissues 

correlates with placental abnormalities in NT animals (Kubicek, Schotta et 

al. 2006b). All these observations underline the importance of proper 

reprogramming of H3K9 methylation. 

In bovine, H3K4me3 is hypermethylated from the pronuclear stage to the 

eight-cell stage in NT compared to IVF embryos. It is then transiently 

down-regulates at the morula and again hypermethylates at the blastocyst 

stage in NT (Wu, Li et al. 2011). In mouse IVF embryos, the ICM shows 

H3K27me3 staining, which is absent in SCNT blastocysts despite some 

TE staining for Xi (Zhang, Wang et al. 2009). In bovine, H3K9 is 

hyperacetylated in NT embryos in all stages compared to IVF embryos. 

H3K9 acetylation of IVF embryos reaches its minimum at four-eight cell 

stage and then increases with the onset of transcriptional activation at 8-

16 cell stage (Santos, Zakhartchenko et al. 2003). At the blastocyst stage, 
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H3K9Ac is either less (Santos, Zakhartchenko et al. 2003) or not different 

(Wu, Li et al. 2011) in NT vs IVF embryos. H4K5 is also hyperacetylated 

until eight-cell stages in NT compared to IVF embryos (Wu, Li et al. 2011). 

The difference in H4K5Ac observed until eight-cell stages in NT compared 

to IVF embryos, ceases to exist from the morula to the blastocyst stage 

(Wu, Li et al. 2011). All these epigenetic differences result in various 

developmental abnormalities in NT embryos, foetuses and cloned 

offspring. 

1.9 Epigenetically modified donors for nuclear transfer 

After SCNT, donor cells need to undergo proper epigenetic 

reprogramming for successful embryonic development (Yang, Smith et al. 

2007). The majority of embryos that do not develop normally fail to erase 

the epigenetic differentiation program of donor cells (Campbell, Fisher et 

al. 2007). The better success rate of ECNT over SCNT is attributed to the 

epigenetic state of the embryonic cells. In order to increase SCNT 

efficiency, modification of the epigenetic state of donor cells has been 

achieved by several means. Class I/II HDAC inhibitors (HDACi), such as 

Trichostatin A (TSA), scriptaid and sodium butyrate (NaB), as well as 

DNMT inhibitors, such as 5-aza-2′-deoxycytidine (5-aza-dC), have been 

tried extensively. In cattle, treating donor cells with TSA prior to NT 

increases blastocyst development (Enright, Kubota et al. 2003). By 

contrast, treating donors with 5-aza-dC either show no effect at low 

concentrations (Enright, Sung et al. 2005, Jafarpour, Hosseini et al. 2011) 

or a negative effect at higher concentrations (Enright, Kubota et al. 2003, 

Jafarpour, Hosseini et al. 2011). Higher doses of both TSA and NaB result 

in hyperacetylation and hypermethylation, and higher rates of blastocyst 

development (Jafarpour, Hosseini et al. 2011). TSA treatment of plasmids 

with initial low or no DNAme increases transcription of a reporter gene, 

while plasmids with high DNAme show little effect on reporter gene 

transcription (Ji, Zhang et al. 2003). In cattle, there is a synergetic effect 
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when both TSA and 5-aza-dC are used in combination. Treating both 

donors and embryos with both these reagents further improves blastocyst 

development (Ding, Wang et al. 2008) and cloning efficiency to weaning 

(Wang, Xiong et al. 2011). This success correlates with higher expression 

of Sox2 and Oct4 and lower expression of DNMTs at the blastocyst stage 

(Wang, Su et al. 2011). 

In mouse, utilization of a hypomorphic DNMT1 allele, resulting in 

hypomethylated donor cells, improves both blastocyst development and 

ES cell-derivation (Blelloch, Wang et al. 2006). Some groups have 

explored the use of RNAi-mediated knock-down. DNMT1 siRNA-treated 

bovine donor cells significantly increases blastocyst development 

compared to control IVF (Eilertsen, Power et al. 2007). Knock-down 

results in reduced DNAme levels at the four-cell stage embryos compared 

to controls, but does not reduce methylation levels to that of IVF embryos 

(Giraldo, Lynn et al. 2009). Comparing knock-downs of DNMT1, DNMT2 

and DNMT3a, only DNMT1 reduction significantly decreased DNAme in 

bovine fibroblasts (Yamanaka, Balboula et al. 2010). G9a, an HMTase 

linked to H3K9 methylation-mediated heterochromatinization and de novo 

DNAme, is implicated in suppression of various early embryonic genes. 

The use of G9a-/- ES cells as donors significantly improves blastocyst 

development (Epsztejn-Litman, Feldman et al. 2008). 

1.10  Cell cycle 

Continuously dividing cells move through a continuous cell cycle, which 

has four distinct stages: Gap 1 (G1), DNA Synthesis (S), Gap 2 (G2) and 

Mitosis. Transition from one stage to the other is governed by cyclins and 

their respective cyclin-dependent kinases (CDKs). Cells can exit this cell 

cycle and rest in a stage called quiescence (G0). In G0, they are neither 

dividing nor preparing to divide, but can re-enter the cell cycle and 

proliferate upon certain stimuli (Coller 2011). Quiescence as a distinct 
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cellular stage has been well established. G0 cells not only down-regulate 

genes involved in cell proliferation, but also actively inhibit senescence, 

apoptosis and differentiation (Coller 2011). 

Under conditions that maintain ploidy, the cell cycle stage has been 

postulated to influence cloning efficiency (Campbell, Loi et al. 1996, 

Wilmut, Schnieke et al. 1997). Wilmut et al. reasoned that inducing the 

cells into quiescence through serum-starvation was the major reason 

behind the first mammalian SCNT success. Later it was shown that 

induction of quiescence is not essential for cloning success (Cibelli, Stice 

et al. 1998, Vignon, Chesne et al. 1998, Kasinathan, Knott et al. 2001c, 

Wells, Laible et al. 2003). Treatment of donor cells with aphidicolin, a 

reversible inhibitor of eukaryotic nuclear DNA replication that blocks at the 

pre-S phase stage (Vodicka, Smetana et al. 2005), increases the 

efficiency of NT blastocyst development in mini-pig oviduct epithelial, ear 

skin fibroblast and cumulus cells (Zhang, Dai et al. 2012). Tetraploid (4n) 

cells at the G2/M stage should be maximally compatible with the 

metaphase-arrested MII recipient. Accordingly, ES cells (Wakayama, 

Rodriguez et al. 1999), as well as transgenic (Ono, Shimozawa et al. 

2001, Lai, Park et al. 2002) and non-transgenic fibroblasts (Ono, 

Shimozawa et al. 2001) successfully work as donors. Often, serum 

withdrawal for several days is used to induce quiescence in cells used for 

NT. Serum-starvation has a beneficial effect on NT efficiency compared to 

non-starved cycling and G1 cells (Zakhartchenko, Durcova-Hills et al. 

1999, Hill, Winger et al. 2000, Hill, Winger et al. 2001, Cho, Lee et al. 

2002, Zou, Wang et al. 2002, Wells, Laible et al. 2003) 
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Figure 5: Cell cycle: The upper part of the figure depicts the individual stages in mitosis 

until cytokinesis. Cell size from prophase-anaphase is twice as that of the newly formed 

cells after cytokinesis. (Modified from Alberts & Johnson et al. 2008). Lower part of the 

figure depicts different stages of cell cycle (colored solid curving arrows). Under 

unfavorable conditions, cells can exit the cell cycle in G1 to enter the G0 stage (dotted 

curving arrow), commonly known as quiescence or resting stage. Under favorable 

conditions, cells can re-enter the normal cell cycle from the G0 stage. (Modified from 

Coller, 2011). 

Experimentally, serum-starvation, growth to confluency and inhibition of 

adhesion can all induce quiescence. Strikingly, cells induced into 

quiescence by all these three methods exhibit distinct, although 

overlapping, expression profiles (Coller, Sang et al. 2006). Few hours of 

serum-starvation of early G1 (3-4 h post-mitotic) mouse 3T3 cells, push 

cells towards G0. But even though the serum is withdrawn, cells that are in 
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late G1 still commit to proceed through S, G2 and M phase (Zetterberg & 

Larsson 1985, Larsson, Dafgard et al. 1986). Examples of naturally 

occurring G0 cells include lymphocytes and dermal fibroblasts (Coller 

2011). The quiescent lymphocytes have been shown to contain 

hypomethylated histone, which correlated with better NT reprogramming 

efficiency (Baxter, Sauer et al. 2004). 

1.11  Summary  

Cloning is an inefficient technique. Nevertheless it is useful for producing 

endangered species, animals with beneficial traits and transgenic animals. 

Over the years, there have been many unsuccessful attempts to increase 

the efficiency of the cloning (Campbell, Alberio et al. 2005, Campbell, 

Fisher et al. 2007). There are several factors that influence cloning 

efficiency, including the NT method, oocyte quality, donor cell status, etc. 

Cells from early blastomeres to terminally differentiated cells have been 

successfully used in cloning (Prather, Barnes et al. 1987, Hochedlinger & 

Jaenisch 2002). Following NT, the chromatin of the donor cell must be 

reprogrammed from a differentiated to a totipotent status through proper 

epigenetic modifications that include changes in DNAme and core 

histones. The modifications to core histones involve mainly their tail region 

either by acetylation, methylation, phosphorylation and/or ubiquitinisation. 

Considering the lower efficiency of cloning, the initial epigenetic status of 

the donor appears to be crucial for success. Therefore, studies have 

attempted to improve the initial donor cell epigenetic status.  

1.12  Aim of the thesis  

Methods to alter the epigenetic status of the donor cells have been 

successfully employed to improve the cloning efficiency (Blelloch, Wang et 

al. 2006, Wang, Xiong et al. 2011). Among these, inducing the donors into 

quiescence by serum-starvation was thought to be a major contributor to 

the success of the first SCNT (Wilmut, Schnieke et al. 1997). However this 
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assumption was never experimentally verified. Unpublished work at 

Agresearch has demonstrated that serum-starvation of donor cells more 

than doubles cloning efficiency to adulthood compared to mitotically-

selected G1 control donors. Therefore, we postulated that inducing donors 

into G0 would alter their epigenetic status and increase their 

reprogrammability.  

Here, we aim to identify the molecular basis for elevated reprogramming 

potential and induced cell plasticity in serum-starved cells. We 

hypothesise that serum-starvation “loosens” the epigenetic constraints 

imposed on the genome during differentiation, leading to changes in 

chromatin composition, DNA and histone methylation, as well as histone 

acetylation levels. We propose that artificially inducing quiescence through 

serum-starvation results in a more dynamic chromatin architecture that 

forms a structural basis for increased cloning efficiency for G0 donors.  

Specifically, my aims were: 

A. Prior to NT, to test G0 vs G1 donors with respect to their localisation 

and abundance of:  

1) post-translational histone lysine methylation  

2) post-translational histone lysine acetylation 

3) PcG and chromatin-associated proteins  

4) DNAme 

 

B. Following NT, to determine the dynamics of a subset of candidate 

epigenetic modifications, previously found to be different between 

G0 and G1 cells. 
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2 Chapter Two: Materials and 
methods 

  

2.1  General materials and methods  

2.1.1 General materials  

All the materials and reagents are listed in appendix I and II.  

2.1.1.1 Cell and embryo culture 

Ear skin fibroblast were isolated from an adult Limousine-jersey bull 

(LJ801) as described previously (Oback & Wells 2003) and used for cell 

culture and NT studies. 

2.1.2  General methods  

2.1.2.1  Thawing cells  

Vials-containing approximately 1 ml of LJ801, 2X105-1X106 cells/ml, were 

removed from liquid nitrogen storage and rapidly transferred to a 37°C 

water bath. Vials were removed when cells were approximately 80% 

thawed and wiped with 70% ethanol. Cells were Immediately transferred 

into a tube-containing 10 ml of 37°C pre-warmed Dulbecco’s Modified 

Eagle’s medium (DMEM)/F12 + GlutaMAX
TM

-I, supplemented with 10% v/v 

fetal calf serum (FCS) (DMEM/F12-10%), and centrifuged at 1000 x g for 3 

min. Medium was removed carefully, the pellet was resuspended in pre-

warmed DMEM/F12-10% and cells were counted using a Neubauer 

haemocytometer. 

2.1.2.2  Cell culture  

Using the pre-warmed DMEM/F12-10% culture media, cells were diluted 

to 105 cells/ml and seeded on culture dishes at a density of approximately 
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1.7X104 cells/cm2. The cells were then cultured in an incubator-containing 

5% CO2 at 38.5°C.  

2.1.2.3  Passaging  

When cells reached 70-90% confluency, they were washed once with 

37°C pre-warmed phosphate buffered saline (PBS), and then 37°C pre-

warmed 0.25% trypsin-EDTA was added at 0.02 ml/cm2
 and incubated at 

37°C for 2 min. After complete cell detachment from the culture dish, a 

fivefold excess of DMEM/F12-10% culture media was added to neutralise 

the trypsin. Cells were centrifuged at 1000 x g for 3 min. Medium was 

removed carefully, the pellet was resuspended in pre-warmed DMEM/F12-

10% culture media, and cells were counted using a Neubauer 

haemocytometer.  

2.1.2.4 Freezing 

Cells were grown up to 70-90% confluency and passaged as described in 

section 2.1.2.3. Cells were again centrifuged for 3-5 min. During the 

centrifugation, the cryopreservation solution (20% DMSO in FCS) was 

freshly prepared. After centrifugation, medium was carefully removed and 

DMEM/F12-10% culture medium was added to the pellet of cells at a 

volume equal to 50% of total volume required. The total volume required 

was accordingly adjusted to give the desired density of cells. The 

remaining 50% volume was made up by slowly adding an equal volume of 

cryopreservation medium and mixed gently. Cells were then aliquoted in 1 

ml volumes at required densities per cryovial and placed in a freezing box 

(Mr Frosty) in a -80°C freezer. After 24 h, vials were transferred into liquid 

nitrogen for long term storage. 

2.1.2.5 Inducing quiescence (G0) by serum-starvation 

Quiescence was induced as described previously (Oback & Wells 2003). 

Cells were thawed and cultured for just one passage as described in 

sections 2.1.2.1 and 2.1.2.2, respectively. After trypsinization, 
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centrifugation and counting, 2.5x104 cells/cm2 were seeded for NT, 

immunofluorescence (IF) and biochemical assays. Cells were cultured for 

6-15 h. Medium was removed, followed by washing thrice with PBS and 

cultured in DMEM-F12 containing 0.5% FCS (DMEM/F12–0.5%) for six 

days. 

2.1.2.6 Isolating G0 cells 

After induction of quiescence for six days, cells were processed as 

described in section 2.1.2.2 but with the following minor changes. Serum-

starved cells were washed once with pre-warmed PBS, incubated with 

pre-warmed trypsin for 4-5 min, neutralised with DMEM/F12-0.5% (10-15 

fold excess of trypsin) and resuspended in H199-containing 0.5% FCS 

(H199-0.5%) at a density of 104 cells/ml.  

2.1.2.7 Culturing for isolating G1 cells  

G1 cells can be mechanically picked under a light microscope (mitotic 

selection) (Wells, Laible et al. 2003) or isolated from G1 “mitotic shake-off” 

(Kasinathan, Knott et al. 2001b). We used a modified mitotic shake-off 

method to generate G1 cells.  

Passage 4 cells were thawed and cultured for one passage as described 

in sections 2.1.2.1 and 2.1.2.2, respectively. After trypsinization, 

centrifugation and counting, cells were seeded at a density of 6x105 

cells/100 mm culture dish and cultured for 20 h in DMEM/F12-10%, 

washed once with pre-warmed PBS and cultured for another 2 h in 10 ml 

pre-warmed DMEM/F12-10%. After 2 h, cells were scored under a 

microscope for presence of doublets. If doublets were starting to lift off, we 

proceeded with the mitotic shake-off procedure. Otherwise, we cultured 

them further, until doublets started to lift off, before proceeding with the 

mitotic shake-off.  
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2.1.2.8  Mitotic shake-off  

5.5 ml of medium was removed and the mitotic shake-off of cells was 

undertaken by shaking the 100 mm culture dish on a plate shaker (IKA, 

MS1) at 800 rpm for 1 min, followed by a gentle tap with a finger on the 

sides of the plate. Medium containing the lifted cells was centrifuged at 

1000 x g for 3 min in a 15 ml Falcon tube. Medium was then carefully 

removed and cells were gently resuspended in 500-1000 µl of H199 

supplemented with 10% FCS (H199-10%).  

2.1.2.9 Wide-field epifluorescence image acquisition  

Slides were viewed with an Olympus BX50 microscope at either 100X, 

200X, 400X or 1000X magnification. The images were first focused under 

phase contrast to minimize exposure to fluorescence light and bleaching. 

Digitized images were taken with a Spot RT-KE slider digital camera using 

the Spot Basic software. Exposure time and camera setting within the 

similar experiments were kept constant. Images were processed using the 

Spot Advanced software.  

2.1.2.10 Confocal epifluorescence image acquisition  

Slides were initially viewed at either 100X, 200X, 400X or 600X 

magnifications by using wide-field epifluorescence and differential 

interface contrast (DIC). Digital confocal images were acquired using the 

FluoView FV1000 software. For image acquisition, the following settings 

were maintained constant for all the experiments: 

Image size       : 512*512 
Bits/Pixel       : 12 
Sampling speed      : 12.5 µs/pixel 
Lens        : 60X (Oil) 
Objective lens (NA)      : 1.35 
Sequential mode       : Frame 
Integration type      : Line (Kalman) 
Integration count      : 2 
Zoom         : 6 (Donor cells), 1 (Embryo) 
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Slice/frame thickness : 0.4 µm/slice for donor cells and 1 µm/slice for 
(Embryo) (As determined by optimisation 
function) 

Pinhole       : 110 µm 
Laser wavelengths      : 405, 488 and 543 nm 
 

Within each experiment, settings such as PMT voltage (V), transmissivity 

(%), gain and offset were maintained constant for both G0 and G1 donors 

and NT embryos derived from them.  

After setting all the above parameters, the upper and lower Z-limit was set 

by going through the entire image of each donor or embryo. The image 

was then acquired as a combination of different frames (stack). 

The frame thickness was determined using the optimisation function and 

set as 400 nm for donors and 1000 nm for embryos. 

2.1.3 Statistical analysis: 

Antigen data were analysed using one–way ANOVA with equal variance 

or using t-test, either paired or unpaired, with equal or unequal variance. 

Data were log transformed when necessary. All bars represent either 

Least Significant Difference (LSD) at 5% or standard error of means 

(SEM). If the LSD bar extends past two data mid-points, then the 

difference between them is P>0.05.  

2.2  Methods for chapter three  

2.2.1 Characterising restimulation of quiescent cells by 
xCELLigence 

The xCELLigence System uses special tissue culture vessels with 

interdigitated microelectrodes integrated on their bottom.  When there are 

no cells on top of the E-plate microelectrodes there is no electrical 

impedance. When cells are grown on top of the E-plate microelectrodes, 

electrode impedance increases with cell number. This relative change in 
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electrode impedance is converted into a numerical data by the computer 

and displayed as dimensionless parameter called “cell index”. Thus, the 

cell index is directly proportional indirect measurement of cell growth.  

Quiescent cell stimulation was characterised by quantifying real-time 

changes in cell number, viability, and morphology using an RTCA-SP 

xCELLigenceTM system (Roche, New Zealand) as described (Huang, Li 

et al. 2011). Passage six LJ801 cells were seeded in triplicate in 100 µl of 

DMEMF12-10% at 2.5x104 cells/cm2 on 96-well E-Plate. The peak cell 

index (CI) readings were taken every 1 h from seeding. Quiescence was 

induced as described in section 2.1.2.5. After six days of serum-starvation, 

low serum was replaced with fresh DMEMF12-10%. Both control, cells 

which were continuously grown in DMEMF12-10%, and restimulated cells 

were grown for 26 d from seeding and CI readings were recorded 

throughout the entire period. 

2.2.2 Small scale production of G1 cells  

Cells were cultured and mitotic shake-off was performed as described 

(sections 2.1.2.7 and 2.1.2.8). Droplets of 30-40 µl of H199-10% culture 

medium-containing the mitotic cells were placed in Petri dishes and 

overlaid with mineral oil maintained at 38.5°C. Mitotic cells were identified 

by visualizing decondensing chromatin in a doublet, still connected by the 

thin cytoplasmic bridge of the mid-body (telophase/cytokinesis) using DIC 

optics. These doublets were isolated by mechanical mouth pipetting using 

a fine glass pipette. 

2.2.2.1 Click-iT® EdU cell proliferation assay 

The Click‑iT® EdU assay is a novel alternative to the antibody-based 

detection of the nucleoside analog bromo-deoxyuridine (BrdU). 5-ethynyl-

2´-deoxyuridine (EdU) is a nucleoside analog of thymidine.  When 

provided in the culture medium of growing cells, it can be incorporated into 

DNA during active DNA synthesis. The incorporated EdU can be detected 
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by the “click”-reaction with azide. In the presence of copper, alkyne in EdU 

reacts with the azide group in dye forming a stable triazole. The presence 

of EdU thus can be indirectly assessed using fluorescent microscopy, 

which serves as a proxy for DNA synthesis.  

G1 cells were isolated as described in section 2.2.2. For Click-iT® EdU cell 

proliferation assays, isolated doublets/singles were plated on heat-

sterilised and 0.1% gelatin-coated coverslips placed in 4-well plates. Click-

iT® EdU cell proliferation assays were then performed with slight variation 

to the manufacturer’s instruction as follows:  

A. Isolated doublets/singles were incubated with 1 ml of H199-10% 

medium with or without (negative control) 10 µM EdU for 3.5 or 24 h 

in an incubator maintained with 5% CO2 at 38.5°C  

B. Medium was removed and washed once with pre-warmed PBS 

C. Cells were fixed with 1 ml of 3.7% formaldehyde in PBS for 15 min 

in room temperature (RT) 

D. Fixative was removed and cells were washed twice with 1 ml of 3% 

BSA in PBS 

E. Wash solution was removed, 1 ml of 0.5% Triton® X-100 was added 

and incubated at RT for 20 min 

F. Meanwhile, 50 µl droplets of Click-iT® reaction cocktail was placed 

on top of a piece of parafilm placed in a humidified chamber. The 

humidified chamber was covered with aluminium foil to protect the 

cocktail from light 

G. Permeabilisation buffer was removed, washed twice with 1 ml of 

3% BSA in PBS 

H. Coverslips with the mitotic cells were carefully placed on droplets of 

50 µl of Click-iT® reaction cocktail with the cell-containing side 

facing the cocktail mixture 

I. Cells were incubated at RT for 30 min. Care was taken to protect 

the humidified chamber from light 



Chapter Two: Materials and Methods 

 52   

 

J. Coverslips were removed from the humidified chamber and each 

coverslip was placed in a single well of 4-well plates with the cell-

containing side facing upwards 

K. Cells were washed once with 1 ml of 3% BSA in PBS and wash 

solution was removed 

L. Cells were incubated with 0.5 ml of Hoechst 33342 (H33342) 

diluted to 5 µg/ml in PBS for 30 min at RT. Care was taken to 

protect the 4-well plates from the light 

M. Repeated step K 

N. Final washing was done in sterilised water  

O. Each coverslip was mounted with 3 µl of DAKO fluorescent 

mounting medium on a clean frosted glass slide  

P. Imaging and analysis was performed as described in section 

2.1.2.9 

2.2.2.1.1 Analysing post 3.5 and 24 h EdU incubation of singles and 
doublets 

Following the Click-iT® EdU proliferation assay of singles and doublets 

incubated for 3.5 or 24 h with medium-containing 10 µM EdU, cells were 

observed for EdU incorporation. Images were acquired as described in 

section 2.1.2.9. Cells emitting green colour were scored as positive for 

EdU incorporation, which indicated presence of s-phase cells. Singles 

were also scored for doublet formation, using phase contrast and H33342 

labelled DNA. Any singles forming doublets that were not positive for EdU 

incorporation were was considered in G1 phase.  

2.2.3 Large-scale production of G1 cells 

For producing G1 cells on large-scale, early passage 2 cells were thawed, 

cultured and passaged until passage 6 as described (2.1.2.1, 2.1.2.2 and 

2.1.2.3). Cells from approximately one hundred 100 mm dishes were then 

used for mitotic shake-off. 5.5 ml of medium was removed from each plate 

and mitotic shake-off was performed by shaking the 100 mm culture 
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dishes on plate shakers at 800 rpm for 1 min, followed by a gentle tap with 

a finger on the sides of the plate. Media-containing the lifted cells from 10 

plates were mixed together in a 50 ml Falcon tube and centrifuged at 1000 

x g for 3 min in a 15 ml Falcon tube. Medium was then carefully removed 

and cells were gently resuspended in 5 ml of H199-10%. 250 µl was 

transferred into 1.5 ml Eppendorf tubes for Click-iT® EdU cell proliferation 

assays. From the remaining medium, 20 µl was quickly used to fill two 

chambers of a Neubauer haemocytometer and allowed to settle, while the 

rest was plated onto a 60 mm culture dish and incubated under 5% CO2 at 

38.5°C for 3.5 h.  

2.2.3.1 Analysis of cells from large-scale production 

Haemocytometer cell counts were scored for the total number of cells and 

the distribution of cells as single (small), single (big) and doublets. The 

proportion of each cell type was graphed. 

2.2.3.2 Determining total number of mitotic cells after wash off  

After 3.5 h incubation, medium was transferred into a 15 ml Falcon tube 

and washed in 4°C pre-cooled PBS. PBS wash-off was also collected in 

the same 15 ml Falcon tube-containing the removed medium. Quickly the 

plates were covered with parafilm and frozen at -80°C. Removed medium 

plus PBS wash-off was collected in the 15 ml Falcon tube and centrifuged 

at 1000 x g for 3 min before solution was carefully removed. The pellet 

was resuspended in PBS and the washed-off cells were counted using a 

Neubauer haemocytometer. The number of cells counted from this wash-

off was subtracted from the total number of cells plated initially on the 60 

mm culture dish to determine the total number of cells remaining on the 60 

mm culture dish. To calculate the total number cells, each doublet and 

90% of singles were scored as two cells. 
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2.2.3.3 Click-iT® EdU cell proliferation assay 

From 250 µl of medium-containing mitotic shake-off cells, 150 µl was used 

to isolate doublets and the rest was used to perform Click-iT® EdU cell 

proliferation assays as described in sections 2.2.2 and 2.2.2.1, 

respectively.  

2.2.3.3.1 Analysing post 3.5 and 24 h EdU incubation of mitotic 
shake-off cells and doublets 

The assay and analysis were performed as described in section 2.2.2.1.1 

for doublets picked from mitotic shake-off and combined mitotic shake-off 

yield including doublets, single (small) and single (big) cells.  

2.2.4 Optimising IF conditions for donors 

Compositions of the solutions used are shown in Appendix I - Table 11 

and the antibodies and their dilutions used are listed in Appendix II - Table 

14. 

2.2.4.1 Culturing no-synchronized cells for IF optimisation 

After thawing or passaging the LJ801 fibroblasts, cells were seeded onto 

heat-sterilised coverslips placed in either 35 mm or 60 mm culture dishes 

and cultured in an incubator-containing 5% CO2 at 38.5°C.  

2.2.4.2 Different IF protocols used for optimisation 

2.2.4.2.1 4% PFA fixation followed by permeabilisation protocol 
(post-TX) 

A. Coverslips with randomly proliferating cells were placed in separate 

wells of 4-well plates  

B. Cells were washed once in PBS 

C. Cells were fixed in 65°C depolymerized 4% (w/v) PFA + 4% (w/v) 

sucrose solution in PBS for 15 min at RT 

D. Cells were washed twice with PBS 

E. Cells were quenched in 50 mM NH4Cl in PBS for 10 min 



Chapter Two: Materials and Methods 

 55   

 

F. Cells were washed once in PBS 

G. Cells were permeabilized in 0.1% Triton® X-100 in PBS  

H. Cells were washed once in PBS 

I. Cells were blocked in 3% BSA for 1 h at RT 

J. Blocked cells were incubated with appropriate concentrations of 

primary antibody (Appendix II -  Table 14), except the negative 

control, which was incubated with blocking buffer (3% BSA), in 

humidified chambers overnight at 4°C  

K. Cells were washed thrice with PBS after transferring to 4-well plates 

L. Cells were simultaneously incubated with the appropriate 

concentration of secondary antibody (Appendix II -  Table 14) and 5 

µg/ml of H33342 in humidified chambers for 30 min at 37°C 

M. Cells were washed thrice with PBS after again transferring to 4-well 

plates 

Q. Cells were finally washed in sterilised water 

R. Each coverslip was mounted with 3 µl of DAKO fluorescent 

mounting medium on a clean frosted glass slide  

S. Imaging and analysis was performed as described in section 

2.1.2.9 

2.2.4.2.2 4% PFA fixation followed by permeabilisation protocol with 
an hour extra blocking (post-TX_e) 

Steps A-S in section 2.2.4.2.1 were followed with an extra one hour of 

incubation in 2% BSA blocking solution included between steps I and J. 

2.2.4.2.3 Pre-permeabilisation with Triton® X-100 protocol (pre-TX) 

A. Coverslips with randomly proliferating cells were placed in separate 

wells of 4-well plates  

B. Cells were washed once in PBS 

C. Cells were prepermeabilised in 0.2% Triton® X-100 in PBS for 5 min 

at RT 

D. Cells were washed once in PBS 
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E. Cells were fixed in freshly thawed and at 65°C depolymerized 4% 

(w/v) PFA + 4% (w/v) sucrose solution in PBS for 15 min at RT 

F. Cells were washed twice with PBS 

G. Cells were quenched in 50 mM NH4Cl in PBS for 10 min 

H. Cells were washed once in PBS 

I. Followed the steps I to S as in section 2.2.4.2.1 

2.2.4.2.4 Pre-permeabilisation with Triton® X-100 protocol and 
washing with 3% BSA (pre-TX_BSA) 

Steps A-I in section 2.2.4.2.3 were followed with replacement of PBS 

washing solution with 3% BSA solution from steps E for the rest of the 

washing steps, except for the last wash in sterilized water. 

2.2.4.2.5 Methanol fixation/permeabilisation (sim-MeOH) 

A. Coverslips with randomly proliferating cells were placed in separate 

wells of 4-well plates  

B. Cells were washed once in PBS 

C. Cells were fixed and permeabilized in -20°C methanol for 6 min at -

20°C 

D. Cells were washed once in PBS 

E. Followed the steps I to S as in section 2.2.4.2.1 

2.2.4.2.6 Simultaneous permeabilisation with Triton® X-100 and 
fixation with 3.7% PFA protocol (sim-TX_PFA) 

A. Coverslips with randomly proliferating cells were placed in separate 

wells of 4-well plates  

B. Cells were washed once in PBS 

C. Cells were simultaneously prepermeabilised with 1% Triton® X-100 

and at 65°C depolymerized 3.6% (w/v) PFA + 3.6% (w/v) sucrose 

solution in PBS for 20 min at RT  

D. Cells were washed once in PBS 

E. Cells were quenched in 50 mM NH4Cl in PBS for 10 min 
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F. Cells were washed once in PBS 

G. Followed the steps I to S as in section 2.2.4.2.1 

2.2.4.2.7 Pre-permeabilisation with Triton® X-100 followed by fixation 
with methanol protocol (Pre TX-MeOH)  

Steps A-I in section 2.2.4.2.3 were followed with replacement of 4% PFA + 

4% sucrose solution with -20°C methanol for fixing for 6 min at -20°C at 

step E.  

2.2.4.2.8 Pre-permeabilisation with Triton® X-100 followed by fixation 
with methanol protocol and washing with 3% BSA (Pre TX-
MeOH_BSA)  

Steps in section 2.2.4.2.7 were followed with replacement of PBS wash 

solution with 3% BSA solution for all the washing steps from post-

methanol fixation step except for last wash with sterilized water. 

2.2.4.3 Coating coverslips with different substrates 

Different coating substrates at different concentrations, and their ratios 

were used are listed in the following table. Heat sterilisation and coating 

was done in a laminar flow hood as follows:  

Table 4: Concentrations and ratios of cell adhesion substrates 

% Collagen % Gelatin 
Ratio:         

Collagen (2.5%): 
Gelatin (0.1%) 

2.5 0.625 0.25 0.1 0.5 1 1:2 1:4 1:10 

 
A. Clean coverslips were heat-sterilised on both sides for a few 

seconds using a Bunsen burner flame and one coverslip was 

placed in each well of 4-well plates  

B. Coating substrate was then applied on top of each coverslip, 

making sure to cover the entire surface of the coverslip and left for 

15 min 
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C. Coating material was removed and coverslips were allowed to dry 

for 2-4 h 

2.2.4.4 IF for G0 and G1 cells  

G0 cells were isolated as described in section 2.1.2.6 and plated on heat-

sterilised cover slips with or without coating material. G1 cells were 

isolated as described in section 2.2.2 and isolated doublets were plated on 

heat-sterilised coverslips with or without coating material and allowed to 

settle for 2-3 h. The IF protocol was performed as described in section 

2.2.4.2.6.  

2.2.5 Validating IF protocol for embryos 

First, IVF embryos were produced by IVM, IVF and IVC as follows: 

2.2.5.1 In Vitro Maturation (IVM) 

In vitro matured non-activated metaphase II (MII)-arrested oocytes were 

derived as described previously (Oback & Wells 2003) as follows: 

A. Slaughterhouse ovaries, preferably of the same breed, were 

collected from mature cows, placed into saline (30°C) and 

transported to the laboratory within 2–4 h 

B. Cumulus-oocyte complexes (COCs) were collected in H199 

supplemented with 925 IU/ml heparin and 20 µl/ml 20% (w/v) 

albumin concentrate by aspirating 3-12 mm follicles into a 15 ml 

Falcon tube using an 18-gauge needle and negative pressure (40-

50 mm Hg). Only COCs that had an unexpanded cumulus mass 

with five or more layers and with homogenous ooplasm were 

selected for IVM  

C. COCs were washed twice with H199-10%  

D. COCs were then washed once in B199 with 10% (v/v) FCS (B199-

10%) 
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E. Ten COCs in B199-10% were transferred into a 40 µl drop of IVM 

medium in 65 mm dishes overlaid with paraffin oil 

F. Dishes were cultured in humidified 5% CO2 at 38.5°C for 18-20 h  

2.2.5.2 In Vitro Fertilisation (IVF)  

After IVM for 20-22 h, in vitro matured oocytes with expanded cumulus 

cells were subjected to in vitro fertilization (IVF) described previously 

(Schurmann, Wells et al. 2006) as follows: 

A. One hour before adding the sperm to the oocyte, a semen straw 

from a bull of a proven fertility was taken from liquid nitrogen and 

thawed in air for 5-10 min followed by thawing in a 30-35°C water 

bath for 30 s 

B. The contents of one 0.25 ml straw-containing 1 x 108 spermatozoa 

ml-1 were emptied into a 5 ml Falcon tube 

C.  Using a sterile Pasteur pipette, the entire contents of the Falcon 

tube was layered upon a Percoll gradient (45%:90%) and 

centrifuged at 700 x g for 20 min at room temperature. Meanwhile 

oocytes were prepared as in steps D to G 

D. Oocytes were removed from IVM drops using a 200 µl pipettor and 

transferred to a 35 mm Petri dish-containing HEPES buffered SOF 

(HSOF) 

E. Cumulus cells were loosened by pipetting the COCs up and down 

2-3 times. Care was taken to not to completely strip the cumulus 

cells but to only loosen them 

F. Oocytes were washed once with HSOF and then transferred to a 

Petri dish-containing equilibrated 50 µl droplets of (38.5°C, 5%CO2) 

IVF medium 

G. IVF plates were returned to the incubator (5% CO2 in air) 

H. The motile sperm fraction was aspirated from the bottom of the tube 

soon after centrifugation of sperm (step C) 
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I. It was slowly added to the tube-containing 1 ml HSOF and mixed 

gently 

J. Centrifuged at 200 x g for 5-10 min at RT 

K. Immediately supernatant was removed and the sperm pellet was 

resuspended slowly in 200 µl of equilibrated (38.5°C, 5% CO2) IVF 

medium  

L. 10 µl of the sperm preparation was used for counting the sperm 

using a Neubauer haemocytometer 

M. Sperm concentration was diluted to 1x106 sperm ml-1 using the 

equilibrated (38.5°C, 5%CO2) IVF medium  

N. Fertilization was performed by adding 10 µl of diluted sperm to the 

40 l drop-containing oocytes prepared as in step G, under oil in a 

humidified modular incubation chamber (QNA International Pty Ltd., 

Australia) gassed with 5% CO2, 7% O2, and 88% N2 

O. IVF plates were then incubated for 22-24 h 

2.2.5.3 In Vitro Culture (IVC) 

At 22-24 h post-fertilization, in vitro culturing was performed as follows:  

A. After 22-24 h post-fertilization, presumptive zygotes were washed in 

HSOF 

B. Presumptive zygotes were then washed in early synthetic oviductal 

fluid (ESOF)  

C. Presumptive zygotes were transferred to fresh ESOF droplets and 

cultured (10-15 zygotes per 20 µl droplet). All drops were overlaid 

with mineral oil and cultured in a humidified modular incubation 

chamber gassed with 5% CO2, 7% O2, and 88% N2 

D. On day 5, embryos were changed over to fresh drops of late 

synthetic oviductal fluid (LSOF) medium. All drops were overlaid 

with mineral oil and cultured in a humidified modular incubation 

chamber gassed with 5% CO2, 7% O2, and 88% N2  

E. Embryos were graded late on day 7 post-fertilization 
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F. Morphological grades 1 to 2 (B1-2) and expanded blastocysts were 

selected (Robertson & Nelson 1998) 

2.2.5.4 IF for embryos 

IVF embryos at 9, 11, 28 or 168 h post-fertilization were used for IF 

analysis. IF for these embryos was performed in 96 well plates using a fine 

glass needle to transfer them between different wells by mouth pipetting 

as follows: 

A. Embryos were transferred into a round bottomed 96 well plate-

containing 60 µl each of 65°C depolymerized 3.6% (w/v) PFA + 

3.6% (w/v) sucrose solution in PBS-PVA (PBS + 0.25% PVA) 

B. Embryos were incubated for simultaneous permeabilisation and 

fixation for 15 min at RT  

C. Embryos were washed by transferring them into other wells-

containing 60 µl of PBS-PVA wash solution 

D. Embryos were quenched by transferring them into wells-containing 

60 µl of 50 mM NH4Cl in PBS-PVA for 10 min  

E. Embryos were washed again by transferring them into other wells-

containing 60 µl of PBS-PVA wash solution 

F. Embryos were blocked with 3% BSA and incubated for 1 h at RT 

G. Embryos were transferred into wells-containing 60 µl of appropriate 

concentrations of primary antibody (Appendix II -  Table 14) and 

incubated overnight on a slowly shaking platform at 4°C 

H. Embryos were washed thrice by transferring them into other wells-

containing 60 µl each PBS-PVA wash solution 

I. Embryos were transferred into wells-containing 60 µl of appropriate 

concentrations of secondary antibody (Appendix II -  Table 14) and 

5 µg/ml of H33342 and incubated on a slowly shaking platform for 

45 min at 37°C 

J. Embryos were washed thrice by transferring them into other wells-

containing 60 µl of PBS-PVA wash solution  
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K. Finally, embryos were mounted in 3 µl of DAKO fluorescent 

mounting medium on a clean frosted glass slide and overlaid with a 

coverslip 

L. Image acquisition was performed using a confocal laser scanning 

microscope as described in section 2.1.2.10  

2.2.6 Characterising G0 vs G1 donors  

2.2.6.1 Quantifying H33342 pixel intensities 

For quantification of H33342 the following steps were followed: 

A. IF for G0 and G1 donors was performed as described in section 

2.2.4.4 

B. Image acquisition was performed using confocal laser scanning 

microscopy as described in section 2.1.2.10 

C. All images were corrected by subtracting one randomly chosen 

cytoplasmic area as background 

D. The nuclear area was marked as the region of interest (ROI) and 

‘series analysis’ was performed to compute nuclear area and 

average intensity of the entire image stack 

E. Ten nuclei were randomly selected from G0 and G1 donors and the 

total amount of H33342 intensity was calculated by adding the pixel 

intensities from all frames 

2.2.6.2 Quantifying nucleus volume 

For calculating the nucleus volume, first the area of the nucleus was 

measured from the ‘series analyses’. The height was determined by the 

difference between the lower and upper Z-limit. To capture the total pixel 

intensity the number of captured frames was automatically adjusted 

according to the distance between the lower and upper Z-limit. Total 

nuclear volume was obtained by multiplying the area of nucleus with the 

height.  
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2.2.6.3 Quantifying RNA polymerase II (Pol II) pixel intensities 

For quantification of Pol II the following steps were followed: 

A. Steps A-D in section 2.2.6.1 were followed 

B. Within each stack, the frame with the highest average pixel intensity 

(FHAPI) was chosen for analysis  

C. Average of HAPI was calculated from several cells and used for 

comparison 

2.2.6.4 Comparison of chromatin condensation  

To analyse the degree of chromatin condensation we used ImageJ 

software (NIH, 1.43u). First the background corrected FHAPIs were 

opened using ImageJ. Random line selection was used to pass through 

the image of nuclei in the H33342 channel. Using the “Analysis” tab, 

profiles were plotted and the results were copied in to Microsoft Excel. 

Using this procedure, ten random nuclei from G0 and G1 were analysed. 

Profiles from both G0 and G1 were plotted as a graph. To get a 

representative curve, the moving average of 100 pixels was calculated 

using the “Trendline” option in Microsoft Excel.  

2.3  Methods for chapter four  

2.3.1 Epigenetic characterisation of G0 and G1 cells  

2.3.1.1 IF and confocal immunofluorescence microscopy (CIFM) to 
detect histone modification 

A. IF for G0 and G1 donors was performed as described (2.2.4.4) using 

histone modification antibodies (Appendix II -  Table 14) alone or in 

combination with Pol II and other antibodies 

B. Image acquisition was performed using confocal laser scanning 

microscope as described (2.1.2.10) 

C. All the images were background subtracted by using the 

cytoplasmic area as background  
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D. After scanning the H33342 staining, the nuclear area was marked 

as the ROI and series analysis was performed 

E. The FHAPI within each stack was chosen for quantification 

2.3.1.2 Quantifying histone lysine methylations by CIFM 

For quantification of histone lysine methylations, the pixel intensities from 

FHAPI was normalised compared to corresponding pixel intensities from 

H33342. 

2.3.1.3 Production of G0 cells for ELISA 

Cells were induced to quiescence as described (2.1.2.5) in 10-15 culture 

dishes (100 mm). Cells were then washed once with 4°C pre-cooled PBS 

and culture dishes were immediately sealed with parafilm and stored at -

80°C for biochemical assays. One of the culture dishes was passaged as 

described in section 2.1.2.6 and the number of cells/100 mm culture dish 

was determined.  

2.3.1.4 Production of G1 cells for ELISA 

G1 cells were produced as described (2.2.3). The total number of cells was 

determined and stored at -80°C as described (2.2.3.2). 

2.3.1.5 Extraction of nuclear histones 

Extraction of nuclear histones for both G0 and G1 cells was performed 

using an EpiQuik
TM

 Total Histone Extraction Kit, as described in 

manufacture’s protocol. 

A. Frozen G0 and G1 cells (2.3.1.3 and 2.3.1.4) were harvested by 

trypsinisation 

B. Cells were pelleted into 1.5 ml Eppendorf tube by centrifugation at 

1000 x g for 5 min at 4°C  

C. Cells were resuspended in ‘Pre-Lysis buffer’ at 107 cells/ml and 

lysed on ice for 10 min with gentle stirring 
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D. Lysates were centrifuged at 10000 rpm for 5 min at 4°C 

E. Supernatant was removed 

F. Cells were re-suspend in lysis buffer at 200 µl/107 cells and 

incubated for 30 min on ice 

G. Cells were centrifuged at 15300 x g for 5 min at 4°C and 

supernatant fraction was transferred into a new vial 

H. 0.3 volumes of ‘Balance-DTT’ buffer was immediately added to the 

supernatant 

I. Using BSA as a standard, the protein concentration was 

determined on a spectrophotometer at 260 nm 

2.3.1.6 Analysis of histone lysine methylation by ELISA 

Different histone lysine methylations were quantified using various 

EpiQuik
TM

 fluorometric histone methylation quantification kits (Appendix I - 

Table 10) as described in the manufacture’s protocol.  

A. For determining a standard curve, a standard control provided by 

the manufacturer was diluted with ‘F2 buffer’ from 1-100 ng/μl at 7 

points (1.5, 3, 6, 12, 25, 50 and 100 ng/μl) 

B. 50 μl of ‘F2 buffer’ was added into each well 

C. For the sample, 1 μg of the histone extract was added into the 

sample wells 

D. 1 μl of the standard control at each of the different concentrations 

were added into the standard wells.  

E. All the wells were mixed well and strip wells were covered with 

Parafilm M and incubated at RT for 1-2 h 

F. Solutions from all the wells were aspirated and the wells were 

washed thrice with 150 μl of diluted ‘F1 buffer’ 

G. 50 μl of diluted ‘F3 solution’ was added to each well and incubated 

at room temperature for 60 min on an orbital shaker (100 rpm) 

H. ‘F3 solution’ was aspirated and wells were washed six times in 150 

μl of diluted ‘F1 buffer’ 
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I. 50 μl of the ‘fluoro-development solution’ was added into the wells 

and incubated for 5 min in the dark at RT 

J. Solution was transferred to a 96-well microplate  

K. Fluorescence was measured and read on a fluorescence Synergy 2 

Multi-mode plate reader at 530EX/590EM nm 

L. Histone methylation % was calculated as follows:  

 

RFU=Read Fluorescence Unit 

For quantification, RFU was plotted versus amount of standard control 

and the slope was determined as the δ RFU/ng. 

M. The amount of histone methylation was calculated by using the 

following formula:  

 

* Histone extract amount added into the sample well at step C. 

2.3.1.7 IF and CIFM for chromatin related proteins 

For IF and CIFM of different chromatin related proteins, the same 

procedure as described in section 2.3.1.1 was followed but with chromatin 

related protein antibodies as primary antibodies, except for H3.3, the 

procedure for which is as follows: 

A. Cells were simultaneously prepermeabilised with 1% Triton® X-100 

and 3.6% (w/v) PFA + 3.6% (w/v) sucrose solution in PBS for 20 

min at RT  

B. Cells were washed once in PBS 

C. Cells were quenched in 50 mM NH4Cl in PBS for 10 min 

D. Cells were washed once in PBS 
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E. Cells were treated with 4 N HCl for 1 h at 37°C 

F. Cells were washed thrice with PBS containing 0.05% Tween® 20 

(PBST) 

G. Steps I to R as in section 2.2.4.2.1 were followed 

H. CIFM was performed following the steps from B to E as in section 

2.3.1.1 

2.3.1.8 Quantifying chromatin-related proteins by CIFM 

For quantification of chromatin related-proteins the pixel intensity from 

FHPI was normalised compared to corresponding H33342 pixel intensity. 

For H3.3, as the HCL treatment interfered with DNA binding of, its pixel 

intensities were normalised on the nuclear area. 

2.3.1.9 IF and CIFM for 5mC and 5mC/H3K9me3 

5mC IF procedure was modified from as previously described (Jeon, 

Coppola et al. 2008). 

A. Both G0 and G1 cells were fixed in methanol and acetic acid (3:1) 

over night at 4°C 

B. Cells were treated with RNase (10 µg/ml) and Pepsin (0.1 mg/ml) 

for 1 h @ 37°C 

C. Cells were dehydrated in 70% and 100% ethanol then air dried 

D. Cells were treated with 4 N HCl for 15 min at RT  

E. Cells were washed in PBS 

F. Cells were blocked in PBST supplemented with 1% BSA (fatty acid-

free) 

G. Cells were incubated overnight up to 16 h with either 5mC alone or 

5mC+H3K9me3 primary antibodies at 4°C 

H. Cells were washed thrice with PBST 

I. Cells were incubated simultaneously with secondary antibody and 

H33342 at 37°C for 1 h 

J. Cells were washed thrice with PBST 
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K. Cells were finally washed in water 

L. Cells were mounted onto a clean frosted slide in 3 µl/coverslip 

DAKO fluorescent mounting medium 

M. CIFM was performed following the steps from B to E as in section 

2.3.1.1 

2.3.1.10 Quantifying 5mC by CIFM  

For 5mC, the HCL treatment interfered with DNA binding of H33342, 

therefore, 5mC pixel intensities were normalised based on the nuclear 

area. 

2.4 Methods for chapter five 

2.4.1 Epigenetic characterisation of G0- and G1-derived 
embryos 

2.4.1.1 Isolation of G0 cells for NT assays  

After inducting quiescence and isolation (2.1.2.5 and 2.1.2.6), cells were 

used for fusion with enucleated MII arrested oocytes (NT).  

2.4.1.2 Isolation of G1 cells for NT assays 

Cells were cultured, followed by mitotic shake-off and then isolated as 

described (2.1.2.7, 2.1.2.8 and 2.2.2). For NT, doublets were physically 

separated on a micromanipulation system (Nikon Narishige, MO 188) and 

the resulting single cells were used for NT. 

2.4.1.3 Somatic cell nuclear transfer  

Somatic cell nuclear transfer was performed as described previously 

(Oback & Wells 2003).  

2.4.1.3.1 IVM and zona-free oocyte generation  

A. In vitro matured non-activated metaphase II (MII)-arrested oocytes 

were derived as described in section 2.2.5.1 
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B. After IVM for 18–20 h, the cumulus-corona was dispersed by 

vortexing up to 180 oocytes in 500 µl of bovine testicular 

hyaluronidase (1 mg/ml in H199) in a 1.5 ml tube  

C. Oocytes were spun down for <3 s to recover oocytes  

D. Oocytes were washed thrice with H199-PVA 

E. The zona pellucida of oocytes with a first polar body was digested 

by 1-2 min incubation in pronase (5 mg/ml in H199). About 50 

oocytes per 50 µl drop of pronase were processed. Once the zona 

started dissolving, oocytes were washed in H199-10% and the zona 

was allowed to dissolve completely  

F. Oocytes were allowed to recover for >5 min to regain their spherical 

shape before starting enucleation 

2.4.1.3.2 Zona-free oocyte enucleation  

A. Zona-free oocytes were stained for 5 min in droplets of 5 µg/ml 

Hoechst 33342 in H199-PVA under oil and briefly washed in H199-

PVA droplets. About 40 oocytes were processed at a time 

B. Oocytes were transferred into a H199-10% droplet overlaid with 

paraffin oil in the lid of a 10 cm Petri dish on the warm microscope 

stage (32°C) 

C. Oocytes were enucleated under constant UV-light exposure using 

100X total magnification with the fluorescence lamp diaphragm 

closed as much as possible. As soon as the chromosomes were 

visible in the enucleation pipette (25–30 µm outer diameter, 

perpendicular break, no bevel or spike), the oocyte was moved out 

of the UV light  

D. Oocyte and karyoplast were separated with a simple separation 

needle (100–150 mm outer diameter, perpendicular break, closed 

fire-polished tip) 
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2.4.1.3.3 Attachment of donor cell with zona-free oocyte  

A. After isolating G0 cells as described (2.1.2.6) cells were suspended 

into 40 µL drops covered with oil. G1 cells were selected as 

described (2.4.1.2) in H199-10% droplets 

B. With a mouth pipette about 5–10 individual cells were picked up 

and added to a drop of 10 µg/ml phytohemagglutinin (PHA-P) in 

H199-PVA, already containing 5–10 oocytes. Care was taken to 

minimize the carryover of H199-0.5%, since serum proteins 

compete with the lectin-binding sites on the oocyte and donor cell 

plasma membrane 

C. Individual oocytes and donor cells were pushed together with the 

mouth pipette 

D. Couplets were incubated for at least 5min, and then groups of 5–10 

couplets were transferred into H199-PVA-washdrops. Couplets 

were kept well separated in the droplets to prevent them from 

sticking together. All pairs were checked for the presence of only 1 

round donor cell per oocyte 

2.4.1.3.4 Fusion of donor cell with zona-free oocyte  

A. 10–20 couplets were briefly equilibrated in 40 µl drops of hypo-

osmolar fusion buffer under oil and placed in a 35 mm dish with 

fusion buffer  

B. 5–10 couplets were transferred in a custom-made parallel-plate 

fusion chamber (2 mm deep, 3 mm separation, and 35 mm long, 

surgical-grade titanium electrodes mounted on a glass microscope 

slide) connected to an ECM 200 (BTX, San Diego, CA). Electrodes 

with similar specifications were available from BTX (Microslide 453, 

3.2 mm gap). All air bubbles were removed between electrodes  

C. Couplets were automatically aligned by applying an alternating 

current (AC)–field (60–100 V/cm) for 5–10sec. Fusion was 
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performed using 2 x 10 µs direct current (DC)–pulses (1.5–2.0 

kV/cm), followed by another 5–10 s AC-pulse (60–100 V/cm) at RT 

D. Couplets were removed from the fusion chamber and put back into 

H199-PVA to score fusion success, and detached or lysed donor 

cells were detected 

E. Fused reconstructs were washed through HSOF-10% FCS (without 

calcium) and transferred into drops of ESOF (Oback & Wells 2003) 

with 10% FCS (without calcium) until activation 

2.4.1.3.5 Activation of fused reconstructs  

Reconstructs were activated 3–4 h post-fusion, using a combination of 

ionomycin and 6-DMAP as follows:  

A. Thirty minutes before activation, reconstructs were washed and 

held in drops of HSOF + 1 mg/ml bovine albumin  

B. Activation was induced by incubating in 30 µl drops of 5 µM 

ionomycin in HSOF + 1 mg/ml bovine albumin for 4 min. Briefly 

wash in HSOF + 30 mg/ml bovine albumin before single culture in 5 

µl drops of 2 mM 6-DMAP in ESOF with 10% FCS 

C. After 4 h in 6-DMAP, wash reconstructs three times in HSOF and 

transfer into ESOF droplets for IVC 

2.4.1.3.6 IVC of activated reconstructs 

Reconstructed embryos were cultured in vitro for 7 days (day 0 = fusion) in 

biphasic ESOF/LSOF (Wells, Laible et al. 2003) as follows:  

A. 4 x 30 µl wash drops and 30 x 5 µl culture drops of ESOF were 

made in 60 mm Petri dish and overlaid with 8 ml of oil. A humidified 

modular incubation chamber (QNA International Pty Ltd., Australia) 

gassed with 5% CO2, 7% O2, and 88% N2 was set up  

B. Activated reconstructs were washed from HSOF through ESOF 

wash drops and into 5 µl single culture drops  
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C. On day 4 of culture (around the time of compaction), reconstructs 

were changed into fresh LSOF drops-containing 10 µM 2, 4-

dinitrophenol (Thompson, McNaughton et al. 2000) to act as an 

uncoupler of oxidative phosphorylation. Care was taken to avoid 

zona-free morulae aggregation during changeover 

D. Embryos were graded late on day 7 post-fusion  

E. Morphological grade 1-2 (Robertson & Nelson 1998) were selected 

for IF 

2.4.1.3.7 IF and CIFM for NT embryos 

NT reconstructs within 0-10 min following NT, as well as 4, 24, 72 and 168 

h post-activation were used for IF analysis. IF and confocal image 

acquisition of these embryos was performed as described in section 

2.2.5.4. 

2.4.1.3.8 Quantification of histone lysine methylation and polycomb 
group proteins at blastocyst stage 

A. All the images from confocal microscopy were background 

subtracted by using the cytoplasmic area as background  

B. Based on H33342 staining, five ICM nuclei and ten TE nuclei were 

randomly marked as the ROI and ‘series analysis’ was performed 

through all the channels 

C. FHAPI within each stack was chosen for quantification  

D. For quantification of histone lysine methylations and polycomb 

group proteins, the pixel intensities from FHAPI was normalised 

compared to corresponding H33342 pixel intensity. 
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3 Chapter Three: Donor cell isolation 
and immunofluorescence analysis 

  

3.1 Serum starvation reversibly induces quiescence 

For NT experiments, either quiescent (G0) or G1 cells were used. G0 cells 

are mainly produced by either growing the culture to confluency or by 

serum starvation. We have used serum starvation as a method to induce 

quiescence. Unfavourable conditions can trigger the cells to exit the 

normal cell cycle and force them to either enter apoptosis or quiescence. 

While the former is irreversible, the latter is not. First, we determined the 

effect of six days of serum starvation on adult male skin fibroblasts 

(LJ801). To test if serum-starved cells could re-enter their normal cell 

cycle, we re-stimulated the serum-starved cells with 10% FCS-containing 

medium after six days of serum starvation (treatment) and compared them 

with non-starved cells continuously grown in 10% FCS-containing medium 

(control). Their proliferation potential was measured using the 

xCELLigence, a non-invasive and label-free system, which screens 

cellular events in real-time. Soon after seeding in 10% FCS-containing 

medium, both treatment and control cells entered the attachment phase 

and attained similar cell index (CI) values. After changing to serum 

starvation medium (6 h post-seeding), the CI dropped considerably. This 

drop in the treatment groups indicated the loss of loosely and non-

attached cells. At the same time the CI increased in controls, indicating 

that cells were still in the attachment phase. Following their attachment 

and lag-phase, prior to entering into log-phase, the CI started to decline 

between 20-24 h. This indicated the rounding and lifting of mitotic cells 

before division (Figure 6 subset A). When cells round off, their cell surface 

area which is attached to the plate decreases, reducing the electrical 

impedance and CI value. After 24 h, control cells entered log-phase and 

continuously increased their CI up to day 4 when they reached the plateau 
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or stationary phase (CI=5.8). Cells maintained their CI during stationary 

phase from day 4-5.5. From day 5.5, they entered a decline or confluent 

phase, where limiting growth and survival factors lead to cell death, 

resulting in the decline of CI. By contrast, the CI remained constant during 

the time of serum starvation up to 6 days, indicating that cells were not 

proliferating and had entered G0. To verify that cells can still re-enter the 

normal cell cycle, we re-stimulated them by changing the medium to 10% 

FCS-containing medium. Post 13 h re-stimulation, G0 cells briefly reduced 

their CI before starting to increase, similar to the pattern observed in 

control cells before entering the proliferation phase (Figure 6 subset B). 

Increasing CI values post 17 h re-stimulation marked the entry of G0 cells 

into log-phase. They continued to proliferate and reached the same 

plateau as control cells (CI=5.8) but took nearly 3 times longer (4 vs 11 

days). This delay in reaching the plateau is possibly due to the small size 

of the initial cell population that entered G0, since many cells were washed 

away during the change to serum starvation medium. They also exhibited 

a similar length of the stationary phase as controls (both 1.5 days), before 

entering the decline or confluent phase. Overall, after re-stimulation the 

treatment curve was almost identical to the control. This demonstrates that 

serum starvation of LJ801 induces quiescence and 6 days of serum 

starvation does not affect their ability to re-enter the normal cell cycle. 

3.2  Mitotic shake-off does not interfere with cell cycle 
progression  

G1 cells can be isolated by using chemicals to inhibit cells from completing 

the G1 phase or by mitotic shake-off followed by manual selection of the 

mitotic cells. Use of chemical inhibitors might affect the epigenetic features 

of the cells. Therefore, mitotic shake-off was used as a method for 

isolating G1 cells.  
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Figure 6: Cell proliferation as measured by the xCELLigence system. The cell index is 
derived from the relative change in electrical impedance. It varies with cell number, size, 
cell morphology and strength of adhesion. Data points were taken at intervals of 15 min 
(from 1-8 h), 30 min (8 h-2 days), 1 h (2-7 days) and 4 h (7-19 days), and the final data 
point was taken after 26 days. Controls were maintained in 10% FCS-containing medium 
throughout the culture period. Treatment cells were serum-starved for 6 days in 0.5% 
FCS medium, followed by changeover to 10% FCS-containing medium. Subsets A and B 
indicate the brief decline, followed by a rise in cell index before entering the proliferation 
phase, in control and treatment, respectively; RU=relative units. 
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3.2.1 G1 cells from small-scale mitotic shake-off 

Mitotic shake-off from a 100 mm culture dish (‘small-scale production’) 

yielded two types of cells: 1) Dumbbell-shaped cell pairs, which were still 

joined by a cytoplasmic bridge and are in late mitosis-early G1 (designated 

as ‘doublets’) and 2) large round cells (designated as ‘singles’). The 

doublets were used as G1 control donors for NT and IF analysis. To 

evaluate their normal cell cycle capability, we could not use the 

xCELLigence system as the number of cells needed for obtaining a growth 

curve was higher than that could be isolated by manual selection (i.e. 

mouth pipetting). Therefore, we performed a Click-iT® EdU cell 

proliferation assay, which measures the incorporation of the nucleoside 

analogue 5-ethynyl-2-deoxyuridine (EdU) into newly synthesised DNA. 

Synthesis of DNA is used as proxy for replication. After 3.5 h of EdU 

incubation, doublets showed no EdU incorporation, demonstrating that 

they would remain prior to S-phase for at least 3.5 h following shake-off 

and manual selection (Figure 7A).  Even singles did not incorporate EdU 

during 3.5 h EdU incubation, indicating absence of S-phase cells (Figure 

7C). Hoechst 33342 (H33342), which binds the minor groove of double 

stranded DNA, staining of cells 3.5 h after EdU incubation revealed that 

93% of single cells recovered after plating formed doublets, indicating cell 

cycle progression (Figure 7 & Figure 8). We evaluated long-term EdU 

incorporation for 24 h for both doublets and singles. After EdU incubation 

for 24 h, 94% of doublets and 87% of singles incorporated EdU, 

demonstrating their ability to continue with their normal cell cycle (Figure 

7B & Figure 9). 
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Figure 7: Click-iT® EdU cell proliferation assay of mitotic shake-off cells from small-scale 
production. After mitotic shake-off, EdU incubation was performed for doublets: A) for 3.5 
h, and B) for 24 h, and C) single cells for 3.5 h. DNA was stained with H33342 (blue, 
upper row). EdU incorporation was detected as green fluorescence (lower row). 
Arrowheads and arrows indicate absence and presence of EdU incorporation, 
respectively. Arrowhead in C shows the formation of a doublet from a single cell in the 
upper row and absence of incorporated EdU in the lower row. 

 

Figure 8: Proportion of doublets and singles recovered, post 3.5 h incubation of singles 
isolated by mitotic shake-off from small-scale production. N= number of cells recovered; 
n= number of replicates. 
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Figure 9: Proportion of EdU incorporating cells harvested by mitotic shake-off from small-
scale production. Singles and doublets were isolated from mitotic shake-off, incubated 
with EdU for 3.5 h and 24 h, and processed according to manufacturer’s protocol for 
detection of incorporated EdU. N= number of cells analysed; n= number of replicates. 

 

 

Figure 10: Proportion of different types of cells isolated by mitotic shake-off as scored 
and categorised based on observation under microscope. The raw yield from mitotic 
shake consisted of doublets and two populations of singles. See text for details. 
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3.2.2 G1 cells from large-scale mitotic shake-off  

The observation that single cells from the mitotic shake-off divided to 

produce doublets, encouraged us to use all shake-off cells for biochemical 

assays. Such assays require hundreds of thousands of cells which are 

practically difficult to obtain by mouth pipetting. To produce such large 

numbers of cells, we scaled up production. Given that only ~5% of cells 

are in mitosis at any given time (‘mitotic index’), the total yield of cells 

produced by shake-off cannot exceed 5% of all cells plated. Therefore, we 

used ninety-six 100 mm culture dishes for large-scale cell production. 

Upon closer observation of cells obtained after large-scale mitotic shake-

off under the microscope, we found two populations of differently sized 

singles, in addition to the predominant proportion of doublets (Figure 10). 

Small cells were comparable to those cells seen after separation of 

doublets. These are presumably in early G1-to-S-phase. Large cells were 

nearly double the size in diameter of small singles and presumably in late 

S-phase-to-G2, metaphase. We again performed, the Click-iT® EdU cell 

proliferation assay to analyse the proliferation ability of large-scale 

produced mitotic shake-off cells.  

Almost 6% of cells incorporated EdU after 3.5 h of EdU incubation (Figure 

11), indicating that the large-scale production of G1 cells was 

contaminated with S-phase cells. However, the proportion of small-scale 

vs large-scale production cells that incorporated EdU 3.5 h and 24 h after 

EdU incubation (0% vs 0% and 94% vs 91%, respectively), and the 

proportion of cells that continued through their normal cell cycle (90% vs 

97%) remained comparable. These results demonstrated that large-scale 

production of G1 cells did not affect their ability to continue their normal 

cell cycle.  
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Figure 11: Proportion of EdU-incorporated cells isolated by mitotic shake-off from large-
scale production. Total mitotic yield represents the yield from mitotic shake-off including 
doublets and two populations of singles. Doublets were again isolated from the total 
mitotic yield. Both doublets and total mitotic yield were incubated with EdU for 3.5 h and 
24 h, and processed according to the manufacturer’s protocol for detection of 
incorporated EdU in the cells. N= number of cells analysed; n= number of replicates. 

3.3 Different IF protocols influence staining patterns in 
non-synchronised cells  

Most of the commercially available antibodies were either developed 

against human or mouse antigens. There was a need to select antibodies 

with the highest chance of cross-reactivity with their target bovine 

antigens. Commercial antibodies were selected based on the highest 
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immunogen used to generate the antibody. All antibodies, including the 

ones that were kindly donated by Dr. Thomas Jenuwein, were tested on 

the LJ801 cell line. The intention was to use a single protocol for all 

antibodies. This would enable double or triple staining with the desired 

antibodies, allowing direct comparison of the nuclear distribution and 

chromosomal staining pattern, as well as quantification of protein 
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permeabilisation (‘post-TX’) protocol for IF. Only a moderate success of 

this method with the PcG proteins prompted us to explore other protocols. 

A protocol that uses methanol as both fixation and permeabilizing agent 

was tried. Even though it worked for some (EZH2 and SUZ12), it did not 

for all PcG proteins (Figure 12). Furthermore, cells were found to have lost 

their morphological integrity, which could impede the comparison of 

distribution and localisation between different target antigens. Various 

alterations of the first protocol and other published protocols (Fischle, 

Wang et al. 2003, Plath, Fang et al. 2003) were tried. The details of all the 

tested and working protocols are summarised in Table 5. A modified 

protocol from Fischle W. et al. which used simultaneous permeabilisation 

and fixation (‘sim-TX_PFA’), was found to be suitable for all antibodies 

(Table 5). Staining pattern comparison of different protocols, particularly 

for the PcG antibodies, showed that different protocols can result in 

entirely different staining patterns, to the extent that a nuclear antigen was 

absent from the nucleus and found in the cytoplasm. For example, RING2 

and PHC, which are both nuclear proteins, were found to be absent in the 

nucleus when the methanol protocol (‘sim-MeoH’) was followed. When the 

sim-TX_PFA protocol was followed, both proteins showed their expected 

distribution, predominantly within the nucleus (Figure 12). The same was 

true when EZH2 and SUZ12 were compared for pre-TX vs sim-TX_PFA, 

respectively (Figure 12). 

3.3.1 Validation of preferred IF protocol on bovine embryos  

Validation of the sim-TX_PFA protocol on IVF embryos was done using 

antibodies against two different antigens, H3K9me3 and SOX2. H3K9me3 

is a maternal-specific epigenetic modification, which stains mainly the 

female pronucleus (Hemberger, Dean et al. 2009). SOX2 is a transcription 

factor specific to the inner cell mass (ICM) and excluded from the 

trophectoderm (TE). Using the protocol, early zygotes (11 h post-IVF) and 

blastocysts were stained with H3K9me3 and SOX2, respectively.



 

    

 

8
2
 

Table 5: Different combinations of protocols tested for standardisation. Different tested protocols, each assigned with a different roman number, are listed to 

the left side of the table (‘tested protocols’). The table lists the primary antibody (1° Ab) and corresponding 1° Ab and 2° Ab dil., as well as the working 
protocols. A protocol is considered as ‘working’ if it shows consistently the expected staining pattern for the antibody tested. The roman numbers under 
working protocol correspond to the protocols listed under tested protocols. The coloured text represents the simultaneous protocol. Only this protocol 
consistently showed the expected staining pattern for all antibodies tested. For source of antibodies refer Table 14 (Appendix I). 

 

Sl. 

No. 1 Ab 1 Ab dil. 2 Ab dil. 

Working 

protocols 

1 H3K4me3 1 in 2000 1 in 2000* II / III / V / VII

2 H3K9me1 1 in 1000 1 in 2000* I / III /I V

3 H3K9me2 1 in 1000 1 in 2000* II / III / IV

4 H3K9me3
1 in 1000 1 in 2000* III / V

1 in 2000 1 in 2000* I / II / III /I V

5 4X H3K9me2 1 in 1000 1 in 2000* I / II /III/ V

6 H3K27me3 1 in 1000 1 in 2000* II / III

7 SUZ12 1 in 25 1 in 300** III/ VIII

8 EED 1 in 100 1 in 2000* III

9 EZH2 1 in 100 1 in 2000* I / III

10 Ring2 (Rabbit) 1 in 100 1 in 2000* III

11 Ring2 (Goat) 1 in 25 1 in 300 III

12 PHC1 1 in 100 1 in 300*** I / III

13 RNA Pol II 1 in 100 1 in 300*** I / III / VIII

*       Goat anti Rabbit Alexa 568

**     Donkey anti Goat Rhodamine

***    Goat anti Mouse Alexa 546

Tested protocols :

I.      Permeabilisation with 0.2% Triton X -100 followed by 4%  

PFA  fixation  and washing  with 1X PBS  (pre-TX)  

II.     Pre-permeabilisation with  0.2% Triton X-100 followed by  

4% PFA fixation  and washing with 3% BSA  (pre-TX_BSA)

III. Simultaneous permeabilisation with 1% Triton X-100 

and fixation with 3.6% PFA (sim-TX_PFA)

IV. 4% PFA fixation  followed by Triton X- 100 (post-TX)

V. 4% PFA fixation  followed by Triton X- 100 with  1 h extra 

blocking at 4 C (post-TX_e)

VI. Pre-permeabilisation with 0.2%  Triton X -100 followed by       

fixation with Methanol (-20 C) (pre-TX-MeOH)

VII.   Pre-permeabilisation  with 0.2% Triton X -100 followed by        

Methanol fixation and washing with 3%BSA  (pre-TX-

MeOH_BSA)

VIII.  Methanol (-20 C) fixation/permeabilisation  (sim-MeOH)
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Figure 12: Comparison of PcG protein staining patterns from different IF protocols. While 
the sim-TX_PFA protocol (red outline) worked for all the PcG proteins tested, the other 
protocols gave mixed results. 

Our IF protocol was able to discriminate between the male and the female 

pronucleus, as shown by H3K9me3 staining (Figure 13), as well as 

between the ICM and TE, as shown by SOX2 staining (Figure 14). The 

ability of SOX2 to stain mainly the ICM demonstrated that there was no 

accessibility problem for the antibody to penetrate the epithelial TE layer. 

This enabled us to quantify the differences between the ICM and TE for 

different antigens using confocal IF microscopy (CIFM).  
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Figure 13: Differential H3K9me3 intensity pattern of the male and the female pronucleus 
11 h post-IVF. The upper row shows the staining of H33342 (left) and H3K9me3 (right) in 
the IVF zygote. The lower row shows the enlarged portion of the male and female 
pronucleus. H3K9me3 is stronger in the female than the male pronucleus. 

 

 

Figure 14: SOX2 distribution in Bovine IVF blastocysts. Using the sim-TX_PFA protocol, 
SOX2 specifically stained ICM nuclei. The white dotted circles indicate the ICM, which is 
identified by their small densely packed nuclei. 
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3.4 G0 cells show increased substrate adhesion  

The sim-TX_PFA protocol worked well with all antibodies tested and was 

thus chosen as protocol of choice for my experiments. However, when this 

protocol was tried on the experimental cell populations, G1 cells were lost 

from the 0.1% gelatin-coated coverslips on which they were plated, 

whereas G0 cells were efficiently retained. Different concentrations of 

gelatin and collagen, alone or in combination, were tried as coating 

substrates on the glass coverslips. A 1:2 ratio of 2.5% collagen and 0.1% 

gelatin best retained both G1 and G0 cells on the coverslips (Table 6). 

These results, together with the observation that serum-starved cells took 

longer to lift off during trypsinisation compared to non-synchronised cells, 

indicates increased adhesion of the G0 vs G1 cells.  

Table 6: Effect of different substrates and their combinations on adhesion of G0 and G1 
cells. Different percentages of gelatin, dilutions of collagen and combinations of collagen 
and gelatin were tested as coverslip-coating substrates. The table shows the % G1 and 
G0 cells retained on coverslips after simultaneous treatment with 3.6% PFA and 1% 
Triton X-100 for 20 min, followed by PBS wash. n=2. 

 
% Collagen  % Gelatin 

Ratio:Collagen (2.5%) : 
Gelatin (0.1%) 

2.5 0.625 0.25 0.1 0.5 1 1:2 1:4 1:10 

G1 (%) 10 10 13 5 3 5 81 61 17 

G0 (%) 82 56 88 92 86 88 87 91 85 

 

3.5 G0 cells contain similar DNA amount in a larger nuclear 
volume 

Previous studies have used the staining intensity of DNA-binding dyes as 

a proxy for measuring the DNA content and used this for normalising the 

intensities from other antigens (McManus & Hendzel 2005). In order to use 

DNA content as normalising factor, we first measured the total H33342 

staining intensity per cell nucleus. Integrated pixel intensity from complete 

confocal z-series showed no difference between G0 vs G1 donors (Figure 

15A). This normalisation accounts for potential bias arising from 
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differences in ploidy, for example, in ICM vs TE cells, when G0- vs G1- NT 

blastocysts were compared. TE is known to become polyploidy during 

normal development (Booth, Viuff et al. 2003). To further validate this 

method, we compared the H33342-normalised Pol II pixel intensities from 

representative stacks of G0 vs G1 donors. Pol II, which is a proxy for 

transcriptional activity, was significantly less abundant (G1/G0=1.46, 

P=0.001) in G0 nuclei, consistent with their reduced transcriptional activity 

(Figure 15B & C). The nuclear area in representative stacks was 

significantly higher in G0 compared to G1 cells (229 µm2 vs 130 µm2, 

respectively, P<0.01). The nuclear volume was also significantly greater in 

G0 vs G1 donors (2475 µm3 vs 1474 µm3, P<0.01, Figure 15D). This 

showed that G0 chromatin was spread over a larger volume than in G1 

chromatin. There was no significant difference in the total number of 

frames between G0 vs G1 donors (11.89 vs 12.3), which corresponds to 

the height of nuclei. This shows that the difference observed in volume is 

due to a more flattened area of G0 and both cell types contain the same 

amount of DNA per area. Therefore, nuclear area could also be used for 

normalisation. Except for H3.3 and 5mC, we normalized all CIFM data 

using the H33342 signal, as this was the most direct normalisation on the 

DNA amount present per nuclear volume analysed. We normalized H3.3 

and 5mC staining on nuclear area, as the IF protocol used for these two 

antigens interfered with H33342 staining.  

3.6   G0 cells have more relaxed chromatin 

Quiescent cells and proliferating cells have a different sub-nuclear 

organisation of chromosomes (Bridger, Boyle et al. 2000). Genome 

organisation changes have also been reported between interphase nuclei 

and cells that exited the proliferative cycle (Mehta, Amira et al. 2010). 

Specifically, serum withdrawal from cultured mammalian fibroblasts was 

shown to reposition all chromosomes (Mehta, Amira et al. 2010). How this 

affected chromatin condensation is not known. To analyse if serum
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Figure 15: Characterisation of G0 vs G1 donor cells. A) Integrated H33342 stain as proxy 
for DNA content. B) Validating Pol II as proxy for transcriptional activity. Pol II intensity 
from representative stacks was normalised by H33342 intensity. C) Qualitative 
comparison of Pol II immunostaining. The red staining (lower row) indicates the loading of 
pol II onto the chromatin. The white arrowheads point to dark foci in both G0 and G1, 
which can be either nucleoli or regions of no DNA. G0 had larger number dark foci than 
G1 cells. D) Integrated nucleus volume. As the cells were mounted under glass slides, 
they assumed a flat cubical structure. Hence the nuclear volume was calculated by 
multiplying nuclear area with height. The bars in the graph indicate least significant 
difference (LSD). If the LSD bar intersects two data points, then those two points are not 
significantly different (A). If the LSD bar does not intersect two data points, then those 
data points are significantly different (B & D); RU=relative units, N= number of cells 
analysed, n=number of replicates.  
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starvation affected chromatin condensation, we compared the distribution 

of H33342 pixel intensities of both G0 vs G1 donors. Since the integrated 

H33342 intensity did not change between G0 and G1 cells, a higher 

H33342 pixel intensity equals more DNA per pixel. This, in turn, indicates 

a higher degree of DNA condensation. We measured the overall pixel 

intensity distribution between G0 vs G1 donors. The results showed that 

both donors have different pixel intensity distributions, with G1 cells having 

a greater number of higher intensity pixels than G0 cells (Figure 16). This 

suggests that G0 cells have a more relaxed chromatin organisation. This 

result supports earlier reports of major heterochromatic locus 

decondensation in quiescent cells (Lu, Li et al. 2010) and a significant 

increase in nuclear volume accompanying loosening of chromatin during 

mouse germline development (Hajkova, Ancelin et al. 2008).  

 

Figure 16: Pixel intensity distribution as a proxy for chromatin condensation. The trend 
line was calculated by a moving average of 100 pixels (100per.Mov.Avg). For computing 
the moving average, the 100 highest pixel intensities (1

st
 to 100

th
) were averaged. Then 

next 100 pixel intensity were averaged (i.e. 2
nd

 to 101
st
). This process was reiterated (3

rd
 

to 102
nd

 etc.) until the last 100 pixel intensities were averaged; RU=relative units, N= 
number of cells analysed, n=number of replicates. 
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3.7 Discussion  

3.7.1 Isolation of G1 cells  

Serum starvation as a method for inducing cellular quiescence is a well-

established method. Our results show that LJ801 adult ear skin fibroblast 

can be induced into quiescence and can be re-induced into normal cell 

cycle progression. The fact that the growth curve mirrored the non-starved 

control lends credibility to this method. Isolation of G1 cells by mitotic 

shake-off has been used for decades (Moser, Fallon et al. 1981, 

Kasinathan, Knott et al. 2001a). However, different cell lines have different 

cell proliferation rates and also might respond differently to shake-off. It 

was evident from our observation that before entering into cytokinesis, 

cells would increase their height and round up. Then they would form a 

dumbbell shape and progress through cytokinesis to form new cells. 

These new cells would then reduce their height and flatten out again. It 

was demonstrated earlier that increase in height and rounding up of cells 

would correspond to late anaphase and flattening of the cells would 

correspond to cells entering into interphase (Sanger & Sanger 1980). The 

flattening of cells is required to enter into S-phase but not for the 

progression of early to late G1 phase (Hansen, Mooney et al. 1994). Cells 

are required to flatten post-mid G1 phase and would remain flattened until 

the early anaphase by maintaining contact with the surrounding cells 

(Sanger & Sanger 1980). The cell rounding starts with internalisation of 

adhesion molecules and formation of retraction fibres (Thery & Bornens 

2008). The whole idea behind the shake-off procedure is to exploit this 

behaviour of cells during culture. The cells which are rounded or rounding 

have less surface contact and would come off easily during a brief shake-

off. The cells that would be dislodged easily would be the ones either in 

late anaphase or early G1 phase. The results from our small-scale mitotic 

shake-off trials support this theoretical assumption. The result (94% 

doublets continuing their cell cycle progression) with shake-off doublets 
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after 24 h EdU incubation is in agreement with earlier result (Kasinathan, 

Knott et al. 2001a). The same study observed that nearly 60% of cells 

entered S-phase 2-3 h post-isolation. This contradicts our results, which 

showed no cells entering S-phase for up to 3.5 h post-isolation (Figure 7 & 

Figure 9). The difference might be due to the length of the G1 phase. 

Kasinathan et al. used fetal fibroblasts, whereas our study used adult skin 

fibroblasts at passage 6. Fetal fibroblasts tend to grow more rapidly during 

earlier passages compared to adult fibroblasts and it is not clear which 

passage they have used for studying entry of doublets into S-phase. The 

observation that G1 cells did not adhere well to coverslips 3.5 h post-

isolation and incubation, suggests that they were slow in the flattening 

process. Since cell flattening is required for better adhesion and entry into 

S-phase, this corroborates our results that the shake-off cells did not enter 

S-phase post 3.5 h isolation and incubation. 

The main obstacle for conducting biochemical assays was the limited 

number of G1 cells that can be manually picked by mouth pipetting. To 

overcome this problem, we performed large-scale isolation and 

characterisation of all the cells originating from mitotic shake-off. Due to 

the characteristic rounding off and reduced surface contact of mitotic cells, 

one would expect a high proportion of doublets and large round single 

cells after mitotic shake-off. The proportions of cells obtained during our 

shake-off were in line with this expectation. During this large-scale 

isolation of G1 cells, the observed result of nearly 6% small cells entering 

S-phase within 3.5 h post-plating indicates the drawback in the procedure. 

Doublets started to peak at a certain stage (20-24 h post-plating) and 

thereafter, their number would recede quickly in next 20-30 min. Due to 

the requirement of performing shake-off within this short period, the mitotic 

shake-off involved several people to shake-off plates simultaneously. 

During this rapid processing, there is always a chance that some cells, 

which have already passed the G1-S phase restriction point and entered 

the mitogen-independent division phase, would come off as well. This 
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variation to the small-scale procedure could be introduced by different 

people using different shake-off technique (strength of tapping etc.). Even 

different types of plate shakers (equipment) could introduce variability. 

Nevertheless, several lines of evidence demonstrate that the large-scale 

method produced a high proportion of G1 cells for biochemical assays. 

First, no doublets entered S-phase 3.5 h post shake-off. Second, 93% of 

single cells developed into doublets. Third, 97% of cells continued cell 

cycle progression 24 h after shake-off. Collectively, these results suggest 

the suitability of large-scale shake-off for generating sufficient G1 cells for 

biochemical studies.  

3.7.2 Optimisation of a common IF protocol  

Different IF protocols resulted in varied staining outcomes, some showing 

a complete shift of PcG antigen localisation. Such major differences were 

observed only in the sim-MeoH and the pre-TX methods. Some of the 

epitopes are very sensitive to methanol and need acetone to permeabilise, 

if methanol was used as both permeabilizing and fixing agent (Abcam 

technical support). Furthermore, methanol was reported to be the least 

preserving chemical with respect to maintaining microtubule integrity 

(McMenamin, Reinsch et al. 2003), which could be attributed to its 

coagulating and protein-denaturing property. We also observed that 

methanol-treated cells lost their defined morphology. This impact on the 

cytoskeleton could contribute to antigen relocalisation. In case of the pre-

TX method, use of Triton X-100 before fixing could result in leakage of 

certain nuclear antigens into the cytoplasm in the absence of a fixing 

agent. It is to be noted that our observed differences in the protocol mainly 

affected PcG antigens, which are basically localised to the nucleus. The 

sim-TX_PFA protocol gave a better preservation of overall cell structure, 

as PFA is known to preserve the proteins in their natural tertiary structure 

and has been reported to preserve the structure of cells and PTMs on the 

proteins (Bhadriraju, Elliott et al. 2007). It is not only a method of choice 
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for detecting soluble proteins like cytokines by commercial companies, but 

also for detecting histone PTMs (Fischle, Wang et al. 2003).  

The sim-TX_PFA protocol clearly stained the ICM which can be a problem 

with other protocols. It also has the added advantage of reducing the 

number of steps involved in the IF protocol. This was a practical 

advantage for staining the limited number of SCNT embryos, reducing the 

chance of losing or damaging them during every step involving mouth 

pipetting.  

3.7.3 Nuclear architecture in G0 cells  

Comparing the DNA content of both G0 vs G1 donors showed no 

difference in total DNA content between the two. Cells arrested by serum 

starvation and other methods have been shown to produce a uniform G1 

amount of DNA (Cooper 1998). This supports our earlier evidence that the 

mitotic cells used in our study post 3.5 h shake-off were in G1. Normally, 

both in vivo and artificially induced quiescent cells were characterised by a 

reduced transcriptional rate and smaller cell size (Yusuf & Fruman 2003, 

Srivastava, Mishra et al. 2010). The smaller size was due to reduced 

cytoplasmic, not nuclear area (Tani, Morris et al. 2000). Very few studies 

have investigated the nucleus of serum-starved cells. We have specifically 

compared the nucleus of cells synchronised in G0 by serum starvation vs 

mitotically picked cells in G1. Since the G1 cells used in our study reflect 

normal G1 cells in culture, as they were not treated with any chemicals to 

synchronise them, our results reveal the true difference between serum-

starved G0 and early G1 cells. It is to be noted that the chemicals used to 

synchronise the cells in G1 stage will not stop the nucleus from growing 

(Maeshima, Iino et al. 2010) and hence they would not reflect the true G1 

cell population in culture. The observed increase in nuclear volume and 

area in G0 cells could simply be due to the fact that G1 cells represent the 

earliest cell cycle stage when cell volume is mimimal. What determines the 

cell and nuclear volume of G0 cells is not well established and beyond the 
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scope of this study. For example, it is not clear at what stage of G1 the 

cells enter quiescence, even though they could already make this decision 

in S-phase (Brooks, Bennett et al. 1980). It can be speculated from our 

results that the cells after serum withdrawal progress to a late G1 stage, 

increasing their cell and nuclear size before entering quiescence. Our 

observed results of increased nuclear size are in close agreement with 

earlier published data (Moser, Fallon et al. 1981).  

Nuclear architecture plays a critical role in modulating gene expression. 

Genes associated with the inner nuclear membrane lamina and peri-

nucleolar chromatin tend to be silenced, while genes associated with the 

nuclear bodies, nuclear pore complex and nuclear speckles tend to 

associate with a transcriptionally active state (Zhao, Bodnar et al. 2009). 

Active genes can be moved to heterochromatin to be silenced and 

heritably transferred (Brown, Baxter et al. 1999, Grogan, Mohrs et al. 

2001). They also can be moved away just after initiation of transcription 

(Josse, Mokrani-Benhelli et al. 2012) or to be transcribed (Francastel, 

Magis et al. 2001). In this context, the observed difference between G0 vs 

G1 chromatin distribution would suggest a differential potential for many 

genes to be reactivated. Even though serum-starved cells can regain their 

original nuclear organisation (Bridger, Boyle et al. 2000), their less 

condensed chromatin might be more amenable to NT-induced rapid 

chromatin remodeling in the context of an MII oocyte. Furthermore, gene-

rich chromosomes, which are conducive for transcription and binding of 

chromatin-remodelling complexes, occupy more space in the nucleus than 

gene-poor chromosomes of similar size (Croft, Bridger et al. 1999). Such 

large decondensed chromatin allows better accessibility to transcription 

factors (Rawlings, Gatzka et al. 2011), supporting the notion of better 

reprogramming of G0 chromatin by chromatin remodelling complexes.  
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4 Chapter Four: Epigenetic 
differences between G0 and G1 

Donors 
 

4.1 G0 donors are globally histone lysine hypomethylated  

Histone methylation is one of the key epigenetic modifications that 

governs heritable gene expression by conveying transcriptional memory. 

Hypomethylation was correlated with the ability of quiescent lymphocytes 

to improve in vitro development after NT (Baxter, Sauer et al. 2004). Here 

we sought to correlate increased in vivo cloning efficiency of G0 cells with 

their histone methylation status. To explore this, histone lysine methylation 

quantification of G0 vs G1 control donor cells was compared using CIFM. 

Specifically, H3K -4me3, -9me1, -9me2, -9me3, -27me3 and pan H3/H4 

methylation were compared.  

4.1.1 H3K4me3 

In ES cells, H3K4me3 and H3K27me3 together forms a bivalent domain 

on binding sites of a majority of pluripotent-associated transcription 

factors, such as Nanog, Sox2 and Oct4. This keeps those target genes 

poised for expression during later development (Bernstein, Mikkelsen et 

al. 2006). However, when present as the only modification, H3K4me3 is 

generally associated with active genes. We found that while it was less 

abundant in G0 donors (G1/G0=1.91, P<0.05, Figure 17), its staining 

pattern between the two donors remained similar (Figure 18)  

4.1.2 H3K9me 

H3K9me1 is found at the TSS of active genes, whereas H3K9me2 is 

associated with inactive genes (Barski, Cuddapah et al. 2007), X-

inactivation and DNAme-independent imprinting (Lewis, Mitsuya et al. 
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2004). H3K9me2 also suppresses Oct4 and Nanog transcription in 

somatic cells and its demethylation is important to reactivate these two 

core pluripotency genes during reprogramming (Freberg, Dahl et al. 2007). 

While H3K9me1 abundance did not differ between G0 vs G1 donors 

(G1/G0=0.96, P=0.92), H3K9me2 was more abundant in G1 (G1/G0=1.64, 

P<0.05, Figure 17). Both their staining pattern was similar between G0 vs 

G1 donors (Figure 18). 

H3K9me3 is mainly found in pericentric heterochromatin (Peters, O'Carroll 

et al. 2001) and also silent genes of euchromatin. Its heterochromatic foci-

like staining was confirmed in interphase nuclei of LJ801 fibroblasts, 

where these foci excluded the Pol II staining (Figure 19). It is implicated in 

resisting the reprogramming of somatic nuclei to pluripotent (Fodor, 

Kubicek et al. 2006, Freberg, Dahl et al. 2007). In MEFs, experimentally 

induced H3K9me3 stably transmitted through cell divisions in the absence 

of strong transcriptional cues (Hathaway, Bell et al. 2012). Therefore, it 

was important to examine the abundance of this trimethyl modification. G0 

donors were significantly hypomethylated for H3K9me3 (G1/G0=2.39, 

P<0.05, Figure 17). Apart from the significant difference in quantity, 

qualitative differences in staining patterns were also apparent. There were 

mainly two types of staining patterns in G0: 1) Dark foci with dissipating 

intensity in the centre (Figure 20A & Figure 20B) and 2) homogeneous 

staining (Figure 20C). G1 donor nuclei, on the other hand, contained 

condensed dark foci (Figure 20D & Figure 20E). Furthermore, some G0 

cells showed almost no staining for H3K9me3. 

4.1.3 Double staining of H3K4- and H3K9me3  

H3K4me3 foci-like staining in both G0 and G1 resembled foci from 

H3K9me3 staining. H3K4me3 foci also excluded Pol II (Figure 21A & B). 

Therefore, we examined if there was co-existence of H3K4me3 and 

H3K9me3 at these foci in G0 and G1 donors. In G0 cells, foci-like H3K4me3 

staining coexisted with H3K9me3. However, some cells which lacked 
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H3K4me3 foci still showed H3K9me3 foci (Figure 21C & D). In G1 cells, we 

found 100% co-existence of H3K9me3 foci with H3K4me3 (Figure 21E). At 

present, there are no reports of H3K4me3 foci-like staining co-occurring 

with H3K9me3 in any species. Occurrence appears to occur in pericentric 

or constitutive heterochromatin regions, as can be deduced from 

H3K9me3 staining. H3K4me3 antibody from different sources also showed 

foci-like staining excluding Pol II. 

 

Figure 17: Abundance of histone methylations between G0 vs G1 donors by CIFM. The 
bars in the graph indicate LSD If the LSD bar intersects two data points, then those two 
points are not significantly different (H3K9me1). If the LSD bar does not intersect two 
data points, then those data points are significantly different (PanH3/4Kme1/2/3, 
H3K4me3, H3K9me2 and -me3, H3K27me3); N= number of cells analysed, n=number of 
replicates 
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Figure 18: Qualitative comparison of different histone methylation profiles between G0 vs 
G1 donors by CIFM. The images indicate the representative single frame from a confocal 
stack. 
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Figure 19: Heterochromatic foci-like staining of H3K9me3 in interphase nuclei of bovine 
LJ801 fibroblasts. 

 

Figure 20: Different patterns of H3K9me3 methylation in serum-starved G0* donors (A 
and C) compared to G1 donors (D). A) Foci dissolving from the centre. Boxed area “a'” is 
shown as enlarged detail in ‘B’, to highlight the dissolving foci. C) Homogeneous staining. 
D) Strongly condensed foci. Boxed area “d'” is shown as enlarged detail in ‘E’, to highlight 
the condensed foci. (*Pixels are adjusted using look up table for better visualisation). 
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Figure 21: Comparison of foci like staining for H3K4me3 and H3K9me3 between G0 vs 
G1 donors by CIFM. A) G0 donors exhibiting foci-like staining for H3K4me3. Arrows 
indicate these foci excluding staining of Pol II. B) G1 donors exhibiting the foci-like 
staining for both H3K4me3. Arrows indicate co-occurrence of these foci. C) G0 donors 
exhibiting foci-like staining for both H3K4me3 and H3K9me3. D) G0 donors exhibiting 
absence of foci-like staining for H3K4me3 but foci pattern for H3K9me3. E) G1 donors 
exhibiting foci-like staining for both H3K4me3 and H3K9me3. 
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4.1.4 H3K27me3 

H3K27me3, which is a part of bivalent domains in ES cells, is also 

involved in DNA-independent genomic imprinting, X-inactivation and 

regulating the developmentally important Hox genes. We found that while 

the staining pattern between the two donors remained similar (Figure 18) it 

was less abundant in G0 donors (G1/G0=1.82, P<0.01, Figure 17). Suv39-/- 

cells, which fail to establish H3K9me3 at pericentric regions, resort to 

H3K27me3 as compensatory mechanism (Peters, Kubicek et al. 2003). 

Even though quiescent cells lost most of the H3K9me3 at pericentric 

heterochromatin, we did not see any compensatory H3K27me3 foci. 

4.1.5 Pan-histone methylation 

With the exception of H3K9me1, which was unchanged, histone 

methylations associated with transcriptionally permissive (H3K4me3) or 

repressive (H3K9me2, -me3 and H3K27me3) chromatin were generally 

hypomethylated in G0 donors. To confirm histone hypomethylation in G0 

donors, we used a pan H3/4K antibody that recognises H3K -4/me2/me3, -

9me2/me3 (but not me1), -27me3, -36me2/me3 (me3 faintly), and -

K79me2, and H4K20me3 (another pericentric heterochromatin-associated 

modification) (Peters, O'Carroll et al. 2001). We observed that this range 

of H3/4K methylation was reduced in G0 cells (Figure 17), confirming the 

hypomethylation seen with individual epigenetic modifications. Histone 

methylation patterns in G0 cells largely resembled the earlier reports on 

naturally quiescent B lymphocytes (Baxter, Sauer et al. 2004). 

4.2 Biochemical evidence for global histone 
hypomethylation 

The results of the CIFM needed to be validated using an-independent 

biochemical assay. Since it was difficult to get a sufficient amount of G1 

control cells for western blot analysis, we performed an epifluorescence-

based ELISA assay. For ELISA experiments, we used nuclear extracts of 
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large-scale produced mitotic G1 cells. ELISA results mirrored the results 

obtained from CIFM. Using ELISA, we found that H3K9me1 was 

unchanged and H3K -4me3, -9me2, -9me3 and -27me3 hypomethylated, 

confirming the results from CIFM (Figure 22) Even though these results 

were similar, there were also differences in the G1/G0 ratio between CIFM 

and ELISA. CIFM showed a greater difference between G0 and G1 than 

ELISA for H3K -4me3, -9me2, -9me3 and -27me3 (Table 7). For 

H3K9me1, the ELISA results confirmed the lack of significant changes 

previously shown by CIFM.  

 

 

Figure 22: Abundance of different histone methylations between G0 vs G1 donors by 
ELISA. The bars in the graph indicate LSD. If the LSD bar intersects two data points, then 
those two points are not significantly different (H3K9me1). If the LSD bar does not 
intersect two data points, then those data points are significantly different (H3K4me3, 
H3K9me2 and -me3, H3K27me3); n=number of replicates. 
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Table 7: Comparison of G1/G0 ratio between ELISA and CIFM.  

 
 
 
 
 
 

  

Figure 23: Abundance of different histone acetylations between G0 vs G1 donors by 
CIFM. The bars in the graph indicate LSD. If the LSD bar intersects two data points, then 
those two points are not significantly different (H4K16Ac). If the LSD bar does not 
intersect two data points, then those data points are significantly different (H3K9, H4K5 
and H4K12 -Ac); RU=relative units, N= number of cells analysed, n=number of replicates. 
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4.3 G0 histone acetylation levels were non-uniform 

Histone acetylation is generally linked to transcription of genes and 

decondensed chromatin. In mammals, hyperacetylation of donors and 

embryos has been linked to increasing the rate of blastocyst development 

(Enright, Kubota et al. 2003). This prompted us to look into the histone 

acetylation profile of G0 vs G1 donor cells. Unlike the overall histone 

hypomethylation of G0 donors, acetylation levels could not easily be 

generalised for G0 vs G1. While H3K9 and H4K5 were found to be 

hyperacetylated (G1/G0= 2.68 and 4.15, P<0.01 and 0.01, respectively) in 

G1, H4K12 was hyperacetylated (G1/G0=0.45, P<0.05) in G0. No significant 

difference (G1/G0=0.94, P=0.84) was found in the H4K16 acetylation 

(Figure 23). Even though H3K9 was hypomethylated, this did not lead to 

an increase in H3K9 acetylation. No difference in staining pattern was 

found for any of these modifications tested between G0 vs G1 (Figure 24).  

4.4 Histone isoform H3.3 did not change in G0 

The overall histone hypomethylation in G0 cells could be simply due to 

replacement of H3 and H4 dimers from nucleosomes with newly 

synthesised non-modified H3 and H4. Newly synthesised histones contain 

deposition-related H4K12Ac (Ma, Wu et al. 1998) and possibly H3K9me1 

(Loyola, Bonaldi et al. 2006). Quiescent cells were reported to synthesise 

H4, and H3.3 as the only H3 variant (Wu, Tsai et al. 1982). However, 

HIRA, a chaperon responsible for H3.3 incorporation, was reported to be 

unchanged between quiescent and dividing cells (Polo, Theocharis et al. 

2004). Therefore, we determined the abundance of H3.3 between G0 vs 

G1 cells. By CIFM, we found that even though there was an increase in 

H3.3 abundance in G0s (G1/G0=0.71), it was not significant (P=0.25, 

Figure 25).  
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Figure 24: Qualitative comparison of different histone acetylation profiles between G0 vs 
G1 donors by CIFM. 

 

 

Figure 25: Quantitative comparison of H3.3 abundance between G0 vs G1 donors by 
CIFM; RU=relative units, N= number of cells analysed, n=number of replicates. 
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4.5 G0 cells down-regulated most chromatin-related 
proteins.  

Histone modification is achieved by a variety of chromatin-modifying 

enzymes and –associated proteins. One such group of proteins, the PcG, 

are responsible for maintaining several developmentally crucial genes. 

Differences in the expression of PRC1 and PRC2 proteins were compared 

using CIFM. Whilst there was no qualitative difference between their 

staining patterns, EED (G1/G0=2.54, P<0.001), SUZ12 (G1/G0=2.82, 

P<0.05), PHC1 (G1/G0=2.63, P<0.01) and RING2 (G1/G0=2.4, P<0.05) 

were significantly down-regulated in G0 donors (Figure 26 & Figure 27). 

EZH2, an enzyme that trimethylates H3K27, did not show any differences 

in localisation between G0 vs G1 donors (Figure 26). We found that even 

though there was an increase in EZH2 abundance in G1 cells 

(G1/G0=1.68), it was not significant (P=0.12, Figure 27). Likewise, HDAC1, 

an enzyme responsible for histone deacetylation, proliferation and 

embryonic development (Lagger, O'Carroll et al. 2002), showed no change 

in localisation and abundance (G1/G0=0.99, P=0.99) between G0 vs G1 

donors (Figure 26 and Figure 27). 

HP1α, which recognises H3K9me3 to form higher-order structure at 

pericentric heterochromatin, favours histone variant H2A.Z for its 

interaction and proper binding. Since H3K9me3 was less abundant in G0 

donors, we investigated the abundance of H2A.Z in G0 vs G1 donors by 

CIFM. H2A.Z showed no change in localisation pattern between G0 vs G1 

donors (Figure 26). Similar to H3K9me3 hypomethylation, G0 donors also 

down-regulated H2A.Z compared to G1 (G1/G0=2.76, P<0.05, Figure 27). 

4.6 DNA was hypomethylated in G0 donors 

DNAme is involved in genomic imprinting, X-inactivation and gene 

repression. There is a complex cross-talk between DNAme and histone 

modifications. In ES cells, H3K9me3 mediates DNAme at pericentric
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Figure 26: Qualitative comparison of different chromatin-related proteins between G0 vs 
G1 donors by CIFM. 
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Figure 27: Abundance of different chromatin-related proteins between G0 vs G1 donors 
by CIFM. The bars in the graph indicate LSD. If the LSD bar intersects two data points, 
then those two points are not significantly different (EZH2 and HDAC1). If the LSD bar 
does not intersect two data points, then those data points are significantly different (EED, 
SUZ12, PHC1, RING2, H2A.Z); RU=relative units, N= number of cells analysed, 
n=number of replicates. 

heterochromatin (Lehnertz, Ueda et al. 2003), while DNAme is necessary 

for stable perpetuation of H3K9me3 (Hathaway, Bell et al. 2012). Since G0 

donors were found to be H3K9me3 hypomethylated and had either no or 

dissolving foci at pericentric heterochromatin, we investigated whether 

serum starvation also affected DNAme. By using a specific antibody 

against 5mC, we found that 5mC had varied patterns in G0 and a single 

pattern in G1 donors, similar to H3K9me3 (Figure 28A). Simultaneous 

staining with H3K9me3 revealed considerable co-occurrence of these 

epigenetic modifications in both G0 vs G1 donors, particularly at the foci 

(Figure 28B). G0 donors contained overall less DNAme than G1 controls 

(G1/G0=1.64, P<0.05, Figure 28C).  
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Figure 28: Characterisation of DNA methylation between G0 vs G1 donors. A) Different 
patterns of DNAme as detected by anti-5mC antibody in serum-starved G0 (a-c) 
compared to G1 donors (d). B) Both G0 and G1 donors exhibit the foci-like staining for 
both 5mC and H3K9me3. Arrows in merged images indicate co-localisation of these foci. 
C) Abundance of DNAme as detected by anti-5mC antibody between G0 vs G1 donors by 
CIFM. Star indicates P<0.05; RU=relative units, N= number of cells analysed, n=number 
of replicates. 
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4.7 Discussion  

Both G0 and G1 cells have been successfully used as donors for cloning. 

However, G0 donors more than doubled the cloning efficiency to term and 

beyond compared to early G1 donors. We know of no other treatment that 

has resulted in such a dramatic increase in cattle cloning efficiency. In 

mouse donor histone hypomethylation correlated with in vitro blastocyst 

development (Baxter, Sauer et al. 2004). Therefore, in order to elucidate 

structural changes correlate with that increased G0 donor 

reprogrammability, we investigated their epigenetic features compared to 

G1 controls. By using antibodies against specific histone methylations and 

acetylations states, chromatin-related proteins and DNAme, we have 

investigated the epigenetic alterations that might contribute to the better 

reprogramming of G0 donors. We found that G0 cells were globally histone 

and DNA hypomethylated, down-regulated most of their chromatin-related 

PcG proteins and showed significant differences in acetylation abundance. 

4.7.1 Histone and DNA hypomethylation in G0  

PcG enzyme EZH2 is responsible for establishing H3K27me3 and it did 

not vary between G0 vs G1 cells. In the absence of H3K9me3 at pericentric 

heterochromatin, H3K27me3 can act as a compensatory mechanism to 

mark pericentric heterochromatin (Peters, O'Carroll et al. 2001). Therefore, 

in the presence of EZH2 and down-regulation of H3K9me3, we expected 

hypermethylation of H3K27me3. Other studies have shown that this PcG 

protein works as part of multimeric domains (Schwartz & Pirrotta 2007). 

Therefore, down-regulation of other PcG proteins, such as EED and 

SUZ12 could explain the inability of the EZH2 to remethylate H3K27me3. 

In the context of reprogramming, histone and DNA hypomethylation would 

provide several advantages to G0 chromatin. H3K9me3 is involved in 

maintaining pericentric heterochromatin and permanent repression of 

genes in differentiating cells that resist reprogramming (Ait-Si-Ali, 
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Guasconi et al. 2004, Fodor, Kubicek et al. 2006). Use of H3K9me3 

inhibitors increased the efficiency of iPS cell-derivation (Pasque, Jullien et 

al. 2011). An extra layer of reinforcement of the stability of 

heterochromatic sub-domains is achieved by DNAme (Lehnertz, Ueda et 

al. 2003). Therefore, reduction in both DNAme and H3K9me3 would help 

in de-repression of differentiation and pluripotency-associated genes by 

relaxing heterochromatin. G9a is involved in H3K9me2 methylation and 

directs DNAme. Its removal improves reprogramming efficiency after NT 

(Pasque, Jullien et al. 2011). Hypomethylation of H3K9me2 might help in 

resetting of genes in euchromatic regions, specifically pluripotency genes 

e.g. NANOG, SOX2 and OCT4, and imprinted genes. Likewise, 

hypomethylation of H3K27me3 could aid in de-repression of 

developmentally regulated and imprinted genes. Hypomethylation of 

H3K4me3 would help to erase the activation cue for the transcription 

machinery during quiescence and reset developmentally-associated and 

cell-specific gene expression patterns. Together with hypo-H3K4me3, 

hypo-H3K27me3 might also help in resolving of bivalent domains. 

4.7.2 Histone acetylation in G0  

Patterns of histone lysine acetylation were more complex than the general 

reduction in histone methylation in G0 cells. Histone acetylation, commonly 

marking active genes, is known for its dynamic regulation. 

Hypomethylation of H3K9me2 and -me3 did not result in the reciprocal 

hyperacetylation of H3K9. Serum starvation or energy deprivation could be 

predicted to result in accumulation of NAD+ (Liu, Knabb et al. 2009), which 

may activate NAD+-dependent SIRT1, an HDAC (Noriega, Feige et al. 

2011) that can deacetylate H3K9Ac (Khare, Habib et al. 2012). K9Ac is 

dynamically targeted to H3K4me3 bearing histones. It’s rapid and 

continuous turnover is achieved by the combined action of HATs and 

HDACs, even in quiescent cells (Edmunds, Mahadevan et al. 2008, Lee & 

Mahadevan 2009). In Dictyostelium, lack of H3K4me3 resulted in loss of 
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dynamic H3K9Ac (Hsu, Chubb et al. 2012). These observations support 

concomitant H3K9Ac hypoacetylation and H3K4me3 hypomethylation in 

G0 cells.  

In mammals, HDAC1 is responsible for deacetylation of H4K5Ac and 

initiating transcriptional repression (Ma & Schultz 2008). Even though we 

did not observe any increase in HDAC1 abundance, there was a reduction 

in H4K5Ac in G0 cells. Both HDACs and HATs appear to be part of the 

same multimeric groups, which allows them to dynamically target both 

active and silent genes (Wang, Zang et al. 2009). Therefore, in G1 cells 

even though HDAC1 is present, HATs responsible for H4K5Ac could 

counteract and re-acetylate it. During serum starvation cyclic AMP goes 

up (Kram, Mamont et al. 1973). Mitochondrial acetyl CoA, a major supplier 

of acetyl groups for histone acetylation (Madiraju, Pande et al. 2009), 

might be limited under serum-starved condition due to its phosphorylation 

by AMP-activated protein kinase (AMPK) (Park, Gammon et al. 2002). 

This lack of acetyl group availability could prevent the re-acetylation of 

H4K5Ac in G0 cells. There was no difference in H4K16Ac between G0 vs 

G1 cells. H4K16Ac resists chromatin condensation and is hypoacetylated 

during mitosis. It can be noted that G1 cells have the lowest amount of 

H4K16Ac during the normal mammalian cell cycle (Vaquero, Scher et al. 

2006) and G0 cells maintained that basal level.  

H4K12Ac was the only modification, found to be up-regulated in G0. To 

explain this, we considered the following possibility. In addition to G1 and 

S stages, H4 is also synthesised and incorporated into chromatin during 

G0 (Wu, Perry et al. 1983). As H4K12Ac is a deposition-related 

modification on newly synthesised histones (Ma, Wu et al. 1998), there is 

also the possibility that in the S-phase preceding the G0 entry, newly 

synthesised H4 is incorporated into chromatin. Lack of H4K12Ac 

deacetylase in G0 could result in retention of this modification. Since the 
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enzyme responsible for deacetylation of H4K12Ac is unknown, its lack of 

abundance or activity could not be verified. 

Treating donors with HDACi, such as TSA, which results in histone 

hyperacetylation, correlates with increased development to blastocyst and 

birth of live animals in mammals (Monteiro, Oliveira et al. 2010). G0 donors 

had hyperacetylated H4K12, hypoacetylated H3K9 and H4K5 and basal 

levels of H4K16Ac. The beneficial effect of hyper-acetylated H4K12 in G0 

cells thus seems to be dominant over the reduced H3K9 and H4K5 

acetylation. HDACi treatment results in global hyperacetylation of H3/H4, 

but it is not clear whether it is global hyperacetylation of histones or the 

hyper-acetylation of a specific subset of histones and lysines that is 

responsible for the beneficial effect.  

4.7.3 Molecular basis for relaxed chromatin in G0 

Based on the H33342 staining distribution, we have observed a relaxed 

chromatin pattern in G0 donors. This correlated with the down-regulation of 

H3K9me3 and DNAme, the marks of pericentric heterochromatin. There 

were also other factors that contributed to relaxed chromatin in G0, 

probably in euchromatic regions. PRC1 is involved in chromatin 

compaction. Recruitment of PRC1 depends on H3K27me3 signals (Cao, 

Wang et al. 2002, Fischle, Wang et al. 2003). With reduced H3K27me3 in 

G0 cells, PRC1-mediated chromatin compaction is less likely. During 

serum starvation, intracellular AdoMet levels are reduced (Fuso, Seminara 

et al. 2005). In the absence of co-factor AdoMet, the EZH1-containing 

PRC2 complex could condense chromatin (Margueron, Li et al. 2008). 

However, down-regulation of SUZ12 and EED would prevent such 

chromatin condensation. G0 cells also down-regulated PRC1 proteins 

PHC1 and RING2. In particular, down-regulation of RING2 may also 

contribute to lack of chromatin condensation in G0 cells, as RING2 is 

implicated in chromatin compaction (Eskeland, Leeb et al. 2010). In the 

same way, down-regulation of H2A.Z, which is also involved in higher-
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order chromatin structure (Suto, Clarkson et al. 2000), would aid in 

relaxing G0 chromatin. Cumulatively, all these observations correlate with 

the observed relaxed chromatin configuration in G0 vs G1 cells.  

Chromatin compaction increases with lineage commitment compared to 

non-committed ES cells (Ahmed, Dehghani et al. 2010). Treatment with 

HDACi results in hyperacetylation, which in turn interferes with higher-

order chromatin organisation. ES cells can result in higher cloning 

efficiency than differentiated cells but HDACi treatment does not further 

increase their cloning efficiency (Kishigami, Mizutani et al. 2006). 

Therefore, open chromatin might be one of hallmarks of cells with high 

reprogrammability. Histone and DNA hypomethylation, as well as down-

regulation of RING2, would reduce heterochromatinization in G0 cells, 

rendering their chromatin more accessible to chromatin-modifying 

complexes and increasing their reprogrammability. 
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5 Chapter Five: Differences in NT-
induced epigenetic reprogramming 

of G0 vs G1 donors 
  

Using CIFM, we next investigated how the epigenetically different G0 vs G1 

donors would reprogram after nuclear transfer (NT) experiments. We 

specifically wanted to know whether this initial epigenetic differences for 

H3 -K4me3, -K9me1, -K9me3 and -K27me3 would be perpetuated 

throughout development until the blastocyst stage. H3 -K4me3 and -

K27me3 were selected because these are not only markers for active and 

repressive chromatins, respectively, but also needed to be reset during 

early reprogramming, particularly at bivalent domains of developmental 

genes. H3K9me3 was selected as it was shown to resist reprogramming 

and pericentric heterochromatin, which is marked by this modification, also 

needs to be re-set during early development. H3K9me1 was selected as a 

control, since its occurrence did not change between G0- and G1- donors. 

Serum-starved and mitotically-selected G1 control donors were electrically 

fused with MII-arrested oocytes to generate NT embryos. These were 

artificially activated and cultured up to the blastocyst stage, as described 

in the methods section. Up to 72 h post-activation, the intensity 

comparison was based on qualitative rather than quantification 

observation. This was due to inconsistent cytoplasmic background in NT 

embryos, which prevented accurate quantification. However, we 

performed accurate intensity quantification at the blastocyst stage.  

5.1 Dynamic reprogramming of H3 methylation levels in 
G0-derived cleavage-stage embryos 

Within 10 min following NT, we observed that the DNA of the G0 

condensed slower than that of G1 donors, supporting the notion of a more 

relaxed G0 chromatin configuration (Figure 29). We then investigated the 
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dynamics of a subset of candidate histone methylation and polycomb 

proteins at various developmental stages up to the blastocyst. Within 10 

min following NT, G0-derived NT embryos still maintained the initial 

hypomethylation of H3K4me3, H3K9me3, H3K27me3 and PanH3/4 lysine 

methylation (Figure 30). Their staining pattern also showed qualitative 

differences. While in G0-derived one cell embryos most of the histone 

methylation staining was outside the DNA, in G1-derived one cell embryos 

it co-localised with DNA (Figure 30). However, these initial differences 

started to change 4 h post-activation (Figure 30). At 24 h post-activation, 

chromatin of G0-derived NT embryos had acquired histone methylations 

levels comparable to G1-derived NT embryos. 

 

Figure 29: Chromatin configuration within 10 min of NT. A) Schematic of electrical fusion 
(NT) of a somatic donor with an MII oocyte and production of SCNT embryo. B) Relaxed 
chromatin configuration of 1 cell G0 compared to C) condensed chromatin in G1 as 
observed by H33342 staining.  

H3K4me3 showed a dynamic pattern in G0-derived NT embryos compared 

to the stable pattern in G1-derived NT embryos. In G0, H3K4me3 intensity 

increased from 0-10 min post-NT to 24 h post-activation before reducing 

again at 72 h post-activation (Figure 30,        Figure 31 & Figure 32) By 

Hoechst 33342
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comparison G1-derived NT embryos maintained their levels until 72 h post-

activation. At 72 h post-activation, there was an obvious loss of H3K4me3 

in both G0- vs G1-derived NT embryos (Figure 30,        Figure 31 & Figure 

32).  

H3K9me1 maintained steady levels from 4-72 h post-activation in both G0- 

vs G1-derived NT embryos with no difference in H3K9me1 intensity 

between them (       Figure 31 & Figure 32). On the other hand, H3K9me3 

methylation was up- and down-regulated in G0-derived NT embryos. There 

was initial gain of this modification by 4 h post-activation (Figure 30,        

Figure 31 & Figure 32) and difference in little change in intensity until 24 h 

post-activation. By 72 h post-activation, the intensity had decreased. By 

contrast, G1-derived NT embryos maintained the intensity from 0-10 min 

until 72 h post-activation (Figure 30,        Figure 31 & Figure 32). 

Quantitative comparison of intensities between G0- vs G1-derived NT 

embryos at 4 and 24 h post-activation showed no difference and at 72 h 

post-activation showed loss of H3K9me3 in G0-derived NT embryos (       

Figure 31 & Figure 32).  

H3K27me3 intensity levels progressively increased until 72 h post-

activation in G0- embryos (Figure 30,        Figure 31 & Figure 32), but did 

not change in G1-derived NT embryos, except for some transient loss at 

24 h post-activation. Comparison of intensities between G0- vs G1-derived 

NT embryos showed lower G0 intensity levels at 0-10 min and 4 h post-

activation and similar intensity levels at 24 and 72 h post-activation (Figure 

30,        Figure 31 & Figure 32). 

5.2 EZH2 occurrence correlated with H3K27me3 in 
cleavage-stage NT embryos 

We then compared the dynamics of PcG proteins SUZ12 and EZH2. An 

earlier report had described passive loss of H3K27me3 from the two-eight 

cell stage in bovine IVF embryos (Ross, Ragina et al. 2008). EZH2 
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Figure 30: Characterisation of different histone methylation and degree of DNA 
condensation within 10 min following NT between G0- vs G1-derived NT embryos. G0- 
and G1-derived NT embryos showing different histone methylation levels and degree of 
DNA condensation. 

presence correlated well with H3K27me3 in both G0- vs G1-derived NT 

embryos (       Figure 31 & Figure 33). From 24 h post-activation and 72 h 

post-activation, SUZ12 was either absent or cytoplasmic (Figure 33). We 

also investigated potential changes in embryonic genome activation 

between G0- vs G1-derived NT embryos. As a proxy for onset of 

transcription, we tested the occurrence of Pol II on chromatin (Figure 33). 

We found no difference in proportions of embryos staining positive for Pol 

II between G0- vs G1-derived NT embryos (6/12 vs 6/12, 6/6 vs 6/7 and 5/6 

vs 5/6 for 4 h, 24 h and 72 h post-activation, respectively). 
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       Figure 31: Histone methylation profile between G0- and G1-derived NT embryos from 4-72 h post-activation by CIFM. 
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Figure 32: Developmental time-course of relative staining intensity of different histone 
methylations in G0- vs G1-derived NT embryos. Curves represent the polynomial trend 
line fitted for relative staining intensities observed through naked eyes. These graphs are 
just for qualitative illustration, as intensities were not normalised. 
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Figure 33: Comparison of chromatin-related proteins between G0- and G1-derived NT embryos from 4-72 h post-activation by CIFM. 
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5.3 G0-derived blastocysts remained H3K9me3 
hypomethylated 

At the blastocyst stage, lineage separation between the ICM and TE is 

clearly defined. Up to 72 h post-activation, H3K -4me3, -9me3 and -27me3 

were found to be varying between G0- vs G1-derived embryos. Therefore, 

we analysed the abundance of these epigenetic modifications at the 

blastocyst level. Only morphological grade 1-2 were selected for analysis,  

 

Figure 34: Qualitative comparison of histone trimethylations and PcG proteins between 
G0- vs G1-derived NT blastocysts by CIFM. White dotted circles in the ‘antibody + H33342’ 
column indicate ICM, which was identified by its small densely packed nuclei. The rest of 
the cells were considered as TE. 
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as these are suitable for embryo transfer into recipient cows. Except for 

H3K9me3 levels, G0- vs G1-derived NT blastocysts were epigenetically not 

much different from each other (Figure 34). H3K9me3 remained 

significantly hypomethylated (G1/G0=1.67) in G0- vs G1-derived NT 

blastocysts (Figure 35). H3K4me3 (G1/G0=1.23), which also appeared 

hypomethylated at 72 h post-activation, and H3K27me3 (G1/G0=1.32) 

were not significantly different at the blastocyst stage (Figure 35).  

 

 

Figure 35: Abundance of histone trimethylations and PcG proteins between G0- vs G1-
derived blastocysts by CIFM. The bars in the graph indicate LSD. If the LSD bar 
intersects two data points, then those two points are not significantly different (H3K4me3, 
H3K27me3, RING2 and SUZ12). If the LSD bar does not intersect two data points, then 
those data points are significantly different (H3K9me3). RU=relative units, N= number of 
cells analysed, n=number of replicates. 

RING2 enriches at pericentric heterochromatin lacking H3K9me3 in 

Suv39h-deficient zygotes and also governs paternal heterochromatin-

associated gene transcription (Puschendorf, Terranova et al. 2008). 
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et al. 2007). We therefore investigated, whether the reduction in H3K9me3 

at the blastocyst stage was correlated with changes in RING2 and SUZ12 

between G0- vs G1-derived NT blastocysts. We found no significant 

differences in both RING2 and SUZ12 (G1/G0= 1.43 and 1.01 respectively) 

between those two types of blastocysts (Figure 34 & Figure 35).  

Comparison of ICM vs ICM and TE vs TE showed no difference for H3K -

4me3 and -27me3, RING2 and SUZ12 between G0- vs G1-derived NT 

blastocysts (Figure 36). However, H3K9me3 was significantly 

hypomethylated both in ICM and TE (G1/G0= 1.7 and 1.67 respectively) of 

G0-derived NT blastocysts (Figure 36).  

5.4 ICMs were hypomethylated in NT blastocysts 

Most mammalians exhibit epigenetic asymmetry with respect to ICM and 

TE in IVF blastocysts. However, in bovine blastocysts, while H3K -4me3 

and -27me3 did not show any differences between ICM and TE (Ross, 

Ragina et al. 2008, Wu, Li et al. 2011), H3K9me3 was hypermethylated in 

ICM (Santos, Zakhartchenko et al. 2003). Therefore, we compared ICM vs 

TE tissues of G0- vs G1-derived NT blastocysts. We found that for H3K -

4me3, -9me3 and -27me3, all ICMs were hypomethylated (Figure 36). 

Similarly, SUZ12 was significantly down-regulated in the ICM. However, 

there were no significant differences for RING2 between ICM vs TE, even 

though it was twofold increased in the TE (Figure 36).  

5.5 Extensive histone re-methylation in the TE of NT 
blastocysts.  

Often SCNT blastocysts exhibit the epigenetic features of their somatic 

donors. To see if there was any such correlation with G0 vs G1 donors, we 

directly compared donor intensities with ICM and TE intensities. Donor vs 

TE comparison showed extensive reprogramming in the TE of G0- and G1-

derived NT blastocysts. Both blastocysts significantly up-regulated H3 -
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K4me3 and -K9me3, but only G0- blastocysts significantly up-regulated 

H3K27me3 in the TE. While G1- blastocysts also up-regulated their TE 

H3K27me3 (~2 fold), this was not significant. Consistent with H3K27me3 

regulation, SUZ12 was also significantly up-regulated in the TE of G0- 

blastocysts. The twofold up-regulation of RING2 in the TE was not 

significant in G0- and G1-derived NT blastocysts. Donor vs ICM 

comparison showed that the difference between them was not as dramatic 

as the epigenetic differences between donor and TE cells. Both G0- and 

G1-derived NT blastocysts significantly up-regulated their H3K9me3 

content in the ICM, while still maintaining the initial differences between 

them. The lack of significant difference between H3K27me3 of ICM was 

due to down-regulation of this modification by G1- blastocysts. Consistent 

with H3K27me3 down-regulation, SUZ12 was also significantly down-

regulated in G1- blastocysts ICM.  

5.6 G0 donors resulted in better blastocyst development 

G0 donors fused significantly better with the MII arrested oocytes than their 

G1 counterparts (Figure 37). In many cloning studies the rate of blastocyst 

development is considered a measure for gauging the developmental 

potential. Following fusion, G0 donors increased the rate of development 

into blastocyst over G1 donors (G1/G0=0.8, Figure 37).  
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Figure 36: Comparison of abundance of histone trimethylations and PcG proteins between G0 and G1 donors vs G0- and G1-derived ICM vs TE by 
CIFM. Letters a, b and c: within each modification and cell cycle stage, bars with different letters differ significantly. Letters x and y: within each 
modification and across cell cycle stage, bars with different letters differ significantly. RU=relative units, N= number of cells analysed, n=number of 
replicates.  
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Figure 37: Comparison of fusion efficiency and blastocyst development into different 
grades from G0 vs G1 NT experiments.  
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5.7 Discussion 

5.7.1 Epigenetic reprogramming after NT 

Here we provide the first evidence for de novo H3K trimethylations (H3K -

4me3, -9me3 and -K27me3) during the first cell cycle in bovine cloned 

embryos. So for it has been shown that H3K9 methylation in cloned 

embryos could start as early as second cell cycle (Santos & Dean 2004). 

Thereafter, H3K9 methylation was shown to undergo passive 

demethylations up to the four-eight cell stages in bovine cloned embryos. 

Prior to NT, G0 donors were histone hypomethylated. This histone 

hypomethylation was still maintained immediately after NT. However, H3K 

trimethylation intensities were already up-regulated during the first S-

phase, i.e. at 4 h post-activation. This increase in intensity can happen 

either by replacing the histones already bearing H3 methylation 

modifications or by de novo methylation. At present, it is unknown if 

maternal histones are incorporated into NT chromatin. However, it is well 

documented that maternal histones lack H3K -4me3, -9me3 and -K27me3 

and are only enriched for histone acetylations (Morgan, Santos et al. 

2005). It was also shown that non-nucleosomal histones bear only 

acetylation and lack any histone methylations other than H3K9me1 

(Loyola, Bonaldi et al. 2006). Therefore, maternal histone incorporation 

per se would not increase H3K trimethylations. This suggests that there 

was de novo methylation concurring with the incorporation of maternal 

histones during S-phase, as early as 4 h post-activation. Presence of 

maternal chromatin can efficiently demethylate the donor genome (Kang, 

Koo et al. 2001b). In IVF embryos, it has been shown that blocking either 

protein synthesis or gene expression results in de novo H3K9 and DNA 

methylation at the pronuclear stage (Liu, Kim et al. 2004). This shows that 

maternal chromatin actively maintains the hypomethylated state of 

paternal chromatin. Consequently, removal of maternal chromatin during 

enucleation could favour de novo H3K methylation in cloned embryos. 
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These studies support the observed de novo H3K trimethylation seen 

during the first cell cycle in G0-derived embryos. 

Comparison of histone methylation levels in G0- and G1-derived embryos 

until 72 h post-activation showed that most histone methylation levels 

changed in both directions, being either up- or down-regulated. This 

indicates dynamic de novo and active or passive demethylations that 

continuously turn over these modifications. Both embryos gained or at 

least maintained H3K -9me1 and -27me3 from 4-72 h post-activation. 

Between G0- vs G1-derived blastocysts, H3K9me3 was significantly 

different both in the ICM and TE. In bovine IVF embryos, H3K -4me3, -

9me and -27me3 declined until up to the 8-cell stage and then increased 

from morula to blastocyst stage (Santos, Zakhartchenko et al. 2003, Ross, 

Ragina et al. 2008, Wu, Li et al. 2011). This indicates that normal 

epigenetic reprogramming involves initial demethylation followed by de 

novo H3K methylation. A similar pattern was observed for two of the 

epigenetic modifications (H3K -4me3 and -9me3) in G0-derived embryos, 

while none of the epigenetic modifications followed this pattern in G1-

derived embryos. This suggests the reprogramming of H3K -4me3 and -

9me3 is more normal in early G0-derived embryos.  

Compared to IVF embryos, cloned bovine blastocysts are often reported to 

have either a hypermethylated ICM and TE or similar methylation levels in 

TE and ICM. None of the H3 trimethylations investigated showed this 

trend and hence our results are not consistent with the earlier reports 

(Santos, Zakhartchenko et al. 2003, Wu, Li et al. 2011). One possible 

reason for this discrepancy could be different antigen accessibility based 

on different IF protocols and antibodies. However, we have validated the 

ICM accessibility using the nuclear specific SOX2 staining. There are also 

differences in the cloning method and donor cell type used. It is believed 

that histone and DNA hypermethylation seen in the ICM is generally 

passed on to somatic lineages. However, this may not be universally true, 
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as cloned mouse blastocysts did not have any detectable H3K27me3 in 

their ICM and it is unlikely that the cloned mouse somatic lineages would 

not have any H3K27me3 (Zhang, Wang et al. 2009). This suggests that 

the ICM still reprograms later during development. Moreover, ICM histone 

hypomethylation is relative, and does not necessarily mean that the ICM 

levels were abnormal. It could also be due to abnormally high TE levels. 

Our comparison with donor intensity levels clearly showed that the 

observed ICM histone hypomethylation was due to extensive 

reprogramming in the TE of both G0- and G1-derived blastocysts. G1-

derived blastocysts appeared to require more reprogramming than G0-

derived blastocysts, as they also reprogrammed their ICM to the level of 

the G0-derived blastocysts. Comparatively less reprogramming by G0-

derived embryos correlated with better rates of blastocyst development. 
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6 Chapter Six: General discussion and 
future prospects 

  

Nuclear reprogramming represents a considerable challenge for basic 

science. Understanding the epigenetic basis for better nuclear 

reprogramming of differentiated somatic cells into totipotency has several 

applications, ranging from cloning to generation of induced pluripotent 

stem cells. Cloning inefficiency is mainly associated with aberrant 

epigenetic reprogramming of the donor nuclei, leading to failure during 

early development. Reprogramming efficiency is influenced by species 

and donor cell type. Levels of donor epigenetic modification, such as 

histone methylation and acetylation, may be a helpful guide to predict the 

cloning efficiency in mouse (Rybouchkin, Kato et al. 2006, Bui, Wakayama 

et al. 2008). Since the birth of Dolly, the first mammalian SCNT clone, it 

has been postulated that inducing G0 in donors would be beneficial for 

cloning. However, evidence for this hypothesis has been lacking. At 

Agresearch, we have shown that serum-starved G0 donors more than 

doubled cloning efficiency into adulthood compared to mitotically-selected 

G1 control cells. If and how serum starvation would affect the epigenetic 

status of the donor cells and blastocysts derived from them is unknown. 

Here we investigated the epigenetic basis for improved cloning efficiency 

in G0 cells to better understand the epigenetic features underlying 

increased reprogrammability. 

By the combined use of CIFM and specific antibodies against DNAme, 

histone methylation and acetylation, we provide the evidence that serum 

starvation of adult ear skin fibroblasts results in hypomethylated DNA and 

histones, concurrent with the down-regulation of chromatin-related 

proteins and dynamic changes in histone acetylations. We also provide 

evidence that most of these donor cell differences have disappeared by 
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the blastocyst stage. However, H3K9me3 remains hypomethylated both in 

the ICM and TE. Therefore, H3K9me3 hypomethylation provides an 

epigenetic correlate for increased donor cell reprogrammability and 

cloning efficiency. In addition, we also observed that serum starvation 

results in increased cell adhesion, cell and nuclear volume and relaxed 

chromatin.  

Histone and DNA hypomethylation 

Except for H3K9me1, we found that G0 donors were globally DNA and 

histone hypomethylated. This overall histone hypomethylation, irrespective 

of whether the lysine modification is involved in transcriptional repression 

or activation, was perplexing. Since G0 cells reduce their transcriptional 

activity 3-5 times (Choder 1991), one would expect the repressive 

modifications, such as H3K27me3, H3K9me2 and -me3 and DNAme to 

increase. To explain the concerted demethylation of a range of 

modifications with diverse functions, we propose a cell cycle-dependent 

scenario. During the cell cycle, histones are incorporated into the newly 

synthesised DNA during S-phase. These new histones are largely 

unmethylated (Loyola, Bonaldi et al. 2006). We postulate that this transient 

state is permanently fixed in serum-starved cells entering quiescence. 

Cells enter G0 from the G1 phase, when mitogen is withdrawn before a 

specific time point. Specifically, it was shown that serum-starved cells in 

G1ps (pre-S-phase; more than 3-4 h after mitosis) will not stop entering S-

phase. Only cells serum-starved in G1pm (post-mitotic; less than 3-4 h 

after mitosis) will enter G0 (Zetterberg & Larsson 1985). The G1pm period 

is constant across cell lines (Foster, Yellen et al. 2010). In steady-state, 

the majority of proliferating cultured cells will be in post G1pm/S-phase, 

since this phase occupies the larger proportion of the total cell cycle 

length. Therefore, these cells will continue to divide when starvation 

medium is added to the culture. We propose that serum-starved S-phase 

cells acquire hemi methylated DNA and unmethylated histones, but do not 
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further methylate them in preparation for G0. This would result in halving of 

these modifications in daughter cells following cytokinesis. The observed 

G1/G0 ratios (1.6-2.4) for DNA and histone modifications, except 

H3K9me1, would support this hypothesis. In non-starved control G1 cells 

abundance of all H3K9 methylations peak at metaphase (McManus, Biron 

et al. 2006), suggesting that these modifications are largely acquired post 

S-phase. De novo DNA methylation is acquired during S-phase using the 

hemi-methylated strand as a template (Bird 2002). DNAme also reduced 

during S-phase while the newly synthesised DNA strand is initially 

unmethylated. 

The above hypothesis accounts for most of the histone modifications but 

does not explain H3K9me1 and histone acetylations. Monomethylation is 

acquired at or immediately after incorporation into the nucleosome 

(Scharf, Barth et al. 2009) and is a prerequisite for acquiring di- and tri- 

methylations (Schotta, Lachner et al. 2004b, Scharf, Meier et al. 2009). 

The lack of H3K9me1 difference can be explained by the ability of cells to 

monomethylate at the time of incorporation. H3K9me1 primes H3 for 

subsequent acquisition of di- and tri-methylation, which is a slow process 

and some modifications might take one whole cell cycle, while acetylations 

are rapidly acquired (Scharf, Barth et al. 2009). The non-uniform histone 

acetylations could be attributed to their rapid incorporation during S-phase 

and their dynamic regulation (Scharf, Barth et al. 2009).  

Relaxed chromatin architecture 

In quiescent B lymphocytes, chromatin was found to be DNase-resistant, 

indicating a high degree of condensation, as well as histone 

hypomethylated (Baxter, Sauer et al. 2004). By contrast, we found that 

artificially induced G0 cells had a relaxed chromatin configuration. This 

difference might be due to the difference in the way they reached G0. After 

being produced in the thymus, terminally differentiated B lymphocytes 
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migrate to secondary lymphoid tissues and, in the absence of any strong 

stimulation of its B-cell antigen receptor by antigen, they enter quiescence. 

This quiescence is thus due to differentiation. By contrast, we artificially 

induced G0 by serum starvation. Here cells enter G0 due to lack of growth 

and surviving factors. 

Reduction in H3K9 methylation was shown to result in release of 

heterochromatin from nuclear periphery and de-repression (Towbin, 

Gonzalez-Aguilera et al. 2012). HP1α mediated heterochromatinization 

and repression involves H3K9me3, a hallmark of pericentric 

heterochromatin. RING2 is known to condense chromatin (Eskeland, Leeb 

et al. 2010). G0 cells down-regulated H3K9me2 and -me3, RING2, as well 

as DNAme, another hallmark of pericentric heterochromatin. Down-

regulation of these could aid in formation of relaxed chromatin. 

Furthermore, in addition to its role in reducing transcription, down-

regulation of H2A.Z in G0 cells could also play a role in relaxing chromatin. 

At constitutive heterochromatic regions, lack of H2A.Z disrupts the 

interaction of HP1α with the heterochromatic foci and pericentric 

heterochromatin, even in the presence of H3K9me3 (Rangasamy, 

Greaves et al. 2004). Therefore, down-regulation of H2A.Z and H3K9me3 

could affect the HP1α-mediated heterochromatinization in G0 cells. In 

addition to its role in constitutive heterochromatic regions, H2A.Z may also 

play a role in the formation of facultative heterochromatin. H2A.Z is 

preferred by RING2 (Creyghton, Markoulaki et al. 2008). Therefore, it is 

possible that down-regulation of H2A.Z contributed to RING2-mediated 

facultative heterochromatinization in G0. To sum up, relaxed chromatin 

configuration in serum-starved G0 cells correlated well with down-

regulation of H3K9me3, DNAme, RING2 and H2A.Z. 
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Reduced transcription 

In G0 cells, down-regulation of repressive chromatin modification is 

seemingly at odds with a transcriptionally less active environment. 

However, even relatively low levels of these modifications may be enough 

to maintain active and silent chromatin domains in G0 (Baxter, Sauer et al. 

2004). Others have shown that temporary silencing of genes, such as in 

G0, did not involve H3K9me3-mediated pericentric heterochromatin 

compartmentalisation (Guasconi, Pritchard et al. 2010). This was also 

found to be true in quiescent primary B lymphocytes, where additional 

repressive epigenetic modifications, such as H3K9me2 and H3K27me3, 

were also reduced (Brown, Baxter et al. 1999, Baxter, Sauer et al. 2004). 

This suggests that cells may have less permanent mechanisms, other 

than histone and DNA methylation, to keep their genes repressed. One 

such mechanism could be histone acetylation. H4 acetylation follows a 

sequential pattern in mammalian somatic and ES cells; H4K16Ac is 

followed by H4K8 and -K12Ac and ultimately H4K5Ac. Therefore, hyper-

H4K5Ac represents hyper-H4, which correlates with transcriptional 

activation (Ma & Schultz 2008). For H3, H3K9Ac dynamically targets 

H3K4me3, which correlates with gene expression (Hazzalin & Mahadevan 

2005) and this process is conserved during evolution (Crump, Hazzalin et 

al. 2011). Therefore, low levels of H4K5Ac and H3K9Ac could achieve 

general transcriptional repression in G0 donors.  

Another mechanism could be the regulation of proteins related to 

transcription. In support of this, we found that G0 cells down-regulated 

RNA Pol II. Earlier it was found that serum starvation reduced POLR2I, a 

gene that encodes one of the three subunits of Pol II, at least twofold 

(Coller, Sang et al. 2006). This could explain why G0 cells had reduced 

transcription despite having open and transcriptionally permissive 

chromatin. Furthermore, G0 cells up-regulated transcriptional repressors 

such as MXI1, ATBF1 and BCL6 (Liu, Adler et al. 2007). Some of these 



Chapter Six: General discussion and future prospects 

136 

 

act through modifying chromatin. For example, BCL6 repression involves 

recruitment of class I and class II HDACs (Lemercier, Brocard et al. 2002). 

Histone acetylation is continuously turned over by HATs and HDACs. 

Mitochondrial acetyl CoA, a major supplier of acetyl groups for histone 

acetylation (Madiraju, Pande et al. 2009), might be limited under serum-

starved condition due to its phosphorylation by AMP-activated protein 

kinase (AMPK) (Park, Gammon et al. 2002). Lack of acetyl groups, could 

lead to only deacetylation by HDACs. Therefore, it is plausible that in the 

absence of DNA and histone repressive methylation, cells could still act by 

down-regulating their histone acetylations and transcriptional activators, as 

well as up-regulating the transcriptional repressors.  

Cell adhesion  

The increased adhesion of G0 cells is supported by earlier transcription 

profiling studies (Coller, Sang et al. 2006, Liu, Adler et al. 2007), where 

serum starvation was found to up-regulate the expression of adhesion 

related molecules such as laminin-C1 (LAMC1), tenascin C (TNC), and 

collagen-3A1 (COL3A1). LAMC1 is a laminin, which belongs to a family of 

extracellular matrix (ECM) glycoproteins. Laminins are the major non-

collagenous component of basement membranes and have been 

implicated in a wide variety of biological processes, including cell 

adhesion. TNC is a founding member of the tenascin family. It is a large 

ECM oligomeric glycoprotein localised to some adult and many embryonic 

tissues (Erickson & Bourdon 1989, Erickson 1993). The protein is 

prominent during growth and development of embryonic tissues. Even 

though its role in binding activity is controversial, it was shown that plastic 

coated with TNC in a particular way was bound by mammalian cells 

(Erickson 1993). The binding of fibroblasts is mediated by their cell surface 

proteoglycans. Type III collagen is a fibrillar forming collagen expressed 

from early embryos to throughout embryogenesis. In adults, it is a major 

component of the ECM. It is essential for collagen I fibrillogenesis and 
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homozygous mutants dye due to rupture of major blood vessels (Liu, Wu 

et al. 1997). COL3A is bound by variety of collagen binding receptors, 

such as integrins, glycoproteins, etc. Up-regulation of these three proteins 

(LAMC1, TNC, and COL3A1) may aid cellular adhesion and anchorage of 

G0 cells.  

Conclusion 

Treatment with class I and II HDACis, such as TSA and scriptaid, was 

shown to increase cloning efficiency in mouse. TSA treatment results in 

histone hyperacetylation, nuclear decondensation (Bui, Wakayama et al. 

2010), and increased expression of c-Myc, Nanog and Sox2 (Monteiro, 

Oliveira et al. 2010). Overall, TSA treatment appears to induce relaxed 

chromatin and increased expression of pluripotency-associated factors in 

the NT embryo. Serum-starved G0 cells had relaxed chromatin. They also 

down-regulated pericentric heterochromatin marks, DNAme and 

H3K9me3, which could release many differentiation-related genes from 

heterochromatin-association and remove epigenetic constraints on 

pluripotency factors, such as OCT4 and NANOG. Therefore, inducing 

quiescence could serve similar functions as HDACi-treatment, namely 

relaxing the chromatin and releasing the epigenetic constraints.  

Globally hypomethylated and partially hypoacetylated histone B 

lymphocytes resulted in better blastocyst development (Baxter, Sauer et 

al. 2004). However, it could be specifically hypo-H3K9me3, not global 

hypomethylation per se that is important for increasing cloning efficiency. 

In pig, H3K9me3 shows resistance to reprogramming by NT, even though 

phosphorylation and acetylation could be reprogrammed (Bui, Van Thuan 

et al. 2006). Inhibition of KMT1A, an H3K9me3 KMT, improved iPSC 

derivation efficiency (Onder, Kara et al. 2012). In a recent study at 

Agresearch, KDM4B-inducible ES cells were used for NT cloning (Anthony 

J. et al. submitted). It was shown that KDM4B induction resulted in a 63% 
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loss of H3K9me3. When these KDMB induced ES cells were used for 

mouse cloning, they significantly improved blastocyst development. Donor 

hypo- H3K9me3 and H3K9Ac correlated with increased expression of the 

pluripotency factor OCT4 in cloned mouse blastocyst (Bui, Wakayama et 

al. 2008). Furthermore, the hypo-H3K9me3 levels persisted up to 

blastocyst stage, which correlated with increased cloning efficiency to 

term. These results support our finding in bovine, where hypo-H3K9me3 in 

G0 donors resulted in hypomethylated H3K9me3 at the blastocyst stage, 

increasing blastocyst development and cloning efficiency.  

Future prospects 

Use of G0 donors more than doubled cloning efficiency to about 10%. 

However, even this improved efficiency still compares unfavourably to 

other assisted reproductive technologies, such as IVF, which operates 

over 30% efficiency. Therefore, there is still room for further improvement. 

One way to improve cloning efficiency could be by targeting other 

epigenetic modifications that did not reprogram well after NT. For instance, 

we have seen that H3K27me3 did not show any passive demethylation in 

both G0- and G1-derived embryos, whereas IVF embryos did (Ross, 

Ragina et al. 2008). Therefore, inhibiting H3K27me3 remethylation or 

selectively reducing H3K27me3 by ectopic overexpression of KDM6B 

could be a way to further improve cloning efficiency. Inhibiting H3K27me3 

remethylation could also be combined with serum starving the donors. It is 

often found that female inactive X-chromosome (Xi) is hard to reprogram 

and presents an obstacle during SCNT (Bao, Miyoshi et al. 2005). Xi is 

marked by H3K9me2, H3K27me3, DNAme and RING2-mediated 

H2AK119 ubiquitination. G0 donors down-regulated H3K9me2, 

H3K27me3, DNAme and RING2. Therefore, it would be interesting to see 

if serum starvation affects X-chromosome inactivation and if this would 

further improve cloning efficiency compared to male G0 donors.  
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We have shown that inducing G0 by serum starvation results in relaxed 

chromatin and global DNA and histone hypomethylation. This provides a 

structural correlate for increased cloning efficiency. Therefore, it is 

reasonable to postulate that G0 presents a chromatin that is more 

amenable to be reprogrammed into totipotency. It would be worthwhile to 

investigate whether G0 cells could improve reprogramming into 

pluripotency. This could result in improved derivation of iPSCs. 

Complimentary to SCNT, iPSC derivation is a functional assay for cell 

reprogrammability. Generation of patient specific iPSCs has implications 

and potential to medical science. Even though these could be possibly 

generated from any somatic cells, the efficiency is very low. As with NT, 

this could also be due to the resistance by differentiated chromatin to get 

reprogrammed. During iPSC generation process by Yamanaka factors (c-

Myc, Oct4, Sox2 and Klf4), c-MYC binds early in the reprogramming 

process. The rest, which co-occupy a large number of promoters, bind 

only later during reprogramming (Skene & Henikoff 2012). This delayed 

binding, which appears to be due to repressive chromatin status of 

somatic nuclei at their binding sites, is thought to be a major roadblock 

during iPSC reprogramming. Therefore, G0 cells, which have down-

regulated their repressive modifications could aid better iPSC 

reprogramming. Studies have used HDAC and DNMT inhibitors to 

enhance the efficiency up to 100 fold (Huangfu, Maehr et al. 2008). 

Likewise, other studies have used histone methylase inhibition for 

improving generation of iPSCs efficiency (Onder, Kara et al. 2012). 

Therefore, it would be interesting to see if use of G0 cells alone or in 

combination with pharmacological treatments, such as exposure to HDACi 

valproic acid (VPA), would improve iPSC derivation.  

The improved reprogramming ability of G0 cells could be due to releasing 

of differentiation-associated genes from heterochromatin. Therefore, it 

would be interesting to examine if serum starvation induces repositioning 

of any particular genes, such as genes related to pluripotency, from 
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facultative or pericentric heterochromatin. Furthermore, examination by 

chromatin immunoprecipitation (ChIP)-on-Chip could reveal a specific 

epigenetic signature at individual genes during serum starvation that could 

aid the cell to become totipotent. During serum starvation most of the 

genes are repressed. By looking at the individual gene level, one could 

examine how these marks behave during serum-deprived scenario, where 

cells try to be as economical as possible. This would illustrate how 

important are these modifications for gene regulation or are they just an 

extra layer for chromatin compartmentalisation to govern the transcription. 

It would also be interesting to investigate other aspects of the G0 donors 

that may have contributed to their better reprogrammability. For instance, 

H3.3 accumulation at rDNA, major satellite repeats and regulatory regions 

of the pluripotency gene Oct4 was shown to be a necessary step during 

reprogramming by the oocyte (Jullien, Astrand et al. 2012). Since H3.3 is 

thought to be incorporated during serum-starved G0 phase, it would be 

interesting to see if this happens at rDNA, major satellite repeats and 

regulatory regions of the pluripotency gene OCT4, which could further 

explain the amenability of serum-starved cells to be better reprogrammed. 

One could also test the microRNA profile of G0 cells. It is known that 

pluripotent cells, such as ES cells, express high levels of ESC-specific cell 

cycle regulating (ESCC) miRNAs such as miR-290 cluster, while somatic 

cells have high levels of Let-7 (Melton, Judson et al. 2010). De-

differentiation of somatic cells during iPSC generation was supported by 

either inhibiting Let-7 or introduction of ESCC miRNAs (Judson, Babiarz et 

al. 2009, Melton, Judson et al. 2010). Therefore, it would be interesting to 

see if there was any change in profiles of these microRNAs in G0 cells. 

There is no consensus on how histone epigenetic modifications are 

faithfully perpetuated through the cell cycle. Recently, it was shown in 

rapidly dividing Drosophila embryo cells that during replication cells either 

remove the old modifications or replace modified H3 during replication. 
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These modifications were later re-established by HMTases that remain 

associated with the replicating DNA (Petruk, Sedkov et al. 2012). 

Specifically, this was shown for H3K27me3 and H3K4me3. It is possible 

that the growing embryo needs to reset its epigenetic status over many 

chromatin domains. Losing epigenetic modifications entirely and re-

establishing them later might have evolved as a beneficial strategy in this 

biological context. It is to be noted that these two modifications form 

bivalent domains in early development and need to be resolved as cells 

differentiate. It is not known if the mechanism suggested by Petruk et al. 

also applies to differentiated somatic cells and other species. An 

alternative model predicts that during DNA replication, there would be an 

equal but random distribution of parental histones, bearing epigenetic 

marks, onto the daughter strands. The parental modifications would then 

serve as a template for re-establishing the modified domain (Zhu & 

Reinberg 2011). Our results favour this latter, more conventional model. In 

accordance with this model, we observed an approximate two fold 

reduction in histone methylation levels. We did not observe cells that 

lacked H3K4me3 or H3K27me in unsynchronised cultures, which 

contained mostly cells in S-phase. This is in contrast with the observation 

by Petruk et al. that S-phase cells largely lacked these modifications. 

Therefore, it would be interesting to follow-up on exactly when serum-

starved cells loose their epigenetic modifications, particularly DNA and 

histone methylations. The model by Zhu et al and our predicted hypothesis 

that cells undergoing DNA replication in serum starved medium would 

acquire hemi methylated DNA and unmethylated histones, but do not 

further methylate them in preparation for G0 could be tested by EdU pulse 

labelling experiments. For example, one could first incubate mitotic 

doublets with EdU in serum-containing medium for 3 h, followed by serum 

starvation in EdU-containing medium for variable periods of time. This 

would allow cells to replicate and divide once. The initial 3 h incubation in 

serum is necessary to commit the cells to enter the mitogen-independent 
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pre-DNA synthesis phase. The control cells would continue to grow in 

serum-containing medium with EdU. Then cells are stained for the 

simultaneous abundance of pan H3/H4 methylation and EdU. Cells that 

continued S-phase would incorporate increasing amount of EdU and can 

be distinguished from cell that do not enter S-phase. If the EdU positive 

cells halved their methylation levels under serum starvation compared to 

non-starved cells, it would suggest serum starvation instructed them to 

stop modifying their histone methylation. Since EdU incorporation is 

directly proportional to the amount of synthesised DNA and time in S-

phase, this would further define the time points of re-methylation during S-

phase. 

Thus the findings that serum-starved G0 cells have a specific chromatin 

signature that correlates with improved cloning efficiency could be 

potentially used beyond its immediate applications of improving cloning 

efficiency in cattle. The findings could be extended to assist the direct 

reprogramming by pluripotent factors during iPSCs generation with 

potential benefits for stem cell-based therapy and therapeutic cloning. For 

basic research, they could help to elucidate the mechanisms by which the 

cells faithfully perpetuate their epigenetic signature.  
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Appendices 
  

Appendix I: List of chemicals, reagents, enzymes, kits, 
solutions and antibodies. 

Table 8: General chemicals and reagents used 

Chemicals/Reagents Manufacturer 

2-mercaptoethanol Sigma 

Acetone JT Baker 

Acrylamide Bio Rad 

Agarose Ray lab 

Ammonium chloride (NH4Cl) Sigma 

Ammonium persulfate Bio Rad 

Bovine Serum albumin (BSA) (Fatty acid-free) Sigma 

Bromophenol blue Bio Rad 

Collagen type I (from rat tail) Sigma 

Comassie brilliant blue R-250 crystals Bio Rad 

DAKO fluorescent medium DAKO 

DAPI Sigma 

Dimethyl sulfoxide (DMSO) Sigma 

Disodium- Ethylenediaminetetraacetic Acid 

(EDTA) 
Sigma 

Dithiothreitol (DTT) Invitrogen (USA) 

Ethanol Fisher chemicals 

Gelatin Sigma 

Glacial acetic acid JT Baker 

Glycerol JT baker 
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Glycine JT Baker 

H33342 Sigma 

Hydrochloric acid (HCl) J T Baker (USA) 

KCl Sigma 

KH2PO4 Sigma 

Methanol (Analytic grade) Fisher chemicals 

MgSO4.7H2O Sigma 

N, N, N’, N’- Tetraethylethylenediamine 

(TEMED) 
Sigma (USA) 

N-2-ethane-sulphonic acid (HEPES) Invitrogen (USA) 

NaCl JT baker 

NaOH 1 M JT Baker 

Paraformaldehyde (PFA) Sigma 

Phenol Red Sigma 

Phosphate buffered saline (PBS) tablets MP Biomedicals 

Polyvinyl Alcohol (PVA) Sigma 

Ponceau Stain Sigma 

SeeBlue plus2 prestained protein ladder Invitrogen 

Sodium bicarbonate (NaHCO3) Sigma (USA) 

Sodium chloride (NaCl) Sigma (USA) 

Sodium dodecyl sulfate (SDS) Bio Rad, 

Sodium hydroxide (NaOH) BDH (UK) 

Sucrose Sigma 

Sulphuric acid JT Baker 

Tris (ultra-pure) JT baker 

Triton X-100 Sigma 

Tween 20 Bio Rad 
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Table 9: Enzymes  

Enzyme Manufacturer 

Hyaluronidase Sigma 

Pepsin BM (Germany) 

Pronase  Sigma 

Proteinase K Invitrogen 

RNase  Roche 

 
 
 

Table 10: Kits  

Kits Manufacturer 

BCA protein assay kit 
Thermo Fisher Scientific Inc 

(USA) 

Click-iT
®
 EdU imaging kits Invitrogen 

EpiQuik
TM

 Global Di-methyl Histone H3-K9 

Quantification kit (fluorometric)  
Epigentek 

EpiQuik
TM

 Global Mono-methyl Histone H3-K9 

Quantification kit (fluorometric)  
Epigentek 

EpiQuik
TM

 Global Tri-methyl Histone H3-K27 

Quantification kit (fluorometric)  
Epigentek 

EpiQuik
TM

 Global Tri-methyl Histone H3-K4 

Quantification kit (fluorometric)  
Epigentek 

EpiQuik
TM

 Global Tri-methyl Histone H3-K9 

Quantification kit (fluorometric)  
Epigentek 

EpiQuik
TM

 total histone extraction kit Epigentek 
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Table 11: Solutions used for IF 

Solution  Composition 

10% Triton X 10% w/v diluted in PBS 

3% BSA wash 3% w/v Fatty acid free BSA dissolved in PBS 

4% PFA 

4% paraformaldehyde, 4% sucrose, few drops 

of phenol red and few drops of NAOH to 

adjust pH to 7-7.5 and dissolved at 56°C 

4 N HCl 4 N v/v HCl in MilliQ H2O 

Blocking buffer  3% w/v Fatty acid free BSA dissolved in PBS 

H33342 Stock made as 1 mg/ml in MilliQ H2O 

NH4Cl 50 mM working solution 

PBS-PVA 0.25% PVA in PBS 

PBST 0.05% Tween 20 in PBS 

 
 
 

Table 12: Chemicals and reagents used in tissue and embryo culture  

Chemicals  Stock Manufacturer 

0.025% trypsin EDTA  Invitrogen 

17-b-estradiol  Sigma 

2-, 4-dinitrophenol  sigma 

6-Dimethylaminopurine (6-

DMAP) 
500 mM Sigma 

Albumin Bovine 
20% Stock solution made in 

MilliQ H2O 
Sigma 

BM essential amino acids 50X Sigma 

CaCl2. 2H2O 

0.94 g dissolved in 5 ml 

ddH2O to make a stock of 

1000X 

Sigma 

Cysteamine  Sigma 



Appendices 

147 

 

D- Mannitol  Sigma 

D-Glucose  Sigma 

Dimethyl sulfoxide (DMSO) 

cell culture grade  
 Sigma 

DMEM/F12 + GlutaMax
TM

-I  Gibco 

D-Penicillamine  Sigma 

Fetal calf serum (FCS)  Gibco (USA) 

Follicle- stimulating hormone 

(FSH) 
 

Ovagen; 

ImmunoChemicals 

Products (ICP) 

Gelatin 

1 g gelatin dissolved and 

made to 100 ml final volume in 

% MilliQ H2O 

Sigma 

GlutaMAX
TM

 200 mM solution Invitrogen 

Heparin sodium salt  Sigma 

Hypotaurine  Sigma 

Ionomycin calcium salt 5 mM Sigma 

Kanamycin monosulfate  Sigma 

M199  Life Technologies 

MEM Non-essential amino 

acids  
100X Sigma 

Mineral oil for culture of 

embryos and oocytes 
 Sigma 

Na-Pyruvate 
0.15 g dissolved in 5 ml MilliQ 

H2O to make a stock of 1000X 
Sigma 

Ovine luteinizing hormone 

(LH) 
 ICP 

Sodium Lactate  Sigma 
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Table 13: Tissue and embryo culture media composition 

Media/solutions Composition 

B199 
M199 with 25 mM NaHCO3, 0.2 mM Pyruvate and 0.086 

mM kanamycin monosulfate 

Cryopreservation 

medium 
20% DMSO in FCS 

Early SOF (ESOF) 

1.71 mM CaCl2:2H20, 25 mM NaHCO3, 107.7 mM NaCl, 

3.32 mM sodium lactate, 7.15 mM KCl, 0.30 mM KH2PO4, 

0.15 mM D-Glucose, 0.33 mM pyruvate, 0.04 mM 

kanamycin monosulfate, and 0.081 g/L non-essential 

amino acids, 8 mg/ml fatty acid free bovine albumin and 1 

mM GlutaMAX
TM

 

Fibroblast medium DMEM/F12 + GlutaMAX
TM

-I supplemented with 10% FCS 

H199 
M199 with 15 mM HEPES, 5 mMNaHCO3 and 0.086 mM 

kanamycin monosulfate 

H199-PVA H199 with 0.1 mg/ml cold soluble PVA 

HSOF 

Hepes-buffered synthetic oviduct fluid (SOF) with 1.71 mM 

CaCl2.2H2O, 5 mM NaHCO3, 107.7 mM NaCl, 3.32 mM 

sodium lactate, 7.15 mM KCl, 20 mM Hepes, 0.3 mM 

KH2PO4, 0.069 mM kanamycin monosulfate, 0.33 mM 

pyruvate and 3 mg/ml fatty acid free bovine serum albumin 

Hypoosmolar fusion 

buffer 

165 mM mannitol, 500 µM Hepes, 50 µM CaCl2, 100 µM 

MgCl2, 0.05% bovine albumin pH 7.3 

IVF media 

25 mM NaHCO3, 107.7 mM NaCl, sodium lactate, 7.15 mM 

KCl, 3.32 mM 0.3 mM KH2PO4, 0.04 mM kanamycin 

monosulfate, 1.71 mM CaCl2.2H2O, 0.33 mM pyruvate, 8 

mg/ml fatty acid free bovine albumin, supplemented with 

0.2 mM Penicillamine, 0.1 mM hypotaurine and 0.001 mM 

heparin 

IVM media 
B199 with 10%FCS, 1 µg/ml ovine LH, 10 µg/ml ovine 

FSH, 1 µg/ml 17-b-estradiol and 0.1 mM cysteamine 

Late SOF (LSOF) 1.71 mM CaCl2:2H20, 0.49 mM MgCl2:6H2O 25 mM 
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NaHCO3, 107.7 mM NaCl, 3.32 mM sodium lactate, 7.15 

mM KCl, 0.30 mM KH2PO4, 1 mM DNP (2-, 4-

dinitrophenol), 1.5 mM D-Glucose, 0.33 mM pyruvate, 0.04 

mM kanamycin monosulfate, and 0.081 g/L non-essential 

amino acids, 0.22 g/L BM essential amino acids, 8 mg/ml 

fatty acid free bovine albumin and 1 mM GlutaMAX
TM

 

M199 Medium 199-containing Earle’s salts and L-glutamine 

Oocyte aspiration 

medium 
H199 + 925 IU/ml heparin 20 µl/ml 20% Albumin  

Serum starvation 

medium 
DMEM/F12 + GlutaMAX

TM

-I supplemented with 0.5% FCS 

 
 

Table 14: Primary and secondary antibodies used and their dilutions 

Antibody Dilutions Manufacturer or Source 

Donkey anti goat AF 488 1:2000 Invitrogen, NZ 

Donkey anti goat AF 568 1:2000 Invitrogen, NZ 

Donkey anti goat 

Rhodamine 
1:300 Millipore 

Donkey anti mouse AF 488 1:2000 Invitrogen, NZ 

Donkey anti mouse AF 568 1:2000 Invitrogen, NZ 

Donkey anti rabbit AF 488 1:2000 Invitrogen, NZ 

Donkey anti rabbit Cy2 1:200 
Jackson ImmunoResearch 

Laboratories 

Donkey anti sheep AF 488 1:2000 Molecular Probes 

Goat anti mouse Alexa Fluor 

(AF) 546 

1:300 

1:2000 
Invitrogen, NZ 

Goat anti rabbit AF 488 1:2000 Invitrogen, NZ 

Goat anti rabbit AF 568 1:2000 Invitrogen, NZ 

Goat anti RING2 1:25 Abcam (Ab14751) 

Goat anti SOX2 1:30 R&D Systems (AF2018) 
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Goat anti SUZ12 1:25 Santa Cruz Biotechnology (sc-46264) 

Mouse anti 5-MC 1:200 Abcam (Ab10805) 

Mouse anti H3K4me3 1:500 Abcam (Ab1012) 

Mouse anti H3K9me3 1:20 Millipore (Cat.# 05-1242) 

Mouse anti PHC1 1:100 
Abnova (Catalog ID # H00001911-

M05) 

Rabbit anti EED  1:100 Abcam (Ab4469) 

Rabbit anti EZH2 1:100 Abcam (Ab3748) 

Rabbit anti H3.3 1:500 Abcam (Ab62642) 

Rabbit anti H3K27me3 1:1000 
Dr. Thomas Jenuwein (Max Planck 

Institute, Freiberg, Germany) 

Rabbit anti H3K27me3 1:500 Millipore (Cat.# 07-449) 

Rabbit anti H3K4me3 1:2000 Abcam (Ab8580) 

Rabbit anti H3K9Ac 1:250 Millipore (Cat.# 04-1003) 

Rabbit anti H3K9me1 1:1000 
Dr. Thomas Jenuwein (Max Planck 

Institute, Freiberg, Germany) 

Rabbit anti H3K9me2 1:1000 
Dr. Thomas Jenuwein (Max Planck 

Institute, Freiberg, Germany) 

Rabbit anti H3K9me3 1:1000 
Dr. Thomas Jenuwein (Max Planck 

Institute, Freiberg, Germany) 

Rabbit anti H4K12Ac 1:500 Millipore (Cat.# 06-1352) 

Rabbit anti H4K16Ac 1:250 Millipore (Cat.# 07-329) 

Rabbit anti H4K5Ac 1:100 Upstate (Catalog # 06-7593) 

Rabbit anti HDAC1 1:100 Millipore (Cat.# 06-720) 

Rabbit anti pan-

H3/4Kme1/2/3 
1:1000 

Dr. Thomas Jenuwein (Max Planck 

Institute, Freiburg, Germany) 

Rabbit anti Pol II CTD 1:1000 Abcam (Ab817) 

Sheep anti H2A.Z 1:200 
Dr. David Tremethick (ANU College of 

Medicine, Canberra ACT, Australia) 
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Appendix II: List of equipment and software applications  

 

Table 15: Equipment and software 

Equipment/software Manufacturer Local supplier 

Agarose gel casting mould and 

combs 
Bio Rad Bio Rad, NZ 

BTX electrocell manipulator BTX 
BTX Instrument Division, 

USA 

BTX optimizer BTX 
BTX Instrument Division, 

USA 

Cell culture incubator Forma scientific 
Thermo Fisher Scientific, 

NZ 

Gen5 data analysis software BioTek Millennium Sciences, NZ 

Gilmont® micrometer syringe  
Cole-Parmer 

Instruments, IL 
Cole-Parmer, NZ 

GS800 scanner Bio Rad Bio Rad, NZ 

Horizontal micropipette puller (P-

87) 

Sutter Instrument 

Company 

SDR Clinical Technology, 

Australia 

Humidified modular incubation 

chamber  
QNA International 

QNA International, 

Australia 

ImageJ software (1.43u) 
National Institutes 

of Health (NIH) 

National Institutes of 

Health, USA 

Leica application suit software Leica Bio-Strategy, NZ 

Leica DFC290 camera Leica Bio-Strategy, NZ 

Leica DM1L inverted phase 

contrast microscope 
Leica Bio-Strategy, NZ 

Mini protean tetra SDS gel 

casting system 
Bio Rad Bio Rad, NZ 

MO-188 hydraulic hanging 

joystick micromanipulators 
Nikon Narishige  Nikon, USA 
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MP-9 microforge  Narishige 
Leica Microsystems, 

Australia 

MS1 minishaker  IKA
®
 Global science, NZ 

Nano-Drop 1000 

Spectrophotometer 
Thermo Scientific Bio-Strategy, NZ 

Nikon SMZ-2B stereomicroscope Nikon Nikon, USA 

Nikon SMZ800 stereomicroscope Nikon Nikon, USA 

Nikon TMS  Nikon Nikon, USA 

Nikon TMS inverted phase 

contrast microscope 
Nikon Nikon, USA 

Nikon Transformer Nikon Nikon, USA 

Olympus BX50 microscope Olympus Olympus, NZ 

Olympus FV-1000 confocal 

scanning  
Olympus Olympus, NZ 

Olympus IX70 Inverted 

Fluorescence Microscope 
Olympus Olympus, NZ 

Olympus IX81 inverted 

microscope 
Olympus Olympus, NZ 

PowerPac basic supply Bio Rad Bio Rad, NZ 

Quantity One software Bio Rad Bio Rad, NZ 

Spectrafuge mini C1301 
Lab net 

international 
Total lab systems, NZ 

Spot Basic and Advanced 

software 

Diagnostics 

Instruments Inc 

Diagnostics Instruments 

Inc., MI, USA 

SPOT RT-KE slider 
Diagnostics 

Instruments Inc  

Diagnostics Instruments 

Inc., MI, USA 

Synergy 2 Multi-mode plate 

reader 
BioTek 

Millennium Sciences, 

Pvt. Ltd, NZ 

Transfer cassette and tank Bio Rad Bio Rad, NZ 

xCELLigence RTCA-SP ACEA Biosciences Roche, NZ 
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