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ABSTRACT 

Asymptotic extreme-value theory is used as the basis of a stochastic model _which predicts ~pects o~ ~he 
freezing behavior of supercooled water droplets. The model gives a general theoret1~ base to an eai:he~ empmcal 
function relating droplet volume to droplet freezing tem_perature .. At ~e s_ame time, the model indicates that 
the established empirical relation is only one of three possible functtons lmking droplet volume and temperature 
of freezing. . . . f d 

1 
ti · 

The three functions arise as a consequence of three possible extreme-value d1stnbut1ons o rop_ et . ree~mg 
temperatures, and the form of each function predicts the rype and ~met.er v~ues of the di~n?ut1':ms 
concerned. The proposed model is amenable to rigorous expenmental venfica!1on smce both the d1strtbut1on 
type and parameter values can be estimated independently from droplet freezing data. 

1. Introduction 

Ilt is well known that small water droplets often freeze 
at temperatures below 0°C. If the droplets are com­
posed of pure water, freezing will only occur at some 
defined critical temperature-the temperature of ho­
mogeneous nucleation. Freezing temperatures are 
higher and more variable if the droplets contain small 
foreign particles, the initiation of the ice phase in this 
case being referred to as heterogeneous nucleation. It 
is the temperature of heterogeneous nucleation which 
is the concern of the present paper. As well as being 
of general scientific interest, the prediction of freezing 
temperature distributions is likely to be of advantage 
in the study of cloud seeding, which is often concerned 
with the induced nucleation of supercooled cloud 
droplets. 

The exact nature of heterogeneous nucleation is still 
imperfectly known, and a variety of possible physical 
mechanisms have been suggested over the years (Ro­
sinski, 1979). A more non-deterministic line of in­
vestigation was initiated when Langham and Mason 
( 1958) demonstrated that some general characteristics 
of droplet freezing patterns could be predicted by a 
simple stochastic model, given certain restrictive as­
sumptions. 

This paper utilizes asymptotic extreme-value theory 
to obtain a more robust generalized version of the 
Langham-Mason freezing model. The general model 
has the advantage of avoiding arbitrary assumptions, 
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while at the same tim~ giving a greater degree of ap­
plicability to different freezing situations. 

It is emphasized that the general model is stochastic 
in nature and is not tied to physical aspects of nucle­
ation beyond that presented by Langham and Mason 
(1958). The main concern of this paper is to use the 
model to demonstrate that many of the observed char­
acteristics of droplet freezing temperatures can be ex­
plained as simple stochastic behavior, regardless of the 
exact nature of the nucleation process at the molecular 
level. 

2. The Langham-Mason freezing modeB 

The Langham-Mason model views the foreign par­
ticles within the droplets as temperature-dependent: ice 
nuclei. In other words, each particle is seen to be as­
sociated with some specific "activation temperature" 
at which that particle will initiate ice formation. Of 
course, the number of ice nuclei in any given droplet 
is a constant unrelated to droplet temperature. 

Once freezing has been initiated in a su]l)ercooled 
droplet, the freezing process spreads almost instanta­
neously through the droplet. Given this rapid trans­
formation, the Langham-Mason model interprets the 
freezing temperature of a given droplet as being equiv­
alent to the highest activation temperature of the con­
tained particles. Symbolically 

X = max(Y1, Y2, Y3, ... , YN), (l) 
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where X is a random variable denoting the droplet 
freezing temperature, Y the activation temperature of 
the ith contained particle, and N is the number of ice 
nuclei in the droplet. 

By assuming an exponential distribution of acti­
vation temperatures, Langham and Mason ( 1958) were 
able to derive the well-known empirical volume-freez­
ing relation (Bigg, 19 5 3) 

any droplet "set" has been created from the same water 
source. Droplets from different water sources will of 
course possess different values of Av. 

From the above discussion, the expression ( 1) in the 
Langham-Mason model can be defined in terms of 
the general model as 

(3) 

x(0.5)v = B lnV + A (2) where K is a Poisson random variable with (large) 
parameter value Av. 

where x(0.5)v is the median freezing temperature in 
~C of droplets of constant volume V. The constants 
A and B are dependent upon the nature and concen­
tration of particles in the water mass from which the 
droplets were created. · 

An obvious restriction of the above model is the 
requirement of an explicit distribution of Y in order 
to obtain the relation (2). In fact, distributions of ac­
tivation temperatures are more likely to be multimodal 
because of mixtures of different types of foreign par­
ticles. In the general model, the natural extension is 
made to the limit distribution of X for large numbers 
of contained particles. This procedure permits the der­
ivation of (2) and yields two other volume-freezing 
relations, without requiring knowledge of the distri, 
bution of Y. The new model is therefore "general," 
although it will not be applicable when only a few ice 
nuclei are present per droplet. With such small num­
bers of nuclei, the distributions of droplet freezing 
temperatures may have complex multimodal forms 
reflecting the distribution of Y. 

3. Basis of the general model 

From a statistical viewpoint, it is evident from ( 1) 
that the Langham-Mason model is concerned with 
the largest order statistic (highest nucleation temper­
ature, droplet freezing temperature) from a random 
sample of nucleation temperatures. The sample size 
for any one droplet thus corresponds to the number 
of nuclei contained within that droplet. 

Since droplet freezing temperatures can be inter­
preted as largest order statistics, predictions can be 
made of aspects of droplet freezing using known math­
ematical properties of order statistics. The situation is 
slightly complicated by the fact that the sample size 
is a random variable. However, given the dispersed 
nature of the nuclei, it can be reasonably assumed that 
the number of nuclei per droplet of(constant) volume 
V will be a Poisson random variable. The required 
mathematical information therefore relates to the par­
ticular case of order statistics with Poisson-distributed 
sample sizes. 

The requirement for a large number of nuclei can 
now be expressed more explicitly as a large value of 
Av, where Av denotes the Poisson parameter, corre­
sponding to the average number of nuclei per droplet 
in a set of droplets, all of volume V. It is assumed that 

Considerations of the distribution of X in (3) come 
under the general heading of asymptotic extreme-value 
theory. The theory was originally derived with respect 
to constant sample size but was later extended to in­
clude the case of Poisson-distributed sample sizes. Al­
though aspects of the asymptotic theory have been 
widely applied in the analysis of floods and extreme 
climatic events, it would be helpful at this point to list 
the features of the theory which are relevant to the 
general model. 

In terms of the present symbolism, the asymptotic 
theory states that, under very general conditions, the 
random variable X in (3) will follow one of only three 
possible types of distribution, regardless of the distri­
bution of the random variable Y. The derivation of 
these three extreme-value distributions was originally 
carried out by Fisher and Tippett ( 1928) and Gnedenko 
(1943). The extension to Poisson sample size is dis­
cussed by Epstein ( 1949) and Bardsley and Manly 
(1979). Following Johnson and Kotz ( 1970), the dis­
tribution functions of the three types can be written 

Type 1: 

pr(X ~ x) = exp{-exp[-(x - f)/81}, (4) 

Type 2: 

pr(X ~ x) = exp{-[(x - w)/orll}, x ~ w, (5) 

Type 3: 

pr(X ~ x) = exp{-[(t - x)h]a}, x ~ t, (6) 

where ~. w and t are location parameters and 0, o and 
'Y are scale parameters and a, f3 are shape parameters. 
The term pr(X ~ x) denotes the probability that the 
random variable X will be less than some specified 
value x, where x will be taken as °C. In physical terms, 
pr(X ~ x) corresponds to the proportion of a (large) 
droplet set which is still unfrozen at temperature x. 

The probability density functions of the three dis­
tribution types are shown in Fig. 1, for selected pa­
rameter values. A negative x axis is used in this case 
since we will be concerned with measurements on a 
negative temperature scale. The three distributions are 
all quite simple in that they never possess more than 
a single mode, but Types 2 and 3 may still show con­
siderable variety of form. The Type 1 (Gumbel) dis­
tributions possess only location and scale parameters 
and so are shape-invariant. 
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FIG. I: Extreme value density functions for selected parameters 
(probability density on vertical scale). 

Although the asymptotic theory indicates that one 
of the extreme value distributions should always arise 
for sufficiently large Av, it is not possible to predict 
which of the three types will apply without some 
knowledge of the distribution of Y. Type 3 distributions 
arise when the distribution of X is influenced by the 
presence of an upper bound on Y. The other two dis­
tributions occur in the aqsence of an effective upper 
bound, the form of the upper tail of the distribution 
of Y determining which of the two types will apply. 

Since 0°C represents an obvious upper bound to Y, 

Type 3 distributions are most likely to arise when 
droplets freeze at higher temperatures. The presence 
of efficient ice nuclei is likely to cause 1: to be less than 
0°C, the exact value of this "threshold parameter" 
being determined by the nature of the nuclei type con­
cerned. The occurrence of Type 2 distributions is less 
simple to predict in the context of droplet freezing. 
However, the Type 2 location parameter is likely to 
correspond to the temperature of homogeneous nu­
cleation, suggesting that these distributions may be 
associated with droplets freezing at low temperatures. 
When they arise, the simple Type 1 distributions will 
be located at intermediate freezing temperatures such 
that the distribution tails will not be influenced by 
either the upper or lower bounds to temperatures of 
heterogeneous nucleation. 

From the viewpoint of deriving volume freezing­
temperature relations, it is of importance to know the 
relation between the freezing distribution parameter 
values and the magnitude of Av. Fqrtunately, this re­
lation is simply the well-known "reproductive prop­
erty" of extreme value distributions. In effect, the re­
productive property states that if Av is increased further 
beyond an already large value, the type of extreme 
value disti;i.bution of X will remain unchanged. Fur­
thermore, the only parameters which vary are ~. b, and 
'Y for distribution types 1, 2, and 3 respectively. In 
other words, increasing Av as a consequence of in­
creasing V will alter the freezing distribution by location 
and/or scale, but the shape remains unaltered. The 
three varying parameters are linked to Av by simple 
mathematical relations, summarized in Table 1 where 
the parameters concerned are expressed as functions 
of Av. Further discussion of the reproductive property 
is given by Gumbel (1958, 159-161). 

As suggested by the relations in Table 1, each.of the 
three possible extreme-value types generates a unique 
mathematical function linking droplet volume and the 
quantiles of the associated distributions of droplet 
freezing temperatures. In the following three sections, 
the relevant function is derived for each of the distri­
bution types. 

4. Type 1 distributions 

From the inverse of ( 4 ), any specified quantile of a 
Type 1 freezing distribution for constant-volume 
droplets is given by 

TABLE I. The extreme-value reproductive property in droplet 
freezing: varying parameters as functions of Xv; a, d, and h are 
constants for a given water source. 

Varying Parameter as 
Distribution parameter a function of Xv 

Type I f a+ 8Xv 
Type 2 () dX~P 

Type 3 'Y , h>,.,}la 
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.x(p)v = ~v - 8 lnlnp- 1
, (7) 

where V denotes droplet volume. The quantile .x(p)v 
corresponds to the median for the particular case of 
p = 0.5. The parameter 8 is not subscripted here since 
its value is independent of Av and therefore of V. 

From the Type 1 reproductive property (Table 1 ), 
increasing Avas a consequence of increasing the droplet 
size will result in ~v increasing with Vas 

~v =a+ 8 lnAv 

= a + 8 lnA1 + 8 ln V, (8) 

where a and 8 are constants for the water sample con­
cerned, and A1 is the average number of particles per 
unit volume. Substituting for fvin (7) gives the desired 
quantile/volume relation 

.x(p)v = 8 lnV +a+ 8(lnA1 - lnlnp- 1
) (9) 

from which (2) is obtained as a special case by setting 
p to 0.5 and gathering constants. 

It will be noted that the derivation of (9) required 
only Av to be large, and the distribution of Y to be of 
the very general exponential type (Gumbel, 1958, 120). 
The frequent appearance of the relation (2) in exper­
imental data can therefore be explained in a more 
realistic way than the ubiquitous exponential distri­
bution of activation temperatures required by the 
Langham-Mason model. 

5. Type 2 distributions 

From the inverse of (5), any specified quantile of a 
Type 2 distribution of freezing temperatures for drop­
lets of volume V is given by 

.x(p)v = Wv + Ov(-lnp)-lf(j. (10) 

The parameter wv is subscripted with respect to Vin 
this case, since this lower bound may itself vary as a 
function of volume. This situation would apply, e.g., 
if wvcorresponded to the temperature of homogeneous 
nucleation. 

Using similar arguments as in the Type 1 case, it 
follows from the reproductive property that increasing 
Av as a consequence of increasing droplet volume will 
result in ov increasing with volume as 

ov = bV'1f1, (11) 

where the various constants have been gathered into 
the single positive constant b, the value of b depending 
on the nature of the parent water of the droplets. At 
the same time, fJ remains unaltered by any volume 
change. The required quantile-volume relation for the 
Type 2 case is therefore obtained as 

.x(p)v = wv + bV'1f1(-lnp)-' 1f1, (12) 

and taking logs gives the linear function of ln V 

ln[.x(p)v- wv] = fJ- 1 lnV+ ln[b(-lnp)r'1f1. (13) 

The expression (13) is the Type 2 equivalent of (9) 
and represents a new theoretical volume-temperature 
relation which can be checked against freezing data. 

6. Type 3 distributions 

Proceeding as in the other two cases, the inverse of 
(6) yields any specified quantile ofa Type.3 distribution 
of droplet freezing temperatures as 

.x(p)v = E - 'Yv(-lnp) 11a. (14) 

Utilizing the Type 3 reproductive property (Table 1 ), 
increasing Av as a consequence of increasing droplet 
volume will result in 'Yv decreasing with volume as 

'Y = cv-1/a V ,, (15) 

where c is a positive constant for a given water sample. 
The shape parameter a is unaffected by volume change . 
Substituting for 'Yv in (14) gives the Type 3 quantile­
volume relation 

.x(p)v = E - CV-lfa(-lnp)1fa (16) 

and taking logs gives the linear function of ln V 

ln[E - .x(p)v] = -a-1 lnV + ln[c(-lnp)a- 1
]. (17) 

Again, ( 17) represents a predicted relation which is 
new in droplet freezing studies. 

7. Variable droplet size 

All the expressions presented in this paper have been 
with respect to the case where all the droplets in a 
given set have the same volume. This constant volume 
basis was required to justify Poisson-distributed particle 
numbers (per droplet), thus permitting the use of 
asymptotic extreme-value theory for large Av . 

If the droplet size is a random variable (of unknown 
distribution), then Av also becomes a random variable 
and the particle number per droplet will follow some 
unknown compound Poisson distribution. In this sit­
uation, a large average number of particles per droplet 
is no longer a sufficient condition to justify application 
of the asymptotic theory. However, droplet freezing 
temperatures can still be predicted to follow extreme 
value distributions given 1) a large average number of 
particles per droplet, and 2) an average droplet volume 
which is large in relation to the mean deviation of the 
droplet volumes (Bardsley and Manly, 1979). Given 
1) and 2), (9), (13) and (17) will hold as before, but 
with V replaced by E(V), the average value of V. 

8. Comparison with observations 

The general model of droplet freezing gives rise to 
a number of specific predictions which can be tested 
against experimental data. However, a complete ver­
ification of the model is beyond the scope of the present 
paper and is best left to those in the field with direct 
access to the raw data. We confine ourselves here to 
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pointing out some observations from the literature 
which are in accordance with the model, and offer 
some suggestions as to how the model might be most 
simply tested. 

Leaving aside the three quantile-volume relations, 
the most fundamental prediction of the model is that, 
given large numbers of nuclei, droplet freezing tem­
peratures should follow extreme-value distributions. 
On the basis of the frequently-reported occurrence of 
the empirical relation (2), the prediction can be made 
that the Type I distributions are likely to be the most 
common. Some indirect evidence for Type 1 distri­
butions can be inferred from some results given by 
Vali and Stansbury (1966). They noted that in- some 
freezing experiments, the instantaneous rate of freezing 
increased exponentially with decreasing temperature. 
A freezing rate relation of this form is predicted by 
the general model whenever the droplet freezing tem­
peratures follow Type 1 extreme-value distributions­
as can be verified from the exponential nature in Type 
I distributions of the ratio: density function/cumulative 
distribution function. (In physical terms, the height of 
any density function at a specified temperature is pro­
portional to the number of droplets which freeze at 
that temperature, while the distribution function is 
proportional to the number of droplets still remaining 
unfrozen at that temperature). 

Some recent results obtained by Montefinale et al. 
(1976) can be interpreted in terms of the presence of 
Type 3 freezing distributions. In particular, these 
workers observed that when -x was raised to a suitable 
power, it formed a linear relation with the log of the 
-proportion of droplets unfrozen at that temperature. 
This linear form is predicted by the general model 
whenever the droplet freezing temperatures follow a 
Type 3 distribution with e = 0. This can be verified 
from (6), which gives the proportion of droplets un­
frozen at temperature x for the Type 3 case. It is evident 
that the log of this proportion wiU plot as a linear 
function of (-x)", with slope --y-". The linearity of 
the absolute freezing temperature raised to a power 
holds only for the special case of e = 0. However, 
linearity of experimental data would hold to a first 
approximation provided the threshold temperature was 
not too far below 0°C, as was the case with the data 
of Montefinale et al. 

As noted earlier, Type 3 distributions are most likely 
to come into effect at higher freezing temperatures 
when the upper bound to freezing begins to have an 
influence on the droplet freezing distribution. In this 
regard, Pitter and Pruppacher (1973) made the inter­
esting observation that (2) did not hold at higher freez­
ing temperatures. While this in itself is not evidence 
for a Type 3 distribution, the observation does indicate 
that some freezing distribution other than the Type 1 . 
must be involved. 

There appears to be no immediate evidence for the 
existence of Type 2 freezing distributions. However, 

it would be of interest to check this distribution against 
observations obtained from droplets freezing near the 
temperature of homogeneous nucleation. 

A useful feature of the extreme-value distributions 
is that they are amenable to simple graphical tests. 
The technique is standard in extreme-value applications 
but the method is briefly outlined here since it may 
be unfamiliar to those engaged in the collection of 
freezing data. If Gx is the sample proportion of droplets 
unfrozen at a droplet freezing temperature X, then 
from (4), (5) and (6) the quantity -ln(-lnGx) will plot 
a linear function of X, ln(X - w) or ln( E - X) for 
types 1, 2 and 3, respectively. Given the underlying 
distribution, the only departure from linearity arises 
from sampling variation of Gx. 

The graphical plotting procedure is illustrated in 
Fig. 2 with respect to two frequency distributions of 
freezing temperatures. The histogram of Fig. 2a was 
obtained from the freezing of droplets created from 
rainwater (Vali, 1971 ), while the lower distribution 
was generated by the freezing of droplets of distilled 
water (Vali and Stansbury, 1966). The rather jagged 
appearance of the rainwater histogram is due in this 
case to a relatively small number of droplets, not the 
lesser purity of the water. If there is any relation to 
water quality, the general model will be more applic­
able to environmental water because of the higher 
value of Av. 

Because the data of the histograms is already 
grouped, the X values were taken as the class midpoints, 
and G x as the proportion of area to the left of the 
individual midpoints. The negative skewness of the 
rainwater distribution suggests the Type 3 family as 
the most likely candidate of the three possibilities. After' 
some trial values of e, a reasonable degree of linearity 
was obtained in the log plot withe = -6.2°C, indicating 
compatibility of the data with an underlying Type 3 
distribution displaced to this threshold value. The 
greater number of droplets associated with Fig. 2b 
brings out the underlying distribution more clearly. 
In this case, the distribution appears to be of the Type 
1 form, a conclusion further supported by the high 
degree of linearity of the corresponding log plot. 

Apart from the graphical methods, a number of 
estimators have been developed for use with extreme­
value distributions. Techniques developed for the three­
parameter Weibull distribution are directly applicable 
to the Type 3 case because of the simple relation be­
tween these two distributions (Wyckoff et al., 1980). 
A test. for distinguishing between the three extreme­
value types is given by Otten and Van Montfort ( 1978). 

Although a study of obs~rved freezing distributions 
provides some check of the general model, the most 
rigorous test is achieved by using the three predicted 
quantile-volume relations (9), ( 13) and ( 17). This arises 
from the fact that these relations predict not only the 
type of freezing distribution but also some of the pa­
rameters of the individual distributions. The observed 
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FIG. 2. Observed distributions of droplet freezing temperatures and associated log plots. 
The distributions of(a) and (b) after Vali (1971) and Vali and Stansbury (1966), respectively. 

freezing distributions can then be compared with those 
predicted from the quantile-volume relation as esti­
mated, say, from the observed median freezing tem­
perature of droplet sets. For example, if a linear relation 
is revealed by a plot of x(0.5)v against In V, then the 
distributions of droplet freezing temperatures for all 
volumes should be Type 1 with a common scale pa­
rameter 0. This common value of fJ is predicted from 
the gradient of the linear function. Using this value 
of 8, the value of the location parameter ~vis predicted 
for a given freezing distribution from the expression 
for the median of a Type 1 distribution 

x(0.5)v = ~v - fJ lnln2, (18) 

where x(0.5)v would be read from the linear function 
concerned. 

Applying the above procedure to the specific linear 
function graphed by Bigg (1953), the slope with respect 
to ln Vis obtained as l .0°C. Reading from Bigg's graph, 
the value of x(0.5)v for droplets of 1 mm diameter is 
obtained as -23.7~C, and ~vis thus approximately 
-24°C. The predicted distribution is shown in Fig. 3, 
superimposed on the empirical distribution obtained 
from the freezing data of over 1000 1 mm droplets 
(Bigg, 1953). Although the overlap is not perfect, the 
similarity is striking when it is remembered that both 
the type and parameter values of the predicted distri­
bution were obtained independently of the individual 
droplet freezing temperatures. 

It is evident from the linear functions ( 13) and ( 1 7) 
that a similar type of approach may be taken with 

respect to the Type 2 and Type 3 cases. Since (13) and 
(17) are entirely new functions in the field of droplet 
freezing, experimental confirmation of their existence 
would provide strong support for the general model. 

Finally, it should be mentioned that experimental 
verification can be carried out using sample means as 
well as sample quantiles. This arises from the fact that 
changing the droplet volume does not alter the shape 
of the extreme value freezing distributions (Table l ). 
The true means of a volume sequence of freezing dis­
tributions therefore correspond to some fixed quantile, 
so the sample mean in effect estimates a quantile value. 
In fact, it may be more desirable to use the sample 
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mean rather than the median in order to minimize 
the effect of sampling variation. On the other hand, 
it is well known that sample means may be sensitive 
to outlying observations. 

9. Conclusion · 

Extreme-value theory provides a unifying framework 
for the analysis of the freezing behavior of supercooled 
water droplets. The general model presented here is 
consistent with many of the observations of droplet 
freezing, and a number of predictions are made which 
can be readily tested by further experimentation. 

It should also be recognized, however, that the ex­
istence of the general model would imply some clear 
limitations on the information that could be extracted 
from the data of droplet freezing. In particular, given 
that the droplets contain large numbers of ice nuclei, 
it will not be possible to work backwards and deduce 
the activation distribution using the freezing distri­
butions of droplets of different volumes. This arises 
from the extreme value property that for >-.v large, the 
distribution of X does not uniquely determine the dis­
tribution of Y, regardless of the number of different 
sets of droplet volumes. On the other hand, the "dif­
ferent volume" approach will be a useful technique 
provided there are not too many. ice nuclei present. 
In practice, low nuclei numbers can always be achieved 
by dilution with pure water, as described by Schnell 
and Vali (1976). 

With respect to further generalization of the model, 
it may be possible to allow for a secondary effect re­
sulting fromfreezing initiate~ by time-varying clusters 
of water molecules in icelike configurations. The ex­
istence of this process is suggested by the observation 
that water droplets held at a constant temperature will 
sometimes freeze well after this temperature has been 
reached (V ali and Stansbury, 1966). An extreme-value 
approach should also be applicable here, since droplet 

freezing is initiated if the largest molecular cluster ex­
ceeds some critical magnitude. 
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