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Abstract

It 1s important to discover relationships between attributes
being used to predict a class attribute in supervised learning
situations for two reasons. First, any such relationship will be
potentially interesting to the provider of a dataset in its own
right. Second, it would simplify a learning algorithm's search
space, and the related irrelevant feature and subset selection
problem, if the relationships were removed from datasets ahead
of learning. An algorithm to discover such relationships is
presented in this paper. The algorithm is described and a sur-
prising number of inter-attribute relationships are discovered
in datasets from the University of California at Irvine (UCI)
repository.

1 Introduction

In applied machine learning a dataset is viewed as a list
of items (the size of the list can be anything from a few
dozen to several thousand). each item consisting of a
number of attribute values and an associated classifica-
tion. The attributes can be numeric, ranging over the set
of real numbers. or nominal, ranging over some finite set
of values. For some items some of the attribute values
might be missing. Practical algorithms have been devel-
oped to take such a list and compute a model or theory of
the data as a set of rules. or as a tree that branches on
attribute values to leaf nodes labelled with classification
values.

In our experience of applying such algorithms to “real-
world™ datasets [Garner ef al., 1995] it has become ap-
parent that a natural classification for a given dataset
may not be readily available. Data providers may not
know which attribute to use for classification, and may
not be necessarily looking for a theory that déscribes
their data in its entirety. Rather, they may be looking for
information about how the attributes within a dataset
relate to each other.

Aside from the knowledge discovery aspects of finding
inter-attribute relationships, there are technical reasons
why such relationships should be found and eliminated
from the machine learning process. Feature subset selec-
tion algorithms [John et al/, 1994] provide evidence that
the task of performing supervised machine learning can
be substantially improved if irrelevant (and in some cases
even relevant attributes) are removed. Intuitively, one
would expect all machine learning algorithms to benefit
from a simpler search space. where they would operate
faster and induce better models of their data.
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Further, with recent advances in empirical learning to
the problem of numeric class prediction [Quinlan, 1992;
Wang and Witten, 1997] there is now no need to perform
unsupervised quantisation on numeric data prior to
learning. Because quantisation is unsupervised, illogical
classes tend to be generated [Dougherty et al., 1995] and
the knowledge discovery aspect of the process is lost. The
output of the numeric classifier used in this paper is a
model tree, a binary decision tree with linear regression
functions at the leaf nodes. which can be viewed for the
knowledge it contains.

The next section describes the algorithm for inter-
attribute discovery, its treatment of missing values, and a
worked example of the discovery process. Experimental
results of the algorithm applied to a number of standard
datasets taken from the UCI collection [Merz and Mur-
phy, 1996] are reported in Section 3. and discussed in
Section 4.

2 Discovery Algorithm

The algorithm for discovering inter-attribute relation-
ships involves two iterations. The first iterates through a
dataset setting each attribute in turn as the class attribute
using the remaining attributes to predict the chosen
class. The second iteration occurs once an attribute has
been chosen as the class. This iteration is a tenfold cross-
validation step to ensure that the inter-attribute relation-
ships are not spurious relationships that only hold for
particular train and test datasets.

The type of the attribute chosen as the class determines
which empirical learning scheme will be used in the
cross-validation. If the type is numeric then the MS5'
[Wang and Witten, 1997] algorithm is used to predict the
continuous values of the class. Otherwise the type of the
class attribute is nominal and C4.5 [Quinlan., 1993] is
used. These algorithms are used for two reasons. First.
they are both state-of-the-art and will therefore predict.
on average, as well as any other empirical learning
scheme. Second, they both produce interpretable output
which is essential for finding out the nature of the inter-
attribute relationship. If a “black-box™ was used instead
then it would be possible to discover that a relationship
existed. and with some effort what the dependent attrib-
utes were. but it would not be possible to say what the
relationship was precisely.

Each scheme outputs results of one cross-validation
run using a randomly selected training and test set from
the data using the chosen attribute as the class. Ten of
these runs are performed and the average predicted error



is written to a file along with the name of the attribute
and, if the attribute is nominal, the default accuracy for
that attribute. Once the algorithm has finished these re-
sults are examined to see if any “low” error scores are
present. Zero error implies that it is possible to com-
pletely predict one attribute from some of the others.
Small error rates (in the zero to one percent range) are
worthy of pursuit as there are probably only one or two
contradictory examples in the dataset and these outliers
could either be data entered incorrectly or genuine ex-
ceptions to an interesting rule.

2.1 Discovery Shell Script

The current version of the discovery algorithm has been
implemented as a Unix shell script. An outline of the
script is given below:

set class=1
while ( $class <= $num_attributes )
class_type = get_type( class )
randomise_dataset
if (class_type == numeric)
if (missing_values_in_class) delete_missing
foreach f (123456789 10)
split_dataset_into_train_test(train_$f, test_$f)
m35 -c class -t train_$f -T test_$f >> logfile
end
output class, avg_error_from_logfile
else
if (missing_values_in_class) add_missing_to_class
foreachf(12345678910)
split_dataset_into_train_test(train_$f, test_$f)
c4.5 -c class -t train_$f -T test_$f >> logfile
end
output class, avg_error_from_logfile, default_accuracy
endif
set class=class+1
end

2.2 Missing Values

As can be seen. the treatment of missing values and the
output reported is different in each of the two attribute
types (it is unclear at present what, if any, computation
could be returned in the numeric attribute case to indi-
cate the significance of the error rate). If the class attrib-
ute is numeric and it contains missing values then those
values are removed from the randomized dataset prior to
cross-validation. Missing values occur in datasets for
many reasons [Quinlan. 1989]. For example. data may
not be available for a particular attribute because it may
not be relevant. For continuously-valued attributes there
is little that can be done with such “information”.

For nominal attributes it is possible to treat missing
values as a further enumerated value. This provides more
information for the post-shell script review of results
than merely discarding the missing values. In this case it
is possible to discover related values in other attributes to
missing values in the class.

2.3 Worked Example

The “credit-rating” [Quinlan, 1993] dataset describes
credit card applications made in Australia. There are 16
attributes in total including a “class” attribute which
specifies whether or not a credit card was approved. The
names of the attributes have been changed to meaning-
less symbols to protect confidentiality of the data. The
dataset is interesting because it contains a good mix of
attributes—continuous, nominal with small numbers of
values, and nominal with larger numbers of values.
There are also a few missing values, and so the dataset
fully tests the discovery algorithm.

Table 1 shows the results of running the algorithm of
Section 2.1 on this dataset.

Table 1. Results for credit-rating dataset

Attribute Type Avg Error Rate  Default Accuracy
Al nominal 36.08 67.83
A2 numeric 70.22
A3 numeric 73.40
A4 nominal 0 75.20
AS nominal 0 75.20
A6 nominal 72.92 19.90
AT nominal 30.57 57.80
A8 numeric 65.17
A9 nominal 13.89 52.30
Al0 nominal 0 57.20
All numeric 66.74

Al2 nominal 42.75 54.20
Al3 nominal 9.69 90.60
Al4 numeric 87.19
Als numeric 80.66
class nominal 15.04 55.51

Many of the attributes in this table do not have any
clear relationship to the others. This is true if either the
average error rate is high (for numeric attributes), in this
example this applies to the set {A2, A3, A8, All, Al4,
A15} or if the sum of the average error rate and the de-
fault accuracy (for nominal attributes) is approximately
100%, in this example this applies to the set {Al, A6,
Al2, A13}. Attribute 13 nicely demonstrates the need to
compute the default accuracy. Without this information it
could be assumed that this attribute is worthy of further
consideration, in fact, the default rule is used for each of
the cross-validation runs. The nominal attributes that are
worthy of further consideration are A4, A5, A7. A9, A10
and the class.

Attributes 4, 5 and 10 are predicted perfectly by one or
more of the other attributes. The exact nature of the re-
lationship is determined by running either C4.5 or M5'
once more, using the entire dataset for training', and
recording the result. In this case attributes 4, 5 and 10

! This provides a further test to verify that the relationship
holds for all instances in the dataset. In small datasets, cross-
validation can lead to the discovery of bogus relationships
(see Section 4), and these are trapped at this stage in the
process.



are nominal and so C4.5 is re-run. The relationships dis-
covered are:

A4 =" => A5="7  (6)
A4 ='w' => A5='g’  (519)
A4 =y => As5='p'  (163)
A4 =T => AS='gg (2
A4 ="t => A5='g"  (0)
A5 =7 => A4='7"  (6)
A5 ='g => Ad="'  (519)
A5 ='p => Ad='Yy  (163)
A5 ='gg => Ad="T @)
All<= 0 => Al0=false (395)

All> 0=> Al0=true (295)

The numbers in brackets are the number of instances
covered by the rule. Attributes 4 and 5 share a symbiotic
relationship, always occurring in pairs together, includ-
ing those instances (6 of them) where their values are
missing,. justifying our approach (see Section 2.2). At-
tribute 11 completely determines attribute 10, but not
vice versa. For classification purposes it is now no
longer necessary to retain attributes 4 (or 5) and 10 in
the dataset.”

3 Experimental Results

The algorithm outlined in Section 2 was applied to 16
datasets taken from the UCI repository. Table 2 shows a
summary of the datasets used in the experiment. The
range of datasets was chosen to test all aspects of the
discovery algorithm. Most of the datasets involve a mix-
ture of numeric and nominal attributes, most have miss-
ing values and there is a representative range of sizes.

Table 2. Datasets used for the experiment

Table 3 shows the results of applying the discovery algo-
rithm to the datasets in Table 2.

Table 3. Summary of relationships discovered

Number of con-
stant attributes

Number of inte-
resting atirs

Number of zero
error attributes

Dataset

0
14

audiology 0
soybean-sml

—
=]

—
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anneal
autos
horse-colic
credit-rating
german
lymphogrphy
primry-tumor
soybean-large
echocardio
mushroom
hypothyroid
chess
breast-cancer
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Some of the zero error attributes in Table 3 are constant,
the same value is used in each instance in the dataset. In
the echocardiogram dataset the attribute name was made
constant to protect patient confidentiality. The high
number of attributes in the sovbean-small and the anneal
datasets which have only one possible value, are harder
to explain, and remain a mystery.

The most complex relationships were found in the
mushroom dataset (Table 4). It is clear that the relation-
ship between the attributes in this dataset are very in-
volved, and it would be very interesting to send these
results back to the mycologist who first supplied the data.

Table 4. Dependencies found in the mushroom dataset

Attribute Dependent attributes

Dataset Instances Missing Numeric Nominal
. values % attributes attributes

audiology 226 2.0 0 70
soybean-sm 47 0.0 0 36
anneal 898 65.0 6 32
autos 205 1.1 15 10
horse-colic 368 23.8 7 15
credit-rating 690 0.6 6 9
german 1000 0.0 6 14
lymphogphy 148 0.0 3 15
prim-tumor 339 3.9 0 17
soybean-lg 307 6.6 0 35
echocardio 132 7.7 10 3
mushroom 8124 1.3 0 23
hypothyroid 3163 6.5 7 19

chess 3196 0.0 0 37
brst-cancer 286 0.3 0 10

iris 150 0.0 + 0

% (4.5 does not use attributes 5 or 10 in its model of the class
attribute, but does use attributes 4 and 11.

ring_number stalk shape, spore print_color, gill size,
odor

ring_type, stalk color below ring, bruises?,
gill_spacing, stalk shape, gill size, odor,
ring_number stalk surface below ring,
stalk_surface above ring, class
stalk_shape, odor,

spore_print_color, ring_number, stalk root

stalk _root

ring_type bruises?, gill size,

class odor, spore_print_color, ring_number,
gill_spacing, population

ring_type.
gill attachment,
gill_size, odor, stalk_shape, habitat

class, habitat, gill spacing, ring number,
gill_attachment, ring_type, spore_print_color,
ring_type. bruises?, stalk color below ring,

stalk root, rin& number, gill spacing_,_class

ring_number, gill_spacing,
stalk_surface above ring.

bruises?

gill_size

stalk_shape

In all, inter-attribute relationships were discovered in 8
of the 16 datasets. Some were “constants™ discovered as a



side-effect of the algorithm. Non-constant relationships
were found in the sovbean-small, autos, credit-rating,
soybean-large, mushroom and chess datasets. All of
these relationships and the non-zero error but interesting
attributes. should be pursued with the data providers to
see if these results are of interest.

4 Discussion

All of the zero error results presented in Section 3 are
related to the classification of nominal attributes. This is
not due to the fact that C4.5 outperforms M5' as a classi-
fier but has more to do with the fact that predicting a
numeric class perfectly is intrinsically more difficult.
M5' is a new class of algorithm that has only just
emerged in machine learning, and so there is little expe-
rience of interpreting its results. Many of the attributes
returning small error rates are numeric and these will
receive closer scrutiny in the future.

An interesting question with the cross-validation proc-
ess is whether ten zero error classification runs guarantee
that a relationship holds true for the entire dataset. To
date, this has been proven false on only one occasion
with the sovbean-small dataset. The attribute exfernal-
decay gave zero error on cross-validation but when the
whole dataset was used to find the relationship, one in-
stance was classified incorrectly. This can happen be-
cause different models are built for different train/test
splits of the data. Models can be built that contain errors
on training data but not on test data. When the entire
dataset is used for training and testing the error will
surface, so the second stage of the discovery process re-
turns models of attribute relationships and verifies that
those relationships hold throughout the dataset.

5 Conclusion

An algorithm for the discovery of inter-attribute relation-
ships has been presented and tested on a number of data-
sets from the UCI repository. It is perhaps surprising,
given the exhaustive testing that takes place on these
datasets, that so many relationships were discovered.
However, it is almost always the case that the specified
class attribute is used for testing the performance of a
new algorithm rather than discovering any other rela-
tionships in the data.

Knowledge of attribute dependencies can be useful
when filtering attributes prior to learning and all learn-
ing schemes benefit from a cleaner search space, but the
most gain from this information is in the knowledge that
a relationship exists and can be presented. as possibly
new knowledge. to a data provider.

In the practical application of machine learning it has
been our experience that a data provider does not neces-
sarily know which attribute to use as the class attribute.
Typically. they want to know about all relationships that
exist in the data. and more importantly, they want a de-
scription of those relationships.

The algorithm presented in this paper shows some
promise in discovering inter-attribute relationships. It
uses state-of-the-art algorithms which are capable of de-
scribing the knowledge they induce which is an impor-

tant aspect of the task. The algorithm is expensive com-
puting ten runs of a learning algorithm per attribute. The
current implementation is used in batch mode with re-
sults analysed by hand.

By analyzing the manner in which promising results
are pursued, and more generally coming to an under-
standing of how to interpret numeric attributes, it should
be possible to extend the algorithm to determine inter-
attribute relationships automatically.
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