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Abstract— A two-pass algorithm for compositional synthesis
of modular supervisors for large-scale systems of composed
finite-state automata is proposed. The first pass provides an
efficient method to determine whether a supervisory control
problem has a solution, without explicitly constructing the syn-
chronous composition of all components. If a solution exists, the
second pass yields anover-approximation of the least restrictive
solution which, if nonblocking, is a modular representation of
the least restrictive supervisor. Using a new type of equivalence
of nondeterministic processes, calledsynthesis equivalence, a
wide range of abstractions can be employed to mitigate state-
space explosion throughout the algorithm.

I. I NTRODUCTION

Modular approaches to supervisor synthesis are of great
interest insupervisory control theory[1], [2], firstly in order
to find more comprehensible supervisor representations, and
secondly to overcome the problem ofstate-space explosion
for systems with a large number of components.

Most approaches studied so far rely on structure to be pro-
vided by users [3], [4] and hence are hard to automate. Those
that can be automated do not consider both nonblocking
and least restrictiveness [5]–[9].Supervisor reduction[10]
has been used successfully to reduce the size of synthesised
supervisors, but it relies on a monolithic supervisor to be
constructed first, and thus remains limited by its size.

A different approach is proposed in [11], wherelanguage
projection is used to simplify finite-state machines during
synthesis and to construct modular supervisors. To ensure
that nonblocking and maximal permissiveness are preserved,
the observer propertyand output-control consistencyare
imposed on the projection.

In [12], the authors present another framework for com-
positional synthesis, using abstractions based on a process
equivalence calledsupervision equivalence. Using nonde-
terministic automata, the method supports a wide range of
simplifications and can hide both controllable and uncon-
trollable events, while still ensuring a least restrictiveresult.
Yet, there is room for improvement. Due to its reliance
on state labels, supervision equivalence is not preserved
under bisimulation [13], which suggests that this is not
the best possible equivalence for reasoning about synthesis.
Furthermore, the procedure described in [12] produces an
efficient representation of amonolithic supervisor, making
further analysis of the supervisor troublesome.

This paper introduces another equivalence relation on
automata, calledsynthesis equivalence, that does not suffer
from these drawbacks. Synthesis equivalence is coarser than
both bisimulation equivalence and supervision equivalence,
and the compositional synthesis procedure proposed in this
paper produces amodularsupervisor.

Section II introduces notation from supervisory control
theory and defines the synthesis procedure for nondeter-
ministic automata used. Then, Section III defines synthesis
equivalence and presents the main results that lead to the
compositional synthesis procedure. Afterwards, Section IV
demonstrates the procedure by applying it to a medium-
scale example, and Section V finishes with some concluding
remarks. A more detailed version of this paper including all
the proofs can be found in [14].

II. PRELIMINARIES

A. Events and Languages

Event sequences and languages are a simple means to
describe discrete system behaviours. Their basic building
blocks areevents, taken from a finitealphabetΣ. For the
purpose of supervisory control, the alphabetΣ is partitioned
into the setΣc of controllable events and the setΣu of
uncontrollableevents. There are two special events, thesilent
controllable eventτc and the silent uncontrollable eventτu.
These do not belong toΣ, Σc, or Σu. If they are to be
included, the alphabetsΣτ = Σ∪{τc, τu}, Στ,c = Σc∪{τc},
andΣτ,u = Σu ∪ {τu} are used instead [12].

Σ∗ denotes the set of all finitestrings of the form
σ1σ2 . . . σk of events fromΣ, including theempty stringε.
The concatenationof two stringss, t ∈ Σ∗ is written asst.
A subsetL ⊆ Σ∗ is called alanguage.

B. Nondeterministic Automata

System behaviours are represented using finite-state au-
tomata. Nondeterminism is used to support hiding, which is
essential for the proposed synthesis approach.

Definition 1: A (nondeterministic)automatonis a 5-tuple
G = 〈Q, Σ,→, Qi, Qm〉, where Σ is a finite alphabet of
events,Q is a set ofstates, → ⊆ Q × Στ × Q is the state
transition relation, Qi ⊆ Q is the set ofinitial states, and
Qm ⊆ Q is the set ofmarked states.

Note that silent events are allowed in→ even though they
are never included in the alphabet of an automaton. The



transition relation is written in infix notationx
σ
→ y, and

extended to strings inΣ∗
τ in the standard way.

For state setsX, Y ⊆ Q, X
s
→ Y denotes the existence

of x ∈ X and y ∈ Y such thatx
s
→ y. Similarly, x → y

means that there exists a strings ∈ Σ∗
τ such thatx

s
→ y,

and x
s
→ means that there exists a statey ∈ Q such that

x
s
→ y. For an automatonG, G

s
→ x meansQi s

→ x. Given
this notation, themarked languageof an automaton is

M(G) = { s ∈ Σ∗ | G
s
→ Qm } . (1)

Definition 2: An automatonG is deterministicif Qi is a
singleton,x

σ
→ y1 andx

σ
→ y2 always impliesy1 = y2, and

→ contains no transitions labelledτc or τu.
Various operations are used to modify or combine au-

tomata. For compositional synthesis, synchronous composi-
tion [2], [15] and hiding are the most important.

Definition 3: Let G1 = 〈Q1, Σ1,→1, Q
i
1, Q

m
1 〉 andG2 =

〈Q2, Σ2,→2, Q
i
2, Q

m
2 〉 be two automata. Thesynchronous

productof G1 andG2 is

G1‖G2 = 〈Q1×Q2, Σ1∪Σ2,→, Qi
1×Qi

2, Q
m
1 ×Qm

2 〉 (2)

where

(x, y)
σ
→ (x′, y′) if σ ∈ Σ1 ∩ Σ2, x

σ
→1 x′, and y

σ
→2 y′ ;

(x, y)
σ
→ (x′, y) if σ ∈ (Σ1\Σ2) ∪ {τc, τu} andx

σ
→1 x′ ;

(x, y)
σ
→ (x, y′) if σ ∈ (Σ2\Σ1) ∪ {τc, τu} andy

σ
→2 y′ .

Definition 4: Let G = 〈Q, Σ,→, Qi, Qm〉 be an automa-
ton, and letΥ ⊆ Σ. The result ofcontrollability preserving
hiding [12], hiding henceforth, ofΥ from G is

G \!Υ = 〈Q, Σ \ Υ,→!, Q
i, Qm〉 (3)

where→! is obtained from→ by replacing each transition
p

σ
→ q such thatσ ∈ Υ by p

τc→! q if σ ∈ Σc or by p
τu→! q

if σ ∈ Σu.
By introducing concepts ofsubautomataand union of

automata, the set of automata can be considered as a lattice.
Definition 5: Let G1 = 〈Q1, Σ,→1, Q

i
1, Q

m
1 〉 and G2 =

〈Q2, Σ,→2, Q
i
2, Q

m
2 〉 be two automata with the same al-

phabet.G1 is a subautomatonof G2, written G1 ⊆ G2,
if Q1 ⊆ Q2, →1 ⊆ →2, Qi

1 ⊆ Qi
2, andQm

1 ⊆ Qm
2 .

Definition 6: Let Gj = 〈Qj , Σ,→j , Q
i
j , Q

m
j 〉, j ∈ J be a

family of automata all having the same alphabet. Define
⋃

j∈J

Gj = 〈
⋃

j∈J

Qj, Σ,
⋃

j∈J

→j ,
⋃

j∈J

Qi
j ,

⋃

j∈J

Qm
j 〉 . (4)

C. Synthesis

In this paper, synthesis is applied to a single nondetermin-
istic automaton, considered as aplant. Section II-D below
shows how traditional control problems involvingspecifica-
tions [1] can be treated in this formalism. In a “plant-only”
control problem, the objective is to find a subautomaton of
a given plant automatonG that is both controllable and
nonblocking according to the following definitions.

Definition 7: Let G = 〈QG, Σ,→G, Qi
G, Qm

G 〉 and K =
〈QK , Σ,→K , Qi

K , Qm
K〉 be automata such thatK ⊆ G. K is

controllable in G if, for all statesx ∈ QK andy ∈ QG and

for every uncontrollable eventυ ∈ Στ,u such thatx
υ
→G y,

it also holds thatx
υ
→K y.

Definition 8: Let G = 〈Q, Σ,→, Qi, Qm〉. A statex ∈
Q is called reachable in G if G → x, and coreachable
in G if x → Qm. The automatonG is called reachable or
coreachable if every state inG has this property.G is called
nonblockingif every reachable state is coreachable.

Such definitions also appear in [12] and extend the stan-
dard definitions [1] to the nondeterministic case considered
here. The synthesis computation is done by iteratively cal-
culating state setsX ⊆ Q and restricting the automaton to
these states.

Definition 9: Let G = 〈Q, Σ,→, Qi, Qm〉. The restric-
tion of G to X ⊆ Q is G|X = 〈X, Σ,→|X , Qi∩X, Qm∩X〉
where→|X = { (x, σ, y) | x, y ∈ X }.

Definition 10: Let G = 〈Q, Σ,→, Qi, Qm〉. The synthe-
sis step operatorΘG : 2Q → 2Q is defined by

ΘG(X) = { x ∈ X | For all u ∈ Σ∗
τ,u and all y ∈ Q

such thatx
u
→ y it holds thaty →|X Qm } .

ΘG(X) contains all statesx ∈ X such that all states
reachable fromx by uncontrollable transitions are coreach-
able within X . This operator captures both controllability
and nonblocking, and allows for a more succinct description
of the synthesis procedure than previously in [12].

The synthesis step operator is monotonic and has a greatest
fixpoint, which turns out to be the least restrictive control-
lable and nonblocking subautomaton of a given automatonG.
It follows that the greatest fixpoint of the synthesis step
operator exists and characterises an optimal synthesis result.

Theorem 1:Let G = 〈Q, Σ,→, Qi, Qm〉. The synthesis
step operatorΘG has a greatest fixpoint̂XG ⊆ Q, such
that G|X̂G

is the greatest subautomaton ofG that is both
controllable in G and coreachable. If the state setQ is
finite, the sequenceX0 = Q, X i+1 = ΘG(X i) reaches
this fixpoint in a finite number of steps, i.e.,̂XG = Xn for
somen ∈ N.

Proof: See [14]. �

Accordingly, thesynthesis resultfor an automatonG,

supCN (G) = G|X̂G
, (5)

is obtained by restrictingG to the fixpointX̂G (unreachable
states can be removed). If̂XG contains no initial states, there
is no feasible solution to the synthesis problem, otherwise
supCN (G) is the least restrictive solution. Supervisory con-
trol theory focuses on the language of this solution,

M↑(G) = M(supCN (G)) . (6)

In slight abuse of notation, the aboveM↑(G) denotes both
the language accepted by the least restrictive synthesis result
as well as its minimal deterministic recogniser.

If G is deterministic, thensupCN (G) is also deterministic
and can be used to implement asupervisor that achieves
the behaviourM↑(G). In this paper, any nondeterministic
automaton is anabstractionof an originally deterministic
model built using transformations ensuring that a meaningful
supervisor can also be constructed.



D. Translation of Specifications into Plants

A traditional supervisory control problem [1] consists of
a plant G and a specificationK, given as deterministic
automata. In this context, the following controllability re-
quirement is used instead of Def. 7.

Definition 11: Let G and K be two automata using the
same alphabetΣ. K is controllable with respect toG if,
for every strings ∈ Σ∗, every statex of K, and every
uncontrollable eventυ ∈ Σu such thatK

s
→ x andG

sυ
→, it

holds thatx
υ
→ in K.

Using the nonblocking condition, such control problems
can be representedequivalentlyonly using plants. A speci-
fication automaton is transformed into a plant by adding,
for every uncontrollable event that is not enabled in a
state, a transition to a new blocking state⊥. The following
construction from [12] essentially transforms all potential
controllability problems into potential blocking problems,
eliminating the need for explicitly checking controllability.

Definition 12: Let K = 〈Q, Σ,→, Qi, Qm〉 be a speci-
fication. Thecomplete plant automatonK⊥ for K is

K⊥ = 〈Q ∪ {⊥}, Σ,→⊥, Qi, Qm〉 (7)

where⊥ /∈ Q is a new state and

→⊥ = → ∪ { (x, υ,⊥) | x ∈ Q, υ ∈ Σu, x 6
υ
→} . (8)

Proposition 1: Let G, K, and K ′ be deterministic au-
tomata over the same alphabetΣ, and let K ′ be reach-
able. ThenK ′ ⊆ G ‖ K⊥ is nonblocking and controllable
in G ‖ K⊥ if and only if K ′ ⊆ G ‖ K is nonblocking and
controllable with respect toG.

Proof: See [12] or [14]. �

According to this result, synthesis of the least restrictive
nonblocking and controllable behaviour allowed by a speci-
fication K with respect to a plantG—both deterministic—
can be achieved by computingsupCN (G ‖ K⊥).

III. COMPOSITIONAL SYNTHESIS

This section outlines the proposed compositional synthesis
procedure and presents the underlying theoretical results.
As discussed in Section II-D, the synthesis problem can be
reduced to the task of finding the supremal nonblocking and
controllable supervisor for a deterministic plant

G = G1 ‖ · · · ‖ Gn . (9)

The synthesis calculation presented here is a two-pass
procedure. The first pass is a compositional minimisation
where the automata in (9) are simplified and composed
step-by-step; all intermediate results are stored. The result
of this pass is an automaton representing a highly abstract
description of the monolithic behaviour of the supervised
system. In the second pass, this abstract behaviour, in the
form of a marked language, is passed backwards, and used
to find a supervisor component to control the part of the
behaviour that was abstracted at each step of the first pass.

In the first pass, the modular plant (9) is simplified step-
by-step using a similar strategy as proposed in [12], [13],

[16]. At each step, a subsystem of (9) is chosen and modified
in one of the following three ways.

1) A componentGi can besimplified and replaced by
an equivalent componentG′

i, provided that the new
component issynthesis equivalentto the original com-
ponentGi according to the definition given below.

2) A component can be modified byhiding local events.
If Υi ⊆ Σ is a set of events that appear only inGi,
thenGi can be replaced byGi \!Υi.

3) Two or more components can becomposedand re-
placed by their synchronous product.

Simplification and hiding are typically performed together,
since it usually is the removal of local events that makes
more simplification possible. Composition typically is only
used as a last resort, when no hiding and simplification is
possible. For simplification to work correctly, it must be
guaranteed that synthesis results are not changed despite
the simplification. The condition imposed for this purpose
is synthesis equivalence.

Definition 13: Two automataG1 and G2 are synthesis
equivalent, denotedG1 ≃synth G2 if, for all automataT ,

M↑(G1 ‖ T ) = M↑(G2 ‖ T ) . (10)

Two automata are synthesis equivalent if their synthesised
languages are the same in all possible environmentsT .
To justify that simplification and composition steps can be
performed in arbitrary order, the equivalence must be a
congruencewith respect to synchronous composition. This
is shown easily:

Proposition 2: Let G1, G2, andH be arbitrary automata.
If G1 ≃synth G2, thenG1 ‖ H ≃synth G2 ‖ H .

Proof: Let T be an automaton. SinceG1 ≃synth G2

it follows thatM↑((G1 ‖ H) ‖ T ) = M↑(G1 ‖ (H ‖ T )) =
M↑(G2 ‖(H ‖T )) = M↑((G2 ‖H)‖T ), i.e.,G1 ‖H ≃synth

G2 ‖ H . �

A set of rules for calculating abstractions preserving
synthesis equivalence can be constructed in a similar way as
in [12]. Bisimulation [17] preserves synthesis equivalence,
and most of the simplification rules given in [12] for super-
vision equivalence also apply to synthesis equivalence and
are used in the example in Section IV below, without proof.

In the end of the first pass, all automata are composed,
producing a single automaton with only local events. After
hiding the last events, only two final results are possible:
either the empty automaton is returned, indicating that the
original synthesis problem (9) has no solution, or a one-
state automaton accepting the language{ε} is returned. This
final abstraction is only used to determine whether a solution
exists—it is too abstract to produce a useful supervisor.

A supervisor is calculated in thesecond pass, during
which the final result is passed back through all steps of
the first pass. At each step, a modular supervisor component
is obtained using the following result.

Theorem 2:Let G = 〈QG, ΣG,→G, Qi
G, Qm

G 〉 be an
automaton, andT = 〈QT , ΣT ,→T , Qi

T , Qm
T 〉 be a deter-

ministic automaton. LetΣG ∩ ΣT ⊆ Ω ⊆ ΣG ∪ ΣT , and



write ΥG = ΣG \ Ω andΥT = ΣT \ Ω. Furthermore letG′

andT ′ be automata such that

G′ ≃synth G \!ΥG ; (11)

T ′ ≃synth M↑(G′ ‖ T \!ΥT ) . (12)

Then

M↑(G ‖ T ) ⊆ M↑(G′ ‖ T ) ‖ M↑(G ‖ T ′) . (13)

Proof: See [14]. �

This result is used as follows. Assume componentG1

in (9) has been replaced byG′
1 ≃synth G1 \! Υ1, and

a supervisor has been obtained for the abstracted system
G′

1 ‖ T whereT = G2 ‖ · · · ‖ Gn. This supervisor can be
simplified after hiding events local toT , yielding T ′ ≃synth

M↑(G′
1 ‖ T \!ΥT ), and used together withG1 to compute

a new supervisor componentM↑(G1 ‖ T ′).
Theorem 2 does not guarantee equality of languages. In

general, the behaviour achieved by the modular supervisors
is an over-approximation of the monolithic synthesis result,
and an additional nonblocking check is needed to ensure
equality. Using methods of [16], this check can be done
without explicitly constructing the synchronous product,and
if it fails, weaker abstractions can be attempted.

It is also necessary in Theorem 2 that the automatonT ,
representing the remainder of the system, is deterministic.
Initially, this is not a problem, since the input (9) for the
synthesis procedure is assumed to consist of deterministic
automata. To iterate the method, it is advisable to allow only
deterministic abstractions while simplifying. YetG, unlikeT ,
may be nondeterministic in Theorem 2, so nondeterministic
abstractions can be part of the subsystemG, i.e., the system
considered for further simplification.

IV. EXAMPLE

In this section, the proposed synthesis procedure is applied
to a part of the “Flexible Manufacturing System” (FMS) [18].
The model consists of a robotR, a conveyorC , a painting
devicePD , an assembly machineAM , and two buffersB7

and B8. Workpieces move from the robotR through B7,
C , and B8 to the painting devicePD , and back through
B8, C , andB7 to the assembly machineAM . Fig. 1 shows
the “plants-only” version of the synthesis problem. Two
specifications in the original example have been transformed
into plantsB⊥

7 and B⊥
8 according to Proposition 1. In the

figures, uncontrollable events are prefixed by exclamation
marks,!, and local events have parentheses,(), around them.

Note that all states except⊥ are marked in the buffer
plants B⊥

7 and B⊥
8 . This permits deadlock in the system

with a workpiece inB7 (en route toPD ) and another
workpiece inB8 (en route toAM ). To eliminate this fault,
only statesbe should be marked, but the model in Fig. 1
poses a more challenging synthesis problem.

A. First Pass

First of all, eventssr, sa, s1, f1, and f2 in Fig. 1 are
local, which may enable some simplifications. These events
occur inR, which cannot be simplified, and inAM , which

R

!fr

ri

rw

(sr)

B⊥
7

s2

!fr

!fr

!fr

sfc

!fbc!fbc

!fbc

⊥

be

bb

br

C

sfc

!ffc

sbc
!fbc

ce
cf

cb

B⊥
8 sp

!fp

!fp

!fp

!ffc

!ffc

!ffc
sbc

⊥

be
bf

bp

PD

sp !fp

pi

pw

AM

s2

ai

aw

a1

a2

(sa)
(s1)

(!f1)

(!f2)

Fig. 1. The automata in the FMS example.

B⊥
8 ‖ PD

!ffc

!ffc!ffc

!ffc

!ffc

sbc

⊥

bf .pi

bp.pi

be.pi
be.pw

bf .pw

(sp)

(!fp)
(!fp)

≃synth

HA

!ffc
!ffc

sbc

⊥

a1
a2

Fig. 2. The compositionB⊥
8 ‖ PD and its simplificationHA ≃synth

(B⊥
8 ‖ PD) \!{sp, fp}.

can be simplified significantly. The only event by whichAM

interacts with other components iss2. Sinces2 is controllable
and AM can always silently reach both a state wheres2

can occur and a marked state,AM can be reduced to an
automaton with a single marked state and a selfloop ons2.
This makes events2 entirely superfluous—in the perspective
of B⊥

7 , AM acts just like an infinite output buffer. In other
words, based on the fact that

AM \!{s1, sa, f1, f2} ≃synth s2 , (14)

AM can be dropped. This, in turn, means thats2 is now a
local event inB⊥

7 , but no simplification can be made there.
At this point, no more simplification can be made, so some

automata need to be composed. A reasonable starting point
is to composeB⊥

8 and PD . This makes eventssp and fp

local. The result of this composition is shown to the left in
Fig. 2; to the right is the simplificationHA.

Next, R and B⊥
7 are composed, causingfr to become

local. The result of this composition is shown in Fig. 3
along with a simplificationHB. Fig. 4 shows the composition
of HB andC , makingsfc and fbc local, and a simplifica-
tion HC of the result. Finally,HA andHC are composed and

R ‖ B⊥
7

s2

s2

sr

sr
sr

sfc

sfc
!fbc

!fbc

!fbc

!fbc
!fbc

!fbc
⊥

ri.be

rw.be

ri.br

rw.br

ri.bb

rw.bb

(fr) (fr)

(fr)

≃synth

HB

s2
sr

sfc

!fbc

!fbc
!fbc

⊥

b1

b2

b3

Fig. 3. The compositionR ‖B⊥
7 and its simplificationHB ≃synth (R ‖

B⊥
7 )\!{fr}. Two transitions must be disabled by synthesis and are crossed

out in the figure.



HB ‖ C

sfc

!ffc

!ffc

sbc

sbc

sbc

⊥
b1.ce

b2.ce

b3.ce

b1.cb

b2.cb

b3.cb

b1.cf

b3.cf

(!fbc)
(!fbc)

(!fbc)

(s2)(s2)

(sr) (sr)(sr)

≃synth

HC

sfc!ffc

sbc

c1

c2

Fig. 4. The compositionHB ‖ C and its simplificationHC ≃synth

(HB ‖ C ) \!{fbc, s2, sr}.

HC ‖ HA

sfc

sfc

!ffc

!ffc

sbc

b

a1.c1

a1.c2

a2.c1

a2.c2

≃synth

H

sfc
!ffc

sbc

Fig. 5. The compositionHC ‖HA and its supervisorH = M↑(HC ‖HA).

simplified, see Fig. 5. At this point, all events are local and
can be hidden. This results in a nonempty language, showing
that a supervisor exists.

In summary, the system in Fig. 1 is simplified in the
following steps. At each step, the automata in brackets()
are composed and simplified, possibly after hiding.

1) R ‖ B⊥
7 ‖ C ‖ B⊥

8 ‖ PD ‖ (AM );
2) R ‖ B⊥

7 ‖ C ‖ (B⊥
8 ‖ PD);

3) (R ‖ B⊥
7 ) ‖ C ‖ HA;

4) (HB ‖ C ) ‖ HA;
5) (HC ‖ HA);
6) H .

B. Second Pass

In the second pass, Theorem 2 is applied to each step of
the first pass, potentially producing a supervisor component
for each simplification step. The starting point is the final
result H of all the simplification steps, shown in Fig. 5,
which can be considered as the first supervisor component. In
this case, it achieves least restrictive nonblocking supervision
of the last composition, since

H = M↑(HC ‖ HA) . (15)

To find a supervisor component for the previous step 4),
whereHB ‖ C is simplified, events not inHB ‖ C can be
hidden fromH . However, all events inH are shared and
no simplification is possible. UsingHC ≃synth (HB ‖ C ) \!

{fbc, s2, sr} and (15) in Theorem 2, it follows that

M↑((HB ‖ C ) ‖ HA)
⊆ M↑(HC ‖ HA) ‖M↑(HB ‖ C ‖ H)
= H ‖M↑(HB ‖ C ‖ H) . (16)

The supervisor computed at this stage

S1 = M↑(HB ‖ C ‖ H) (17)

is shown in Fig. 6. Since no events have been hidden, it
holds thatH ‖S1 = S1, and the new supervisorS1 includes

S1 s2sr

sr srsr

sfc

sbc

sbc

!fbc

!fbc ⊥

(!ffc)

(!ffc)

S′
1 s2

sr

sr

sfc

sbc

!fbc

Fig. 6. The supervisorS1 = M↑(HB ‖ C ‖ H) and its abstraction
S′

1 ≃synth S1 \!{ffc}.

S2

sr

sr

sfc

sbc

!fbc

(fr)

(fr) (s2)

S′
12 sr

srsr

sfc

!ffc

!ffc

sbc

!fbc

Fig. 7. The supervisorS2 = M↑(R ‖ B⊥
7 ‖ S′

1) and the abstraction
S′

12 ≃synth (S1 ‖ S2) \!{s2, fr}.

the previous supervisorH . Thus, H can be dropped. A
nonblocking check reveals that equality holds in (16), i.e.,

M↑(HB ‖C ‖HA) = H ‖M↑(HB ‖C ‖H) = H ‖S1 = S1 .

The supervisorS1 is passed back to the previous simplifi-
cation step 3), whereR‖B⊥

7 is simplified. Using the fact that
eventffc is not used inR ‖B⊥

7 , it is possible to simplifyS1

preserving synthesis equivalence to

S′
1 ≃synth S1 \!{ffc} . (18)

This automaton is also shown in Fig. 6. UsingHB ≃synth

(R ‖B⊥
7 )\!{fr} andS′

1 ≃synth S1 \!{ffc} = M↑(HB ‖(C ‖
HA) \!{ffc}) in Theorem 2, it follows that

M↑((R ‖ B⊥
7 ) ‖ (C ‖ HA))

⊆ M↑(HB ‖ C ‖ HA) ‖M↑(R ‖ B⊥
7 ‖ S′

1)
= S1 ‖M↑(R ‖ B⊥

7 ‖ S′
1) (19)

The new supervisor component

S2 = M↑(R ‖ B⊥
7 ‖ S′

1) (20)

is shown in Fig. 7. So far, two modular supervisors have been
computed,S1 andS2, and their composed behaviour needs
to be considered for the back-processing of the remaining
simplification steps. Since (19) also is nonblocking,

M↑(R ‖B⊥
7 ‖C ‖HA) = S1 ‖M

↑(R ‖B⊥
7 ‖S′

1) = S1 ‖S2 .

In the preceding step 2), the compositionB⊥
8 ‖ PD has

been simplified. This automaton does not use the supervisor’s
eventss2 and fr, so a simplified automatonS′

12, shown in
Fig. 7, can be used in this step. UsingHA ≃synth (B⊥

8 ‖
PD) \!{sp, fp} and

S′
12 ≃synth (S1 ‖ S2) \!{s2, fr}

= M↑(R ‖ B⊥
7 ‖ C ‖ HA) \!{s2, fr}

= M↑(HA ‖ (R ‖ B⊥
7 ‖ C ) \!{s2, fr}) (21)



in Theorem 2, it follows that

M↑((B⊥
8 ‖ PD) ‖ (R ‖ B⊥

7 ‖ C ))
⊆ M↑(HA ‖ R ‖ B⊥

7 ‖ C ) ‖ M↑(B⊥
8 ‖ PD ‖ S′

12)
= S1 ‖ S2 ‖M↑(B⊥

8 ‖ PD ‖ S′
12) . (22)

It turns out thatM↑(B⊥
8 ‖ PD ‖ S′

12) = B⊥
8 ‖ PD ‖ S′

12

(11 states) andS1 ‖ S2 ‖ S′
12 = S1 ‖ S2, i.e., no additional

supervision is needed in this step. A nonblocking check
of (22) ensures equality, and thus

M↑(B⊥
8 ‖ PD ‖ R ‖ B⊥

7 ‖ C )
= S1 ‖ S2 ‖M↑(B⊥

8 ‖ PD ‖ S′
12)

= S1 ‖ S2 ‖ B⊥
8 ‖ PD ‖ S′

12

= S1 ‖ S2 ‖ B⊥
8 ‖ PD . (23)

In the final step to be back-processed, 1),AM has been
simplified according to (14). All events excepts2 are local
and can be hidden from the supervisorS1‖S2‖B⊥

8 ‖PD , pro-
ducing a three-state abstractionS′. Using (14) andS′ ≃synth

(S1 ‖S2 ‖B⊥
8 ‖PD)\!Υ = M↑(B⊥

8 ‖PD ‖R ‖B⊥
7 ‖C )\!Υ,

whereΥ = Σ \ {s2}, in Theorem 2, it follows that

M↑(AM ‖ (B⊥
8 ‖ PD ‖ R ‖ B⊥

7 ‖ C ))
⊆ M↑(B⊥

8 ‖ PD ‖ R ‖ B⊥
7 ‖ C ) ‖M↑(AM ‖ S′)

= S1 ‖ S2 ‖ B⊥
8 ‖ PD ‖M↑(AM ‖ S′) . (24)

Again, it turns out that no additional supervision is needed
becauseM↑(AM ‖S′) = AM ‖S′ (12 states) andS1 ‖S2 ‖
S′ = S1 ‖ S2, and the system is nonblocking. Thus,

M↑(AM ‖ B⊥
8 ‖ PD ‖ R ‖ B⊥

7 ‖ C )
= S1 ‖ S2 ‖ B⊥

8 ‖ PD ‖M↑(AM ‖ S′)
= S1 ‖ S2 ‖ B⊥

8 ‖ PD ‖ AM ‖ S′

= S1 ‖ S2 ‖ B⊥
8 ‖ PD ‖ AM . (25)

Therefore, adding the modular supervisor componentsS1

and S2 to the FMS system produces the least restrictive
nonblocking behaviour. This result has been obtained without
ever considering automata larger than twelve states, although
there are 184 reachable states in the synchronous product of
the six automata in Fig. 1.

V. CONCLUSIONS

A two-pass procedure for compositional synthesis of
modular supervisors for discrete event systems has been
presented. The strength of this procedure lies in that, at
each step of the second pass, the method accesses bothlocal
information—given by the intermediate result visited—and
global information—given by the abstraction of the mono-
lithic behaviour passed back. This allows for the synthesis
of specialised supervisor modules for individual synthesis
problems, found locally, using knowledge about the global
system to ensure least restrictiveness.

While the algorithm can accurately determine whether a
supervisory control problem is solvable without constructing
the full synchronous product, the supervisor returned may
be an over-approximation of the least restrictive solution
that is not automatically nonblocking. A nonblocking check
is needed to confirm correctness of the result, and if this
check fails, the procedure needs to be restarted using weaker

abstractions. It is yet an open question how information from
the failed nonblocking check can be used to guide the search
for more appropriate abstractions.

The framework of synthesis equivalence has the potential
to overcome several weaknesses of previous approaches to
compositional synthesis: there is no need for state labels [12],
making bisimulation-based simplifications possible; there is
the possibility to hide controllable and uncontrollable events;
and the use of nondeterministic automata paves the way for
better abstractions than projection-based methods [6], [11].
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