

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Tamper-Evident Data Provenance

A thesis

submitted in fulfilment

of the requirements for the Degree

of

Master of Engineering

at the

University of Waikato

by

Mohammad Bany Taha

2016

Abstract

Data Provenance describes what has happened to a users data within a ma-

chine as a form of digital evidence. However this type of evidence is currently

not admissible in courts of law, because the integrity of data provenance can-

not be guaranteed. Tools which capture data provenance must either prevent,

or be able to detect changes to the information they produce, i.e. tamper-proof

or tamper-evident.

Most current tools aim to be tamper-evident, and capture data provenance

at a kernel level or higher. However, these tools do not provide a secure

mechanism for transferring data provenance to a centralised location, while

providing data integrity and confidentiality.

In this thesis we propose a tamper-evident framework to fill this gap by

using a widely-available hardware security chip: the Trusted Platform Module

(TPM). We apply our framework to Progger, a cloud-based provenance logger,

and demonstrate the completeness, confidentiality and admissibility require-

ments for data provenance, enabling the information to be used as digital

evidence in courts of law.

Acknowledgements

I would like to thank my supervisor Dr. Ryan Ko and my co-supervisor Dr.

Sivadon Chaisiri for their support and for the time they spent with me through

this work. I would also like to thank all members of Cyber Security Researchers

of Waikato (CROW) lab, in particular, Alan Tan, Baden Delamore, Je↵ Garae

and Mark Will for their help and the time that they spent with me for this

work.

I am especially grateful to my father and mother, without whom this work

would not have been possible.

Contents

List of Figures 5

List of Tables 6

1 Introduction 3

1.1 Motivation . 3

1.2 Research Goal . 6

1.3 The Objectives . 6

1.4 The Scope . 7

1.5 Key Contributions . 7

1.6 Definition of Terms . 8

1.7 The Outline . 9

2 Literature Review 11

2.1 History of Tamper-Evidence 11

2.2 Related Work . 13

2.2.1 System Management Facilities 14

2.2.2 Hash Operations . 15

2.2.3 Audit Trails . 16

2.2.4 Tools that Collect Provenance at Network Level and in

Cloud Computing . 17

2.2.5 Capture System Call 18

2.3 Background . 19

2.3.1 AEGIS . 19

2.4 Requirements for Digital Evidence 20

2.4.1 Reliability . 21

2.4.2 Authenticity . 21

2.4.3 Admissibility . 21

2.4.4 Completeness . 21

2.4.5 Believability . 21

2.5 Tamper-Evidence . 22

2.6 Summary of the Gaps in Tamper-Evidence Tools 24

5

2.6.1 Integrity and Confidentiality 24

2.6.2 Provide Tamper-Evident at Boot Stage 25

2.6.3 Remote Attestation . 25

2.6.4 Collecting Provenance at Application Level 25

2.6.5 Detect any tampering for the application that generates

provenance logs . 25

3 Overview of the Trusted Platform Module 27

3.1 What a TPM Provides . 27

3.2 TPM Architecture . 28

3.2.1 Platform Configuration Register (PCR)s 32

3.2.2 Keys . 32

3.2.2.1 Non-Migratable Keys 33

3.2.2.2 Migratable Keys 34

3.3 Integrity Measurement Architecture (IMA) 34

3.4 Intel-TXT . 36

3.5 TrustedGRUB . 39

4 Framework Design 42

4.1 Client Side . 42

4.2 Provenance and Backup Server 45

5 Framework Implementation 48

5.1 Client machine . 49

5.1.1 Provenance Generator and Provenance Logs Bu↵er . . 49

5.1.2 Create Chunk . 51

5.1.3 Hash Chunk and Transfer the Chunk to the Provenance

Server . 54

5.2 Provenance Server . 55

5.3 Backup Server . 58

5.4 TPM-Quote . 60

6 Framework Advantages 63

6.1 Guarantee that Data Provenance is created and transmitted in

a secure environment . 63

6.1.1 Tampered Chunk . 64

6.1.2 Tampered Provenance Generator 64

6.1.3 Trusted BIOS Configuration 64

6.1.4 Tampered Bootloader 64

6.1.5 Change Kernel OS . 65

6.2 Data Provenance with Integrity is Guaranteed 65

6

6.3 Data Provenance with Confidentiality is Guaranteed 65

6.4 Data Provenance with Availability is Guaranteed 66

6.5 Remote Attestation . 66

7 Evaluation 67

7.1 Detecting tampering in machine components 67

7.2 Detecting Tampering at runtime 69

7.3 Results . 71

8 Conclusion and Future Work 75

8.1 Conclusion . 75

8.2 Future Work . 77

9 List of Publications 79

10 References 80

Appendix A 89

Appendix B 91

Appendix C 93

List of Figures

1.1 Stages from Boot Time Till Run Time 4

1.2 Summary of Chapter 1 and Chapter 2 6

2.1 Timeline of Evolutionary History of Tamper-Evidence 12

2.2 Tamper-Evidence Landscape 14

2.3 AEGIS Boot Control Flow . 19

3.1 TPM Components . 28

3.2 Root Of Trust . 30

3.3 TPM Key Hierarchy . 33

3.4 Measurement List . 35

3.5 TPM Based Integrity Measurement 35

3.6 The mechanism of Intel-TXT 38

3.7 Chain of Trust, extended Boot Loader is in use (TrustedGRUB) 40

4.1 Framework Design . 43

5.1 Framework Flowchart . 48

5.2 Provenance Generator . 50

5.3 Measuring the chunk file by IMA 52

5.4 Using IMA to detect tampering could happen for the chunk . 52

5.5 The mechanism of hash chunk and how the administrator re-

motely check the status of client machine 54

5.6 The operations on Provenance Server 56

5.7 Intel-TXT technique and Tboot 58

8

5.8 Backup Server . 59

5.9 Remote Attestation Using TPM-Quote 61

7.1 PCRs in TPM . 68

7.2 Detect BootLoader Tampered 69

7.3 TPM keep the values of SRTM and DRTM inside PCRs . . . 70

7.4 Comparison Between Files Created By Progger 71

B.1 Sample of Chunk File . 91

B.2 Sample list of IMA runtime measurements 92

List of Tables

2.1 Comparison Between Tamper-Evident Technologies 24

5.1 Progger’s Log Format . 51

7.1 Evaluation . 74

A.1 TPM Locality . 89

A.2 The Standard Usage of PCRs 90

C.1 Some of TPM Commands . 94

1

Acronyms

ACM Authenticated Code Module

AIK Attestation Identity Key

AIK Attestation Identity Key

BIOS Basic Input/Output System

CMOS Complementary Metal-Oxide Semiconductor

CRTM Core Root of Trust for Measurement

DRTM Dynamic Root of Trust for Management

EK Endorsement Key

EK Endorsement Key

IMA Integrity Measurement Architecture

IPL Initial Program Loader

MBR Master Boot Record

MLE Measurement List Environment

OS Operating System

PCR Platform Configuration Register

POST Power-On Self Test

RAM Random Access Memory

RNG Random Number Generator

ROM Read Only Memory

SMM System Management Mode

SRK Storage Root Key

2

SRTM Static Root of Trust for Management

TCPA Trusted Computing Platform Alliance

TCP Transmission Control Protocol

TLS Transport Layer Security

TPM Trusted Platform Module

TXT Trusted Execution Technology

TXT Trusted eXecution Technology

UUID Universally Unique Identifier

Chapter 1

Introduction

1.1 Motivation

Tamper-evidence tools inform users that their machines have been tampered

with. These tools must be accurate so that they can be used in courts of

law to prove that tampering occurred. They must also provide secure storage

for the evidence, and secure environments for the machines which host them.

Finally, these tools must cover the entire process, from boot time to the time

of inquiry.

Preservation of data integrity is critical in providing valid evidence. The

tools used to provide tamper-evidence must be certified by the authorities and

the court(if requested by the court).

Many technologies provide tamper-evidence. Most of these technologies

are based on audit provenance by collecting the provenance logs, and then

examining these logs in order to detect tampering and anomalies. Provenance

logs in virtual or physical machines keep track of the operations in the sys-

tem (providing answers to questions such as who executes the operation? and

when did the event happen?). But provenance logs can be tampered with by

malicious users, which renders them useless.

Cloud computing presents a new tamper-evidence challenge. Since a phys-

ical machine can contain a set of virtual machines that have a set of logs,

4

System Startup

Stage 1 Bootloader

Stage 2 Bootloader

Kernel

Init User Space

OS

GRUB,TrustGRUB,etc

Master Boot Record

BIOS

Power Up/Reset

Operation

Figure 1.1: Stages from Boot Time Till Run Time

auditing the logs for every virtual machine is very di�cult. Providing secure

storage for the logs is another challenge. However, the main challenge still

arises when an adversary tries to tamper with provenance logs, which means

that we cannot trust the tampered logs. Therefore, it is impossible to know

what has happened in a system if its provenance logs have been tampered

with. It is therefore important to be able to guarantee that provenance logs

have been created, stored, or transmitted securely and that no one can tamper

with them. Malicious users, including insiders with high-level access, have the

ability to access the logging system, and can perform unlogged activities or

tamper with history provenance. This will result in uncertainty about whether

this provenance was generated by the system itself or inserted by someone else.

Therefore, the system must have the ability to monitor everything from boot

time until run time.

Fig. 1.1 shows the stages of the computer system’s boot process (from boot

time until run time). This begins when the user switches on the machine and

the system starts up (bootup). Booting is defined as a bootstrapping process

that starts the Operating System (OS) when the user switches on a computer

system [14]. The boot sequence is the set of operations the computer performs

5

when it is switched on. The processor executes code at a pre-defined location

that is Basic Input/Output System (BIOS), which is stored in a flash memory

on the motherboard (0xFFFF0), and must determine which devices are can-

didates during the boot process. The Master Boot Record (MBR) contains

the primary bootloader in the stage 1 bootloader. After the MBR is loaded

into Random Access Memory (RAM), the BIOS yields control to the MBR.

Typically the job of the bootloader in MBR is to load the stage 2 bootloader.

The bootloader is loaded into RAM and executed. The stage 2 bootloader is

loaded and executed in RAM. After this, the stage 2 bootloader passes control

to the kernel image, which checks the system components. Finally, the OS is

loaded.

It is essential to know that the process stages (in Fig. 1.1) run as expected

(e.g., the proper bootloader). Otherwise, any changes occurring in these stages

cannot be detected and we cannot know what has really happened. This means

that a tamper-evidence solution is not credible. For example, a hacker can

change the bootloader (stage 2 in Fig. 1.1) and access the system without

being detected due to the changes in the bootloader [27]. According to this

scenario, tamper-evidence tools should detect any changes in the system from

boot time until run time in order to know what has happened in the system.

To the best of our knowledge, few tamper-evidence solutions provide full

tamper-evidence. This will be discussed further in Chapter 2. The meaning of

the term full tamper-evidence tools is that these tools can detect any tamper-

ing that occurs from boot time until run time. Most of the tamper-evidence

solutions so far proposed focus on collecting provenance logs at the application

level. These solutions then analyse the collected provenance to determine what

has happened in the machine at the application level only. These solutions are

only partial tamper-evidence because as we mentioned in the previous para-

graph, tamper-evidence tools should detect any changes in the system from

boot time until run time (i.e., system level to application level).

Fig.1.2 provides a summarised overview of the content of chapters 1 and 2.

6

Introduction

Objectives

Scope

Key Contribution

Outline

Motivation

Literature Review

History

Related Work

Logs And Provenance

AEGIS

Evidence

Reliability

Authenticity

Admissibility

Completeness

Believability

Tamper Evident

Definition of Terms

Research Goal

Figure 1.2: Summary of Chapter 1 and Chapter 2

1.2 Research Goal

In this thesis, we propose a framework to enable full tamper-evidence and

preserve the confidentiality and integrity of data provenance using Trusted

Platform Module (TPM) from boot time until run time (application level). We

also focus on providing remote attestation for all types of data provenance logs

(e.g., system provenance and application provenance) generated in distributed

systems such as cloud computing.

1.3 The Objectives

We have the following objectives:

1. To preserve the confidentiality and integrity of data provenance using

TPM. Our objective is also to store provenance logs in trusted backup

servers to guarantee the availability of data provenance.

2. To provide remote attestation for client machines (physical or virtual)

and backup servers. This will help us to check the status of a remote

machine whether it is in well-known (this terminology is explained in

section 1.6) status or not.

7

1.4 The Scope

The aim of this thesis is to provide tamper-evidence for data provenance logs in

physical and virtual machines. In our framework, we collect provenance logs

from dedicated client machines and store them in a provenance server. We

later move the old provenance logs from the provenance server to the backup

server for archival purposes. In this thesis we focus on the provenance logs in

the system from boot time until run time. We do not focus on the network

logs. We use special tools for remote attestation to guarantee that we provide

a secure way to check the system status for the provenance logs in remote

machines.

We do not provide tamper resistance solutions, but we use PCRs of TPM

to store the hash values of our important programs (e.g. progger, backup

software) and these PCRs provide tamper-resistance for the provenance that

is stored inside them.

The TPM cannot prevent a cold boot attack [30] (explained in section

1.6), so we assume that this type of attack is not part of the threat model.

1.5 Key Contributions

The main contributions of this thesis are summarised as follows:

• We propose a framework to provide tamper-evidence and preserve the

confidentiality and integrity of data provenance using the TPM.

• We store provenance logs in trusted and backup servers to guarantee

the availability of data provenance. The framework also allows users to

check the system status of client machines.

• We develop a framework that provides a secure environment for the

provenance in di↵erent stages; at-creation, at-rest, and in-transit. This

means the provenance logs collected are admissible, complete, and con-

8

fidential. Therefore, the provenance logs can be used as evidence in a

court of law.

1.6 Definition of Terms

This section explains the terms used in this thesis.

• Tamper-Evidence is evidence that detects any tampering that could af-

fect provenance logs.

• Partial Tamper-evidence provides evidence about what has happened in

the machine at either system level or application level.

• Full Tamper-evidence is evidence of what has happened in the machine

from boot time until run time.(i.e., system and application levels)

• Chain of Trust : is a validation of each component in a computer system

from boot time by measuring and hashing these components and storing

these hash values inside a TPM chip.

• Root of Trust is a set of functions in a trusted computing module that

is always trusted by the computer’s OS. The root of trust serves as

separate computing engine controlling the trusted computing platform

cryptographic processor on the machine.

• TPM is a hardware chip installed on a motherboard. This chip provides

tamper-evidence for the machine from boot time until run time.

• PCR is a register inside TPM used to store bootloader or machine com-

ponents hash values.

• IMA is a linux kernel module that maintains a list of file hash values and

aggregates the integrity values over this list inside TPM.

9

• Remote attestation is a method used to allow users or administrators

to check the system status for remote machines in a secure way (e.g.,

TPM-Qoute).

• Well-Known status The status of the machine is stored inside PCRs,

where PCRs store the hash value of computer components (such as BIOS

or bootloader). Any changes in the PCRs values mean tampering has

occurred, and that means the status of the system after this tampering

will not be normal and thus not Well-Known.

• Cold Boot is a physical attack, in which an attacker is able to retrieve en-

cryption keys from a running operating system after using a cold reboot

to restart the machine [46].

1.7 The Outline

This thesis is organised as follows:

• Chapter 2 discusses the history of tamper-evidence, and related work. It

also covers the background of our research area and indicates the gaps

in past and existing solutions.

• Chapter 3 discusses the architecture of TPM, and the components of

TPM.

• Chapter 4 discusses the design of our framework, and presents each com-

ponent in the design.

• Chapter 5 discusses the details of our framework implementation.

• Chapter 6 addresses the advantages of our framework.

• Chapter 7 provides evaluation of our work, by explaining and testing

some attacks that could occur.

10

• Chapter 8 presents the conclusion and discusses potential future research

directions.

Chapter 2

Literature Review

This chapter presents the literature review. We will first discuss the history of

tamper-evidence, to understand the flow of development in tamper-evidence

tools. We also discuss related work in order to understand the technologies and

methods that provide tamper-evidence by generating, collecting and storing

provenance logs. We then discuss the requirements of legal evidence and how

provenance logs should comply with these requirements to be admissible as

evidence in courts of law. Finally, we discuss gaps in existing tamper-evidence

technologies.

2.1 History of Tamper-Evidence

Fig. 2.1 shows the timeline of the evolution of tamper-evidence research.

In 1964, the committee of the IBM SHARE group was concerned about the

problem of maintaining security of data, especially for those systems which al-

lowed multiple program execution [28]. The committee’s report discussed the

monitoring of program instruction violations at the hardware level. The OS

at that time, IBM OS/MVT, was not designed to prevent deliberate user-

tampering with the OS [11]. The committee suggested that the first step in

preventing impairment of system integrity was to isolate users from each other

and from the OS. Isolation features included storage protection, program in-

terrupts, tape/disk write protection, and privileged instructions. The second

12

1970’s

Abbott [et al.]

OS/MVT

1980’s

Wegman and
Carter

The orange
book

Defending
systems

1990’s1960’s 2000’s

MD4

MD5
Wang and Yu

building a
secure

Checking for
Race

2010’s

William [et al.] Buneman

 [et al]

Geol [et al.]

Hasan [et al.]

Ryan Ko
Ko [et al.]

KO and Will

Ling

Macko

Suen [et al.]

TPM v1.1

Zhang [et al.]

Intel TXT

Zhou [et al.]

Schneier [et al.]

Accorsi

Figure 2.1: Timeline of Evolutionary History of Tamper-Evidence

suggestion was for a hardware monitor that could be attached to the existing

hardware to record or trap execution actions. Monitoring how e�ciently a sys-

tem is being used can refer to computing resources e.g. I/O channels and disk

drives. The committee also proposed a System Management Facility (SMF) to

provide integrity monitoring; detecting user tampering in the operating system

or files. We will further discuss SMF in section 2.2.1.

In 1981, Wegan and Carter presented a new authentication technique that

could detect any modification or forged message [64]. This technique provided

a secure authentication for messages sent over insecure lines.

In 1985, the United States Department of Defense [41] proposed their own

definition of a trusted computer. The document described the concept of

a trusted computing base; a combination of computer hardware and an OS

that supports untrusted applications and users. The document described the

concept of a trusted computing base; a combination of computer hardware

and an OS that supports untrusted applications and users. Seven levels of

trust were described, ranging from systems with minimal protection through

13

to those providing the highest level of security currently available. The aim

was to provide objective guidelines for the evaluation of both commercial and

military systems. This document was the first to point out that the boot

components should be measured to provide a trusted computer.

In the1990s, the MD4, MD5, and SHA1 [52] were used to detect tampering.

In 1995 Wang and Yu [63] demonstrated a method which enabled attacks on

MD5.

Bishop and Dilger in 1996 presented a tool that analysed programs for pos-

sible race conditions (undesirable situations that occur when a device or system

attempts to perform two or more operations)by checking for race conditions

from ”time-of-check-to-time-of-use” (TOCTTOU) [17]. The results located

five previously undiscovered potential race conditions in a very widely used

program. In 1997, Arbaugh et al. presented the AEGIS architecture [16],

which will be explained in detail in section 2.2. In 2001, Trusted Computing

Platform Alliance (TCPA) announced the release of version 1.0 of its Trusted

Computing Platform Specifications [34]. A TPM can provide a root of trust

by measuring computer components (We will further discuss TPM in chapter

3).

In the 2000s, many tamper-evidence tools were developed using audit logs

to detect tampering. These techniques require auditing and analysis of all

the provenance logs in the machine. The hash chain is one of these tech-

nologies used for tamper-evidence. Like the Merkle tree data structure [21],

a hash chain allows e�cient and secure verification of the contents of large

data structures. Accorsi presented BBOX in 2001 [13]. In 2014, Ko and Will

proposed Progger [40], a kernel-level provenance logging tool which supports

tamper-evidence.

14

Tamper-Evidence

Capture System Call

Audit Trials

System Management Facilities (SMF)

Hash Operation

AEGIS

TPM

Intel-TXT

Integrity Measurement Architecture (IMA)

Figure 2.2: Tamper-Evidence Landscape

2.2 Related Work

This section begins by providing an overview and background of tamper-

evident research. We then review past and existing work in the field of tamper-

evidence for provenance logs. Based on these studies, we will outline the gaps

and limitations in the current research. Fig.2.2 shows all the subsections which

will be addressed in this section. These subsections are the technologies that

provide tamper-evidence. We will mention briefly how these technologies work

and discuss the weaknesses in each tool or technology. In section 2.6 we discuss

the gap in the research on tamper-evidence tools.

2.2.1 System Management Facilities

IBM SHARE group suggested isolating users from each other and from the

OS to prevent deliberate user-tampering with the OS [11]. The OS at that

time was not designed to detect tampering in the file system or in any file in

general. The committee pointed to System Management Facilities (SMFs) to

detect user tampering in the system. An SMF is a IBM’s z/OS-based that

maintains records of information about system and jobs [20] using appropri-

ate formatting. Each SMF record has a numbered type. System-related SMF

records include information about the system configuration, paging activity,

and workload. Job-related records contain information about the CPU time,

SYSOUT activity, and data set activity of each job step. This information

15

identifies the resources that are repeated targets of detected unauthorised at-

tempts to access them, and identifies the users who make detected unautho-

rised requests. However, these data are regularly cleared and saved in related

log files (e.g. system log, SMF data records), and then these records can be

tampered with by an attacker. In addition, a further possible method of at-

tacking system logging is by preventing the generation of log data by means of

appropriate tampering with the generating components. SMF data records are

written, for example, in z/OS entered in a configuration member. By making

changes to this member or by setting exits, it is possible to ensure that certain

SMF data records are no longer written.

2.2.2 Hash Operations

Research by [32] and [68] developed application-level provenance tools for

tracking the data writes of applications and validating the integrity of the

provenance using checksum-based approaches. Schneier and Kelsey employed

hash chains to protect audit trials [56]. They provided algorithms to create an

audit trail and authenticate its entries to detect any tampering in provenance.

Audit logs rarely require the selective confidentiality assurances needed for

provenance. Schneirer and Kelsey present secure logs as a whole, but do not

allow authentication of individual modifications, so we cannot detect in which

provenance record the tampering occurred. Accorsi [13] proposed BBOX, a

secure logging system that covers both the transmission phase and the stor-

age phase. BBOX allows for individual log entry verification and verification

of the complete log file and uses hash chains to provide integrity for the logs.

However, BBOX as a solution is not available yet, as it is undergoing a re-build

to include a robust code for new kinds of crypto protocols.

Zhang et al. [68] considered a set of factors (e.g,. users, processes, trans-

actions), that contributed to one or more data objects through insertions,

deletions, updates, and aggregations. Information about these modifications

was collected and stored in the form of provenance records. The authors stated

16

that using a trusted solution (Hardware) is impractical for provenance collect-

ing. However, collecting provenance in unsecured environment is useless, since

if we cannot detect tampering, then we cannot guarantee that the provenance

was not tampered with.

2.2.3 Audit Trails

Auditing and analysing provenance log files is one of the techniques that pro-

vide tamper-evidence for provenance logs. A provenance log file contains

records of logs. These records refer to events or activities that have hap-

pened in the OS [24]; the logs describe the events. Provenance logs describe

the origins and derivation of the data, starting from its original source [19]

[69]. Data provenance, for example provenance logs, can be obtained at sys-

tem, network, and application levels [69, 61]. In [42] Ling presented a solution

using Linux tools (e.g., lastlog command, history command) based on system

logging mechanisms to collect logs. Ling’s proposed framework uses a com-

bination of audit logs and Linux tools to detect tampering. The framework

allows users to find out what is happening in their system. However, using

Linux tools is not enough to detect tampering, since these tools are limited to

the application level and cannot provide a full overview of what has happened

in the machine.

Accorsi [12] mentioned some logging tools that collected provenance logs.

Most of these logging tools use Transmission Control Protocol (TCP) (e.g.,

rsyslog, syslog-ng, and syslog-sign) to transport logs from the devices to the

collector. These are then analysed to detect tampering or unexpected be-

haviour. Logging tools collect provenance from di↵erent machines or from a

local machine without providing security for the provenance while it is at-rest.

In [15], Ansari et al. analysed and measured the performance of an e�cient file

system intrusion detection system, and established a complementary approach

for existing access control mechanisms in the Linux kernel 2.6.x.y. They fo-

cused on preserving Modification, Access, and Creation Data and Time Stamp

17

(MAC DTS) of files. This mechanism can be used to maintain a log file (e.g.,

provenance log file) that records how the MAC DTS of the files is being ac-

cessed and changed in any underlying file system that is registered to the

Virtual File System (VFS). The mechanism can trap and log activities from

system calls and then hide the log from the file system. The administrator

can unload the module from the system to use this log for tamper-evidence.

However, the authors focus on preserving MAC DTS but not on recording ev-

ery change in MAC DTS and the reasons for these changes. In addition, this

mechanism does not record the type and amount of access. The provenance

which is collected by this mechanism cannot be complete, and therefore cannot

be used as legal evidence.

2.2.4 Tools that Collect Provenance at Network Level

and in Cloud Computing

In [70] Zhou et al. presented Time-Aware Provenance (TAP), a provenance

model that explicitly represents time, distributed state, and state changes.

This mechanism helps in maintaining and querying provenance. The consis-

tent and complete query results are guaranteed despite network variability.

This mechanism captures the time, distribution, and causality of updates.

This mechanism can explain why some data events exist, appear, disappear,

or change. In TAP, some query language enables a declarative specification of

time and changes. However, TAP still cannot answer some questions, particu-

larly where nodes in a distribution system are compromised. In [71] Zhou et

al. proposed Secure Network Provenance (SNP). SNP can securely construct

network provenance graphs in untrusted environments. This technique can

help the administrator to determine the causes and e↵ects of specific system

states (e.g., why a suspicious routing table entry is present on a certain router,

or where a given cache entry originated). SNP provides capabilities for partial

tamper-evidence (e.g., allowing the administrator to track down faulty or mis-

behaving nodes, and to assess the damage such nodes may have caused to the

18

rest of the system). In summary, the SNP system can help the administrator

to provide tamper-evidence, but cannot determine the exact provenance of a

given system status. In [29] Haeberlen et al. describes PeerReview, which

is a system that provides accountability and fault detection for a distributed

system. This system maintains a secure record of the messages sent and re-

ceived by each node. When a node’s behaviour deviates from a given reference

implementation, the record automatically detects the unexpected behaviour.

In addition to that, nodes can sign messages, and each node is periodically

checked by a correct node. In summary, this technique can detect violations of

a single property (correctness of execution). It is not designed to check other

properties of interest in the cloud, such as conformance to SLAs, protection of

confidential data, or service availability.

In cloud computing, logs or provenance logs can be used to enhance cloud

accountability and trust [39, 38, 35] as evidence for auditing, forensic, and data

analysis purposes [36]. In general, using logs or provenance logs as evidence

should comply with evidence rules (this will be further discussed in section 2.4).

2.2.5 Capture System Call

Ko and Will proposed Progger [40], a kernel level provenance tool to capture

system calls. Progger can generate provenance logs which include data activ-

ities (e.g., reading, modifying a file) along with actors and related identifying

entities (e.g., process ID, user ID, and timestamp). Progger can be deployed

in cloud environments monitoring data activities within physical and virtual

machines. In the past decade, several data provenance tools have been devel-

oped for cloud computing. However, Progger di↵ers from other kernel-level

monitoring tools such as Forensix [26], which do not provide tamper-evidence

capabilities in their implementation. The Forensix tool generates data logs and

collects them in database servers, after which, users can submit SQL queries

to retrieve the events that occurred in the machine (e.g., PID, start-time, end-

time). The authors did not mention any technology which provides secure,

19

integrity-preserving environments for the database server. This potentially

makes it easy for malicious users to mask their tracks by modifying the logs in

the database server or within the server which generates the logs. To the best

of our knowledge, work on Forensix has been discontinued since 2011, with

the last source code update not working as expected in terms of providing a

secure environment.

Many other provenance tools have been proposed but have no tamper-

evidence features in them. For example, in PASS [43] [47], mechanisms were

developed to collect system-level provenance logs from virtual machines. Flog-

ger and S2Logger logged file-level and block-level kernel-space system calls for

cloud virtual machines and physical machines respectively [37, 60]

2.3 Background

2.3.1 AEGIS

In 1997, Arbaugh et al. proposed a secure bootstrap process, ensuring the

integrity of the bootstrap code by constructing a chain of integrity checks

beginning at power-on and extending to the last stage when control passes

to the operating system [16]. The boot will abort if the hashes cannot be

validated.

Fig. 2.3 shows the AEGIS boot control flow. Level 0 contains a small sec-

tion of trusted software, digital signatures, public key certificate, and recovery

code. This level contains the usual BIOS code, and the Complementary Metal-

Oxide Semiconductor (CMOS). The second level contains all of the expansion

cards and their associated Read Only Memory (ROM)s. The boot block in

the third level resides in the bootable device and is responsible for loading the

operating system kernel. The fourth level contains the OS. The fifth and final

level contains user level programs and any network hosts.

Referring to Fig 2.3 the control passes from level to level if and only if

the verification of the component in each level is successfully completed. For

20

BIOS Section 1

Level 0

Boot Block

Level 3

Level 2

AEGIS ROM

Control Transition

Recovery Transition

Initiate POST

BIOS Section 2

Expansion ROMs

Level 1

Operating System Level 4

Level 5
Network Host

User Programs

Figure 2.3: AEGIS Boot Control Flow

example, in level 0 section 1 carries out standard checksum calculations, and

passes control to the next stage. Then the cryptographic hash at BIOS in

section 2 is compared with the shared signature and control passes to the next

level if the verification is successful. In the same way, control continues to pass

to the next level after verification of each component is successfully completed.

In summary, this architecture can measure the components in hardware

levels but cannot support the integrity of data at the user level. Additionally,

this architecture does not support either Dynamic Root of Trust for Man-

agement (DRTM) or remote attestation. If the administrator wants to check

system status remotely, then he cannot do so with the AEGIS implementation.

2.4 Requirements for Digital Evidence

In the previous section we mentioned some of the tools used to collect data

provenance at di↵erent levels. While data provenance describes the origins

21

and derivation of the data, the integrity of provenance data is critical for the

integrity of the forensic process. In [18] Braid presented five requirements

that are essential if provenance is to be used as evidence in a court of law.

Data provenance used as evidence should comply with the principles of relia-

bility, authenticity, admissibility, completeness, and believability [18]. All these

requirements should be applied to data provenance to be used as evidence.

2.4.1 Reliability

Provenance must be consistent to be admissible as evidence in a court of law.

We must therefore be sure that the provenance was created, transferred, and

stored in a trusted environment.

2.4.2 Authenticity

Evidence must be positively related to an actual incident and must be su�cient

to support a finding that the item is what the proponent claims it is. If we

cannot explain an event using specific evidence, we cannot use this evidence

as proof of the event, and we cannot then use this evidence in court or for

forensic purposes.

2.4.3 Admissibility

Evidence must be able to be used in court, and therefore must be relevant;

this means that the evidence must be prove or disprove an important fact in

a criminal case. If the evidence does not relate to a particular fact it will be

considered irrelevant and inadmissible.

2.4.4 Completeness

Evidence must be available from boot time until runtime. While the prove-

nance logs describe the origins and derivation of the data, starting from its

original source, all these provenance logs must be available to describe any inci-

22

dent happening at any time (e.g,. from creation time until runtime). Complete

evidence means the story that the material purports to tell has no gaps in it.

2.4.5 Believability

The evidence that is presented must be clearly understandable and believable

by a jury. For example, there is no point in presenting a binary dump of

process memory if the jury has no idea what it all means.

2.5 Tamper-Evidence

A tamper-evidence tool is a device or mechanism that detects any tampering

with provenance logs. Trusted provenance is admissible evidence. Trusted

provenance must applied to all the evidence requirements which are mentioned

in section 2.4. Otherwise, the evidence cannot be used in court.

In section 2.2 we focused on tools that collect data provenance from dif-

ferent levels (system, network, and application). In this section we will focus

on the tools that provide tamper-evidence. In [55, 56], the authors de-

scribe a computational method for making all log entries generated prior to

the logging machine’s compromise impossible for an attacker to read, modify,

or destroy without being detected. However, these solutions rely on a hash

chain which requires auditors to examine every intermediate event between

snapshots. In [44] a tamper-evident log is presented based on a skip list. It

has logarithmic lookup times, which assumes the log is known to be inter-

nally consistent. However, proving internal consistency requires scanning the

full contents of the log. In [51], Pavlou and Snodgrass showed how to in-

tegrate tamper-evidence into a relational database, and prove the existence

of tampering, if suspected. Auditing these systems for consistency is expen-

sive, requiring each auditor to visit each snapshot to confirm that any changes

between snapshots are authorized. In [67] Yumerefendi et al. presented a

network-storage service with strong accountability properties, such as taking

23

snapshots of the internal state, and which probabilistically detects tampering

by auditing a subset of objects for correctness between snapshots. In [71], SNP

provides a strong guarantee even in a system that is under attack. It makes

concessions that limit its usability: SNP detects omissions and equivocations

by checking inconsistencies between node logs and multiple faulty nodes might

coordinate their lies in order to avoid detection. However, since SNP provides

answers to queries about behaviour that is observable by at least one correct

node, SNP can answer questions about network activity when one or more of

the communicating nodes are un-compromised and fully functioning. (As the

number of correct nodes in the network decreases, so too does the observable

network state, reducing the network area the administrator can see when she

issues a query.)

Network provenance used in distributed systems is recorded as a global

dependency graph, where the vertices show states at a particular node. The

edges show local processing or message movements across nodes. Such graphs

can refer to queries about potential tampering. Tamper-evident logging could

identify forgeries, omissions, and other types of tampering can be detected and

used as evidence of malpractice.

In [68], Zhang et al. used hash chains to provide tamper-evident prove-

nance in databases, and tackled the issue of providing audit logs of compound

objects rather than just for a linear sequence of operations. The authors be-

lieve that trusted hardware is impractical due to the loosely-organised nature

of provenance collection. In[32], the authors provided a thorough analysis of

threats to provenance systems, and proposed a system using encryption and

chained signatures to provide integrity protection. However, this research did

not provide trusted solutions for data provenance. Hence, there is still the

potential for attacks.

The previous mechanisms mentioned in section 2.2 [43, 47, 37, 60] are

concerned with collecting data provenance in virtual machines and providing

tamper-evidence.

24

Ko and Will developed Progger [40], a kernel-level provenance logging tool

which supports tamper-evidence. Progger can capture major data activities

such as kernel-level system calls relating to creation, reading, updating and

deleting actions. To the best of our knowledge, few tools are able to fully satisfy

these rules. The provenance must be trusted; in other words, provenance logs

must be in a trusted environment at-creation, at-rest or in-transit.

The previously described tools for collecting provenance logs cannot fully

meet the five requirements for the use of provenance as evidence. They do not

provide a root of trust for the environment where the provenance is created

and stored.

Table 2.1: Comparison Between Tamper-Evident Technologies

VM PM APP Boot Run-Time Tamper-Evidence

Ling et al. [42] 3 3 3 7 3 NA

Zhou et al.[71], hasan et al. [32] 3 3 7 7 7 Partial

Progger [40] 3 3 7 7 3 Partial

Forensix, Ansari et al. [15] 7 3 7 7 3 Partial

AEGIS [16] 7 3 7 3 7 Partial

TPM + IMA + intel-TXT [9], 3 3 3 3 3 Full

Table 2.1 shows several mechanisms used to collect data provenance at

di↵erent levels, whether from a virtual or a physical machine. To the best of

our knowledge, none of the previous mechanisms mentioned in this chapter

can provide full tamper-evidence tools that satisfy all evidence requirements

(discussed in section 2.4) for data provenance. To enable tamper-evidence and

preserve the confidentiality and integrity of data provenance we must provide

a root of trust so that we can know what has happened in the machine from

boot time until run time. This will help us to know that our provenance has

been created, stored, and transported in a secure and trusted environment.

25

2.6 Summary of the Gaps in Tamper-Evidence

Tools

2.6.1 Integrity and Confidentiality

Provenance logs can provide evidence if they can be trusted. The integrity

of the data logs is critical for the integrity of the forensic process. Also, the

confidentiality of data logs is very important to make them admissible as evi-

dence. Hence, the keys which we use to protect logs or provenance logs should

be stored securely. Most tamper-evidence technologies mentioned in section

2.2 cannot provide these conditions for logs or provenance logs.

2.6.2 Provide Tamper-Evident at Boot Stage

As we mentioned in chapter 1, measuring all computer components from boot

time is very important to provide full tamper-evidence. Some kind of attack

could occur based on altering the BIOS version, changing the bootloader or

using a boot-live attack [30]. If the administrator or the user cannot detect

these changes then they cannot provide full tamper-evidence for the machine.

2.6.3 Remote Attestation

Remote attestation is a method used to help the administrator to check remote

machines in a secure way [59]. The administrator or the user can check the

system status to determine whether the machine is running securely. Basically,

the servers are the main machines, which have a very important task to do, and

the administrator will want to check the status of these remote machines rather

than a local machine. This feature is not provided by most tamper-evidence

tools.

26

2.6.4 Collecting Provenance at Application Level

Provenance logs can be generated at di↵erent levels. Most of the tamper-

evidence technologies collect provenance logs or logs at the application level.

The administrator in this case is not aware of the system status before that

level (e.g.,system level or boot time). To provide tamper-evidence we must

collect provenance from boot time until run time.

2.6.5 Detect any tampering for the application that gen-

erates provenance logs

When we use provenance logs to detect tampering in the system, we need to

make sure that the provenance generated by the program is correct. Malicious

attack can change the code of the program and then change the details of the

provenance logs. For this reason we need secure storage hash values of these

applications to detect any tampering that may occur.

Chapter 3

Overview of the Trusted

Platform Module

A key component of this thesis is the application of the Trusted Platform Mod-

ule (TPM). Provenance logs cannot be used as evidence for forensic or auditing

purposes, unless they are created, transited and stored in an environment that

has a root of trust. To obtain a root of trust we use a (TPM) for provenance

logs.

A TPM is a computer chip (microcontroller) on the motherboard that is

used to securely store artifacts used in a trusted computer platform [9]. The

term trusted platform means the platform always behaves in the expected

manner for the intended purpose,” as defined by the Trusted Computing Group

(TCG) [22].

3.1 What a TPM Provides

TPM is designed to:

1. Ensure the security of the TPM private keys. Private keys stored in

TPM cannot be extracted from the chip in any form [65].

2. Detect malicious code at run time. This is done by using Intel-Trusted

eXecution Technology (TXT).

28

3. Allow the administrator to check the system status for remote machines

in a secure way (Remote Attestation).

3.2 TPM Architecture

Non-volatile
storage

I/O

PCR
Attestation
Identity Key

(AIK)
Program Code

Random
Number

Generator

SHA-1
Engine Key Generator RSA

Engine Opt-In Exec
Engine

Figure 3.1: TPM Components

The components of the TPM are shown in Fig. 3.1 and are briefly explained

as follows:

• I/O is a component that manages communication over the I/O bus.

• Non-volatile storage (NVRAM) is a component that holds persistent

state information and identity information.

• Random Number generator is the source of randomness for nonce, key

generator and signature in the TPM.

• SHA-1 Engine is an implementation of the SHA-1 algorithm and is a

capability primarily used by the TPM.

• Platform Configuration Register (PCR) is a secure storage register that

contains a 20-byte SHA-1 hash value of a specific computer component.

Some PCRs are set to known values during the boot up process; for

example, a PCR might contain the hash value of a BIOS, or a boot

29

loader. The use of di↵erent PCRs set to known values is discussed in

section 3.2.1.

• Key Generator is a function that manages the generation of keys and

nonces.

• Attestation Identity Key (AIK) is used to provide a cryptographic proof

by signing the properties (i.e., signing PCR values such as TPM Quotes)

of the non-migratable key (keys that never leave the TPM).

• RSA Engine is an RSA algorithm used for digital signatures and encryp-

tion.

• Opt-In is a component that allows the TPM to be disabled if necessary.

• Exec Engine is a component that runs the program code to execute a

TPM command.

The I/O component manages the encoding/decoding of information flowing

to and from the bus. Attestation Identity Key (AIK) is attached to the plat-

form where the module is located. It works as an asymmetric key pair that can

guarantee the integrity of the platform?s identity and configuration. The RSA

engine is an asymmetric algorithm used for digital signatures and encryption.

The RSA Engine can also create one-time symmetric keys of up to 2048 bits.

The TPM contains a 2048-bit RSA key pair called anEndorsement Key (EK),

which is used during key wrapping operations, digital signing, and encrypting

large blocks of data. The private parts of the EK and the RSA never leave

the TPM. SHA-1 hash capability is primarily used by the TPM. The hash in-

terfaces are exposed outside the TPM to support measurements taken during

platform boot phases, and to allow environments that have limited capabilities

access to a hash functions implementation of a hash algorithm. The function-

ality is not intended to provide an accelerated hash capability, and there are

no specific performance requirements for TPM hash services. Therefore, this

30

 SRTM DRTM

 PCR[0-7] PCR[8-14]

CRTM BIOS Boot-
Loader

OS
Kernel

Applications
/ Files

TPM

PCR
1

PCR
2

PCR
5

PCR
4

PCR
3

PCR
23

PCR
8

PCR
9

Measuring
Extend

PCR
17

Int
el-

TX
T

PCR
14

TrustedGRUB

PCR
0

PCR
10

IMA

Boot Process

Figure 3.2: Root Of Trust

engine should only be used to compute hash values of small chunks of data.

Larger chunks of data should be hashed outside the TPM if possible.

Opt-In allows the TPM to be enabled/disabled, or activated/deactivated

in a secured manner. The program code operates inside the execution engine

and processes the TPM commands streaming from the I/O port.

In Fig.3.2, the root of trust starts from the Core Root of Trust for Mea-

surement (CRTM), which is a trusted code stored in the BIOS boot block. It

reliably measures the integrity values of other entities, and stays unchanged

during the lifetime of the platform. The CRTM is an extension of the normal

BIOS, which first measures other parts of the BIOS and stores the hash values

in PCR-0 and PCR-1 as shown in Fig.3.2, and then passes control to the BIOS

[57].

The BIOS measures the bootloader and stores the hash value of the boot-

loader in PCR-4 and PCR-5 as shown in Fig. 3.2. Then the BIOS passes

control to the bootloader. Next, the bootloader measures the OS kernel image

31

and passes control to the OS.

Each step of this boot process stores a hash value in the appropriate PCR

(extend PCR) in the TPM with the measurements taken in the corresponding

step in the boot process. The term extend in Fig. 3.2 means hashing the

measurement value and saving it inside the PCR. The extend function uses

the following method to compute the hash value that is to be stored in the

PCR:

PCRn+1 = SHA1(PCRn + SHA1(Component)) (3.1)

where PCRn+1 denotes the new (expected) value of PCR and PCRn denotes

the current value of the PCR.

Static Root of Trust for Management (SRTM) depicted in Fig 3.2 contains

a set of trusted code stored in the BIOS. This code is executed when the

system is running. All the codes in the chain of the components in in Fig 3.2

are measured by the previous components. (e.g., CRTM measures the BIOS).

Therefore, any changes in the codes of the components in the chain will be

detected. If any change happens in the SRTM phase, the value of PCRn+1

will indicate the change because the value will be di↵erent from the value of

PCRn.

In Fig. 3.2, TCG defines the next phase, called the Dynamic Root of

Trust for Measurement (DRTM), as the measuring of the platform at run

time, which indicates the dynamic chain of trust starts on a request from the

OS via a special processor instruction. Intel developed the Trusted Execution

Technology (Trusted eXecution Technology (TXT)) [65] (further discussed in

section 3.4), which provides the DRTM with the ability to check the secure

mode of the environment at run time by checking the value of PCR-17 as

shown in Fig. 3.2 (which will be discussed in subsection 3.4). Similarly, AMD

implements equivalent technology called the Secure Virtual Machine (SVM)

[4]. IBM provides the Integrity Measurement Architecture (IMA) to maintain

a runtime measurement list (e.g., measurement for a list of sensitive files stored

in PCR-10 as shown in Fig. 3.2) and test the runtime integrity of the platform

32

using a remote attestation feature [45].

3.2.1 PCRs

A PCR is a 160-bit storage location for discrete integrity measurements. The

old version of TPM has 16 PCRs (old version TPM1.1). TPM 1.2 and the

newest version have 24 PCRs, as shown in Fig. 3.2. All PCRs are shielded

locations that will protect the hash data inside the TPM, preventing physical

attacks. The decision about whether a PCR contains a standard measurement

or is available for general use is deferred to the platform specific specification

(e.g., PCR-0 is allocated for BIOS components, while PCR-23 is available for

application). The PCR is designed to hold an unlimited number of measure-

ments in the register, which it does by hashing all updates(see equation 3.1)

using a cryptographic hash.

A TPM provides trusted space, so data (provenance logs) from it will be

admissible and authentic as forensic evidence since the environment is moni-

tored and measured by the TPM. Several of the tools normally used to collect

machine data cannot guarantee the environment in which the data logs are

created and stored. Therefore, a solution that can measure everything in the

machine from boot time until run time is needed. This can be done through a

TPM, because the TPM can store all hash values of the measured components

in a secure and shielded location (PCR),thus guaranteeing that the hash value

is related to the machine status (SRTM and DRTM) and cannot be tampered

with even during a physical attack. Based on this, if an attacker uses any kind

of attack at boot time (e.g., changing the bootloader) or at run time (e.g.,

malicious attack), this can be detected since the expected value of the PCRs

will change. Then we can decide if our data logs have been tampered with or

not. This will be further explained in chapter 5.

33

Storage Root
Key

Endorsement
Key

Migratable
Key

Non-
Migratable

Key

Attestation
Key

Protected By The TPM

Externally Stored Keys

Figure 3.3: TPM Key Hierarchy

3.2.2 Keys

The TPM contains keys for di↵erent uses. Some of these keys never leave the

TPM and some are migratable. Fig. 3.3 shows the hierarchy of TPM keys.

3.2.2.1 Non-Migratable Keys

Non-Migratable keys are bound to a single TPM. These keys are unique to

a TPM and cannot be migrated or exported from the TPM. For example,

the Endorsement Key (EK) is a public or private key pair, generated during

manufacture [23]. The EK can attest to the authenticity of values produced by

the TPM. This key is unique to each TPM. The EK is a non-migratable key

and can be used to create identity keys. Attestation Identity Keys (AIKs) are

non-migratable keypairs that are essentially aliases for the EK. The private

key of an AIK never leaves the TPM in plaintext and is used only for signing

data originated by the TPM.

Another example of a non-migratable TPM key is the Storage Root Key

(SRK). The SRK is a keypair that is generated internally in the TPM and

has a private key which never leaves the TPM. The SRK is created when the

34

owner of TPM takes ownership of the TPM. The SRK is used to encrypt data

using the TPM sealed command (which will be further explained in section

5.3).

3.2.2.2 Migratable Keys

Migratable keys can be moved and used outside a TPM. For example, the pub-

lic part of AIK can be moved to a remote machine for platform authentication

purposes.

3.3 Integrity Measurement Architecture (IMA)

An IMA, an open source trusted computing component can maintain a run-

time measurement list and an combine integrity value for this list, in order to

produce verifiable information about the software running on a Linux-based

system [1]. Remote parties can use this information to assess the execution

environments integrity. The measurement list is obtained by computing an

SHA1 hash value for the files representing executable content and then storing

all measurements since the booting of the system in a kernel-held measure-

ment list. The IMA measures the execution environment of service (binaries,

configurations, and libraries) [33].

The measurement list cannot be compromised by any software attack with-

out the attack being detectable, since the hash value of the measurement list

is stored inside PCR-10. In a trusted boot system, the IMA can be used to

attest the system’s runtime integrity.

In Fig. 3.4 the number ’10’ located at the beginning of each row refers to

PCR-10, which is the default PCR for the IMA measurement. The second and

fourth columns are hash values. The hash value in the fourth column is the

hash value of the chunk file (i.e., filedata-hash). The hash value in the second

column is called template-hash and is the result of concatenating the SHA1

hash value of PCR-0 to PCR-7 (called boot-aggregation) with the hash value

35

Figure 3.4: Measurement List

of the file. This template-hash is calculated by

Template�Hash = SHA1(filedata-hash || boot-aggregation) (3.2)

The resulting hash is stored in PCR-10 with boot-aggregation.

Fig.3.5 shows how the IMA is applied for remote attestation. Measurement

is initiated by the measurement agent, which induces a measurement of a

file, stores the measurement in an ordered list in the kernel, and reports the

extension of the measurement list to the TPM.

Platform Configuration Registers..24

Platform Configuration Registers..0
Trusted BIOS

Measurements

 TPM

Trusted Platform

Measurement
Agents

Measurement List

Remote
attestation
PurposeStore

Report

Challenger
1- Integrity Request

2-
 R

eq
_Q

uo
te

3-
 R

es
_Q

uo
te

4- Integrity Response

Attesting system platform

Figure 3.5: TPM Based Integrity Measurement

The integrity challenge mechanism allows a remote challenger to request

36

the measurement list together with the TPM signing aggregate of the mea-

surement list (step 1 in Fig. 3.5). Upon receiving a result (steps 2 and 3 in

Fig. 3.5), the attesting system first retrieves the signed aggregate from the

TPM and then the measurement list from the kernel. Both (signed aggregate

and measurement list from the kernel) are then returned to the challenger (step

4 Fig. 3.5). Finally, the challenger can validate the information and assess the

trustworthiness of the attesting system’s run-time integrity.

3.4 Intel-TXT

The TPM can measure the machine components at boot time until the kernel

OS takes over (explained in section 3.2). Then we need a mechanism that can

detect an attack at run time (after the OS is up and running). Intel-TXT

is a hardware-based technology, designed to provide security of a computer

platform [10]. Intel-TXT can be deployed in both physical and virtual envi-

ronments.

Intel-TXT can ensure that no unauthorised changes can be made in critical

parts of the code. This validation is performed each time the environment

launches. The administrator should add security policies (e.g., to create non-

migratable keys and tell the TPM to not allow anyone but the owner to evict

it) to make sure that the machine runs in a trusted environment. Servers

that implement Intel-TXT can demonstrate (attest) that they comply with

a specific trust policy, and thus can be used to form pools of trusted servers

based on the established policies. For example, Intel-TXT allows an operating

system to launch if it knows the platform and system software are secure and

trusted.

A successful measured launch has the following requirements:

• Authenticated Code Module (ACM) must be valid.

• Server Platform must pass the launch the control policy.

37

• Measurement List Environment (MLE) code measurement has passed

the launch control policy.

We briefly outline the requirements for installing intel-TXT and then we

explain how this technology works.

The requirements for installing Intel-TXT are as follows:

1. Hardware Requirements:

The TPM chip must be integrated with the chipset. Both of them work

together to check the measurement and security of the system. Therefore,

the hardware should support Intel-TXT [49].

2. Software Requirements:

Fig 3.6 shows the MLE component that verifies the software to guarantee

that all components are secure.

The MLE includes:

• An ACM to perform the measured launch, starting the dynamic chain

of trust.

• A Server Platform which includes the BIOS code, BIOS configuration,

System Management Mode (SMM) code, option ROM code and config-

uration, system state, MBR and boot configuration.

• An Initial system software code (referred to as MLE code) that sets up

the platform to protect the OS/hypervisor kernel code.

In Fig. 3.6 the dynamic chain of trust (which is carried out by Intel-TXT)

starts following a request from the OS via a special processor instruction, which

measures and verifies another ACM (the SINIT ACM), which will oversee the

secure launch. SINIT is an acronym for Secure Initialization; it initializes the

platform so the OS can enter a secure mode of operation. The SINIT ACM

performs additional checks, which include making sure the BIOS has passed

38

CRTM

CPU

Ex
ec
ut
e

TPM

PCR
0

PCR
1

PCR
17

PCR
18

PCR
23

BIOS BootLoader OS

Measure
Execute

Extend()
Hash SHA1

ACM

signature
module MLE

Figure 3.6: The mechanism of Intel-TXT

its security checks and has locked the platform configuration. The ACM then

measures the OS (a portion of the OS referred to as the trusted OS) and

invokes a launch control policy (LCP) engine which is stored within the TPM

NVRAM (NVRAM is an area of flash storage inside TPM). This determines

whether the platform configuration and OS can be trusted (as defined by the

policy set by the system administrator).

After this, once a secure CPU-contained environment is created, the signa-

ture module is validated and its identity is sent to the TPM (PCR-17). Then

the signature module measures the Measured Launch Environment (MLE) and

sends the result to the TPM (PCR-18).

Enabling Intel- TXT technology in our framework is very important since

we aim to provide security for the environment in which the provenance logs

are created and stored at run time. We use this technology to provide a secure

environment at run time, and enable awareness of what is going on in the

machine at run time.

The features and advantages of using Intel- TXT are listed below.

39

1. Intel-TXT provides features as follows:

(a) Secure measurement

(b) Dynamic launch mechanisms via special instructions

(c) Configuration locking

(d) Sealed secrets

2. Intel-TXT helps detect and/or prevent software attacks such as:

(a) Attempts to insert nontrusted VMM (rootkit hypervisor)

(b) Reset attacks designed to compromise secrets in memory

(c) BIOS and firmware update attacks

Intel-TXT uses enhanced processor architecture, special hardware, and as-

sociated firmware that enables certain Intel processors to reduce the overheads

associated with system virtualization and allow guest OSs and applications to

run in their intended modes.

Trusted Boot (TBoot) is an open source, prekernel/VMM module that uses

Intel-TXT to perform a measured and verified launch of an OS kernel/VMM

[3]). TPM NVRAM stores the launch control policy (LCP). The SHA-1 hash

of these components is compared with the hash value that has already been

shared in NVRAM. If the comparison results match, the OS/hypervisor is

running in a secure environment. The policy consists of the platform owner

specifying the minimum version of ACM, the platform configuration as mea-

sured by (PCR-0 till PCR-7) in the TPM containing known good values, and

the MLE measurement, which is a known good value.

3.5 TrustedGRUB

TrustedGRUB is an enhancement of the open-source bootloader GNU GRUB

[5]. When BIOS measures the bootloader located in the master boot record,

control is transferred to the loader (TrustedGRUB) (shown in Fig. 3.2). The

40

CPU

CRTM

BIOS

BootLoader Stage 1

BootLoader Stage 2

OS KernelOS KernelOS Kernel

Additional files

Command list

Multi modules
Optional

Grub
Configuration

Extend Boot
loader

Extend
Hardware

transfers control to

measured by

Figure 3.7: Chain of Trust, extended Boot Loader is in use (TrustedGRUB)

chain of trust is carried on by TrustedGRUB by measuring the integrity of

the OS configured to load and extending the result into PCRs (i.e., PCR-8 to

PCR-14). The hash values of the PCRs provide the evidence to attest system

status at boot time. Fig 3.7 shows how the bootloader is measured and how

the bootloader receives and passes control to finally achieve a chain of trust.

PCR-8 and PCR-9 contain information about the bootloader (Trusted-

GRUB). If an attacker tries to access the machine by changing the boot of

the machine (e.g., boot attack[31]) then it is easy for machines that contain

TPM to detect this kind of attack. Since the value of the current bootloader

is secured in PCR-8 toPCR-14, changing the bootloader will change the hash

values inside PCR-8 - PCR-14.

Furthermore, TrustedGRUB o↵ers an important feature to enable verifica-

tion of the integrity of an arbitrary file after the OS is loaded. With the help

of this functionality, users can continue the chain of trust with the necessary

41

component (i.e., the OS) to enable integrity checking. This functionality is

realised by providing a ”check file” option, where TrustedGRUB will load and

verify given files by comparing the SHA1- results with pre-calculated values

stored in the check file. The integrity of all files listed in this check file is ver-

ified during the boot process by comparing the referenced hash values to the

newly computed values. If some of these do not match, a warning is displayed.

All check files verified are extended into PCR-13.

In addition, TPM encrypts the data using TPM keys. This encryption can

also depend on certain PCR values. If the value of PCR is changed for any

reason, there is then no way to decrypt the data [5]. (we will further discuss

this in chapter 5).

Chapter 4

Framework Design

In this chapter, our design framework is discussed. The design focuses on the

preservation of the confidentiality and integrity of data provenance, and on the

tools that we use to generate these provenances. In our framework we also aim

to ensure easy availability of the provenance logs to the system administrator

at any time.

In the following sections we will explain our framework’s design and the

components that we used in constructing this framework.

4.1 Client Side

1. Client : In Fig. 4.1, the client machine could be a virtual or a physical

machine. This client machine collects provenance logs and is thus the

source of the provenance logs. Therefore, it is very important to provide

a trusted environment to guarantee that the provenance logs at-creation,

or at-rest are in a trusted environment. To achieve this, client machines

must have a TPM chip. This chip must be enabled and active in order

to work properly. As we mentioned in chapter 3, the TPM chip mea-

sures the machine components from boot time until the OS is up and

running in the SRTM stages. The TPM then keeps the hash values for

these components at SRTM stages inside the appropriate PCR in the

TPM chip. Then the administrator can remotely read these values us-

43

Client

0010111101100000

1-Create Buffer
2- Fill in Chunk
3-Reset Buffer
4-Hash Chunk Data

Provenance
Generator

Read Provenance

001011110110010

001011110110100

001011110110110

##########

##########

##########

##########

Provenance Server

 TLS

Backup Server

0010111101100000

001011110110010

001011110110100

001011110110110

0010111101111100

001011110100010

101011110110110

011011110110010

Chunks file

_150412_144030.txt

_150412_1440105tx
t

################

################

################

################

################

################

################

################

_150412_144030.txt

_150412_1440105tx
t

Hash file

001011110110010

001011110110100

001011110110110

0010111101100000

B
u
ffe

r
C

h
u
n
k

Hash Chunk

TLS

Figure 4.1: Framework Design

ing a special protocol for security reasons (this will be further discussed

later in the chapter). The administrator is thus able to check the client

system status frequently (e.g., to detect if an attacker has changed the

bootloader, or for the presence of a malicious user).

2. Provenance Generator : In Fig. 4.1 the provenance generator is a

kernel-space provenance logging tool. The reason for using a provenance

generator is that this tool can record all kernel events; based on these

provenance logs we can tell what operations have been executed in the

machine. This tool must be compatible with virtual and physical ma-

chines and must be able to allow all cloud stakeholders to trace their

data. The provenance generator should also collect provenance from the

lowest possible atomic data actions. In addition, this tool must be ac-

curate and have granular timestamp synchronisation across several ma-

chines. Finally, we provide integrity for this tool by extending (hashing

the provenance generator code) and storing this hash value in PCR-23

44

which is allocated for this purpose. We can thus guarantee that any po-

tential tampering with this tool code can be detected by comparing the

new hash value of the code with the one that is stored in PCR-23 inside

the TPM. The mechanism that the administrator applies to remotely

check the hash value of PCR-23 for the client machine will be further

discussed in chapter 5.

3. Bu↵er : The bu↵er is created in the client machine. This bu↵er tem-

porarily receives provenance logs from the provenance generator. We

reduce the probability of attack and can detect any tampering that may

occur in this file. Our software checks the time and the size of the bu↵er.

If the time limit is exceeded, or the bu↵er becomes full, then the bu↵er

content will fill the chunk (the provenance log file).

4. Chunk : The chunk is created once the bu↵er becomes full or the time

is exceeded. The chunk is then moved into storage. The data inside the

chunk are the provenance logs, which were collected by the provenance

generator (Progger). Storing the provenance logs inside the chunk file

based on the time and the size of the bu↵er will help the administrator

to check specific provenance logs at specific times, where the creation

date and time of the chunk will be the name of the chunk and of the

hash chunk file.

5. TPM : The TPM is a chip required to provide integrity, confidential-

ity and reliability for the data provenance logged. The hash value of

the program of the provenance generator (e.g., Progger) is stored inside

a PCR-23 to detect any change that may happen in the code. After

this, IMA is used to detect both expected and unexpected events in

the provenance log file. TPM stores the hash values of measurements

for the CRTM, BIOS, bootloader, OS kernel, and OS. During runtime,

Intel-TXT and IMA can detect attacks at the DRTM phase. We assume

that the storage used to store data provenance applies the Opal TCG

45

technology to enable full disk encryption [2]. Intel-TXT can be config-

ured to only allow the OS to launch if it knows the platform and system

software are secure and trusted (as defined by the data centre’s policy).

LCP guarantees that OS/Hypervisor runs if and only if the current pol-

icy matches with its (LCP) policy which consists of specific values of

PCRs. This secure launch control policy allows the software to operate

in a trusted OS, but only after validating that the platform configuration

and system software meet the system administrator policy [65].

4.2 Provenance and Backup Server

In this section we will explain our design for Provenance and Backup servers.

• Provenance server: This server is used by the administrator to monitor

the system status in client machines and backup servers. This server

receives all data provenance (provenance logs) collected by client ma-

chines. In addition, the provenance logs consolidated in the provenance

servers can be examined by the administrator in the short term. Because

the files rapidly become very large, they are subsequently moved to the

backup server. Thus, the idea behind using a provenance server (which is

used by the administrator) in our design is to give the administrator the

ability to frequently check the system status of client machines (PCRs);

the administrator can detect if any tampering has happened in the client

machines. Also, by temporarily storing the provenance logs it is possible

to check the confidentiality of these provenance logs. This server will

be a verifier server; the administrator can remotely check system status

(check specific PCRs in client machines or backup servers). This feature

is called remote attestation. In this system, we use a special protocol

design from TCG to ensure that the connection between machines is se-

cure. This server runs in a secure environment, as does the client server.(

This server has a TPM, to allow the administrator to frequently check

46

the status of his provenance server.

• Backup Server : In the longer term, the backup server works as an

archive server for the provenance logs when the number of provenance

logs becomes too large to be stored in the provenance server. The large

numbers of provenance logs in the backup server can also be used for

data analysis purposes. The provenance logs in the backup server are

sealed by a TPM sealed feature (i.e. they are encrypted). This feature

adds confidentiality to our framework, since the key which is used to

encrypt provenance logs is kept in a safe place inside the TPM. This key

never leaves the TPM chip.

Both provenance and backup servers must have a TPM, Intel-TXT, and

IMA. The provenance server is accessed by the administrator, who has

the ability to examine the data provenance. The administrator must

have the TPM-ownership password to gain access to the TPM features.

In this framework, groups of provenance logs from a client machines

provenance server are grouped in a file called the chunk Every chunk,

along with its hashed value, will be transferred via the secure Transport

Layer Security (TLS) to the provenance server. The administrator can

check the hash values from the client machines and compare them with

the hash values stored in the provenance server. We assume that the

hash function (used to hash chunks) applies a keyed-hash message au-

thentication code (HMAC) (e.g., HMAC-SHA1). The secret key used for

the HMAC is shared by all the machines with the support of the TPM.

We assume that the connections between clients, provenance and backup

server are secure, using a TLS connection. However, as we will see in chapter 5,

the administrator who works on the provenance server uses a special protocol

(TPM-Quote [6] or TCG IF-M protocol [50]) for remote attestation. For the

data provenance (provenance logs) we will explain (in chapter 5 and chapter

7 how we can detect any tampering that may occur in the data provenance,

47

even if the tampering occurs in the transmission stage.

Algorithm 4.1 Our Software in The Client machine
void generator (log)

if (bu↵er.full() || bu↵er.timeout()) then

Chunk chunk = new Chunk(bu↵er.getData())

chunkStore.add(chunk)

hashStore.add(hash)

bu↵er.flush()

chunk.getbackup()

hash.getbackup()

else

bu↵er.add(log)

end if

This algorithm 4.1 summarises our framework’s software in client machines,

provenance and backup servers. In client machines, the provenance generator

starts to generate the provenance logs and fills the bu↵er. If the bu↵er becomes

full or the time limit is exceeded, the provenance is moved to the chunk and

the bu↵er is flushed (reset). Then the chunk is hashed using HMAC. The

chunk and hash file are transferred to the provenance server through a TLS

connection.

We extended our software (Algorithm 4.1) to utilise an unused/ available

PCR, (e.g., PCR-16) to detect any change that occurs due to an attack on the

software of the Algorithm 4.1. Hence, any tampering a↵ecting the program

will be detected. Meanwhile, the administrator should frequently remotely

check PCR-17 on the client machines to make sure that the provenance is

created in secure mode. PCR-17 is related to the run-time environment used

by Intel-TXT technology.

Chapter 5

Framework Implementation

Start Client

Generet
Progenance logs

Fill the BufferIF buffer==full
Or Time()==exceeded

No

Create Chunk

Yes

Hash Chunk

Provenance server

Backup Server

Platform Configuration Registers..17

Platform Configuration Registers..0
MeasurementsBIOS,B
oot-grub,kernel,OS,

Client
Machine

Provenance
Server

Platform Configuration Registers..1

Trusted Platform

Platform Configuration Registers..10

Platform Configuration Registers..23

IMA

Intel-TXT

Ask for remote
attestation Backup

Server

Ask for remote
attestation

PCR-10,17,23 PCR-17,23

Figure 5.1: Framework Flowchart

In this chapter we will explain the implementation of our framework. We

had client virtual machines and two physical servers as the provenance and

backup servers. All tools used in preparing this framework were either kernel

49

modules or open sourced software in addition to the TPM chip, e.g., IMA,

TPM-Quote, and Intel-TXT. The components of the framework and how it

is based on the TPMare shown in Fig. 5.1. The client machines, provenance

and backup server all had a TPM. Each PCR inside a TPM has its own

responsibility (e.g., PCR-0 for BIOS).

In our implementation we used CentOS 6.4 with kernel 2.6.33 for all ma-

chines. Progger (a provenance generator) was deployed in the client machines.

The machines came with TPM v1.2; the vendor for this chip is ATMEL.

Trusted Execution was activated from the BIOS to enable Intel-TXT. Software

such as TrouSerS [8], TrouSerS-devel package, and TPM-tools were installed

for communication with the TPM chip. TPM-Quote was also installed in the

provenance server for remote attestation.

To enable Intel-TXT in a machine, a user must first activate the TPM

from BIOS, after which Intel-TXT can be activated from BIOS. In our frame-

work we used kernel 2.6.33 for the physical machines; for virtual machines we

used Xen*3.4. Trusted Boot (TBoot) [3] is an open-source bootloader used

to launch Intel-TXT, the SINIT command [7] and pre-kernel/hypervisor mod-

ule that use Intel TXT to perform a measured and verified launch of an OS

kernel/hypervisor as discussed in chapter 3.

Fig 5.1 are discussed as follows :

5.1 Client machine

5.1.1 Provenance Generator and Provenance Logs Bu↵er

The provenance generator is a kernel-space provenance logging tool. In our

case, the provenance generator was Progger (a cloud-based provenance logger).

Table 5.1 shows examples of Progger’s log format. The first row shows Prog-

ger’s log format for an open system call. This system call request by a user

generates Progger’s output as a provenance generator, which is; PID,PPID,

50

Client

0010111101100000

Provenance

Generator

Read Provenance

001011110110010

001011110110100

001011110110110

001011110110010

001011110110100

001011110110110

0010111101100000

B
u
ffe

r
C

h
u
n
k

Type,User,PID,PPID,SID,PSID,Program,File,WD,Flag
s,Mode,FD

1
Oct 28 03:01:03 host-192-168-22-4 kernel: Progger:
1,root,1060,1,782,18446744073709551615,rsyslogd,/

var/run/syslogd.pid,/

2 Oct 28 03:01:03 host-192-168-22-4 kernel: Progger:
28,root,1715,1710,1556,1466,11,2

3 Oct 28 03:01:03 host-192-168-22-4 kernel: Progger:
28,root,1715,1710,1556,1466,10,1

4 Oct 28 03:01:03 host-192-168-22-4 kernel: Progger:
0,root,1720,1715,1556,1466,rm,/lib64/libc.so.6,/,0,0,3

Progger Output

Figure 5.2: Provenance Generator

SID,..., etc, as can be seen in the first row in table 5.1. Rows [2-5] in table

5.1, relate to other operations such as close file, read, write and create socket

respectively.

Fig.5.2 shows the scenario for collecting provenance logs on the client side.

The left side in Fig.5.2 illustrates the components in the client machine which

are the provenance generator (in our case, Progger), bu↵er, and chunk. Progger

is a kernel-space logger which potentially empowers all cloud stakeholders to

trace their data. The right side of Fig.5.2 is a sample table of Progger’s

logs. Progger’s output contains information (provenance logs) generated by

Progger when one of the system calls requests, as shown in the table 5.1.

In our framework, Progger writes these provenance logs in the bu↵er. The

logs are maintained by IMA [1](see section 3.3 as will be discussed in section

5.1.2). When the client is operating at runtime, Progger (i.e., the provenance

generator) records the provenance logs. Each record in the logs includes an

action or event like the records in table 5.1.

51

Table 5.1: Progger’s Log Format

System Call Progger Log Format

Open Type,User,PID,PPID,SID,PSID,Program,File,WD,Flags,Mode,FD

Close Type,User,PID,PPID,SID,PSID,FD

Read Type,User,PID,PPID,SID,PSID,FD,O↵set,HexData

Write Type,User,PID,PPID,SID,PSID,FD,O↵set,HexData

Socket Type,User,PID,PPID,SID,PSID,Program,SockFD,sType,sProtocol,sFamily

We hash the Progger software code using the extend function to update

the old value of the PCR, as illustrated in the equation 3.1, and store the hash

value in PCR-23. Hence, any attacks tampering with the Progger code can

be detected by checking the hash value of PCR-23. A bu↵er is prepared for

newly generated provenance logs. A time counter is used to evaluate the age

of the bu↵er. Once the bu↵er is filled with Progger’s provenance logs or the

time counter exceeds a fixed amount of time (i.e., timeout), the provenance

logs inside the bu↵er are removed to a newly created chunk. After that, the

bu↵er is cleared and the time counter is reset. The idea of using the time

counter together with the bu↵er size is that in some cases the data may not

fill the bu↵er for a long period of time (i.e., no arrival of new provenance logs).

By setting a maximum time as well as a maximum fill, the time setting can

over-ride the fill requirement and even if the bu↵er is not full, it will still be

extracted to the chunk and the bu↵er and the timer will reset. Similarly, if

the bu↵er fills before the time limit is reached, the fill setting over-rides the

time setting and the content is removed to the chunk even though the time

limit has not been reached. The bu↵er content can also be taken out to a

chunk in the event that the client machine is halted at any time (e.g., power

disruption). For these reasons, we take the time counter into consideration in

addition to the bu↵er size.

52

Figure 5.3: Measuring the chunk file by IMA

Figure 5.4: Using IMA to detect tampering could happen for the chunk

5.1.2 Create Chunk

Fig.5.2 shows the chunk component. Once the bu↵er is full or when timeout

is reached, a new chunk is created to store the provenance logs retrieved from

from the bu↵er. The chunk size is equal to the amount of data retrieved from

the bu↵er. We used the IMA technology to measure the chunk by verifying

the PCR-10 (as explained in chapter 3, IMA measures all system-sensitive

files - executables, mapped libraries, and files opened for reading by root and

stores the hash value of the measurements in PCR-10). IMA can help the

administrator to detect operations occurring in a specific sensitive file (i.e., the

chunk). For example, in Fig. 5.4 the file 150412-144105.txt is a created chunk

file. This chunk file can be detected as a tampered chunk, where in Fig. 5.4

there are four rows after the IMA command; each row means that an operation

happened in this file. The number ‘10’ located at the beginning of each row in

Fig. 5.4 refers to the PCR-10 that is the default PCR for IMA measurement.

We use the command ”cat /sys/kernel/security/ima/ascii-measurements —

grep (the file name)” to check the sensitive file when we want to know if it has

been tampered with or not.

The second and fourth columns are hash values. The hash value in the

53

fourth column is the hash value of the chunk file (i.e., filedata-hash). The hash

value in the second column is called template-hash, and is the result of con-

catenating the SHA1 hash values of PCR-0 to PCR-7 (called boot-aggregation)

with the hash value of the chunk file. This template-hash is calculated using

the formula

Template�Hash = SHA1(filedata-hash || boot-aggregation) (5.1)

. This result will be stored in PCR10 with boot-aggregation. The file is

named with its creation timestamp and that helps the administrator to find

the provenance by specifying the time that the administrator is looking for.

We extended our program (Algorithm 4.1) to utilise an unused/ avail-

able PCR, (i.e., PCR-16) to detect any unauthorised changes to this program.

Hence, any tampering a↵ecting the program will be detected. The adminis-

trator should also frequently remotely check PCR-17 (as explained in 5.4) on

client machines to make sure that the provenance was created in secure mode.

PCR-17 is related to the run time environment used by Intel-TXT technology,

as discussed in section 3.4. When Progger writes provenance logs direct into

the bu↵er, and then transfers these provenance logs to the chunk, this helps

the administrator to monitor the chunk file. After the chunk file is created and

filled with provenance logs from the bu↵er, no-one can tamper with or modify

this file. If the chunk file in a client machine is tampered with (even by a root

user), it will be detected by IMA (e.g., Fig. 5.4, IMA mechanism explained in

section 3.3). Transferring data provenance from the bu↵er to the chunk file

allows us to monitor this chunk file. Otherwise, we cannot decide if modifica-

tion (tampering) happened in Progger (root user) or as a result of a malicious

attack. To address that problem we asked Progger to write provenance logs

directly into the bu↵er, and then move these provenance logs into the chunk

file.

54

001011110110010

001011110110100

001011110110110

##########

##########

##########

##########

001011110110010

001011110110100

001011110110110

001011110110000

B
u
ffe

r
C

h
u
n
k

Hash Chunk

TPM

PCR
1

PCR
2

PCR
23

PCR
17

PCR
3

Hash

Provenance Server

tpm_ge
tquote [c

lie
nt m

ach
ine] u

uid nonce
 quote 17

Figure 5.5: The mechanism of hash chunk and how the administrator remotely

check the status of client machine

5.1.3 Hash Chunk and Transfer the Chunk to the Prove-

nance Server

Hashing the chunk provides integrity for the provenance, and that helps us to

know whether the chunk has been tampered with or not. Fig. 5.5 shows that

the chunk file is hashed in the client machine once it is created. Periodically

chunks, along with their hash values, are transferred to the provenance server.

The administrator, who has access to the provenance server and is already

the administrator for the TPM chip can check the PCR-17 (see section 3.4)

of client machines remotely using TPM-Quote (explained in section 5.4) or

OpenPTS tool to make sure that the chunks are created and transferred in a

trusted environment(Secure Mode).

To hash the chunk we use Keyed-Hash Message Authentication Code (HAMC).

The key that we use for hashing is shared by the client machines and the prove-

nance server.

Fig. 5.5 shows that the administrator uses the tpm quote command to

check the status of the client machine (tpm getquote). This command mea-

sures the current value of PCR, and returns this hash value with the nonce

55

and Universally Unique Identifier (UUID).

5.2 Provenance Server

The aim of this server is to collect provenance from client machines and allow

the administrator to examine these provenance logs, then decide if these have

been tampered with or not.

Fig.5.6 shows the steps that the administrator carries out to make sure

that the provenance was generated in a trusted environment (PCR-17). If the

administrator wants to check a specific chunk file, he will hash the appropriate

chunk file from the provenance server and compare the hash value with the hash

value that is already stored in the provenance server. If the comparison does

not match, it provides evidence of tampering. The administrator should check

the runtime measurement from the PCR-17 value frequently on the provenance

server. This will allow the administrator to detect any attacks on the server

(explained in chapter 3.4). Additionally, PCR-23 in the provenance server

is allocated for backup software, to make sure that the software is working

in a secure environment and that no-one can tamper with the software code.

PCR-10 will help the administrator of this server to know what happens to

the provenance logs file or hash files using IMA features to measure sensitive

files like Fig.5.3 and Fig.5.4.

The hash function (used to hash chunks) applies a keyed-hash message

authentication code (HMAC) (e.g., HMAC-SHA1). The secret key used for

the HMAC is shared by all the machines with the support of the TPM.

Chunks from the provenance server are then backed up in the backup server.

The provenance server receives data provenance logs from di↵erent clients.

These logs are used to provide tamper-evidence for the client machines to

guarantee that these logs were created and transferred in secure environments

(explained in section 3.4). All provenance logs in the provenance and backup

servers are encrypted using Opal technology [2], which provides confidentiality

56

Provenance Server

 TLS

0010111101100000

001011110110010

001011110110100

001011110110110

0010111101111100

001011110100010

101011110110110

011011110110010

_150412_144030.txt

_150412_1440105tx

t

TLS

1- Check PCRs values for the client.
2- Check PCRs values for Backup server.
3- Check PCRs value for his machine.
5- Check the measurement integrity for
client provenance logs PCR10.
6- Transfer old provenance logs to the
Backup server.

Administrator Duties

Figure 5.6: The operations on Provenance Server

for the provenance.

When the administrator wants to examine a specific chunk file at a specific

time, he can find this file easily, since the file store is based on the time that

it was created. Then he hashes this file and compares the result of the hash

file with the hash from the original client, to detect whether tampering has

occurred in this file.

Tboot (Trust boot) was used in our framework. The LCP checks the

appropriate MLE and SINIT module to be loaded. If the MLE policy is not

met, an Intel-TXT reset occurs. As a result, a Late Launch will never be

executed until the system is restarted. However, the inability to perform a

Late Launch does not protect against someone using the system because it

does not have the ability to prevent the boot process, and so may allow others

to use the system. Though so, it stops users from accessing Locality 2 of

the TPM which is responsible to extend PCR 19-22. NVRAM has a limited

number of write cycles during the TPM’s lifetime, but the use of a symmetric

57

master key that is only read from NVRAM in the common case can greatly

extend its life.

Late Launch does not enforce anything; it simply provides a means by

which measurements are taken and stored in the TPM. As a result we enforce

di↵erent actions. For example, if the goal is to build disk encryption, the OS

could be encrypted with a key sealed to specific PCRs (17-22) which match the

desired/trusted OS. The important part is if the proper environment has not

been loaded (e.g. a malicious user changed the boot loader, and did not trigger

a Late Launch) the PCRs values will not match, hence the key to decrypt the

OS will be inaccessible (UNSEAL will not work).

The administrator should check the runtime measurement from PCR-17

values frequently on the provenance server. This will allow the administrator

to detect any attacks on the server.

PCR-23 in this provenance server we allocated for backup software to en-

sure that the software is working in a secure environment. PCR-10 will help

the administrator of this server to know what happens for data provenance

files or hash files using IMA features to measure sensitive files such as chunk

or hash chunk files (e.g., Fig. 5.3).

Fig.5.7 shows the mechanism for measuring the machine components and

how it is stored in the TPM. In this section we will focus on how Intel-TXT

works, what the administrator reads from PCR-17, and how it indicates a

secure environment. Briefly, for the SRTM stages, CRTM is executed by the

CPU and used to measure the BIOS firmware. Then it will return the result

of the measurement (SHA-1 hash) back to the TPM. Then execution passes

to the BIOS and so on for all components.

In the DRTM stage, the processor is not measured by the SINIT AC Mod-

ule. Whenever a secure CPU-contained environment is established, the module

signature is validated and communicated to the PCR17 that can measure the

Measured Launch Environment (MLE) and transmits this to the PCR 18.

Both provide a means of measuring the running environment, which in-

58

CRTM

CPU

Ex
ec
ut
e

TPM

PCR
1

PCR
2

PCR
17

PCR
18

PCR
23

BIOS BootLoader OS

Measure
Execute

Extend()
Hash SHA1

ACM

signature
module MLE

Figure 5.7: Intel-TXT technique and Tboot

volves sending measurements to the TPM PCRs; mainly PCR-0 for SRTM

and PCR17 for DRTM.

5.3 Backup Server

Fig.5.8 shows the backup server. The backup server is designed for archiving

purposes. Since we cannot keep the logs and provenance logs for any length

of time in the administrator server (provenance server), for storage purposes

we use a backup server. The backup server has two databases; the first one is

used for provenance log files (chunk file) and the second database is used for

hash chunk files.

We use the TPM Storage Root Key (SRK) (explained in section 3.2.2) to

secure these provenance logs. These keys are stored inside the TPM and never

leave it. This sealed (encrypted) data (provenance logs) allows the adminis-

trator to protect the data itself by binding the data with PCRs specified (e.g.,

Fig. 5.8).

59

 TLS

Backup Server

################

################

################

################

_150412_144030.txt

_150412_1440105tx
t

Hash file

 001011110110000

001011110110010

001011110110100

001011110110110

Sealed data inside backup server

Figure 5.8: Backup Server

TPM Seal outputs a ciphertext, which contains the sealed data and infor-

mation about the platform configuration required for its release. The TPM

includes a random number generator that can be used for key generation. The

backup servers have two databases for chunks and their hash values. Hence,

when tampering occurs in a chunk or its hash value, the tamper will be de-

tected by comparing the new hash value of the tampered data with the data

stored inside the databases.

The idea of using the TPM sealdata command is that TPM has 24 PCRs

and at boot time, all PCRs are initialised to known-value (e.g., PCR-0, PCR-

1 for BIOS). The only way to change the values of writable PCRs (e.g.,

PCR-23, PCR-16) is to use the Extend function (invoking TPM operation).

When TPM invokes the Extend function, it updates the value of the PCR

indicated by index SHA-1 hash of the previous value of PCR concatenated

with the data provided (equation 3.1). These PCRs values cannot be changed

without invoking TPM operations, since they are shielded inside the TPM

60

chip. Therefore, the TPM presents a simple interface for binding data to the

current platform configuration. The seal command in Fig. 5.8 takes a set of

PCRs (we use in Fig.5.8 PCR-[12], PCR-14, PCR-[23]) indices as input, and

encrypts the provenance data provided using its Storage Root Key (SRK), a

key that never leaves the TPM. The SRK outputs the resulting ciphertext,

along with an integrity-protected list of the indices provided and the values of

the corresponding PCRs at the time the Seal was invoked. It is also possible

to provide the Seal command not only with the PCR indices of interest, but

also with the values those PCRs should have before Unseal will decrypt the

data. The Unseal command takes in a ciphertext and PCR list created by the

Seal command. The TPM verifies the integrity of the list of PCR values, and

then compares them against the current values of those PCRs. After this, if

they match, the TPM decrypts the file.

Using TPM keys guarantees that the provenance logs which we decrypted

using these keys can decrypt if and only if the system is running in a well-

known situation(secure mode), which is indicated by the PCRs we chose when

we decrypted our data. Because PCR values reflect the running environment,

the sealed operation uses those values as keys to encrypt the data.

5.4 TPM-Quote

In this section we will explain the remote attestation technique. Remote attes-

tation checks the status of a remote machine (attester) to determine whether it

is running in a secure environment or not. The machine that the administrator

uses is called the challenger. The architecture for remote attestation consists

of two major components; the integrity measurement architecture (which is

the measurement list in the attester and is explained in section 3.3), and the

remote attestation protocol. We will use the remote attestation protocol rec-

ommended by IBM [45].

We use TPM-Quote [6] for remote attestation. TPM-Quote is a collecting

61

Client
Provenance Server

1. 160-bit Nonce, N

TPM

PCR
0

PCR
1

PCR
23

2.
 Q

uo
te

 R
eq

ue
st

3.
 Q

uo
te

 R
es

po
ns

e

S
ig

A
IK

 (P
C

R
, N

)

N 4. Integrity Response
{ SigAIK (PCR, N), ML,

AIKcert }

Ver (SigAIK (PCR, N),
AIKpub) = true/false

5. Integrity
Validation

Measurement
Agents

Measurements
List

Store
4-

R
et

ri
ev

e

Report

Figure 5.9: Remote Attestation Using TPM-Quote

program that provides support for TPM-based attestation using the TPM

quote operation. As we know that theTPM has 24 PCRs, these PCRs contain

hash values referring to specific values for specific components in the machine

(e.g., PCR-0 for BIOS, PCR-17 for secure environment). Subsequently, any

change in this hash value is evidence that tampering has occurred. During

provisioning, the hash values of the PCR are compared with the hash value

produced by TPM.

In Fig. 5.9 shows the steps of TPM-Quote recommended by IBM [45].

TPM-Quote allows us to use the TPM random number generator to produce

a nonce value and an Attestation Identity Key (AIK) including a public and

private key pair. The provenance server sends the nonce value and AIK to a

remote machine (e.g., the backup server and client machine to provide authen-

ticity between them). Then, the remote machine uses its private key to sign

the PCR values which are requested for attestation by the server, and then re-

turns the signed PCR values to the provenance server. The provenance server

62

verifies the signed PCR values using the public key of the remote machine.

This nonce helps protect the signed PCR values against replay attacks. Using

this technique, we achieve authentication between two machines and ensure

that the remote machine runs in a secure mode.

In fig 5.9 the challenger requests the measurement list from the attester.

This request contains a nonce value. (generated by the challenger TPM) as

step 1. After the attester receives the request with the nonce value (step 2,

3) it retrieves the measurement list (Fig 5.9, step 4). In step 5, the challenger

validates the integrity of the attester machine by comparing the value it already

has with the value that it has just received from the attester, as shown in Fig

5.9.

When the administrator takes TPM ownership he is asked for the SRK key

password. Once he enters the password, keys must be generated. AIK is one

of these keys, and the public part of the key is used for remote attestation.

Chapter 6

Framework Advantages

In this chapter we will explain some of the principal advantages of our imple-

mentation. With the support of TPM, our framework can provide admissible,

complete, authentic, reliable and believable aspects of tamper-evidence for data

provenance.

6.1 Guarantee that Data Provenance is cre-

ated and transmitted in a secure environ-

ment

The values of PCRs can provide static and dynamic roots of trust. Provenance

logs are created, stored and transferred between machines, and if any changes

occur in the provenance logs or to the machine components (e.g., bootloader

and OS kernel), the values of the PCRs will change and can be provided as

tamper-evidence for the data provenance. Since these PCRs cannot be ac-

cessed and tampered with by unauthorised users, the provenance logs, along

with the tamper-evidence can be guaranteed to be admissible, complete, au-

thentic, reliable and believable evidence, usable in a court of law. The follow-

ing subsections explain how we provide tamper-evidence for each framework

component:

64

6.1.1 Tampered Chunk

In this framework, chunks represent collections of provenance logs. Hence,

tampered chunks mean tampered provenance logs. The aim of IMA is to

detect whether files have been accidentally or maliciously altered, whether in

remote or local machines. Where IMA maintains a runtime measurement list

and stores hash values inside TPM (PCR-10)s, the measurement list cannot be

compromised by any software attack. Tampering in chunk files can be detected

by the IMA module through PCR-10.

6.1.2 Tampered Provenance Generator

The program of the provenance generator (in our framework this is Progger)

may also be tampered with, but this tampering can be detected. For example,

an attacker changes the Progger code and places a modified Progger program

in a client machine. However, the hash value of the original Progger is stored

in PCR-23. Hence, the hash value of the new Progger program is di↵erent

from the value inside PCR-23 and the administrator can remotely attest this

change.

6.1.3 Trusted BIOS Configuration

An attacker can access the BIOS of a client machine (e.g., by using a com-

promised BIOS password), and then change the BIOS configuration or update

the BIOS firmware. Any changes in the BIOS can be detected by PCR-0 and

PCR-1. For example, if the BIOS firmware is updated, this change in the

BIOS version can be detected.

6.1.4 Tampered Bootloader

An attacker may launch boot live attacks e.g., an evil maid attack [53]. Any

bootloader that is not the same as the legitimate bootloader tracked by PCR-4,

PCR-5, and PCR-8 will be detected by the TPM chip.

65

6.1.5 Change Kernel OS

If the OS kernel is changed by an attacker or updated by a new compromised

kernel, any changes incurred to the OS kernel can be detected by PCR-20.

6.2 Data Provenance with Integrity is Guar-

anteed

In our framework, all chunks of provenance logs are hashed using HMAC on

the client machines. Any changes occurring to a chunk during the data at

transmission or at rest can be detected by comparing the hash value of the

tampered chunk with the original hash value using the HMAC. With this

technique, the integrity of the data provenance can be guaranteed.

6.3 Data Provenance with Confidentiality is

Guaranteed

The provenance and backup servers apply TCG Opal technology to provide full

disk encryption so that confidentiality of the provenance logs can be achieved.

For the backup server, the TPM-sealed feature using the TPM SRK key is

applied to encrypt the provenance logs. The private parts of the TPM keys

never leave the TPM chip; this provides enhanced confidentiality for these keys

and as a result, for the provenance logs.

Moreover, the confidentiality of communications between the provenance

server, backup server, and client machines is guaranteed by TLS connections.

This confidentiality preserves the privacy of the data provenance.

66

6.4 Data Provenance with Availability is Guar-

anteed

Originally, the provenance logs are generated and stored in the client machines.

These logs may be destroyed; for example, a virtual machine stores provenance

logs, and then the virtual machine is terminated so the logs will no longer be

available. With the proposed framework, the availability of the provenance logs

can be guaranteed by storing the logs in the provenance and backup servers

for short-term and long-term usage, respectively.

6.5 Remote Attestation

One of the most important features of our framework is that we use the TPM

to provide remote attestation. To the best of our knowledge, there is no other

technology that can provide integrity and confidentiality for the evidence and

remote attestation at the same time. We use a secure method to prevent Man-

In-The-Middle attacks (MITMA), as discussed in section 5.4, and in the event

that an attack does occur, to ensure that it will be detected.

Remote attestation allows the administrator to read the PCR values re-

motely. Each PCR denotes a specific component in the machine (e.g., PCR-0

for BIOS), so any change in the expected value of a specific PCR will be an

indicator that tampering has occurred in this component. In this way we can

check the system status in any stage, whether at run-time or at boot-time.

Chapter 7

Evaluation

In this chapter we will discuss some experiments that we conducted to detect

tampering in the machine at boot time and run time. As discussed earlier, our

framework is based on TPM and Intel-TXT technology. We also used IMA

to detect tampering in sensitive files, especially those that contain provenance

logs. We will present the results mentioned in chapter 6.

Following this, we will evaluate our framework, by comparing it with other

solutions that provide tamper-evidence.

7.1 Detecting tampering in machine compo-

nents

1. Detecting Tampering in BIOS

The hash values that are stored in PCR[0] to PCR[7] by measuring the

boot stage (Fig. 1.1) components (SRTM) can tell us if tampering has

occurred in these components. These components are what the system

should start runs with. Fig. 7.1 shows 24 TPM PCRs. These PCRs

are hash values; each one contains 160 bits. The PCRs from [0] to

[7] are for the SRTM as was explained in detail in chapter 3. When

the hardware components from the CRTM and BIOS are measured and

hashed, the values are stored inside these PCRs. Any changes in these

68

Figure 7.1: PCRs in TPM

components will change the hash values inside the PCRs. This will help

the administrator (locally or remotely) to detect any tampering in these

components. It is very important for the administrator to make sure that

the machine components are well-known (this term is defined in section

1.6).

2. Detecting Tampering in the Bootloader

The bootloader is a program that loads the main operating system or

runtime environment for the computer after completion of the self-tests

[66]. Thus, the bootloader is one of the most important components

in the computer system. The measurement value of the bootloader is

hashed and stored securely inside the TPM in PCRs[8-14].

In our implementation we used TrustedGRUB, then PCRs[8-14] were

allocated inside the TPM for the TrustedGRUB bootloader. If an attack

such as an evil maid [53] or live boot attack tries to change the bootloader

to access to the system, the TPM will detect this. When the hash value

69

Figure 7.2: Detect BootLoader Tampered

of the bootloader is stored in PCRs[8-14], any change in the bootloader

will change the values inside PCRs[8-4], as we can see in Figure 7.2. Fig.

7.2 shows the PCRs inside the TPM; as we know, each PCR contains

a 160-bit hash value and the PCRs from [8-14] for the TrustedGRUB

bootloader. If an attacker tries to change the bootloader for the machine

this will cause the values of the PCRs to change and this will help the

administrator to detect the attack.

3. Detecting tampering in the OS kernel or the OS

In the same way that we can detect changes in the BIOS or the boot-

loader, we can detect changes due to attack in the OS or in the kernel.

7.2 Detecting Tampering at runtime

Fig. 7.3 shows the mechanism for measuring machine components from boot

time till run time, In our framework we use the Intel-TXT feature to detect

70

BIOS BootLoader

Module1
Module 2

Conf

OS Kernel

App 1
App 2

Apps

TPM
PCRs

What Code are
 you running?

Remote Platform

Figure 7.3: TPM keep the values of SRTM and DRTM inside PCRs

whether any attacks occur during runtime.

1. Detecting a Tampered Provenance Generator:

The provenance generator is very important since it is the tool that

generates provenance logs. We need to provide integrity for this tool.

Therefore, we hash its code and store this hash value inside PCR-23 on

the machine this tool works on. In this case, if an attacker tries to change

the code of the provenance generator (e.g,. Progger), the administrator

can detect this by checking the value of PCR-23 remotely using a remote

attestation technique. (See chapter 5).

2. Detecting Tampered Chunk: Progger’s output files are very important

when they are the provenance logs. When these logs are to be used as

evidence, it is very important to provide confidentiality and integrity for

these files (chunk files). Fig. 7.4 shows a file 150412 144030.txt, which

was created on April 12,2015 at 14:40:30. The administrator can check

the events on this file using IMA technology which is used to detect

tampering on sensitive files, as explained in section 3.3. The button

part of Fig. 7.4 shows that file 150412 144105.txt, was tampered with

71

File Created by Progger Without tampering

After the file Created it Tampered

Figure 7.4: Comparison Between Files Created By Progger

by someone. The hash values in the fourth column are the hash values

of the file (150412 144105.txt), concatenating with the hash values of

PCR[0-7] (template hash which are in the second column on the left).

The hash concatenations stored in PCR-10 will help to detect tampering,

whether locally or remotely, by the administrator using TPM-Quote (see

TPM-Quote in section 5.4).

7.3 Results

In this section we will evaluate our framework against other solutions. We will

compare the results that are presented by these solutions with our framework.

Table 7.1 shows the comparison between di↵erent solutions that provide

tamper-evidence or partial tamper-evidence, as defined in section 1.6. We

evaluate these solutions against our framework based on very important fac-

tors. The solution should be applicable in physical and virtual machines. We

also evaluate our solution against others based on availability, and finally the

evaluation is based on solutions that provide full tamper-evidence or partial

72

tamper-evidence.

The first mechanism evaluated with our framework was Progger [40]. Using

Progger to provide full tamper-evidence is not adequate. Progger generates

provenance logs and provides integrity for these logs. But we need a mecha-

nism that guarantees this provenance at-creation and at-storage in a trusted

environment. In addition, the Progger code must be protected to guarantee

that no malicious users can tamper with it. Finally, the mechanism must have

the ability to measure the system at boot process and that cannot be done by

Progger.

The second mechanism is Forensix [26]. The Forensix tool generates data

logs and collects them in database servers. After this, users can submit SQL

queries to retrieve the events that occurred in the machine (e.g., PID, start-

time, end-time). This mechanism provides availability of provenance logs.

However, its authors do not mention any technology which provides secure,

integrity-preserving environments for the database server. This potentially

makes it easy for malicious users to mask their traces by modifying the logs

in the database server or within the server where the provenance logs are

generated.

The third mechanism is [15]. This mechanism can trap and log activities

from system calls in a log file, and then hide the log from the file system.

The administrator can unload the module from the system to use this log for

tamper-evidence. This mechanism cannot provide full tamper-evidence since

it is only measuring system calls. In addition, this mechanism cannot measure

the boot process stages, so we do not know what is happening in the system

at boot time.

The fourth mechanism we chose in this evaluation is the Provenance-Aware

Storage System (PASS) [47]. PASS is a storage system that automatically

collects, stores, manages, and provides searches for provenance. This protocol

does not provide any kind of trust for the environment in which the provenance

was collected. The capture mechanism consists of a set of Linux kernel mod-

73

ules that transparently record provenance; it does not require any changes to

computational tasks. Users can pose provenance queries using nq (new query),

a proprietary tool that supports recursive searches over the provenance graph.

PASS’s capture mechanism often leads to very large volumes of provenance

information; another limitation of this approach is that it is restricted to local

file systems [25].

The fifth mechanism provides tamper-evidence using the TPM [58]. The

authors focus on using the TPM during the boot process, but do not mention

other technologies that are used to provide integrity and confidentiality for

provenance logs at the run time stage(i.e., IMA, Intel-TXT). As mentioned in

chapter 3, the TPM can provide integrity and confidentiality for provenance

logs from boot time until the OS takes over. After that we need technology

that is compatible with the TPM to provide integrity and confidentiality for

provenance logs at run time. The authors also do not provide availability for

provenance logs.

Finally, our framework presents a solution that provides integrity and con-

fidentiality for provenance logs at boot time and run time using a TPM. We

also provide availability of the provenance logs that were collected by storing

these provenance logs in a backup server for archiving purposes. In addition

to this we use Intel-TXT technology to provide secure environments on client

machines where the provenance is created, as well as for the provenance and

backup servers.

If we compare our framework, which is based on a TPM chip in addition to

Intel-TXT and IMA technologies, with solution five in table 7.1, it can be seen

that using the TPM chip alone is not enough to provide full tamper-evidence.

The TPM can measure the components at boot process stages and keep the

hash values in a secure register (PCR). That is a very good solution in terms

of knowing exactly what has happened in these stages, but it cannot detect

events that may occur at run time. Hence, to provide full tamper-evidence

for provenance logs, we should be aware of what has happened in the boot

74

Table 7.1: Evaluation

Virtual

machine

Physical

Machine

Availa-

bility

Partial

Tamper-evidence

Full

Tamper-evidence

Progger [40] 3 3 7 3 7

Forensix [26] 7 3 3 3 7

vfs logger [15] 7 3 7 3 7

PASS [47] 3 7 7 3 7

TPM [58] 3 3 7 3 7

Our framework 3 3 3 3 3

process stages and at run time to guarantee that the provenance logs were

created and stored in a secure environment. That can be achieved if and only

if we use technology that detects the code that is currently running, such as

the Intel-TXT technology (explained in chapter 3 and chapter 5). We also

use a special backup server to archive the provenance logs and encrypt these

provenance logs using TPM keys (i.e SRK keys).

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis aimed to propose a framework that provides tamper-evidence for

logs, especially data provenance logs. We focused on the environments in

which the logs are created and stored. We also focused on the provenance logs

status from boot time until run-time in order to be aware of what was going

on the in the machine, and whether these provenance logs were created and

stored in a secure environment or not. Based on this, we tried to find the best

technologies that could achieve our aim of creating a solution that would make

provenance logs admissible as evidence in a court of law. We found that we

needed to integrate some extra technologies with a TPM, such as Intel-TXT

and IMA in order to provide (Reliability, uthenticity, Admissibility, Complete-

ness, and Believability) for the provenance logs to make them acceptable in a

legal enquiry [48].

In this thesis we have discussed past and current tamper-evidence solu-

tions. As we have shown, there are some solutions based on hardware like

TPM and others based on software such as hash functions. We investigated

the gaps in these existing solutions and found that most cannot provide full

tamper-evidence; most of these solutions collect provenance at the application

level without knowing what is going on in the machine at the boot stages. In

76

addition, we found that some of the current tamper-evidence solutions exam-

ine provenance logs after they have been collected at application level. As a

result, if these solutions cannot provide confidentiality for these logs we cannot

accept them, because we cannot guarantee the provenance logs themselves. In

contrast, some of these technologies, such as AEGIS, can provide a secure en-

vironment during the boot process only, without focusing on run time stages;

again, this not enough to provide full tamper-evidence.

We propose a novel tamper-evidence framework for data provenance, and

also propose a remote attestation mechanism based on the TPM. Our frame-

work can be applied to cloud computing environments. We also provide much

needed tamper-evidence for data provenance and our framework complies with

the five major requirements for legal evidence including admissibility, authen-

ticity, completeness, reliability, and believability. Our Framework focuses on

collecting logs and provenance logs that are collected on the machine at dif-

ferent levels from boot time all the way up until run time, and keeping these

provenance logs in secure storage using TPM keys.

Our framework focuses on the integrity and confidentiality of provenance

logs, but can also be applied to any sensitive files as we saw in chapter 5. We

applied the IMA technology to our framework to enable system administrators

to check activities on a specific file and read this activity remotely using a

remote attestation mechanism (explained in Fig. 3.5).

This framework also assures the integrity, confidentiality, and availability

of provenance logs. Confidentiality and integrity of the logs can be provided by

using the features of the TPM, including the use of the TPM keys (e.g., SRK);

these keys never leave the TPM chip, which provides more confidentiality

for our framework. Availability of the provenance logs can be achieved by

storing the provenance logs in provenance and backup servers. In the backup

server, where the information is used for archiving purposes, we encrypted the

provenance logs and the hash values of these provenance logs using the TPM

key. These encryption files cannot be decrypted unless the values of the PCRs

77

which were used at encryption time are the same at decryption time.

We also evaluated our framework against other solutions based on a variety

of factors (i.e., VM, PM, Availability, Partial tamper-evidence, Full tamper-

evidence). We found that only our framework can provide availability of prove-

nance logs at physical and virtual machines at the same time. Also, based on

this evaluation, only our framework can detect tampering occurring in the ma-

chine at all stages from boot time all the way up to run time. This is possible

because we used Intel-TXT and IMA with the TPM chip to provide integrity

and confidentiality for the provenance logs and to allow the administrator the

ability to check the confidentiality and integrity of the provenance logs and

the system remotely, using a remote attestation mechanism.

8.2 Future Work

Some research directions can be further addressed in future work, as follows:

• Virtual TPM – A TPM for virtualisation technologies is challenging since

the TPM chip is originally designed for a physical machine. In the physi-

cal machine, the TPM chip can be fully used to measure sensitive compo-

nents inside the machine. However, virtual machine environments have

no actual TPM chips and virtual or software-based TPM chips can be

easily tampered with.

• Trusted Cloud Computing– The rapid adoption and growth of cloud com-

puting has introduced new challenges. One of these challenges arises

when cloud computing is used to store data or applications, without

users knowing if their data has been tampered with by another user or

even if the cloud provider has tampered with the data. Accordingly,

cloud computing users want to know that their data is stored securely,

or at least in a fashion that if tampering happens, they can detect that.

TPM works well with physical machines, but does not scale well with

virtualisation [54]. This is because TPM is limited in resources (e.g., 24

78

PCRs). Therefore, we cannot use a TPM chip to provide a root of trust

for large-scale cloud computing, which could have hundreds of virtual

machines. Another problem facing us in the attempt to provide roots

of trust in cloud computing is the owner of cloud computing (provider).

The owner of the data that is deployed in the cloud needs privilege from

the cloud provider to get access to some features in the cloud Application

Programming Interface (API).

• Cloud API – A cloud Application Programming Interface (API) should

be provided to help cloud users access the capabilities of the TPM chip.

However, this API needs to ensure that cloud users can access the TPM

chip even though they usually do not have root access to their subscribed

virtual hosts or underlying physical machines.

• TPM-enabled Private Cloud – A private cloud environment can be pro-

vided by a trusted cloud computing environment using TPM. Open-

source cloud software (e.g., OpenStack) can be integrated fully with TPM

to provide a trusted environment.

• Optimisation for Large Scale Environments –When we implement trusted

computing for virtual machines in data centres, there could be a large

number of physical and virtual machines, generating a large volume of

provenance logs. This large volume of logs being transferred between

client machines and the provenance server may be a major bottleneck in

the whole system. We would need an optimised system for this scenario.

Chapter 9

List of Publications

1. Mohammad Bany Taha, Sivadon Chaisiri, and Ryan K L Ko. Trusted

Tamper-Evident Data Provenance. In IEEE International Symposium

on Recent Advances of Trust, Security and Privacy in Computing and

Communications held in conjunction with IEEE TrustCom-15, Helsinki,

Finland. IEEE, August 2015.

Chapter 10

References

[1] Linux integrity subsystem. Online [Accessed 29/03/15]linux-ima.

sourceforge.net.

[2] Storage work group storage security subsystem class: Opal sum-

mary. http://www.trustedcomputinggroup.org/resources/storage_

work_group_storage_security_subsystem_class_opal_summary.

[3] Trusted Boot. Online [Accessed 29/03/15]sourceforge.net/projects/

tboot/.

[4] Which amd npt family 0fh processor supports secure virtual machine

mode. Online [Accessed 29/03/15] http://support.amd.com/en-us/kb-

articles/Pages/emb-309-npt.aspx.

[5] TrustedGRUB. [Accessed 14/02/15]http://sourceforge.net/

projects/trustedgrub/, April 2006.

[6] TPM Quote Tools. Online [Accessed 17/03/15]www.sf.net/projects/

tpmquotetools, July 2011.

[7] Intel R� Trusted eXecution Technology. Online [Accessed

29/03/15]https://software.intel.com/en-us/articles/

intel-trusted-execution-technology/, January 2014.

linux-ima.sourceforge.net
linux-ima.sourceforge.net
http://www.trustedcomputinggroup.org/resources/storage_work_group_storage_security_subsystem_class_opal_summary
http://www.trustedcomputinggroup.org/resources/storage_work_group_storage_security_subsystem_class_opal_summary
sourceforge.net/projects/tboot/
sourceforge.net/projects/tboot/
http://sourceforge.net/projects/trustedgrub/
http://sourceforge.net/projects/trustedgrub/
www.sf.net/projects/tpmquotetools
www.sf.net/projects/tpmquotetools
https://software.intel.com/en-us/articles/intel-trusted-execution-technology/
https://software.intel.com/en-us/articles/intel-trusted-execution-technology/

81

[8] TrouSerS. Online [Accessed 29/03/15]http://sourceforge.net/

projects/trousers/files/trousers/, March 2015.

[9] Trusted Platform Module. Online [Accessed 29/03/15]http:

//www.trustedcomputinggroup.org/resources/trusted_platform_

module_tpm_summary, 2015.

[10] Evolution of integrity checking with intel R� Trusted eXecu-

tion Technology: an intel it perspective. Online [Accessed

02/04/15]http://www.intel.com/content/dam/doc/white-paper/

intel-it-security-trusted-execution-technology-paper.pdf,

August 2010.

[11] Robert P Abbott, Janet S Chin, James E Donnelley, William L Konigs-

ford, S Tokubo, and Douglas AWebb. Security analysis and enhancements

of computer operating systems. Technical report, DTIC Document, 1976.

[12] Rafael Accorsi. Log data as digital evidence: What secure logging proto-

cols have to o↵er? In Computer Software and Applications Conference,

2009. COMPSAC’09. 33rd Annual IEEE International, volume 2, pages

398–403. IEEE, 2009.

[13] Rafael Accorsi. Bbox: A distributed secure log architecture. In Public

Key Infrastructures, Services and Applications, pages 109–124. Springer,

2011.

[14] Bright Siaw Afriyie. Concise Ict Fundamentals Volume One. Tra↵ord

Publishing, September 2012.

[15] Alam Ansari, Arijit Chattopadhayay, and Suvrojit Das. A kernel level

vfs logger for building e�cient file system intrusion detection system. In

Computer and Network Technology (ICCNT), 2010 Second International

Conference on, pages 273–279. IEEE, 2010.

http://sourceforge.net/projects/trousers/files/trousers/
http://sourceforge.net/projects/trousers/files/trousers/
http://www.trustedcomputinggroup.org/resources/trusted_platform_module_tpm_summary
http://www.trustedcomputinggroup.org/resources/trusted_platform_module_tpm_summary
http://www.trustedcomputinggroup.org/resources/trusted_platform_module_tpm_summary
http://www.intel.com/content/dam/doc/white-paper/intel-it-security-trusted-execution-technology-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/intel-it-security-trusted-execution-technology-paper.pdf

82

[16] William A Arbaugh, David J Farber, and Jonathan M Smith. A secure

and reliable bootstrap architecture. In Security and Privacy, 1997. Pro-

ceedings., 1997 IEEE Symposium on, pages 65–71. IEEE, 1997.

[17] Matt Bishop, Michael Dilger, et al. Checking for race conditions in file

accesses. Computing systems, 2(2):131–152, 1996.

[18] Matthew Braid. Collecting electronic evidence after a system compromise.

Australian Computer Emergency Response Team, 2001.

[19] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Data prove-

nance: Some basic issues. In FST TCS 2000: Foundations of software

technology and theoretical computer science, pages 87–93. Springer, 2000.

[20] Harvey M Deitel. An introduction to operating systems, volume 3.

Addison-Wesley Reading, Massachusetts, 1984.

[21] Premkumar Devanbu, Michael Gertz, Charles Martel, and Stuart G Stub-

blebine. Authentic third-party data publication. In Data and Application

Security, pages 101–112. Springer, 2001.

[22] Josep Domingo-Ferrer, David Chan, and Anthony Watson. Smart Card

Research and Advanced Applications: IFIP TC8 / WG8.8 Fourth Work-

ing Conference on Smart Card Research and Advanced Applications

September 20–22, 2000, Bristol, United Kingdom. Springer, March 2013.

[23] David Dorwin. Cryptographic features of the trusted platform module.

[24] Ross Finlayson and David Cheriton. Log files: an extended file service

exploiting write-once storage, volume 21. ACM, 1987.

[25] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T Silva.

Provenance for computational tasks: A survey. Computing in Science

& Engineering, 10(3):11–21, 2008.

83

[26] Ashvin Goel, W-C Feng, David Maier, and Jonathan Walpole. Forensix:

A robust, high-performance reconstruction system. In Distributed Com-

puting Systems Workshops, 2005. 25th IEEE International Conference

on, pages 155–162. IEEE, 2005.

[27] Sarah Gordon and Richard Ford. Real world anti-virus product reviews

and evaluations–the current state of a↵airs. In Proceeding of the 19th

NISTNCSC National Information Systems Security Conference Held 22,

volume 2, pages 526–38, November 1996.

[28] 1620 Users Group. Report of Systems Objections and Requirements Com-

mittee, volume Appendix F. June 1964.

[29] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview:

Practical accountability for distributed systems. In ACM SIGOPS Oper-

ating Systems Review, volume 41, pages 175–188. ACM, 2007.

[30] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson,

William Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum,

and Edward W Felten. Lest we remember: cold-boot attacks on encryp-

tion keys. Communications of the ACM, 52(5):91–98, 2009.

[31] Adrian Hannah. One key to rule them all: Grub, usb and a multboot

environment. Linux Journal, 2011(211):4, 2011.

[32] Ragib Hasan, Radu Sion, and Marianne Winslett. The case of the fake

picasso: Preventing history forgery with secure provenance. In FAST,

volume 9, pages 1–14, 2009.

[33] Patrick Hung, editor. Web Service Composition and New Frameworks in

Designing Semantics: Innovations. IGI Global, 2012.

[34] IBM. Trusted computing platform alliance announces v.1.0

specifications for trusted computing. Online [Accessed

84

29/03/15]https://web.archive.org/web/20030719234815/http:

//www.trustedcomputing.org/docs/tcpa_final.pdf, may 2015.

[35] Ryan K L Ko. Cloud computing in plain english. In ACM Crossroads,

16(3):5–6, 2010.

[36] Ryan K L Ko. Data accountability in cloud systems. In Security, Privacy

and Trust in Cloud Systems, pages 211–238. Springer Berlin Heidelberg,

2014.

[37] Ryan K L Ko, Peter Jagadpramana, and Bu Sung Lee. Flogger: A file-

centric logger for monitoring file access and transfers within cloud com-

puting environments. In Trust, Security and Privacy in Computing and

Communications (TrustCom), 2011 IEEE 10th International Conference

on, pages 765–771. IEEE, 2011.

[38] Ryan K L Ko, Peter Jagadpramana, Miranda Mowbray, Siani Pearson,

Markus Kirchberg, Qianhui Liang, and Bu Sung Lee. Trustcloud: A

framework for accountability and trust in cloud computing. In Services

(SERVICES), 2011 IEEE World Congress on, pages 584–588. IEEE, 2011.

[39] Ryan K L Ko, Bu Sung Lee, and Siani Pearson. Towards achieving ac-

countability, auditability and trust in cloud computing. In Advances in

Computing and Communications, pages 432–444. Springer, 2011.

[40] Ryan K L Ko and Mark A Will. Progger: An e�cient, tamper-evident

kernel-space logger for cloud data provenance tracking. In Cloud Comput-

ing (CLOUD), 2014 IEEE 7th International Conference on, pages 881–

889. IEEE, 2014.

[41] Donald C Latham. Department of defense trusted computer system eval-

uation criteria. Department of Defense, 1986.

https://web.archive.org/web/20030719234815/http://www.trustedcomputing.org/docs/tcpa_final.pdf
https://web.archive.org/web/20030719234815/http://www.trustedcomputing.org/docs/tcpa_final.pdf

85

[42] Tang Ling. The study of computer forensics on linux. International Con-

ference on Computational and Information Sciences (ICCIS), pages 294–

297, June 2013.

[43] Peter Macko, Marc Chiarini, Margo Seltzer, and SEAS Harvard. Collect-

ing provenance via the xen hypervisor. In In Proceedings of 3rd USENIX

Workshop on the Theory and Practice of Provenance,TaPP, 2011.

[44] Petros Maniatis and Mary Baker. Secure history preservation through

timeline entanglement. arXiv preprint cs/0202005, 2002.

[45] Hiroshi Maruyama, Taiga Nakamura, Seiji Munetoh, Yoshiaki Funaki, and

Yuhji Yamashita. Linux with tcpa integrity measurement. IBM Japan,

Ltd.(January 28, 2003), 2003.

[46] Microsoft. Bitlocker drive encryption overview. Online [Ac-

cessed 19/06/15]https://technet.microsoft.com/en-us/library/

cc732774.aspx.

[47] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and

Margo I Seltzer. Provenance-aware storage systems. In USENIX An-

nual Technical Conference, General Track, pages 43–56. Berkeley, CA,

USA USENIX Association, 2006.

[48] Mary A. Nixon. On Your Own North Carolina Small Claims Court:

A Debt Collection Guide for North Carolina Businesses. Universal-

Publishers, May 1998.

[49] Priscilla Oppenheimer. Computer forensics: Seizing a computer. http:

//www.priscilla.com/forensics/computerseizure.html.

[50] Wyllys Ingersoll Paul Sangster. Pts protocol:binding to tnc if - m. Online

[Accessed 29/03/15]http://www.trustedcomputinggroup.org/files/

resource_files/C1A987EA-1A4B-B294-D031133E95B20871/IFM_PTS_

v1_0_r25_Public%20Review.pdf.

https://technet.microsoft.com/en-us/library/cc732774.aspx
https://technet.microsoft.com/en-us/library/cc732774.aspx
http://www.priscilla.com/forensics/computerseizure.html
http://www.priscilla.com/forensics/computerseizure.html
http://www.trustedcomputinggroup.org/files/resource_files/C1A987EA-1A4B-B294-D031133E95B20871/IFM_PTS_v1_0_r25_Public%20Review.pdf
http://www.trustedcomputinggroup.org/files/resource_files/C1A987EA-1A4B-B294-D031133E95B20871/IFM_PTS_v1_0_r25_Public%20Review.pdf
http://www.trustedcomputinggroup.org/files/resource_files/C1A987EA-1A4B-B294-D031133E95B20871/IFM_PTS_v1_0_r25_Public%20Review.pdf

86

[51] Kyriacos E Pavlou and Richard T Snodgrass. Forensic analysis of database

tampering. ACM Transactions on Database Systems (TODS), 33(4):30,

2008.

[52] Bart Preneel. The first 30 years of cryptographic hash functions and the

nist sha-3 competition. In Topics in Cryptology-CT-RSA 2010, pages

1–14. Springer, 2010.

[53] Joanna Rutkowska. Evil maid goes after truecrypt! Online [Ac-

cessed 17/03/15]http://theinvisiblethings.blogspot.co.nz/2009/

10/evil-maid-goes-after-truecrypt.html.

[54] Vincent Scarlata, Carlos Rozas, Monty Wiseman, David Grawrock, and

Claire Vishik. Tpm virtualization: Building a general framework. In

Trusted Computing, pages 43–56. Springer, 2008.

[55] Bruce Schneier and John Kelsey. Automatic event-stream notarization

using digital signatures. In Security Protocols, pages 155–169. Springer,

1997.

[56] Bruce Schneier and John Kelsey. Secure audit logs to support computer

forensics. ACM Transactions on Information and System Security (TIS-

SEC), 2(2):159–176, 1999.

[57] G Shpantzer. Implementing hardware roots of trust: The trusted platform

module comes of age. SANS Analyst Pro-gram, 40(6):1–15, 2013.

[58] Arunesh Sinha, Limin Jia, Paul England, and Jacob R Lorch. Continuous

tamper-proof logging using tpm 2.0. In Trust and Trustworthy Computing,

pages 19–36. Springer, 2014.

[59] SOURCEFORGE. TrouSerS FAQ. Online [Accessed 19/01/15]http:

//trousers.sourceforge.net/faq.html.

[60] Chun Hui Suen, Ryan K L Ko, Yu Shyang Tan, Peter Jagadpramana,

and Bu Sung Lee. S2logger: End-to-end data tracking mechanism for

http://theinvisiblethings.blogspot.co.nz/2009/10/evil-maid-goes-after-truecrypt.html
http://theinvisiblethings.blogspot.co.nz/2009/10/evil-maid-goes-after-truecrypt.html
http://trousers.sourceforge.net/faq.html
http://trousers.sourceforge.net/faq.html

87

cloud data provenance. In Trust, Security and Privacy in Computing and

Communications (TrustCom), 2013 12th IEEE International Conference

on, pages 594–602. IEEE, 2013.

[61] Yu Shyang Tan, Ryan K L Ko, and Geo↵ Holmes. Security and data ac-

countability in distributed systems: A provenance survey. In Proceedings

of the 15th IEEE International Conference on High Performance Com-

puting and Communications(IEEE HPCC13), Zhang JiaJie, China, 2013.

IEEE Computer Society.

[62] PC TCG. Client specific tpm interface specification (tis), version 1.2.

trusted computing group, 2003-2013.

[63] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash

functions. In Advances in Cryptology–EUROCRYPT 2005, pages 19–35.

Springer, 2005.

[64] Mark N Wegman and J Lawrence Carter. New hash functions and their

use in authentication and set equality. volume 22, pages 265–279. Elsevier,

1981.

[65] James Greene Wiiliam Futral. Intel Trusted EXecution Technology for

Server Platform. Paul Manning, 2013.

[66] Yang Xu, Rong-gang Wang, An-yu Cheng, and Rui Li. Design of online

upgrade system for the software of vehicle ecu based on can-bus. Inter-

national Journal of Advancements in Computing Technology, 5(1), 2013.

[67] Aydan R Yumerefendi and Je↵rey S Chase. Strong accountability for

network storage. volume 3, page 11. ACM, 2007.

[68] Jing Zhang, Adriane Chapman, and Kristen Lefevre. Do you know where

your data’s been?–tamper-evident database provenance. In Secure Data

Management, pages 17–32. Springer, 2009.

88

[69] Olive Q. Zhang, Markus Kirchberg, Ryan K. L. Ko, and Bu Sung Lee.

How to track your data: The case for cloud computing provenance. In

Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third

International Conference on, pages 446–453. IEEE, Nov 2011.

[70] Wenchao Zhou, Ling Ding, Andreas Haeberlen, Zachary G Ives, and

Boon Thau Loo. Tap: Time-aware provenance for distributed systems.

In TaPP, 2011.

[71] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen,

Boon Thau Loo, and Micah Sherr. Secure network provenance. In Proceed-

ings of the Twenty-Third ACM Symposium on Operating Systems Prin-

ciples, pages 295–310. ACM, 2011.

Appendix A

TPM Locality

Locality is an assertion to the TPM that a command’s source is associated

with a particular component. Locality can be thought of as a hardware based

command authorisation [62]. TPM 1.2 supports six levels of locality, locality

None and Locality 0-4. PC Client platform usage of locality levels is defined in

the PC Client Implementation Specification. TPM 1.2 must support Locality

0-4.

Each PCR, during manufacturing of the TPM, has the locality level set for

two types of operations: reset and extends. Even though the Locality 2 is a

higher locality. If the PCR wants to allow for both Locality 1 and Locality 2,

both bits must be set in the mask. If a command attempts an operation on a

PCR, it must be received from the correct locality.

Table A.1: TPM Locality

Locality Meaning

4 Trusted Hardware/DRTM

3 Software launched by DRTM

2 Controlled by OS/TPM Driver

1 Controlled by OS/TPM Driver

0 SRTM; Default

90

Table A.2: The Standard Usage of PCRs

PCR Usage

0 Core BIOS, POST BIOS, Embedded Option ROMS

1 Platform and Motherboard Configuration and Data

2 Option ROM Code

3 Option ROM Configuration and Data

4 IPL Code

5 IPL configuration data

6 State transition (sleep, hibernate, and so on)

7 Reserved for OEM

8 TrustGrub

9 TrustGrub

10 TrustGrub

11 TrustGrub

12 TrustGrub

13 TrustGrub

14 TrustGrub

15 Not Assign

16 Used for debugging

17 Dynamic CRTM

18 Platform defined

19 Used by a trusted operating system

20 Used by a trusted operating system

21 Used by a trusted operating system

22 Used by a trusted operating system

23 Application Support

Appendix B

Figure B.1: Sample of Chunk File

The measurements taken by Integrity Management Architecture are stored

in both binary and ASCII forms /sys/kernel/security/ima/ascii runtime mea-

surements and /sys/kernel/security/ima/binary runtime measurements respec-

tively

The ASCII version of the measurements can be viewed in plaintext and

consists of four columns:

• PCR number is the number of the PCR that is extended with the mea-

surement value. In the case of IMA, that it PCR 10.

• template-hash the combined hash of the of the contents of the file and the

?filename hint? for the loaded data, expressed as SHA1(filedata-hash,

92

Figure B.2: Sample list of IMA runtime measurements

filename-hint), where filename-hint is 256-byte long.

• Filedata-hash is the hash of the contents of the file containing the loaded

or executed data, expressed as SHA1(filedata-hash).

• Filename-hint is the filename of the included file, or an identifier for the

loaded data (as in the case of ?boot aggregate?, which is the resulting

hash from the PCRs 0-7.

Below follows a sample fragment of the IMA runtime measurements ob-

tained from the host where the compute node ran in the implementation setup.

Appendix C

TPM Commands After the administrator takes ownership of TPM, he has the

ability to manage and use TPM. These command could be locally or remotely.

If the administrator forget the password of the TPM ownership password he

then the only way to reset this password is to reset TPM chip through the

BIOS. And this add more confidentiality to TPM solution.

Table C.1 shows some of TPM command with the description of each com-

mand. These command compatible with TPM 1.2, since we use used this

version in our framework. In this table we tried to choose most important

command that we frequently use it in our framework.

94

Table C.1: Some of TPM Commands

TPM Command Description

TPM version Show the version of TPM

TPM takeownership

Basic command for creating an SRK and an owner

for a TPM. Until this command is executed, the TPM

cannot do much of anything.

TPM Extend Used to update a value in a PCR.

TPMNV WriteValue Write to the NVRAM space.

TPMNV ReadValue Read from NVRAM space.

TPM sealdata
seals sensitive input data to the SRK of the system’s

TPM and optionally a PCR configuration.

TPM unsealdata
Decrypt the sensitive data based on the values of PCRS

which was used on seal time.

TPM getQuote

TPM signed the PCR values fromthe chip. The program

to obtain a quote, and thus measure the current state of

the PCRs.

TPM loadkey
The program loads the key in BLOB-FILE into persistent

storage and registers it using the UUID in UUID-FILE.

TPM mkuuid
The program generates a TPM UUID and stores it in the

file UUID-FILE.

TPM updatepcrhash
This program updates the PCR composite hash in file

OLD-HASH-FILE to produce the file NEW-HASH-FILE.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Goal
	The Objectives
	The Scope
	Key Contributions
	Definition of Terms
	The Outline

	Literature Review
	History of Tamper-Evidence
	Related Work
	System Management Facilities
	Hash Operations
	Audit Trails
	Tools that Collect Provenance at Network Level and in Cloud Computing
	Capture System Call

	Background
	AEGIS

	Requirements for Digital Evidence
	Reliability
	Authenticity
	Admissibility
	Completeness
	Believability

	Tamper-Evidence
	Summary of the Gaps in Tamper-Evidence Tools
	Integrity and Confidentiality
	Provide Tamper-Evident at Boot Stage
	Remote Attestation
	Collecting Provenance at Application Level
	Detect any tampering for the application that generates provenance logs

	Overview of the Trusted Platform Module
	What a TPM Provides
	TPM Architecture
	PCR!s
	Keys
	Non-Migratable Keys
	Migratable Keys

	Integrity Measurement Architecture (IMA)
	Intel-TXT
	TrustedGRUB

	Framework Design
	Client Side
	Provenance and Backup Server

	Framework Implementation
	Client machine
	Provenance Generator and Provenance Logs Buffer
	Create Chunk
	Hash Chunk and Transfer the Chunk to the Provenance Server

	Provenance Server
	Backup Server
	TPM-Quote

	Framework Advantages
	Guarantee that Data Provenance is created and transmitted in a secure environment
	Tampered Chunk
	Tampered Provenance Generator
	Trusted BIOS Configuration
	Tampered Bootloader
	Change Kernel OS

	Data Provenance with Integrity is Guaranteed
	Data Provenance with Confidentiality is Guaranteed
	Data Provenance with Availability is Guaranteed
	Remote Attestation

	Evaluation
	Detecting tampering in machine components
	Detecting Tampering at runtime
	Results

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Publications
	References
	Appendix
	Appendix
	Appendix

