
Using the Online Cross-Entropy Method to Learn Relational
Policies for Playing Different Games

Samuel Sarjant, Bernhard Pfahringer, Kurt Driessens and Tony Smith

Abstract—By defining a video-game environment as a collec-
tion of objects, relations, actions and rewards, the relational
reinforcement learning algorithm presented in this paper gen-
erates and optimises a set of concise, human-readable relational
rules for achieving maximal reward. Rule learning is achieved
using a combination of incremental specialisation of rules and
a modified online cross-entropy method, which dynamically ad-
justs the rate of learning as the agent progresses. The algorithm
is tested on the Ms. Pac-Man and Mario environments, with
results indicating the agent learns an effective policy for acting
within each environment.

I. INTRODUCTION

There are countless AI algorithms for playing specific
games (such as Tesauro’s backgammon agent [1] and
Samuel’s checkers playing agent [2]), but general AI algo-
rithms for playing a range of different games are rare. By us-
ing a representation of objects, relations, actions and rewards
for defining games, relational reinforcement learning (RRL)
algorithms can be used to learn behaviour for operating in
games. RRL defines environments as groups of objects with
relations and an agent takes actions that directly interact with
those objects in pursuit of maximising a numerical reward
signal. RRL allows dynamic environments and scalable pa-
rameterisable behaviour that regular reinforcement learning
cannot handle without extensive abstraction. General Game
Playing [3], the design of AI which can play many formally
defined games, is strongly related to RRL, but it provides a
full formal model of the game, which RRL may not do.

This paper describes CERRLA (Cross-Entropy Relational
Reinforcement Learning Agent), a policy-search relational
reinforcement learning agent capable of learning useful,
human-readable behaviour in a range of relational envi-
ronments without the requirement of a formal environment
model. Because a relational environment can be of any size,
CERRLA uses a policy-search algorithm (like GREY [4] or
TREENPPG [5]) to search the space of policies (decision
lists of rules) directly, as opposed to value-based algorithms
(such as TRENDI [6] or MARLIE [7]) which learn a value
function to approximate expected state reward. Abstraction
can be used to reduce the state space, but that often requires
prior knowledge — something that is not always known.

CERRLA’s method of learning was initially based on a
paper by Szita and Lörincz [8], but has since been expanded

Samuel Sarjant, Bernhard Pfahringer and Tony Smith are with the
Faculty of Computing and Mathematical Sciences at The University of
Waikato, New Zealand. Kurt Driessens is with the Department of Knowledge
Engineering at Maastricht University, The Netherlands. Samuel Sarjant is
the corresponding author. Email: sam.sarjant@gmail.com.

to relational domains and general environments. The cross-
entropy method has previously been successfully applied
to both Tetris [9], [10] and Ms. Pac-Man [8], though in
each case the learning algorithm was optimised to match
the environment.

CERRLA uses the cross-entropy method to search a num-
ber of parallel distributions of relational rules to probabilisti-
cally generate policies for acting effectively in environments.
The agent creates rules by first determining the relative
least general generalisation (RLGG) rules for each action
and then searching incrementally specialised versions. These
rules are then combined into a policy using the cross-entropy
method for selection and ordering. The cross-entropy method
is also used for guided specialisation of rules, to focus on
interesting rules. The resulting converged distributions output
low complexity, easy-to-read relational policies which obtain
large rewards when evaluated in the environment.

II. BACKGROUND

In order to properly explain the learning method CERRLA
employs, some background concepts must first be explained.

A. Relational Reinforcement Learning

Relational reinforcement learning (RRL) is an extension
of reinforcement learning (RL) in which an agent seeks to
maximise a numerical reward by interacting with its environ-
ment through a number of actions [11]. RRL differs from RL
by defining the environment as first-order logical relations
between objects and actions taken upon those objects. RL
problems can be formalised using the Markov Decision
Process (MDP) framework, where the agent receives the state
and the actions it can take from that state. The agent selects
an action which changes the state based on the transition
function and generates a reward value which is passed to the
agent with the next state observation [12]. This continues
until a terminal state within the environment is reached.
Action selection is controlled using a policy π : s → a,
which when given a state s, returns an action a to take.

Relational environments may still be formalised using the
MDP framework, but the state and action formalisms are now
defined via relational predicates concerning objects present
in the state (e.g. observation(cat, hat), action(cat)). Each
predicate’s definition includes a declarative bias to constrain
the object types it can take as arguments. The agent is
provided with the environment predicate definitions, rather
than being required to learn them.

Relational rules are defined as condition1, . . . ,
conditioni → action, where condition is a relation acting

 978-1-4577-0011-8/11/$26.00 ©2011 IEEE 182



Fig. 1. A screenshot of a portion of the Ms. Pac-Man environment.

upon one or more objects and action is an action acting upon
one or more objects defined by the conditions. An example
rule is conda(X,Y ), condb(Y, sam) → actiona(X, sam).
In this rule there are two variable arguments X and Y , and
a definite object sam. This rule also has implicit assertions:
objects of a different name are unequal, and each object has
a type assertion. For example, if conda takes a Thing and
a Gizmo as its first and second arguments, then thing(X)
and gizmo(Y ) are hidden type conditions. An object can
have more than one type assertion, but only if the types are
able to co-exist (e.g. thing(X), gizmo(X) can only be true
if thing(X)→ gizmo(X) or vice-versa).

The main benefits of RRL over RL are: (1) states are
flexible collections of objects and relations, (2) available
actions can be automatically inferred using rules, (3) first-
order variable generalisation allows general behaviour over
similar objects rather than single objects, and (4) background
knowledge may be defined to easily create new relations or
rule out illegal states in an environment. However, the first-
order structure also introduces new problems. Because states
are dynamic, there is an enormous number of possible states,
which becomes impossible to model with a brute force state-
action table (hence the need for parameterisable variables),
and first-order reasoning is generally slower than feature-
based methods.

B. Environments

The agent has a number of episodic testing environments,
where the agent is allowed a finite number of steps to
reach the goal. In order for CERRLA to interact with an
environment, a wrapper class must be provided which can
extract and transform relational objects, relations and actions.

In each environment the agent selects actions using a
relational rule policy created at the beginning of the episode
(detailed in Section III). At the beginning of an experiment,
the environment predicates are initialised and made available
to the agent. State observations are asserted using the objects
and relations currently present in the state and relational ac-
tions are evaluated by transforming them into the appropriate
low-level action in the environment.

TABLE I
THE PREDICATES DEFINITIONS FOR MS. PAC-MAN.

Observations
distance(Thing,#D) Thing is #D units from

Ms. Pac-Man.
edible(Ghost) Ghost is edible.
blinking(Ghost) Ghost is blinking.
junctionSafety(Junction,#J) Junction has safety value #J .
Actions (where #D (distance) and #J (junctionSafety) are meta-
information for resolving actions)
moveTo(Thing,#D) Move towards Thing.
moveFrom(Thing,#D) Do not move to Thing.
toJunction(Junction,#J) Move to Junction.
Type Hierarchy
Thing ← Ghost; Fruit; Dot;
PowerDot; GhostCentre.

All objects are Things.

Junction An intersection of paths.

1) Ms. Pac-Man: Ms. Pac-Man is the (unauthorised) se-
quel to the famous Pac-Man arcade video game.1 The goal of
the game is for Ms. Pac-Man (the agent) to eat all dots in the
level while avoiding the ghosts. Ms. Pac-Man has four simple
directional actions, though these are abstracted into higher
level actions for the purpose of learning strategic behaviour.
There are four hostile ghosts with individual behaviour, each
released periodically from their cage. Unlike Pac-Man, the
ghosts in Ms. Pac-Man have a 25% chance of choosing a
non-default behaviour direction at a junction (but cannot turn
directly back) so a level cannot be completed by taking a
predefined sequence of actions. The ghosts can be eaten for
a short period of time after eating a powerdot, giving a large
score bonus for each ghost eaten during this time. When a
ghost is eaten, it returns to the cage and is released again
after a short time. Also, once per level, a fruit appears for a
limited time which can be eaten for a large score bonus.

Ms. Pac-Man works well as a reinforcement learning prob-
lem because it has a fully observable state, an obvious reward
signal (the score), and non-deterministic ghost behaviour,
making planning algorithms ineffective.

The relational state description for Ms. Pac-Man is given
in Table I. The actions are defined as high-level move
towards/from actions and a ‘to junction’ action with two
arguments: the object to act upon, and the distance/junction
safety of the object. Ms. Pac-Man’s low-level (directional)
movement is determined by evaluating the policy rule-by-
rule. When a rule is evaluated, the object that is closest or
has highest junction safety determines the direction (towards
or from). If the rule fails to select a single direction (multiple
objects of equal distance), the next rule is used to determine
direction. If no single direction is reached, either take the
same direction as last step, or a perpendicular direction.

The distance(Thing,#) predicate is defined as the
length of Ms. Pac-Man’s shortest path to the Thing. The
junctionSafety(Junction,#) predicate is defined as the
shortest distance between the Junction and nearest Ghost
minus the distance between the Junction and Ms. Pac-Man.
E.g. a JunctionSafety(Junction, 4) implies Ms. Pac-Man
can reach the junction four steps prior to the nearest ghost.

1Pac-Man and Ms. Pac-Man are trademark Namco Bandai Games.

183 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)



Fig. 2. A screenshot of the Mario environment.

In order for the agent to act effectively, each action
will require that the Thing being acted upon will be
bound to a specific type (e.g. dot(X), distance(X,D) →
moveTo(X,D)). This is handled in Section III-A.

2) Mario: The Mario environment uses Infinite Mario, an
open-source clone of the Super Mario Bros.2 video-game.
The agent is in control of Mario, who must traverse a fixed-
length two-dimensional level of hazards in an attempt to
reach the princess within a finite time period. Infinite Mario
is able to randomly generate a completable level of varying
levels of difficulty, so the agent must be able to handle
many different situations. Each level consists of terrain of
varying heights (including deadly pits), a number of different
types of enemies, searchable bricks, and collectable coins and
powerups. Mario has three modes (in decreasing order): fire,
large and small. Whenever Mario is hit by an enemy, his
mode decreases. Mario can increase his mode by searching
a Box (by jumping into it from underneath), and collecting
a Mushroom or FireF lower that may come out.

Mario can dispatch enemies by jumping on them (except
for PiranhaP lant and Spiky) or, if in fire mode, shooting
a fireball (except for Spiky). If an enemy has wings (is
flying), jumping on them only removes the wings. When
a Koopa is jumped on, it leaves behind a Shell which can
be picked up and fired to destroy Enemies and Bricks.

The agent’s reward is based on a combination of factors
(enemies killed, items collected, time remaining, distance
travelled, Mario’s mode, etc.). The reward calculation for-
mula is given in Section IV-2.

Mario’s relational state description is given in Table II.
canJumpOnto and canJumpOver are defined as objects
that are feasibly in Mario’s jump range from Mario’s last
grounded position (but not directly above). Mario’s move
action may entail jumping over solid obstacles in the way
of getting to the object. Mario’s relational jumping actions
involve moveing close enough to be able to jump onto/over

2Super Mario Bros. was developed by Nintendo for the Nintendo Enter-
tainment System.

TABLE II
THE PREDICATES DEFINITIONS FOR MARIO.

Observations
distance(Thing,#D) Thing is Euclidean #D from Mario.

The sign of #D indicates direction.
heightDiff(Thing,#H) Thing is #H units above/below Mario.

The sign of #H indicates direction.
canJumpOnto(Thing) Mario can feasibly jump onto Thing.
canJumpOver(Thing) Mario can feasibly jump over Thing.
flying(Enemy) Enemy has wings.
squashable(Enemy) Enemy can be jumped on.
blastable(Enemy) Enemy can be shot with fireball.
width(Pit,#W ) The size (#W ) of a Pit.
carrying(Shell) If Mario is carrying Shell.
passive(Shell) If Shell is not moving.
Actions (where #D (distance) and #W (width) are meta-
information for resolving actions)
move(Thing,#D) Move towards Thing.
search(Brick,#D) Search Brick (hit from beneath).
jumpOnto(Thing,#D) Jump onto Thing.
jumpOver(Thing,#D,
#W )

Jump over Thing of width #W .
#W = 1 if undefined.

pickup(Shell,#D) Picks up a Shell.
shootF ireball(Enemy,
#D,MarioPower)

Shoot Enemy with a fireball (only
when MarioPower = fire).

shootShell(Enemy,#D,
Shell)

Shoot Enemy with a held Shell.

Type Hierarchy
Thing ← Brick; Enemy;
Item; Goal; Pit; Shell.

All objects are Things.

Enemy ← Goomba;
Koopa; PiranhaP lant;
Spiky; BulletBill.

Various Enemy types.

Koopa ← GreenKoopa;
RedKoopa.

Two types of Koopa.

Item ← Mushroom;
Coin; FireF lower.

Mario can collect these.

MarioPower Mario’s modes: fire, large or small.

the object and jumping long enough to complete the action
(holding jump until Mario is both above and halfway closer
to the object from his starting position).

The first rule to be triggered in the policy determines
Mario’s action. Mario acts on the closest object the rule
defines. If multiple objects are closest, Mario uses the next
rule to act. No decision will result in no action.

Mario also has a large type hierarchy, which can be used to
guide the actions towards general (e.g. Enemy) or specific
(e.g. RedKoopa) types of objects. For distance calculations,
the Goal is defined to be just out of view to the right.

C. Cross-Entropy Method
The cross-entropy (CE) method [13] is an optimisation

algorithm which maintains a distribution of possible solutions
to a problem. The CE method is used in parallel to maintain
multiple distributions of relational rules for use in generating
relational policies. A more in-depth review of the CE method
is given by De Boer et al. [14].

The CE method consists of two main phases:
1) Generate N samples from the distribution.
2) Update the distribution based on the best NE samples

to increase the probability of sampling that data again,
where NE is a small proportion of the N samples.

Initially, the set of data X = {x1, . . . , xn} (rules) is
stored within a distribution with probabilities p0(X) :=

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 184



TABLE III
PSEUDO-CODE SUMMARY OF CERRLA. SEE TEXT FOR FULL

EXPLANATION.

1 initEnvironment(game) Initialise predicate definitions
2 DS := {} The slot distribution
3 samples := {} The sample collection
4 n := 0 # policies evaluated
5 repeat
6 πn := generatePolicy(DS ) Generate policy from slots
7 repeat
8 s := observeState() Relational state observations
9 πn := maybeResample() Resample if not progressing
10 a := selectAction(πn, s) Policy determines action
11 takeAction(a) Evaluate relational action
12 until episodeComplete Until terminal state
13 rn := Environment.reward() Note reward
14 samples.add(πn, rn) Add the sample to collection
15 NE := determineMinEliteSize(DS ) Determine minimum # elites
16 if n ≥ 2 ·NE Update after 2 ·NE samples
17 samples.remove(πi : ri < rNE

) Remove non-elite samples
18 α′ := α/max(N − n,NE) Initially low α′

19 update(DS , samples, α′) Step-wise update
20 maybeSpecialiseNewRules(DS ) Specialise interesting rules
21 until converged(DS ) Determined by sum updates

{p1, . . . , pn}. The distribution is then sampled N times
({x(1), . . . ,x(N)}), selecting data based on its (initially
equal) probability where x(i) = xj with probability
pj . The samples are then tested with function f(x) and
sorted in descending order. NE ‘elite’ subsamples E =
{e(1), . . . , e(NE)} are then extracted from the samples (where
e(i) = x(j)). Elite samples are samples with f(x(j)) ≥
f(xρ·N ) where typically ρ := 0.05.

The observed distribution p′(X) := {p′1, . . . , p′n} is then
calculated using the frequency of data seen within the elite
samples, given by:

p′j :=
( ∑

e(i)∈E

{
1 if e(i) = xj
0 otherwise

})/
NE

which means that p′j is equal to the count of all elite samples
that represent data xj divided by the total number of elite
samples NE . For example, if half of the samples in E are
the same value xj , p′j = 0.5.

To allow for variance across the iterations of the algorithm,
the distribution is updated in a step-wise fashion, using α
(typically α := 0.6) to modify the distribution probabilities:

pj := α · p′j + (1− α) · pj (1)

The idea is that every update will cause the distribution
to produce useful data more often, eventually resulting in
a converged distribution. The algorithm stops after a finite
number of iterations, or when the distribution has converged.

The CE method can also optimise multiple distributions in
parallel. Given a vector of size m, with each slot of the vector
containing a distribution, we can test and update multiple
distributions at once. The resulting converged distributions
represent an optimal combination of data for the problem.

III. METHODOLOGY

CERRLA uses the cross-entropy method to optimise a set
of automatically discovered, iteratively specialised relational

rules for solving the environment problem as a form of direct
policy search. The algorithm explores the set of relational
rules for solving the problem and exploits high-achieving
rules by increasing their probability of being selected. Ini-
tially, all rules are equally likely to be sampled, but over time
better rules are sampled more frequently while maintaining
a gradually smaller chance of exploring the other rules. If
an agent does not have any rules for selecting an action, it
creates a new one (Section III-A).

1) Policy Generation: In CERRLA, a sample is a pol-
icy π, which is generated from a distribution DS of rule
distributions (a collection of slots S, where each slot has
probability pS and size |S|). Each slot contains a distri-
bution of relational rules with the same action predicate
a: Sa = {ra1 , . . . , ran} where each rule rj has the same
action predicate a and probability pj . Each slot also has two
parameters: µ(S) ∈ [0,∞] (initially µ(S) = 0.5), the average
number of times a slot is used per policy and σ(S) ∈ [0, 0.5]
(initially σ(S) = 0.5), the standard deviation of usage.

A policy is generated (step 6 in Table III) by sampling
every slot from DS , where slots with high pS are likely to
come first. When a slot is sampled, a Gaussian normally dis-
tributed value gS with parameters µ(S) and σ(S) represents
the probability of the slot being used in the policy. gS ≥ 1
means the slot will be used at least once, but gS < 1 mean
the slot may not be used at all. For example, if gS = 1.3,
then S will be present in the policy at least once, or twice
with 30% probability. Once a slot is sampled, a rule ri is
sampled from the slot using its probability pi.

2) Policy Resampling: Step 7–12 in Table III outline the
evaluation loop of the policy against the environment. Note
that each policy is evaluated through 3 episodes and the
reward is averaged to reduce variance.

At step 9, the policy may optionally be resampled if the
agent is not progressing. Every episode, the agent records
which states it has encountered. If the agent encounters
a previously visited state, and is not receiving more than
average reward (repeating the same state may be lucra-
tive), a resampling variable χ ∈ [0, 1] is incremented by
(0.1 · avSteps)−1, where avSteps is the average observed
number of steps per episode and 0.1 represents the maximum
proportion of the episode the agent can visit the same
states. χ is decremented by the same amount if a new state
is encountered. χ represents the probability that the agent
will resample the policy in that step (which then resets
χ := 0). The value of 0.1 was selected arbitrarily and further
experimentation is required to find an ideal value.

The policy that completes the most steps within the
episode is the one to which the episode’s reward is asso-
ciated. Policies could be associated with the reward obtained
while they were active, but in environments where the reward
is only received at the end of the episode, only the final policy
would receive reward.

3) Online Cross-Entropy Method: Step 15 introduces a
dynamic elite sample size method. Because the number of
rules is constantly changing, the number of elites should

185 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)



change to reflect this:

NE = max
⌈∑

S∈DS

(
µ(S) · |S|

)∑
S∈DS

µ(S)
,
∑
S∈DS

µ(S)
⌉

and N = NE/ρ. NE is either equal to the average number
of rules for relatively high µ(S) slots, or is equal to the sum
of µ(S) across all slots (whichever is larger).

Step 16–20 represents a deviation from the standard CE
method. Because the agent is frequently creating new rules
and thus needs quick feedback on which rules are interesting,
an online CE method is utilised. Szita and Lörincz [15] detail
such a method which processes samples incrementally using
a sliding window of N samples. This has been modified to
process samples almost immediately.

After 2 · NE samples have been evaluated, the agent
begins updating the distribution using a modified step-wise
parameter α′ (see step 18–19 in Table III). The agent then
continues to sample policies and revising the elite samples,
performing α′ updates every iteration. Note that any samples
in E which have been present for more than N steps are
removed. After N updates, α′ matches the α in Szita and
Lörincz’s online CE method.

4) Updating Probabilities: At step 19 the elite E sam-
ples are used to update the slot distribution DS and rule
distributions within each S in parallel as defined in Section
II-C. When updating the slot distribution DS , the observed
probability p′Sj

for each Sj in DS is calculated by first
determining the average position of Sj within E:

qSj
= 1− 1

|ESj |
∑

π∈E(Sj)

index(Sj , π)

|π|

where |π| is the size of π, E(Sj) are the policies in E that
utilise slot Sj , and index(Sj , π) ∈ [0, |π|) returns the index
of Sj in the policy, where 0 is first. If E(Sj) is empty, qSj

=
0.5 (the average position), because if Sj is not present in E,
we cannot determine its position probability (though µ(Sj)
will decrease). To form a valid probability distribution, qS
needs to be normalised:

p′Sj
=

qSj∑
S∈DS

qS

Because every slot is sampled when generating a new policy,
pS represents the probablity of the slot being sampled first.

The extra slot parameters are also step-wise updated like
Equation (1): µ′(S) is the average number of times S appears
per policy in E and σ′(S) is the observed standard deviation
of slot use in E.

In the update process, only utilised rules and slots in
the policy are updated, therefore unused rules and slots are
implicitly negatively updated, resulting in minimally sized
policies containing only useful rules.

After the update process (step 20), the agent may create
new rules, if a rule is ready to specialise (see Section III-A2).

The Kullback-Leibler divergence is used to determine
when the optimisation has converged: when the divergence
between all rule distribution updates and slot value updates
is less than β · α where β = 0.01 in experiments.

TABLE IV
PSEUDO-CODE SUMMARY OF THE RLGG PROCESS.

Input: raRLGG (if one already exists) % Existing RLGG rule
Input: s % The current state
Input: A(s) % The available actions in s
for each aa(Φ) in A(s) % For every action
CΦ := facts in s regarding objects Φ % Form the conditions
ra(Φ) := CΦ → aa(Φ) % Form the rule
if objects in raRLGG 6= ra(Φ) % Differing action arguments

swap objects for variables
raRLGG := raRLGG ∩ r

a(Φ) % Create the intersection
end loop

A. Creating Relational Rules

CERRLA’s rule exploration is accomplished by first deter-
mining the relative least general generalization (RLGG) rule
raRLGG for every action a available for the agent to take,
splitting the RLGG slot into sub-slots, and then gradually
specialising new rules, using the rule probabilities as a guide
for selecting which rules to specialise.

1) Creating the RLGG: The RLGG rules define the least
general conditions for covering every possible action for
every state. Whenever the agent encounters a state where the
RLGG rules do not cover every possible action, the RLGG
is generalised to cover the un-covered actions.

Given the set of available actions A(s) for the state s
where aa(Φ) is one of the actions with action predicate a
and arguments Φ, a rule ra(Φ) can be created using aa(Φ) as
the rule’s action and all facts in the state regarding Φ as the
rule conditions CΦ.

An example Ms. Pac-Man case:

• A(s) = {moveTo(dot1, 5),moveTo(ghost1, 12), . . .};
• aa(Φ) = moveTo(dot1, 5);
• a = moveTo;
• Φ = dot1, 5;
• ra(Φ) = distance(dot1, 5), dot(dot1), . . . →
moveTo(dot1, 5).

The RLGG of every rule is computed by replacing all
non-numerical instances of objects in Φ in each rule for
parameterisable variables if the objects do not match. All
other objects in the rules that do not match are replaced for an
anonymous variable ‘?.’ The rules are joined by intersection
to become the RLGG rule. Any conditions containing only
anonymous variables are removed from the resulting RLGG
rule. Table IV summarises the algorithm in pseudo-code. See
[16] for a more detailed definition of the RLGG process.

Numerical values are a special case when computing the
RLGG. Numerical values are stored in a numerical range
variable, which defines a minimum and maximum value.

For example, using the Ms. Pac-Man environment, assume
the agent has at least three moveTo actions that it can take
at a given example state: moveTo(g1, 5), moveTo(g2, 10),
and moveTo(d3, 8), where g1 and g2 are ghosts and d3 is
a dot. Using only the observations regarding those objects

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 186



produces the following rules:

edible(g1), distance(g1, 5), ghost(g1), thing(g1)

→ moveTo(g1, 5). (Rule1)
distance(g2, 10), ghost(g2), thing(g2)

→ moveTo(g2, 10). (Rule2)
distance(d3, 8), dot(d3), thing(d3)

→ moveTo(d3, 8). (Rule3)

The RLGG for Rule1 and Rule2 is:

distance(X, (5.0 ≤ D ≤ 10.0)), ghost(X), thing(X)

→ moveTo(X,D) (RLGG1,2)

Combining this with Rule3 gives us the minimally general
rule for covering the three actions:

distance(X, (5.0 ≤ D ≤ 10.0)), thing(X)

→ moveTo(X,D) (RLGG1,2,3)

2) Creating Specialised Rules: The RLGG operation only
creates one minimally general rule for every action, but for
more specialised behaviour, the agent needs more specialised
rules. When a rule r is specialised, all possible single-step
specialisations {r′1, . . . , r′i} are created using two specialisa-
tion methods: guided specialisation and range splitting. Each
r′ is added to the rule distribution with an initially average
probability of being selected (pr′ = |S|−1).

Guided specialisation creates new rules by incrementally
adding particular conditions (or negated non-type conditions)
to the rule. However, only conditions that have previously
been present when the rule’s action has been available will
be added (as noted by the agent). For example, in the Mario
environment, the flying(X) condition will never be added
to a search(X,D) rule because whenever search(X,D) is
true, flying(X) is never true. Examples of guided speciali-
sation of distance(X,D), thing(X)→ move(X,D) are:

distance(X,D), thing(X), f lying(X)→ move(X,D);

distance(X,D), thing(X), enemy(X)→ move(X,D);

distance(X,D), thing(X),¬passive(X)→ move(X,D).

A problem with guided specialisation is that it may
introduce illegal (enemy(X), coin(X) → action(X);
X cannot be both enemy and coin) or redundant rules
(canJumpOver(X), canJumpOn(X) → action(X); If
Mario can jump over X he can obviously jump on to X
too). To stop these rules from being created, the agent learns a
basic partial model of associations between state observations
to infer a set of rules that define which state observations are
always true, never true, and occasionally true when a partic-
ular observation is true (e.g. whenever canJumpOver(X)
is true, canJumpOn(X) is also always true). Equivalence
rules can also be created by combining inference rules to
simplify the state space (e.g. B ⇔ ¬A). The agent can also
utilise any known environment background knowledge.

Range splitting creates specialised rules by splitting an
existing range of size r into an arbitrary number of smaller

subranges. The splitting mechanic creates three main sub-
ranges: (min) · · · (min + r

2 ), (min + r
2 ) · · · (max), and

(min + r
4 ) · · · (min + 3r

4 ). Also, if the range includes
0.0, subranges are created for each side: min · · · 0.0 and
0.0 · · ·max. For example, the specialisation of the range
(−10.0 ≤ D ≤ 15.0) produces (−10.0 ≤ D ≤ 2.5), (2.5 ≤
D ≤ 15.0), (−3.75 ≤ D ≤ 8.75), (−10.0 ≤ D ≤ 0.0), and
(0.0 ≤ D ≤ 15.0).

3) Slot Splitting: Depending on the conditions defining it,
an agent’s action can have very different consequences, based
on the objects it is acting upon. For example, in Ms. Pac-
Man, the moveTo action can be beneficial when moving
to dots or edible ghosts, but unhelpful when moving to a
hostile ghost. Though specialisations of the moveTo RLGG
rule can be created to act appropriately, all moveTo rules are
contained within the same slot, generally resulting in only a
single moveTo rule dominating the slot.

Slot splitting is achieved by using the immediate guided
specialisations of each RLGG rule as seeds for each split slot
(such that every rule in the split slots will contain a common,
non-RLGG rule condition). This results in each slot defining
a common sub-behaviour of the action (e.g. moving towards
dots). By shifting part of the rule learning process into the
slot distribution, the agent can focus on learning specialised
behaviour for a particular form of action.

B. Controlling Rule Specialisations

The agent now has the tools to create rules, but the
question is now when should the rules be created? The RLGG
rules are created/modified when they do not cover all actions,
but creating all specialisations at once swamps the agent and
results in a brute force search over every possible solution.

Whenever an RLGG rule is created/modified, or the set
of possible guided specialisations changes, the slot splitting
procedure is called to generate/modify slots for each single-
step specialisation of the RLGG rule. Each slot is then filled
with a further set of specialisations (both guided and range
splitting) using the slot’s seed (or RLGG) rule as the rule to
specialise. Pre-existing rules within modified slots that are no
longer valid (according to the agent’s beliefs) are removed.
Similar to beam search [17], useful rules are then specialised
further, until specialisations fail to improve the performance.
Specialisation candidates are selected by sampling a rule r
from each slot after every slot update. Specialisation of a
rule is restricted by four conditions:
• It has not been used for specialisation before,
• It has been sampled at least NE times,
• It is more likely to be sampled than its ‘parent’ (the rule

that created this rule), that is pr > pparent(r),
• The rule’s slot is not full (|S| is less than the maximum

number of possible rule specialisations for action a: the
number of possible guided specialisations + the number
of range splits).

Although specialisation is restricted, every specialisation
increases the number of rules, thereby increasing NE (and
N ) and slowing the rate of learning. If a rule is rarely

187 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  500  1000  1500  2000  2500  3000  3500  4000

A
ve

ra
ge

 M
s.

 P
ac

-M
an

 S
co

re

Number of Episodes

Ms. Pac-Man Single-level Performance

Average (+/- SD) 
Best Run

Fig. 3. The 10-fold averaged results for single-level Ms. Pac-Man. Error
bars indicate standard deviation between the 10 runs.

positively updated, it can be culled from the distribution,
and restricted from being created again. After every update,
if a rule ri within a slot has a selection probability of
pi ≤ (1 − α)Θ · |S|−1 it is culled, where α is the CE step-
wise update value, |S| is the size of slot S, and Θ ·N is the
minimum number of updates required for a useless rule to
be culled (i.e. the rule is never present in E). Θ = 2 in all
experiments.

Because newly created rules are added to a slot with an
average probability of being selected, they have a fair chance
of being sampled and tested. If a newly specialised rule
proves to be useful, its probability of being selected will
increase and it may be selected for further specialisation.
This method of restricted specialisation confines exploration
of the possible rule space to only a useful subset of rules.

IV. RESULTS

CERRLA has been tested on two environments: Ms. Pac-
Man and Mario. The graphs shown in Figures 3 and 5
represent the average performance over 10 learning runs
initialised with different random seeds.

1) Ms. Pac-Man: The reward structure in Ms. Pac-Man
allocates 10 points per dot eaten (there are a total of 242
dots in the first level); 50 points per powerdot (there are a
total of 4 powerdots); 750 points for the fruit; 200, 400, 800,
1600 points for each consecutive ghost eaten when ghosts are
edible. In a perfect game, the maximum score for the first
level is 15,370 points, though this is very difficult to achieve.

Figure 3 shows results for a sub-set of the Ms Pac-Man
environment: maximising score in a single level. The episode
ends when either the agent loses all lives, or completes the
level. The agent takes at most 3700 episodes to converge to
a result of approximately 3800 points. The plateau in reward
may be a result of a too low β convergence measure.

As a reward comparison, the agent presented in [8]
achieves 8186 points on average using CE optimisation of
hand-coded rules and 6382 points using CE optimisation of
random rules. However, note that CERRLA was designed to

edible(X), distance(X, (1.0 ≤ D ≤ 26.0))
→ moveTo(X, D)

distance(X, (1.0 ≤ D ≤ 26.0))
→ moveTo(X, D)

junctionSafety(X, (0.0 ≤ J ≤ 28.0))
→ toJunction(X, J)

Fig. 4. An example policy the agent generates after convergence in the
Ms. Pac-Man environment.

 2400

 2600

 2800

 3000

 3200

 3400

 0  1000  2000  3000  4000  5000  6000  7000

A
ve

ra
ge

 M
ar

io
 S

co
re

Number of Episodes

Mario Single-level, Difficulty 1 Performance

CERRLA (+/- SD)
Forward Jumping Agent (+/- SD)

Best Run

Fig. 5. The CERRLA 10-fold averaged results compared against the average
reward for ’Forward Jumping Agent’ for Mario. Error bars indicate standard
deviation between the 10 runs.

learn in any relational environment (resulting in a loss in per-
formance), whereas the agent in [8] was designed specifically
for playing Ms. Pac-Man. Furthermore, the Ms. Pac-Man
environments used are likely to be different in execution.

Figure 4 shows an example policy generated by CERRLA
for the Ms. Pac-Man environment. The first rule chases
and consumes edible ghosts 1–26 units away. The second
rule keeps Ms. Pac-Man moving towards things (though this
could be non-edible ghosts), and the third rule keeps Ms. Pac-
Man moving to the safest junctions. At the beginning of a
level, the agent moves towards the safest junction, which
generally leads to a powerdot, causing the agent to pursue
edible ghosts.

2) Mario: The Mario experiment setup requires Mario
to complete a single level of difficulty 1 (no Spikies or
BulletBills, some enemies Flying). Because each level
is randomly generated, the perfect score is unknown. An
episode’s total reward is equal to:

1024× isGoal + 32×marioPower + distanceP ixels

+ 64× fireF lowers+ 58×mushrooms+ 16× coins
+ 24× hiddenBlocks+ 42× kills+ 12× jumpKills

+ 4× fireballKills+ 17× shellKills+ 8× timeLeft

Figure 5 shows results for the Mario environment. As a
comparison, a simple, but surprisingly effective, ‘Forward
Jumping Agent’, which runs right and jumps whenever an
obstacle or enemy is in the way, is also shown. The agent
basically learns the ’forward jumping’ behaviour, with extra
strategy thrown in for collecting items. By training the

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 188



canJumpOver(X), distance(X, (-160 ≤ D ≤ 160)),
squashable(X), width(X, (1 ≤ W ≤ 16)),
¬flying(X) → jumpOver(X, D, W)

squashable(X), distance(X, (-238 ≤ D ≤ 383)),
¬canJumpOver(X), marioPower(fire)
→ shootFireball(X, D, fire)

canJumpOver(X), distance(X, (-160 ≤ D ≤ 160)),
width(X, (1 ≤ W ≤ 16)), goomba(X)
→ jumpOver(X, D, W)

¬canJumpOn(X), heightDiff(X, (35 ≤ H ≤ 59)),
brick(X) → search(X, H)

canJumpOver(X), distance(X, (-160 ≤ D ≤ 160)),
flying(X), width(X, (1 ≤ W ≤ 16)),
greenKoopa(X) → jumpOver(X, D, W)

goal(X), distance(X, (-160 ≤ D ≤ 160))
→ jumpOnto(X, D)

Fig. 6. An example policy the agent generates after convergence in the
Mario environment.

agent on low difficulty levels, then gradually increasing the
difficulty, the agent could potentially learn better behaviour.

Sometimes, it is better to evade an enemy, rather than
attempt to kill it (e.g. run underneath a flying enemy).
Currently, there is no explicit action for this behaviour and
future experiments will include this action.

Figure 6 shows an example policy generated by CERRLA
for the Mario environment. The policy largely deals with
jumping over enemies, though there are rules for shooting
enemies and searching bricks.

V. FUTURE WORK

Obvious future work includes investigating different learn-
ing parameters to balance speed and performance. A slower
learning rate (larger NE) may result in better performance.
Another alternative is to investigate bootstrapping rules, by
restarting the learning process with previously learned rules
as initial fixed rules.

Real time strategy (RTS) games, such as StarCraft3, are
ideal testing environments for relational learners, due to
the dynamic, relational nature of the state and multiple
levels of learning. An agent operating within an RTS game
needs to be able to function both in micro-actions (combat,
resource collecting, etc.) and macro-actions (seeking the
enemy, upgrades, etc.). Some of this can be automated to
simplify the problem, but generally the agent will be required
to learn on multiple levels.

A possible solution for this problem is the use of rela-
tional options [18]. Options define higher level behaviour
for achieving a sub-goal within an environment. Options are
defined like any other policy, but can be utilised as actions
by the agent. By splitting problems into sub-problems, the
agent can quickly learn behaviour for the sub-problems and
combine the behaviour to solve the problem.

VI. CONCLUSIONS

This paper outlined CERRLA, a policy learner for
relational environments using a modified online cross-
entropy method and incremental rule refinements. The

3StarCraft was developed by Blizzard Entertainment.

algorithm formulates its own rules for acting using state
observations and guided rule specialisations. Because the
algorithm produces relational policies, the agent’s behaviour
can scale to larger instances of the problem and is able
to deal with objects with common properties to those the
agent trained on. The cross-entropy method has been shown
to be effective for both forming relational policies, but also
for guiding the exploration of rule specialisation during
learning. The resulting policies created by CERRLA are
comprehensible and scalable. The agent may not perform at
the same level as a domain specific AI, but it compensates by
having the potential to learn across a range of environments
without the need for pre-defined rules.

REFERENCES

[1] G. Tesauro, “TD-Gammon, a self-teaching backgammon program,
achieves master-level play,” Neural computation, vol. 6, no. 2, pp.
215–219, 1994.

[2] A. Samuel, “Some studies in machine learning using the game of
checkers. II–Recent progress,” Annual Review in Automatic Program-
ming, vol. 6, pp. 1–36, 1969.

[3] M. Genesereth, N. Love, and B. Pell, “General game playing:
Overview of the AAAI competition,” AI Magazine, vol. 26, no. 2,
p. 62, 2005.

[4] M. van Otterlo and T. De Vuyst, “Evolving and Transferring Prob-
abilistic Policies for Relational Reinforcement Learning,” in BNAIC
2009: Benelux Conference on Artificial Intelligence, October 2009.

[5] K. Kersting and K. Driessens, “Non-parametric policy gradients: A
unified treatment of propositional and relational domains,” in Pro-
ceedings of the 25th international conference on Machine learning.
ACM, 2008, pp. 456–463.

[6] K. Driessens and S. Džeroski, “Combining model-based and instance-
based learning for first order regression,” in Proceedings of the 22nd
international conference on Machine learning. ACM, 2005, pp. 193–
200.

[7] T. Croonenborghs, J. Ramon, H. Blockeel, and M. Bruynooghe,
“Online learning and exploiting relational models in reinforcement
learning,” in Proc. of the Int. Conf. on Artificial Intelligence (IJCAI),
2007, pp. 726–731.

[8] I. Szita and A. Lörincz, “Learning to play using low-complexity
rule-based policies: Illustrations through Ms. Pac-Man,” Journal of
Artificial Intelligence Research, vol. 30, no. 1, pp. 659–684, 2007.

[9] ——, “Learning Tetris using the noisy cross-entropy method,” Neural
Computation, vol. 18, no. 12, pp. 2936–2941, 2006.

[10] S. Kistemaker, F. Oliehoek, and S. Whiteso, “Cross-entropy method
for reinforcement learning,” 2008.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). The MIT Press,
March 1998.

[12] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming, 1st ed. New York, NY, USA: John Wiley &
Sons, Inc., 1994.

[13] R. Rubinstein, “Optimization of computer simulation models with rare
events,” European Journal of Operational Research, vol. 99, no. 1, pp.
89–112, 1997.

[14] P. De Boer, D. Kroese, S. Mannor, and R. Rubinstein, “A tutorial on
the cross-entropy method,” Annals of Operations Research, vol. 134,
no. 1, pp. 19–67, 2004.

[15] I. Szita and A. Lörincz, “Online variants of the cross-entropy method,”
CoRR, vol. abs/0801.1988, 2008.

[16] G. Plotkin, “A note on inductive generalization,” Machine intelligence,
vol. 5, no. 153-163, p. 178, 1970.

[17] S. Shapiro, D. Eckroth, and G. Vallasi, Eds., Encyclopedia of Artificial
Intelligence. Wiley, 1987.

[18] T. Croonenborghs, K. Driessens, and M. Bruynooghe, “Learning
relational options for inductive transfer in relational reinforcement
learning,” Lecture Notes in Computer Science, vol. 4894, p. 88, 2008.

189 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)


